EP2237915A2 - Method for removing material from a component, and electrode - Google Patents

Method for removing material from a component, and electrode

Info

Publication number
EP2237915A2
EP2237915A2 EP08859567A EP08859567A EP2237915A2 EP 2237915 A2 EP2237915 A2 EP 2237915A2 EP 08859567 A EP08859567 A EP 08859567A EP 08859567 A EP08859567 A EP 08859567A EP 2237915 A2 EP2237915 A2 EP 2237915A2
Authority
EP
European Patent Office
Prior art keywords
electrode
component
electrolyte
channel
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08859567A
Other languages
German (de)
French (fr)
Inventor
Erwin Bayer
Martin Bussmann
Albin Platz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2237915A2 publication Critical patent/EP2237915A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • B23H3/06Electrode material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/10Supply or regeneration of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/10Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode

Definitions

  • the invention relates to a method for removing material from a component according to the preamble of patent claim 1. This process is also called electrochemical machining (ECM: Electro Chemical Machining or PECM: Precise Electro Chemical Machining).
  • ECM Electro Chemical Machining
  • PECM Precise Electro Chemical Machining
  • the component from which material is to be removed is switched as an A-node.
  • An electrode is guided to the component, namely a gap is formed between the electrode and the component.
  • the shape of the electrode is a counterpart to the shape the component is to receive.
  • the electrode is switched as a cathode, and between the cathode (electrode) and the anode (component) then an electrolyte must be introduced, ie in the gap.
  • the ablation takes place precisely at a predetermined surface area of the component and not in the surrounding areas.
  • the latter can be etched by the electrolyte, in particular if the electrolyte is located on the component beyond the actual effective area, and if stray currents flow.
  • Another problem is that the electrolyte is consumed during the process. The electrolyte must therefore be replaced. If this is not done uniformly, localized depositions of the material transferred to a hydroxide from the workpiece can occur. At such points, the conductivity of the electrolyte is then reduced, which can lead to a rise of the electrode on the component and thus to short circuit.
  • a channel is formed, which has a feed opening and a discharge opening, wherein the component with a part of its surface forms a wall and the electrode with at least part of its surface also forms a wall of the channel.
  • electrolyte is constantly conducted from the supply port to the discharge port.
  • the uniformity of the electrolyte flow can thereby be ensured particularly reliably that the electrolyte is introduced under a pressure of 2 to 50 bar into the feed opening of the channel, whereby preferably a suitable nozzle is used for this purpose.
  • the formation of the channel can take place in a particularly simple manner by providing two guide elements which bridge the gap (in particular non-conductive). Although these can be attached to the component or even attach by hand, it has proven to be particularly easy practical, if the guide elements are arranged or attached to the electrode (ie part of the electrode unit). Then, in a process of moving the electrode toward the component, the guide elements contact the component to form the gap, the surface of the component, so that the channel is also formed directly with the formation of the gap in its final size.
  • a channel is more or less automatically provided by the shape of the component at the electrode. This is the case, in particular, when the component is provided with a recess, and when an electrode designed as a sinking electrode is used, which engages precisely in the component. Then just by the formation of the gap at the same time the channel is formed.
  • the recess is to be increased in depth by the removal process, not necessarily in their lateral dimensions. Therefore, it is useful to coat the electrode partially with an insulating body, so that only in a portion of the channel, an electrical connection of the electrode is made possible with the component via the E lektrolyten.
  • a preferred case where the method is applicable is the manufacture of engine components from nickel or titanium based alloys.
  • the engine component here is the component resulting from the original component by machining.
  • a typical such engine component is a blade profile.
  • Fig. 1 shows schematically the inventive method in a first embodiment and Fig. 2 schematically illustrates the inventive method in a second embodiment.
  • Material is to be removed from a component denoted by 10 by electrochemical machining (so-called "sinking") .This is done by connecting the component 10 as anode 12. An electrode 12 is then switched as a cathode and moved in accordance with the arrow 14 in the direction of the component 10 but, so that the surfaces of the device 10 and the electrode 12 do not contact each other so as not to cause a short circuit, a gap 16 is provided between the device 10 and the electrode 12, as shown in FIG. This gap 16 is now delimited on two sides by a guide element 18.
  • the guide element 18 is fastened to the electrode 12, namely, it is nonconductive and elastic
  • the two guide elements 18 reach the surface of the component 10, so that a channel is formed, so that a lower wall of the channel is through the component 10, an upper wall of the channel through the electrolyte 12, and the side walls of the channel through the guide elements 18.
  • the channel has a feed opening 20 shown in FIG. 1 at the bottom and a discharge opening 22 shown at the top in FIG Channel is now introduced electrolyte.
  • the electrolyte is forced through a nozzle 24 at high pressure of at least 2 and up to 50 bar in the channel via the Zufarffhung 20.
  • the discharge opening 22 is, in particular by suitable shaping of the electrode 22, formed so that the electrolyte exits the channel in a free jet 26 and is directed away from the component 10.
  • a component 10 ' which has recesses 28.
  • the recess 28 in the depth (ie in Fig. 2 upward) to be increased.
  • Suitable for the recesses 28 are E- electrodes 12 'are formed. These engage in the recesses, in such a way that they touch neither side nor at the end of the recess 28, the component 10 '.
  • Nozzles 24 now spray an electrolyte into the channel at a pressure of 2 to 50 bar (feed opening 20 '), and the electrolyte leaves the channel 30 via a discharge opening 22' in each case. So that the electrodes act only in the direction of the depth of the recess 28, they are each laterally coated with an insulating body 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Disclosed is a method for removing material from a component (10, 10') that is connected as an anode. In said method, an electrode (12) that is connected as a cathode is guided to the component such that a gap (16) is formed, an electrolyte is introduced into the gap, and a closed system is formed for the electrolyte by forming a duct. The electrolyte is continuously conducted from an inlet to an outlet of the duct. Forming the duct, e.g. by means of conducting elements (18) that are mounted on the electrode (12), ensures that only those surface parts of the component (10) to be machined from which material is to be removed enter in contact with the electrode while the other surface parts do not enter in contact with the electrolyte. Since the electrolyte is continuously conducted across said surface, used electrolyte is continuously discharged along with residual matter while fresh electrolyte is delivered such that the method can be carried out in a particularly trouble-free and expedient manner.

Description

Verfahren zum Abtragen von Material von einem Bauteil und Elektrode Method of removing material from a component and electrode
Die Erfindung betrifft ein Verfahren zum Abtragen von Material von einem Bauteil nach dem Oberbegriff von Patentanspruch 1. Man nennt dieses Bearbeiten auch elektrochemisches Bearbeiten (ECM: Electro Chemical Machining oder auch PECM: Precise Electro Chemical Machining).The invention relates to a method for removing material from a component according to the preamble of patent claim 1. This process is also called electrochemical machining (ECM: Electro Chemical Machining or PECM: Precise Electro Chemical Machining).
Bei diesem Verfahren wird das Bauteil, von dem Material abgetragen werden soll, als A- node geschaltet. Zu dem Bauteil wird eine Elektrode geführt, und zwar wird zwischen der Elektrode und dem Bauteil ein Spalt gebildet. Typischerweise ist die Form der Elektrode ein Gegenstück zu der Form, die das Bauteil erhalten soll. Die Elektrode wird als Kathode geschaltet, und zwischen der Kathode (Elektrode) und der Anode (Bauteil) muss dann ein Elektrolyt eingebracht werden, also in den Spalt.In this method, the component from which material is to be removed is switched as an A-node. An electrode is guided to the component, namely a gap is formed between the electrode and the component. Typically, the shape of the electrode is a counterpart to the shape the component is to receive. The electrode is switched as a cathode, and between the cathode (electrode) and the anode (component) then an electrolyte must be introduced, ie in the gap.
Es ist nun notwendig, das Verfahren so durchzuführen, dass genau an einem vorbestimmten Oberflächenbereich des Bauteils die Abtragung erfolgt und in den umgebenden Bereichen nicht. Letztere können jedoch durchaus von den Elektrolyten angeätzt werden, insbesondere wenn sich der Elektrolyt auf dem Bauteil jenseits der eigentlichen Wirkfläche befindet, und wenn Streuströme fließen. Ein anderes Problem ist, dass sich der Elektrolyt während des Verfahrens verbraucht. Der Elektrolyt muss daher ausgetauscht werden. Geschieht dies nicht gleichmäßig, kann es lokal zu Absetzungen des in ein Hydroxid überführten vom Werkstück abgetragenen Materials kommen. An solchen Stellen wird dann die Leitfähigkeit des Elektrolyten herabgesetzt, was bis zu einem Auffahren der Elektrode auf das Bauteil und damit zum Kurzschluss führen kann.It is now necessary to carry out the method so that the ablation takes place precisely at a predetermined surface area of the component and not in the surrounding areas. However, the latter can be etched by the electrolyte, in particular if the electrolyte is located on the component beyond the actual effective area, and if stray currents flow. Another problem is that the electrolyte is consumed during the process. The electrolyte must therefore be replaced. If this is not done uniformly, localized depositions of the material transferred to a hydroxide from the workpiece can occur. At such points, the conductivity of the electrolyte is then reduced, which can lead to a rise of the electrode on the component and thus to short circuit.
Es gibt zahlreiche Verfahren der genannten Art, bei der der Elektrolyt über die Elektrode zugeführt wird. Vorliegend soll der Elektrolyt nicht über die Elektrode zugeführt werden. Bisher gibt es hierfür Elektrolytsysteme mit geschlossenen Druckkammern, bei denen das zu bearbeitende Bauteil außerhalb des eigentlichen abzutragenden Bereichs (dem sogenannten Senkbereich) durch Schutzelektroden geschützt wird. Bei diesem Verfahren ergibt sich eben der Nachteil, dass das Bauteil vollständig mit Elektrolyt umspült ist. Die Schutzelektroden verbrauchen sich. Es gibt auch die Möglichkeit, ein offenes System bereitzustellen, bei dem der Elektrolyt über Düsen in den Spalt gelenkt wird. Dieses Verfahren hat den Nachteil, dass die Strömung im Spalt ungleichmäßig ist, so dass es zu Strömungsriefen o- der Totwassergebieten mit Hydroxidschlammansammlungen kommen kann. Es ist Aufgabe der Erfindung, ein Verfahren zum Abtragen von Material von einem Bauteil gemäß dem Oberbegriff von Patentanspruch 1 bereitzustellen, bei dem die Probleme des Standes der Technik beseitigt werden.There are numerous methods of the type mentioned, in which the electrolyte is supplied via the electrode. In the present case, the electrolyte should not be supplied via the electrode. So far, there are for this purpose electrolyte systems with closed pressure chambers, in which the component to be machined outside the actual abzutragenden area (the so-called sinking area) is protected by protective electrodes. In this method results just the disadvantage that the component is completely lapped with electrolyte. The protective electrodes are consumed. There is also the possibility to provide an open system in which the electrolyte is directed into the gap via nozzles. This method has the disadvantage that the flow in the gap is uneven, so that there may be Strömungsriefen o- or Totwassergebieten with Hydroxidschlammansammlungen. It is an object of the invention to provide a method for removing material from a component according to the preamble of claim 1, in which the problems of the prior art are eliminated.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 gelöst. Somit wird ein Kanal gebildet, der eine Zufuhröffnung und eine Abfuhröffhung aufweist, wobei das Bauteil mit einem Teil seiner Oberfläche eine Wandung und die Elektrode mit zumindest einem Teil ihrer Oberfläche ebenfalls eine Wandung des Kanals bildet. Während des Abtragens wird beständig Elektrolyt von der Zufuhröffnung zur Abfuhröffnung geleitet.The object is achieved by a method having the features according to claim 1. Thus, a channel is formed, which has a feed opening and a discharge opening, wherein the component with a part of its surface forms a wall and the electrode with at least part of its surface also forms a wall of the channel. During the erosion, electrolyte is constantly conducted from the supply port to the discharge port.
Durch die Bildung eines Kanals wird ein geschlossenes System hergestellt. Dadurch gelangt der Elektrolyt nur auf den Bereich, von dem Material abgetragen werden soll (welcher abgesenkt wird), und es gibt keine Anätzungen in ungeschützten Nachbarschaftsbereichen. Da beständig Elektrolyt durch den Kanal geführt bzw. geleitet wird, gibt es einen zuverlässigen Austausch des verbrauchten Elektrolyten, d.h. es ist immer ausreichend frischer Elektrolyt vor der Elektrode vorhanden. Dadurch erhält man eine hohe Vorschubgeschwindigkeit beim Senken, weil der Prozess störungsfrei ablaufen kann. Der Elektrolytfluss ist insbesondere gleichmäßig und bei geeigneter Ausbildung des Kanals auch nicht turbulent, so dass es keine Totwassergebiete gibt und das Hydroxid sicher ausgespült wird.The formation of a channel creates a closed system. As a result, the electrolyte only reaches the area from which material is to be removed (which is lowered), and there are no etchings in unprotected neighborhood areas. Since electrolyte is constantly conducted through the channel, there is a reliable exchange of the spent electrolyte, i. There is always enough fresh electrolyte in front of the electrode. This gives a high feed rate when lowering, because the process can run smoothly. In particular, the electrolyte flow is even and, with a suitable design of the channel, also not turbulent, so that there are no dead water zones and the hydroxide is flushed out safely.
Die Gleichmäßigkeit des Elektrolytflusses kann dadurch besonders sicher gewährleistet werden, dass der Elektrolyt unter einem Druck von 2 bis 50 bar in die Zufuhröffnung des Kanals eingebracht wird, wobei bevorzugt hierzu eine geeignete Düse verwendet wird. Das Bilden des Kanals kann in besonders einfacher Weise erfolgen, indem zwei den Spalt überbrückende (insbesondere nicht leitende) Führungselemente bereitgestellt werden. Zwar lassen sich diese an dem Bauteil befestigen oder auch von Hand anbringen, als besonders leicht praktisch durchführbar hat es sich jedoch erwiesen, wenn die Führungselemente an der Elektrode angeordnet bzw. befestigt sind (also Teil der Elektrodeneinheit sind). Dann berühren die Führungselemente bei einem Verfahren der Elektrode auf das Bauteil zu, unter Bildung des Spalts, die Oberfläche des Bauteils, so dass unmittelbar mit der Bildung des Spalts in seiner endgültigen Größe auch der Kanal gebildet wird.The uniformity of the electrolyte flow can thereby be ensured particularly reliably that the electrolyte is introduced under a pressure of 2 to 50 bar into the feed opening of the channel, whereby preferably a suitable nozzle is used for this purpose. The formation of the channel can take place in a particularly simple manner by providing two guide elements which bridge the gap (in particular non-conductive). Although these can be attached to the component or even attach by hand, it has proven to be particularly easy practical, if the guide elements are arranged or attached to the electrode (ie part of the electrode unit). Then, in a process of moving the electrode toward the component, the guide elements contact the component to form the gap, the surface of the component, so that the channel is also formed directly with the formation of the gap in its final size.
Es gibt auch Fälle, in denen ein Kanal durch die Form des Bauteils an der Elektrode mehr oder weniger automatisch bereitgestellt wird. Dies ist insbesondere dann der Fall, wenn als Bauteil ein solches bereitgestellt wird, das eine Aussparung aufweist, und wenn eine als Senkelektrode ausgebildete Elektrode verwendet wird, die genau in das Bauteil eingreift. Dann wird eben durch die Bildung des Spalts gleichzeitig der Kanal gebildet.There are also cases where a channel is more or less automatically provided by the shape of the component at the electrode. This is the case, in particular, when the component is provided with a recess, and when an electrode designed as a sinking electrode is used, which engages precisely in the component. Then just by the formation of the gap at the same time the channel is formed.
Bei einer derartigen Anordnung soll durch den Abtragprozess die Aussparung in ihrer Tiefe vergrößert werden, nicht unbedingt in ihren seitlichen Abmessungen. Daher ist es sinnvoll, die Elektrode zum Teil mit einem Isolationskörper zu überziehen, so dass nur in einem Abschnitt des Kanals eine elektrische Verbindung der Elektrode mit dem Bauteil über den E- lektrolyten ermöglicht ist.In such an arrangement, the recess is to be increased in depth by the removal process, not necessarily in their lateral dimensions. Therefore, it is useful to coat the electrode partially with an insulating body, so that only in a portion of the channel, an electrical connection of the electrode is made possible with the component via the E lektrolyten.
Ein bevorzugter Fall, bei dem das Verfahren anwendbar ist, ist die Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen. Das Triebwerksbauteil ist hierbei das aus dem ursprünglichen Bauteil durch Bearbeitung hervorgehende Bauteil. Ein typisches solches Triebwerksbauteil ist ein Schaufelprofil.A preferred case where the method is applicable is the manufacture of engine components from nickel or titanium based alloys. The engine component here is the component resulting from the original component by machining. A typical such engine component is a blade profile.
Nachfolgend werden bevorzugte Ausführungsformen der Erfindung unter Bezug auf die Zeichnungen beschrieben, in derHereinafter, preferred embodiments of the invention will be described with reference to the drawings, in which
Fig. 1 schematisch das erfindungsgemäße Verfahren bei einer ersten Ausführungsform und Fig. 2 schematisch das erfindungsgemäße Verfahren bei einer zweiten Ausfuhrungsform veranschaulicht.Fig. 1 shows schematically the inventive method in a first embodiment and Fig. 2 schematically illustrates the inventive method in a second embodiment.
Von einem mit 10 bezeichneten Bauteil soll durch elektrochemisches Bearbeiten Material abgetragen werden (sogenanntes „Senken"). Hierfür wird das Bauteil 10 als Anode geschaltet. Nun wird eine Elektrode 12 als Kathode geschaltet und durch Bewegung entsprechend dem Pfeil 14 in Richtung auf das Bauteil 10 zubewegt, allerdings so, dass sich die Oberflächen des Bauteils 10 und der Elektrode 12 nicht berühren, damit kein Kurzschluss erzeugt wird. Vielmehr wird zwischen dem Bauteil 10 und der Elektrode 12 ein Spalt 16 bereitgestellt, wie er in Fig. 1 zu sehen ist. Es wird nun dieser Spalt 16 an zwei Seiten durch ein Führungselement 18 begrenzt. Bevorzugt geschieht dies so, dass das Führungselement 18 an der Elektrode 12 befestigt ist, und zwar ist es nicht-leitend und elastisch. Beim Verfahren der Elektrode 12 entsprechend dem Pfeil 14 gelangen die beiden Führungselemente 18 auf die Oberfläche des Bauteils 10, so dass ein Kanal gebildet wird. So ist eine untere Wand des Kanals durch das Bauteil 10 gebildet, eine obere Wand des Kanals durch den Elektrolyten 12, und die Seitenwände des Kanals durch die Führungselemente 18. Der Kanal hat eine in Fig. 1 unten gezeigte Zufuhröffhung 20 und eine in Fig. 1 oben gezeigte Abfuhröffnung 22. In den Kanal wird nun Elektrolyt eingebracht. Der Elektrolyt wird über eine Düse 24 unter hohem Druck von mindestens 2 und bis hin zu 50 bar in den Kanal über die Zufuhröffhung 20 eingedrückt. Die Abfuhröffhung 22 ist, insbesondere durch geeignete Formung der Elektrode 22, so ausgebildet, dass der Elektrolyt aus dem Kanal in einem Freistrahl 26 austritt und vom Bauteil 10 weggelenkt wird. Durch die Erfindung ist gewährleistet, dass wegen des Vorhandenseins der Führungselemente 18 nur der Teil der Oberfläche des Bauteils 10, welcher gesenkt werden soll, vom Elektrolyten umspült ist. Der Elektrolyt wird beständig durch den Kanal geführt, es steht also ständig frischer Elektrolyt zur Verfügung, und Rückstände werden ausgespült.Material is to be removed from a component denoted by 10 by electrochemical machining (so-called "sinking") .This is done by connecting the component 10 as anode 12. An electrode 12 is then switched as a cathode and moved in accordance with the arrow 14 in the direction of the component 10 but, so that the surfaces of the device 10 and the electrode 12 do not contact each other so as not to cause a short circuit, a gap 16 is provided between the device 10 and the electrode 12, as shown in FIG. This gap 16 is now delimited on two sides by a guide element 18. This is preferably done in such a way that the guide element 18 is fastened to the electrode 12, namely, it is nonconductive and elastic In the process of the electrode 12 according to the arrow 14 the two guide elements 18 reach the surface of the component 10, so that a channel is formed, so that a lower wall of the channel is through the component 10, an upper wall of the channel through the electrolyte 12, and the side walls of the channel through the guide elements 18. The channel has a feed opening 20 shown in FIG. 1 at the bottom and a discharge opening 22 shown at the top in FIG Channel is now introduced electrolyte. The electrolyte is forced through a nozzle 24 at high pressure of at least 2 and up to 50 bar in the channel via the Zufuhröffhung 20. The discharge opening 22 is, in particular by suitable shaping of the electrode 22, formed so that the electrolyte exits the channel in a free jet 26 and is directed away from the component 10. By the invention it is ensured that because of the presence of the guide elements 18, only the part of the surface of the component 10, which is to be lowered, is lapped by the electrolyte. The electrolyte is constantly guided through the channel, so it is constantly fresh electrolyte available, and residues are rinsed out.
Bei einer Abwandlung des Verfahrens wird ein Bauteil 10' verwendet, welches Aussparungen 28 aufweist. Durch das Senkverfahren sollen die Aussparung 28 in der Tiefe (d.h. in der Fig. 2 nach oben hin) vergrößert werden. Passend zu den Aussparungen 28 sind E- lektroden 12' ausgebildet. Diese greifen in die Aussparungen ein, und zwar so, dass sie weder seitlich noch am Ende der Aussparung 28 das Bauteil 10' berühren. Dadurch ist ein U-förmiger Kanal 30 bereitgestellt. Düsen 24 sprühen nun unter einem Druck von 2 bis 50 bar einen Elektrolyten in den Kanal ein (Zufuhröffhung 20'), und der Elektrolyt verlässt den Kanal 30 jeweils über eine Abfuhröffhung 22'. Damit die Elektroden nur in Richtung der Tiefe der Aussparung 28 wirken, sind sie seitlich jeweils mit einem Isolationskörper 32 überzogen.In a modification of the method, a component 10 'is used which has recesses 28. By the lowering process, the recess 28 in the depth (ie in Fig. 2 upward) to be increased. Suitable for the recesses 28 are E- electrodes 12 'are formed. These engage in the recesses, in such a way that they touch neither side nor at the end of the recess 28, the component 10 '. Thereby, a U-shaped channel 30 is provided. Nozzles 24 now spray an electrolyte into the channel at a pressure of 2 to 50 bar (feed opening 20 '), and the electrolyte leaves the channel 30 via a discharge opening 22' in each case. So that the electrodes act only in the direction of the depth of the recess 28, they are each laterally coated with an insulating body 32.
Bei der Ausführungsform gemäß Fig. 2 muss keine gesonderte Maßnahme getroffen werden, um den Kanal 30 zu bilden, außer dass die Elektroden 12' passend zu den Aussparungen 28 des Bauteils 10' ausgebildet sein müssen. Auch hier fließt der Elektrolyt gleichmäßig durch den Kanal 30, so dass ständig frischer Elektrolyt zur Verfügung steht und das Senkverfahren relativ schnell, weil störungsfrei, durchgeführt werden kann. In the embodiment according to FIG. 2, no separate measure has to be taken to form the channel 30, except that the electrodes 12 'have to be formed matching the recesses 28 of the component 10'. Again, the electrolyte flows evenly through the channel 30, so that constantly fresh electrolyte is available and the lowering process relatively quickly because trouble-free, can be performed.

Claims

Patentansprüche claims
1. Verfahren zum Abtragen von Material von einem Bauteil (10, 10'), bei dem das Bauteil (10, 10') als Anode geschaltet wird, bei dem eine Elektrode (12, 12') zu dem Bauteil (10, 10') geführt wird, so dass zwischen der Elektrode (12, 12') an dem Bauteil (10, 10') ein Spalt (16, 30) bereitgestellt ist, bei dem die Elektrode (12, 12') als Kathode geschaltet wird, und bei dem ein Elektrolyt in den Spalt (16, 30) eingebracht wird, dadurch gekennzeichnet, dass ein Kanal (16, 30) gebildet wird, der eine Zufuhröffnung (20, 20') und eine Ab- fuhröfrung (22, 22') aufweist, und dessen Wandungen einen Teil der Oberfläche des Bauteils (10, 10')und zumindest einen Teil der Oberfläche der Elektrode (12, 12') umfassen, und wobei während des Abtragens beständig Elektrolyt von der Zuführöffnung (20, 20') zur Abfuhröffnung (22, 22') geleitet wird.1. A method for removing material from a component (10, 10 '), in which the component (10, 10') is connected as anode, in which an electrode (12, 12 ') to the component (10, 10' ) is guided, so that between the electrode (12, 12 ') on the component (10, 10'), a gap (16, 30) is provided, in which the electrode (12, 12 ') is connected as a cathode, and in which an electrolyte is introduced into the gap (16, 30), characterized in that a channel (16, 30) is formed, which has a feed opening (20, 20 ') and a removal opening (22, 22') and whose walls comprise a part of the surface of the component (10, 10 ') and at least part of the surface of the electrode (12, 12'), and during the erosion resistant electrolyte from the supply port (20, 20 ') to the discharge opening (22, 22 ') is passed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt unter einem Druck von 2 bis 50 bar in die Zufuhröffnung (22, 22') eingebracht wird.2. The method according to claim 1, characterized in that the electrolyte under a pressure of 2 to 50 bar in the feed opening (22, 22 ') is introduced.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Elektrolyt über eine Düse (24) in die Zufuhröffnung (20, 20') eingebracht wird.3. The method according to claim 2, characterized in that the electrolyte via a nozzle (24) in the feed opening (20, 20 ') is introduced.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bilden des Kanals durch Bereitstellen zweier den Spalt (16) überbrückender Führungselemente (18) erfolgt, welche bevorzugt nicht-leitend sind.4. The method according to any one of the preceding claims, characterized in that the formation of the channel by providing two the gap (16) bridging guide elements (18) takes place, which are preferably non-conductive.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Führungselemente (18) an der Elektrode (12) befestigt sind, so dass unmittelbar mit der Bildung des Spalts (16) auch der Kanal gebildet wird.5. The method according to claim 4, characterized in that the guide elements (18) on the electrode (12) are fixed, so that directly with the formation of the gap (16) and the channel is formed.
6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Bauteil (10') eine Aussparung (28) aufweist, und die Elektrode (12') als Senk- elektrode ausgebildet ist, die in das Bauteil (10') eingreift, so dass durch die Bildung des Spalts gleichzeitig der Kanal (30) gebildet wird.6. The method according to any one of claims 1 to 3, characterized in that the component (10 ') has a recess (28), and the electrode (12') as a sinking electrode is formed, which engages in the component (10 '), so that at the same time the channel (30) is formed by the formation of the gap.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Elektrode (12') zum Teil mit einem Isolationskörper (32) überzogen ist, so dass nur in einem Abschnitt des Kanals (30) eine elektrische Verbindung der Elektrode (12') mit dem Bauteil (10') über den Elektrolyten ermöglicht ist.7. The method according to claim 6, characterized in that the electrode (12 ') is partially covered with an insulating body (32), so that only in a portion of the channel (30) an electrical connection of the electrode (12') with the Component (10 ') is made possible via the electrolyte.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es bei der Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen eingesetzt wird, insbesondere bei der Herstellung von Schaufelprofilen.8. The method according to any one of the preceding claims, characterized in that it is used in the production of engine components made of nickel or titanium-based alloys, in particular in the production of blade profiles.
9. Elektrode (12) zur Verwendung bei einem Verfahren nach einem der vorhergehenden Ansprüche, die nicht-leitende Führungselemente (18) an einem Elektrodenkörper umfasst, die dazu dienen, bei Verbringen der Elektrode (12) an ein Bauteil (10) vorbestimmter Form einen ersten Oberflächenabschnitt des Bauteils (10) von zwei abgrenzenden Oberflächen abzudichten bzw. abzutrennen.9. electrode (12) for use in a method according to any one of the preceding claims, comprising non-conductive guide elements (18) on an electrode body, which serve, when the electrode (12) to a component (10) of predetermined shape first surface portion of the component (10) of two delimiting surfaces seal or separate.
10. Elektrode (12) nach Anspruch 9, dadurch gekennzeichnet, dass die Führungselemente (18) elastisch ausgebildet sind. 10. electrode (12) according to claim 9, characterized in that the guide elements (18) are formed elastically.
EP08859567A 2007-12-13 2008-12-05 Method for removing material from a component, and electrode Withdrawn EP2237915A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007060070A DE102007060070A1 (en) 2007-12-13 2007-12-13 Method of removing material from a component and electrode
PCT/DE2008/002040 WO2009074141A2 (en) 2007-12-13 2008-12-05 Method for removing material from a component, and electrode

Publications (1)

Publication Number Publication Date
EP2237915A2 true EP2237915A2 (en) 2010-10-13

Family

ID=40679907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08859567A Withdrawn EP2237915A2 (en) 2007-12-13 2008-12-05 Method for removing material from a component, and electrode

Country Status (5)

Country Link
US (1) US9254530B2 (en)
EP (1) EP2237915A2 (en)
CA (1) CA2709195A1 (en)
DE (1) DE102007060070A1 (en)
WO (1) WO2009074141A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040862A1 (en) * 2009-09-09 2011-03-10 Mtu Aero Engines Gmbh Method and device for locally removing at least one metallic layer from a component made from an alloy
US9976227B2 (en) 2014-05-15 2018-05-22 Baker Hughes, A Ge Company, Llc Electrochemical machining method for rotors or stators for moineau pumps

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1050139A (en) 1900-01-01
NL131373C (en) * 1959-11-16 1900-01-01
US3196093A (en) * 1960-06-13 1965-07-20 Anocut Eng Co Electrolytic cavity sinking apparatus and method for non-parallel workpiece surfaces
DE1931174B2 (en) * 1969-06-19 1975-09-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for electrolytic continuous polishing of rod-shaped workpieces made of zircon alloys
US4256555A (en) * 1978-05-30 1981-03-17 Rolls Royce Limited Electro-chemical-machining of aerofoil blades
US4174268A (en) * 1978-09-01 1979-11-13 Trw Inc. Electrode guide
DE3126033A1 (en) 1981-07-02 1983-01-20 Bayerische Motoren Werke AG, 8000 München Electrolyte pressure chamber for a device for electrochemical machining of workpieces, especially for electrochemical die-sinking
US4772372A (en) * 1987-05-13 1988-09-20 General Electric Company Electrodes for electrochemically machining airfoil blades
GB2300584B (en) * 1995-05-11 1998-09-02 Rolls Royce Plc Improvements in or relating to electrochemical machining of aerofoil blades
DE102004040216B3 (en) * 2004-08-19 2005-12-08 Mtu Aero Engines Gmbh Electrode and method for the electrochemical machining of a workpiece
US7964087B2 (en) * 2007-03-22 2011-06-21 General Electric Company Methods and systems for forming cooling holes having circular inlets and non-circular outlets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009074141A2 *

Also Published As

Publication number Publication date
CA2709195A1 (en) 2009-06-18
WO2009074141A3 (en) 2010-09-23
WO2009074141A2 (en) 2009-06-18
US20100270168A1 (en) 2010-10-28
DE102007060070A1 (en) 2009-06-18
US9254530B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
DE2408715C2 (en) Flushing device for the electrical discharge machining of electrically conductive materials
EP2841628B1 (en) Process and apparatus for the electrolytic deposition of a metal layer on a substrate
EP1007766A2 (en) Device and method for evening out the thickness of metal layers on electrical contact points on items that are to be treated
DE202008011646U1 (en) Device for plasma polishing using a liquid electrolyte
EP2555898B1 (en) Method and electrode for electrochemically processing a workpiece
EP0038447B1 (en) Apparatus for partially electroplating conductive surfaces or surfaces rendered conductive
WO2009074141A2 (en) Method for removing material from a component, and electrode
DE10085445B4 (en) Drahterodierbearbeitungseinrichtung
DE69803138T2 (en) Method and device for cleaning metal strips
DE102007012979B4 (en) Method and device for rinsing machined components
DE2507492C3 (en) Method and device for the electrolytic removal of metal ions from a solution
WO2021073675A1 (en) Method and electrode for machining components by electrochemical machining
DE19633797B4 (en) Device for electroplating electronic circuit boards or the like
DE10154885A1 (en) Process for treating objects with a liquid
EP4025370A1 (en) Method and device for electrochemically treating components
WO2017212051A1 (en) Method and device for rifling barrels of firearms
DE102011082977B4 (en) Electrode for the electrochemical machining of a component
EP2197617B1 (en) Device and method for electrochemical treatment
EP0511557A1 (en) Procedure and equipment for deburring of contact pins
DE102009022926A1 (en) Electrode and method for the electrochemical machining of a workpiece
EP3514263A2 (en) Method and device for electrolytic coating a metal strip
DE102020214344A1 (en) Tool cathode and method for producing a tool cathode for electrochemical machining
DE3221033A1 (en) Device for current transfer from a rolled strip passing through an electroplating configuration
DE1615168A1 (en) Electrical discharge machine
DE102009056091A1 (en) Metallic semi-finished product shaping device, has electrode exhibiting functioning part with sharp contour at area that faces semi-finished product, where area is provided adjacent to semi-finished product in sealed manner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100614

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20100923

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120306

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181122