EP2237304B1 - Magnétron pour four à micro-ondes - Google Patents
Magnétron pour four à micro-ondes Download PDFInfo
- Publication number
- EP2237304B1 EP2237304B1 EP20100156389 EP10156389A EP2237304B1 EP 2237304 B1 EP2237304 B1 EP 2237304B1 EP 20100156389 EP20100156389 EP 20100156389 EP 10156389 A EP10156389 A EP 10156389A EP 2237304 B1 EP2237304 B1 EP 2237304B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pole piece
- side pole
- input side
- annular portion
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007789 sealing Methods 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 14
- 230000010355 oscillation Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000009413 insulation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 1
- 108010036050 human cationic antimicrobial protein 57 Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/10—Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/50—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
- H01J25/52—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
- H01J25/58—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
- H01J25/587—Multi-cavity magnetrons
Definitions
- the present invention relates to a magnetron to be used for a microwave oven.
- the oscillator section of a magnetron to be used for a microwave oven (to be simply referred to as "magnetron” hereinafter) has an anode section and a cathode section.
- the anode section has an anode cylinder and vanes.
- the cathode section has a helical filament.
- the oscillator section generates not only a fundamental wave in the ISM bands (2400 to 2500 MHz) but also electromagnetic waves in frequency bands out of the ISM bands.
- Funnel-shaped pole pieces are arranged face to face as a pair and fixed respectively to the ends of the anode cylinder. Additionally, metallic sealing members provided as a pair are fixed respectively to the corresponding ends of a pair of pole pieces. An insulation cylinder is fixed to an end of the metallic sealing member arranged at the output side. An exhaust pipe is fixed to an end of the insulation cylinder. An antenna is led out from one of the plurality of vanes and the front end of the antenna is pinched by the exhaust pipe. A number of chokes are formed at the output section of the magnetron in order to suppress the output of electromagnetic waves in the high order frequency bands of the fundamental wave (2450 MHz).
- a magnetron described in Patent Document 1 includes ten vanes in the anode section, which have a height of 7.0 to 8.0 mm as viewed in the central axis direction with a diameter of the inscribed circle of the vanes of 8.0 to 8.8 mm and a filament in the cathode section with an outer diameter of 3.5 to 3.9 mm.
- the base sections of the pair of funnel-shaped pole pieces secured to the respective opposite ends of the anode section are separated from each other by a gap of 21.5 to 23.5 mm and the bottom sections of the pair of pole pieces are separated from each other by a gap of 10.2 to 11.2 mm.
- the diameter (P1) of the through-holes of the pole pieces is 7.5 to 8.5 mm and the outer diameter (P2) of the internal surface of the inner annular portions of the pole pieces is 11.0 to 16.0 mm.
- the output of electromagnetic waves of high order frequency bands of the fundamental wave (2450 MHz) is suppressed by means of a plurality of chokes formed in the output section.
- electromagnetic waves (unnecessary noises) in the near low frequency bands located outside the ISM bands (2400 to 2500 MHz) any leakage of which from microwave ovens is prohibited by the Japanese Radio Law, cannot be suppressed by chokes.
- Patent Document 1 discusses about the design value of the diameter of the through-holes and the design value of the outer diameter of the bottom portions of pole pieces. However, the outer diameters of the internal surface of the inner annular portions of the pole pieces are same and the document does not consider suppression of unnecessary noises in the near low frequency bands (2300 to 2400 MHz) located outside the ISM bands.
- the present invention is made to solve the above-described problem. Therefore, the object of the present invention is to suppress the unnecessary noises produced from a magnetron to be used for a microwave oven.
- FIG. 1 is a longitudinal cross-sectional view of a magnetron according to the embodiment of the present invention.
- the anode section 11 has an anode cylinder 12 and ten vanes 13.
- the anode cylinder 12 extends cylindrically along the central axis 100.
- Each of the ten plate-shaped vanes 13 is joined to the inner wall of the anode cylinder 12 at one of the opposite sides thereof and left as free end at the other opposite side.
- the free ends of the vanes 13 are arranged on a same cylindrical surface extending along the central axis 100.
- the same cylindrical surface formed the free ends of the ten vanes will be referred to as vane-inscribed cylindrical surface 14 hereinafter.
- the ten vanes 13 radially spread from the vane-inscribed cylindrical surface 14 to the inner wall of the anode cylinder 12.
- the ten vanes 13 are joined alternately by large and small pairs of strap rings 15 and 16 soldered at the top and bottom ends of the ten vanes.
- the cathode section 21 is a helical filament extending along the central axis 100 and arranged in the anode cylinder 12.
- the cathode section 21 is arranged in the inside of the vane-inscribed cylindrical surface 14 with a gap interposed between the cathode section 21 and the free ends of the ten vanes 13.
- the gap is an electronic interaction space.
- the anode section 11 and the cathode section 21 operate as oscillator section that generates high frequency waves.
- the input side end (the lower end in FIG. 1 ) of the cathode section 21 is fixed to a ring-shaped end hat 22.
- the output side end (the upper end in FIG. 1 ) of the cathode section 21 is fixed to a disk-shaped end hat 23.
- a center support rod 24 runs through the center of the helical filament and is connected to the disk-shaped end hat 23.
- a side support rod 25 is connected to the ring-shaped end hat 22. Both the center support rod 24 and the side support rod 25 support the cathode section 21 and also take a role of supplying electric current to the cathode section 21.
- the magnetron has a pair of an input side pole piece 31 and an output side pole piece 32.
- the input side pole piece 31 is joined to the input side end section (the lower end in FIG. 1 ) of the anode cylinder 12.
- the output side pole piece 32 is joined to the output side end (the upper end in FIG. 1 ) of the anode cylinder 12.
- the input side pole piece 31 and the output side pole piece 32 are arranged face to face.
- the input side pole piece 31 and the output side pole piece 32 are formed like funnel having through-holes 33 and 34 at the center respectively. The centers of the through-holes 33 and 34 are located on the central axis 100.
- An input side metallic sealing member (the lower metallic sealing member in FIG. 1 ) 51 is formed as a hollow cylinder.
- the input side metallic sealing member is fixed to the input side end of the anode cylinder 12 and also to the input side pole piece 31.
- An insulation stem 53 is joined to the input side metallic sealing member 51 at the end (the lower end in FIG. 1 ) thereof that is remote from the input side pole piece 31.
- an output side metallic sealing member (the upper metallic sealing member in FIG. 1 ) 52 is formed as a hollow cylinder.
- the output side metallic sealing member is fixed to the output side end of the anode cylinder 12 and also to the output side pole piece 32.
- An insulation cylinder 54 is joined to the output side metallic sealing member 52 at the end thereof that is remote from the output side pole piece 32.
- An exhaust pipe 55 is joined to the insulation cylinder 54 at the end thereof that is remote from the metallic sealing member 52.
- An antenna 56 is led out from one of the ten vanes 13. The antenna 56 runs through the output side pole piece 32 and extends in the inside of the metallic sealing member 52 and also in the inside of the insulation cylinder 54. And the tip of the antenna 56 is pinched and fixed by the exhaust pipe 55.
- a cap 57 covers the exhaust pipe 55.
- Ring-shaped magnets 61 and 62 are arranged respectively below and above the anode cylinder 12 and outside the metallic sealing members 51 and 52.
- the ring-shaped magnets 61 and 62 are magnetized in the direction of the central axis 100.
- Yokes 63 and 64 surround the anode cylinder 12 and the magnets 61 and 62.
- a magnetic circuit is formed by the magnets 61 and 62 and the yokes 63 and 64.
- a radiator 65 for cooling the oscillator section is arranged between the anode cylinder 12 and the yoke 63.
- FIG. 2 is an enlarged view around the oscillator section in FIG. 1 .
- the vanes 13 have a height H of 7 to 8 mm in the direction of the central axis 100.
- the vane-inscribed cylindrical surface 14 has a diameter B of 8.1 mm (manufacturing error: ⁇ 0.1 mm).
- the filament that constitutes the cathode section 21 has an outer diameter F of 3.7 mm (manufacturing error: ⁇ 0.1 mm).
- the input side pole piece 31 is formed by an outer annular portion 35, a taper section 37 and an inner annular portion 39 which are integrally combined to show a funnel-shaped profile.
- the outer annular portion 35 is a flat plate-shaped annular member.
- the outer periphery of the outer annular portion 35 is joined to the input side end of the anode cylinder 12 and also to the metallic sealing member 51.
- the inner annular portion 39 is a flat plate-shaped annular member.
- the outer diameter of the inner annular portion 39 is smaller than the inner diameter of the outer annular member 35.
- the through-hole 33 of the input side pole piece 31 is formed at the center of the inner annular portion 39.
- the taper section 37 is an annular member.
- the taper section 37 links the inner edge of the outer annular portion 35 and the outer edge of the inner annular portion 39.
- the inner edge of the outer annular portion 35 defines the boundary between the flat plane of the outer annular portion 35 and the tapered surface of the taper section 37.
- the outer edge of the inner annular portion 39 defines the boundary between the flat plane of the inner annular portion 39 and the tapered surface of the taper section 37.
- the output side pole piece 32 is also formed by an outer annular portion 36, a taper section 38 and an inner annular portion 40.
- the diameter IP1 of the through-hole 33 is 8.7 to 9.0 mm (manufacturing error: ⁇ 0.1 mm).
- the outer diameter IP2 of the flat plane of the inner annular portion 39 that is arranged internally in the oscillator section is 15 to 16 mm.
- the diameter OP1 of the through-hole 34 of the output side pole piece 32 is 8.0 mm (manufacturing error: ⁇ 0.1 mm).
- the outer diameter OP2 of the flat plane of the inner annular portion 40 that is arranged internally in the oscillator section is 12 mm (manufacturing error: ⁇ 1 mm).
- the diameter IP1 of the through-hole 33 of the input side pole piece 31 is designed to be greater than the diameter OP1 of the through-hole 34 of the output side pole piece 32.
- the outer diameter IP2 of the internal surface 41 of the input side pole piece 31 is designed to be greater than the outer diameter OP2 of the internal surface 42 of the output side pole piece 32.
- the interval distance D2 between the inner annular portion 39 of the input side pole piece 31 and the inner annular portion 40 of the output side pole piece 32, or the interval distance D2 between the internal surface 41 of the input side pole piece 31 and the internal disposed surface 42 of the output side pole piece 32, is 11,2 mm (manufacturing error: ⁇ 1 mm).
- the interval distance D1 between the outer annular portion 35 of the input side pole piece 31 and the outer annular portion 36 of the output side pole piece 32 (the distance between the oppositely disposed surfaces) is 22,5 mm (manufacturing error: ⁇ 1 mm).
- FIGS. 3 through 11 show oscillation spectrums of the fundamental wave of magnetrons according to examples of the present invention.
- FIGS. 6 through 10 show oscillation spectrums of the fundamental wave of the magnetrons of comparative examples.
- FIG. 11 is a table showing in comparison the measurement conditions and the presence or absence of unnecessary noises of the oscillation spectrums illustrated in FIGS. 3 through 10 .
- the magnetron of Comparative Example 1 is an embodiment of magnetron for a microwave oven described in Patent Document 1 (Jpn. Pat. Appln. Laid-Open Publication No. 2007-335351 ).
- 2400 through 2500 MHz in FIG. 3 through FIG. 11 correspond to the ISM bands and hence are in the frequency band necessary for microwave ovens.
- the spectrums from 2300 to 2400 MHz show unnecessary noises.
- the diameter IP1 of the through-hole 33 of the input side pole piece 31 is designed to be not less than 8.7 mm (manufacturing error: ⁇ 0.1 mm) and the outer diameter IP2 of the internal surface 41 of the input side pole piece 31 is designed to be not less than 15 mm.
- FIG. 12 is a graph illustrating the correlation of the diameter of the through-hole and the outer diameter of the internal surface of the input side pole piece and the magnetizing voltage of magnetron.
- FIG. 13 is a graph illustrating the correlation of the diameter of the through-hole and the outer diameter of the internal surface of the input side pole piece and the output efficiency of the magnetron. Note that same design values (design values listed in FIG. 11 ) are selected for all the magnetrons that are objects of measurement of FIGS. 12 and 13 except the diameter IP1 of the through-hole 33 of the input side pole piece 31 and the outer diameter IP2 of the internal surface 41 of the input side pole piece 31.
- the magnetizing voltage ebm of the magnetron 10 is reduced. Additionally, as the outer diameter IP2 of the internal surface 41 of the input side pole piece 31 is increased, the magnetizing voltage ebm of the magnetron 10 is reduced.
- the diameter IP1 of the through-hole 33 of the input side pole piece 31 is designed to be not greater than 9.0 mm (manufacturing error: ⁇ 0.1 mm) and the outer diameter IP2 of the internal surface 41 of the input side pole piece 31 is designed to be not greater than 16 mm.
- the diameter IP1 of the through-hole 33 of the input side pole piece 31 is designed to be 8.6 to 9.1 mm and the outer diameter IP2 of the internal surface 41 of the input side pole piece 31 is designed to be 15 to 16 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microwave Tubes (AREA)
Claims (4)
- Magnétron pour un four à micro-ondes comportant :une section d'anode (11) comportant un cylindre d'anode (12) s'étendant de manière cylindrique suivant un axe central (100) et dix palettes en forme de plaque (13) agencées radialement suivant des directions radiales de l'axe central (100), chacune des palettes (13) étant reliée à une paroi interne du cylindre d'anode (12) au niveau de l'un des côtés opposés de chacune d'elles et laissée en tant qu'extrémité libre au niveau de l'autre des côtés opposés ;une section de cathode (21) comportant un filament hélicoïdal s'étendant suivant l'axe central (100) et agencée dans le cylindre d'anode (12), un espace étant interposé entre les extrémités libres des palettes (13) ; etune pièce polaire en forme d'entonnoir du côté d'entrée (31) et une pièce polaire en forme d'entonnoir du côté de sortie (32) agencées face à face, chacune comportant une partie annulaire externe (35, 36) reliée à une extrémité du cylindre d'anode (12) et une partie annulaire interne (39, 40) comportant un orifice traversant formé en son centre, dans lequelle diamètre (IP1) de l'orifice traversant (33) de la pièce polaire du côté d'entrée (31) est supérieur au diamètre (OP1) de l'orifice traversant (34) de la pièce polaire du côté de sortie (32),le diamètre externe (IP2) de la surface interne (41) de la partie annulaire interne (39) de la pièce polaire du côté d'entrée (31) est supérieur au diamètre externe (OP2) de la surface interne (42) de la partie annulaire interne (40) de la pièce polaire du côté de sortie (32),le diamètre (IP1) de l'orifice traversant (33) de la pièce polaire du côté d'entrée (31) est compris entre 8,6 et 9,1 mm,le diamètre externe (IP2) de la surface interne (41) de la partie annulaire interne (39) de la pièce polaire du côté d'entrée (31) est compris entre 15 et 16 mm,le diamètre (OP1) de l'orifice traversant (34) de la pièce polaire du côté de sortie (32) est compris entre 7,9 et 8,1 mm, etle diamètre externe (OP2) de la surface interne (42) de la partie annulaire interne (40) de la pièce polaire du côté de sortie (32) est compris entre 11 et 13 mm.
- Magnétron pour un four à micro-ondes selon la revendication 1, dans lequel la valeur de l'intervalle (D1) entre la partie annulaire externe (35) de la pièce polaire du côté d'entrée (31) et la partie annulaire externe (36) de la pièce polaire du côté de sortie (32) est comprise entre 21,5 et 23,5 mm, et
la valeur de l'intervalle (D2) entre la partie annulaire interne (39) de la pièce polaire du côté d'entrée (31) et la partie annulaire interne (40) de la pièce polaire du côté de sortie (32) est comprise entre 10,2 et 12,2 mm. - Magnétron pour un four à micro-ondes selon les revendications 1 ou 2, dans lequel le diamètre (B) de la surface cylindrique d'enveloppe de palette (14) constituée par les extrémités libres des dix palettes (13) est compris entre 8,0 et 8,2 mm et la hauteur (H) des palettes (13) est comprise entre 7 et 9 mm.
- Magnétron pour un four à micro-ondes selon l'une quelconque des revendications 1 à 3, dans lequel
le diamètre externe (F) du filament est compris entre 3,6 et 3,8 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080797A JP5415119B2 (ja) | 2009-03-30 | 2009-03-30 | 電子レンジ用マグネトロン |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2237304A2 EP2237304A2 (fr) | 2010-10-06 |
EP2237304A3 EP2237304A3 (fr) | 2011-02-16 |
EP2237304B1 true EP2237304B1 (fr) | 2012-10-17 |
Family
ID=42104471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20100156389 Active EP2237304B1 (fr) | 2009-03-30 | 2010-03-12 | Magnétron pour four à micro-ondes |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2237304B1 (fr) |
JP (1) | JP5415119B2 (fr) |
KR (1) | KR101667051B1 (fr) |
CN (1) | CN101853759B (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102339710B (zh) * | 2011-08-03 | 2014-12-03 | 广东威特真空电子制造有限公司 | 一种磁控管 |
JP6254793B2 (ja) * | 2013-08-29 | 2017-12-27 | 東芝ホクト電子株式会社 | マグネトロン |
KR102149316B1 (ko) | 2013-12-18 | 2020-10-15 | 삼성전자주식회사 | 마그네트론 및 그를 가지는 고주파 가열기기 |
JP5805842B1 (ja) * | 2014-12-03 | 2015-11-10 | 東芝ホクト電子株式会社 | マグネトロン |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129149A (ja) * | 1995-10-30 | 1997-05-16 | Sanyo Electric Co Ltd | マグネトロン |
JP2002343262A (ja) * | 2001-05-17 | 2002-11-29 | Sanyo Electric Co Ltd | マグネトロン |
EP1286379B1 (fr) * | 2001-08-22 | 2012-05-09 | Panasonic Corporation | Magnétron |
JP2003059414A (ja) * | 2001-08-22 | 2003-02-28 | Matsushita Electric Ind Co Ltd | マグネトロン |
JP2006260976A (ja) * | 2005-03-17 | 2006-09-28 | Matsushita Electric Ind Co Ltd | マグネトロン |
JP5055872B2 (ja) * | 2006-07-25 | 2012-10-24 | パナソニック株式会社 | マグネトロン |
JP4898316B2 (ja) * | 2006-06-19 | 2012-03-14 | 東芝ホクト電子株式会社 | マグネトロン |
JP4503639B2 (ja) * | 2007-09-11 | 2010-07-14 | 東芝ホクト電子株式会社 | 電子レンジ用マグネトロン |
-
2009
- 2009-03-30 JP JP2009080797A patent/JP5415119B2/ja active Active
-
2010
- 2010-03-12 EP EP20100156389 patent/EP2237304B1/fr active Active
- 2010-03-29 CN CN201010157936.7A patent/CN101853759B/zh active Active
- 2010-03-29 KR KR1020100027718A patent/KR101667051B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN101853759A (zh) | 2010-10-06 |
JP2010232114A (ja) | 2010-10-14 |
EP2237304A2 (fr) | 2010-10-06 |
KR20100109444A (ko) | 2010-10-08 |
EP2237304A3 (fr) | 2011-02-16 |
CN101853759B (zh) | 2014-11-05 |
KR101667051B1 (ko) | 2016-10-17 |
JP5415119B2 (ja) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007335351A (ja) | マグネトロン | |
EP2237304B1 (fr) | Magnétron pour four à micro-ondes | |
EP2037482B1 (fr) | Magnétron pour four à micro-ondes | |
EP1594152A2 (fr) | Magnétron pour four à micro-ondes | |
KR101679518B1 (ko) | 마그네트론 | |
US10403467B2 (en) | Magnetron | |
KR20110107756A (ko) | 마그네트론 및 이것을 사용한 전자 렌지 | |
JP2005222908A (ja) | マグネトロン | |
US9852872B2 (en) | Magnetron | |
JPH0568823B2 (fr) | ||
JP2011113949A (ja) | マグネトロン及びマイクロ波利用機器 | |
KR100783409B1 (ko) | 마그네트론 | |
JP4742672B2 (ja) | マグネトロン | |
JP6316160B2 (ja) | マグネトロン | |
KR101974213B1 (ko) | 전자레인지용 마그네트론 | |
JP2015118895A (ja) | マグネトロン | |
WO2022024692A1 (fr) | Magnétron | |
US20190198280A1 (en) | Magnetron | |
JP2016171024A (ja) | マグネトロン | |
JP2001060440A (ja) | マグネトロン | |
JP2007005070A (ja) | マグネトロン及びそれを用いたマイクロ波応用装置 | |
JP2002313244A (ja) | マグネトロン装置 | |
JP2001332180A (ja) | マグネトロン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
17P | Request for examination filed |
Effective date: 20110811 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 580220 Country of ref document: AT Kind code of ref document: T Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010003201 Country of ref document: DE Effective date: 20121213 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 580220 Country of ref document: AT Kind code of ref document: T Effective date: 20121017 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20121017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130128 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130218 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
26N | No opposition filed |
Effective date: 20130718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010003201 Country of ref document: DE Effective date: 20130718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100312 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121017 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130312 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 15 Ref country code: GB Payment date: 20240320 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240304 Year of fee payment: 15 |