EP2235356A1 - Kraftstoffinjektor - Google Patents

Kraftstoffinjektor

Info

Publication number
EP2235356A1
EP2235356A1 EP08871452A EP08871452A EP2235356A1 EP 2235356 A1 EP2235356 A1 EP 2235356A1 EP 08871452 A EP08871452 A EP 08871452A EP 08871452 A EP08871452 A EP 08871452A EP 2235356 A1 EP2235356 A1 EP 2235356A1
Authority
EP
European Patent Office
Prior art keywords
control valve
annular surface
angle
valve element
sealing line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08871452A
Other languages
English (en)
French (fr)
Other versions
EP2235356B1 (de
Inventor
Nadja Eisenmenger
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2235356A1 publication Critical patent/EP2235356A1/de
Application granted granted Critical
Publication of EP2235356B1 publication Critical patent/EP2235356B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to an injector for injecting fuel into a combustion chamber of an internal combustion engine, in particular a common rail injector, according to the preamble of claim 1.
  • a common rail injector with a pressure-balanced control valve in the axial direction is known.
  • the fuel pressure can be influenced within a limited by an injection valve element control chamber.
  • the injection valve element is adjusted between an open position and a closed position, the injection valve element releasing the fuel flow into the combustion chamber of an internal combustion engine in its open position.
  • this comprises a sleeve-shaped control valve element which can be adjusted by means of an electromagnetic actuator and whose end-face sealing line interacts with a control valve seat.
  • the annular sealing line is formed directly on the inner guide diameter of the control valve sleeve.
  • the guide diameter of the sleeve-shaped control valve element corresponds to the outer diameter of an axially projecting into the control valve element bolt plus a minimum clearance.
  • the seal line has a minimum width packaging. This leads to extremely high surface pressures, which in turn leads to a strong flattening of the sealing edge by the high-momentum forces and by the friction between the control valve element and the control valve seat. This results in a decrease in the surface pressure, which in turn can lead to leaks in the control valve.
  • the object of the invention is to propose an improved injector in which leaks between the control valve element and the control valve seat are avoided, at least to a large extent.
  • the invention is based on the idea that the particular annular sealing line (sealing edge) of the injector with an (inner) diameter form, which is greater than the inner guide diameter.
  • the sealing line is not located directly on the inner bore of the control valve element, but is at a radial distance from it. arranged staggered.
  • the sealing line is located at the radially outer edge of a seat boundary of the control valve element.
  • the sealing line is not directly adjacent to the boundary to the outer diameter of the control valve in the invention, but is relative to this with radial distance, ie radially offset inside, arranged.
  • Particularly important Preferred is an embodiment in which the radial distance between the inner guide diameter and the sealing line in the new state of the injector is only about 20 .mu.m to 120 .mu.m, preferably about 30 .mu.m to lOO ⁇ m.
  • a sealing line arranged on the inner circumference of the control valve element leads to plastic deformations, in particular at the control valve seat, and thereby reduces the strength values.
  • This is the case, in particular, in the case of control valve seats formed as a flat seat and in the case of conical control valve angles with a flat cone angle of approximately 120 ° and less than 180 °.
  • precisely designed control valve seats have significantly less slippage between the control valve element and the control valve seat, they are characterized by a low frictional wear. Therefore, the arrangement of the sealing line with radial distance to the inner guide diameter is particularly advantageous in combination with designed as a flat seat or as a conical seat with a low cone angle control valve seat.
  • a cone angle is understood to be the angle between two diametrically opposite inclined sections of the cone, that is to say twice the angle between the conical surface and the longitudinal central axis of the control valve element.
  • an inner annular surface which is formed innenkonusförmig, that is at an angle to the control valve seat, more precisely to the control valve seat surface extends.
  • Such a trained inner annular surface forms a seat boundary, whose radially outer boundary is formed by the sealing line.
  • the angle at which the inner annular surface of the control valve seat (Control valve seat surface) extends away between about 0.1 ° and about 50 °.
  • the angle is selected from a range between about 0.5 ° and about 5 °.
  • an advantage is an embodiment in which the inner annular surface, starting from the sealing line, extends radially as far as the inner guide diameter and does not adjoin an additionally innermost annular surface, which would run at an angle to the inner annular surface.
  • the seat boundary is formed radially inwardly by the edge between the inner annular surface and the guide section of the control valve element, the inner diameter of the edge corresponding to the guide diameter of the control valve element.
  • the angle which is spanned by the radially inner annular surface and an outer annular surface adjoining radially outside the sealing line is greater as 90 °.
  • the angle is greater than 100 ° selected.
  • Particularly preferred is an embodiment with an angle of about 120 °. It is also inverse cone shapes (inner cone), preferably with a corresponding angle of up to about - 120 °, realized.
  • control valve seat when the control valve seat is formed as a flat seat or as a conical seat with a flat cone angle, an embodiment is preferred in which the radially outside of the sealing line adjacent outer annular surface to the control valve seat, more precisely to Steuerventilsitzflä- che, is inclined.
  • the angle should be such that on the one hand a sufficient seat limitation is ensured and on the other hand a support function for the sealing line is ensured.
  • the angle is between about 10 ° and about 50 °, in particular between about 20 ° and about 45 °.
  • the angle is about 30 °.
  • the angularly arranged to the control valve seat outer annular surface in the radial direction does not reach to the outer periphery of the control valve member, but in which the outer annular surface merges with radial distance to the sealing line in an outer annular surface.
  • This outer ring surface (outer ring surface) preferably lies in a plane perpendicular to the longitudinal central axis of the control valve element.
  • the radial extent of the outer, immediately adjacent to the sealing line, annular surface is selected so that the sealing line has a greater axial distance to the radially outermost edge of the outer annular surface than the radially innermost edge of the inner annular surface.
  • the outer annular surface is not inclined to the control valve seat (control valve seat), but lies in such a plane.
  • the outer annular surface may preferably extend in the radial direction to the outer diameter of the control valve element in this design.
  • the non-oblique arrangement of the outer annular surface is particularly advantageous for designed as a conical seat control valve seats.
  • the angle between the outside of the sealing line adjacent annular surface and the control valve seat is greater than the angle between the radially inner adjacent to the sealing surface annular surface and the control valve seat.
  • the sealing line of the injector especially after a certain period, at most a radial extent of 150 .mu.m, preferably less than 50 .mu.m.
  • the radial extent of the sealing edge immediately after the new production of the injector (substantially) smaller than 50 microns.
  • FIG. 1 shows a schematic representation of a designed as a common rail injector injector with a sleeve-shaped control valve element
  • FIG. 1 according to a first embodiment
  • FIG. 3 shows an enlarged illustration of a detail from FIG. 1 according to a second, alternative embodiment.
  • FIG. 1 shows an injector 1 designed as a common-rail injector for injecting fuel into a combustion chamber of an internal combustion engine (not shown) of a motor vehicle.
  • a high-pressure pump 2 delivers fuel from a reservoir 3 in a high-pressure fuel storage 4 (Rail).
  • this fuel especially diesel or gasoline, is stored under high pressure of about 2000 bar in this embodiment.
  • the injector 1 is connected to other, not shown, injectors via a respective supply line 5.
  • the supply line 5 opens into a pressure chamber 6 of the injector 1.
  • a return line 7 a low-pressure region 8 of the injector 1 is connected to the reservoir 3. Via the return line 7, a later to be explained control amount of fuel from the injector 1 to the reservoir 3 flow.
  • an injection valve element 10 is arranged axially adjustable in this embodiment.
  • the injection valve element 10 is guided with a lower section in a nozzle body 11, which is braced against the injector body 9 by means of a union nut (not shown). With its upper section in the plane of the drawing, the injection valve element 10 is guided in an axially facing sleeve section 12 of a throttle plate 13.
  • the injection valve element 10 has at its tip 14 a closing surface 15 with which the injection valve element 10 can be brought into a tight contact with an injection valve element seat 16 formed inside the female body 11.
  • fuel can flow directly from the pressure chamber 6 via axial channels 18 formed on the outer circumference of the injection valve element 10 and the annular space 19 between the lower section of the injection valve element 10 and the nozzle body 11 past the injection valve element seat 16 to the nozzle hole arrangement 17 flow and there are essentially injected under high pressure (rail pressure) standing in the combustion chamber, not shown.
  • control chamber 21 is limited, the peripheral wall is bounded radially outwardly from the pressure chamber 6.
  • the control chamber 21 is connected via a radially extending in the sleeve portion 12 inlet throttle 22 with the pressure chamber 6.
  • the control chamber 21 is supplied with high-pressure fuel from the pressure chamber 6.
  • the control chamber 21 is connected via a, arranged in the upper, plate-shaped portion of the throttle plate 13, the drain passage 23 with outlet throttle 24 with a valve chamber 25 which is radially outwardly of a sleeve-shaped control erventilelement 26 of a control valve 27 (servo-valve) is limited. From the valve chamber 25, fuel can flow into the low-pressure region 8 of the injector when the control valve element 26 which can be actuated by an electromagnetic actuator 28 is lifted from its control valve seat 29, which is formed on the throttle plate 13, ie the control valve 27 is open.
  • the flow cross-sections of the inlet throttle 22 and the outlet throttle 24 are coordinated such that when the control valve 27 is open, a net outflow of fuel (control amount) from the control chamber 21 via the valve chamber 25 in the low pressure region 8 of the injector 1 and from there via the Return line 7 results in the reservoir 3.
  • a pressure pin 30 is received, which receives the pressure forces acting in the axial direction within the valve chamber 25 and the valve chamber 25 seals in the axial direction in the plane of the drawing upwards.
  • the pressure pin 30 is supported on a closure lid 31, to which the pressure pin 30 passes through a holding body 32 for electromagnets 33 of the actuator 28 in the axial direction centric and with radial distance.
  • the pressure pin 30 drops and lies on the top of the throttle plate 13 until the pressure builds up again.
  • the outer diameter of the cylindrical pressure pin 30 corresponds to the inner guide diameter D 1 of the control valve element 26 minus a guide clearance.
  • control valve element 26 at its outer diameter D a , with which it passes through a plate member 34 with axial distance to the throttle plate 13, out.
  • an armature plate 35 of the electromagnetic actuator 28 is formed integrally with the control valve element 26.
  • a control closing spring 36 which is supported on the closure lid 31, moves the control valve element 26 back onto its control valve seat 29.
  • the fuel flowing in through the inlet throttle 22 rapidly increases the pressure in the control chamber 21, as a result of which the injection valve element 10 is supported by the spring force a closing spring 37, which is supported at one end on a peripheral collar 38 of the control valve element 26 and the other end on the lower end side of the sleeve portion 12, is moved in the direction of the injection valve element seat 16, which in turn the fuel flow from the nozzle hole assembly 17 is interrupted in the combustion chamber.
  • the control valve member 26 In the closed state of the control valve 27, the control valve member 26 is located at an end face, annular contoured sealing line 39 on the control valve seat 29.
  • the sealing line 39 is, as will be explained below with reference to FIGS. 2 and 3, not immediately adjacent to the inner guide diameter D 1 of the control valve element 26, but arranged at a radial distance to this outwardly offset.
  • the very sharp-edged sealing edge after production widens due to the load occurring during operation to a radial extent of between about 50 ⁇ m and about 150 ⁇ m. Due to the compressive forces acting during operation, the sealing line 39 is infiltrated to some extent by fuel under high pressure in the radial direction to the outside.
  • Fig. 2 is a possible embodiment of a detail of Fig. 1 is shown enlarged. For reasons of clarity, only the left half of the control valve element 26 is shown.
  • the control valve element 26 with the inner guide diameter D 1 is shown in its closed position, in which it rests with its frontal, annular contoured sealing line on the control valve seat 29.
  • the control valve seat 29 is formed in the embodiment shown as a flat seat. It can be seen that the sealing line 39 is not directly adjacent to the inner guide diameter D 1 , but is arranged at a radial distance a to this.
  • the radial distance a is in the illustrated embodiment lOO ⁇ m.
  • the radial distance a from the inner guide diameter D 1 ie from the inner guide bore of the control valve element 26 to the sealing line 39, is bridged by a single inner annular surface 40, which extends in the embodiment shown at an angle OC to the control valve seat 29 (control valve seat surface).
  • the angle OC is in the illustrated embodiment about 5 ° (exaggerated), wherein the inner annular surface 40, starting from the sealing line 39, both axially and radially from the control valve seat 29 extends away.
  • the inner annular surface 40 forms a seat limit and is bounded radially on the outside by the sealing line 39 and radially inwardly by a peripheral edge 41 at the transition to the inner guide diameter D 1 .
  • the sealing line 39 is adjoined by an outer annular surface 42 which also extends away from the control valve seat 29 in the axial and in the radial direction.
  • the angle ⁇ between the control valve seat 29 and the outer annular surface 42 is in the illustrated embodiment about 30 ° and is thus (significantly) larger than the angle CC.
  • an angle ⁇ between the outer ring surface and the inner ring surface 40 of about 145 ° results.
  • the axial distance between the sealing line 39 and the radially outer edge 43 of the outer annular surface 42 is greater than the axial distance between the sealing line 39 and the inner edge 41 of the inner annular surface 40th
  • outer annular surface 44 (outermost annular surface) which lies in a direction perpendicular to the longitudinal central axis L extending plane and extending to the outer diameter D a of the control valve member 26.
  • the radial extension of the outer ring surface 44 (or of its axial projection surface) corresponds to a multiple of the radial extent a (radial distance of the sealing line to the inner guide circumference) of the inner annular surface 40 (or of its axial projection surface).
  • control valve seat 29 is not formed as a flat seat, but as a conical conical seat, wherein the cone angle ⁇ in the shown Embodiment is about 160 °.
  • Control valve element 26 is arranged.
  • the angle CC between see the lateral surface of the control valve seat 29 and the radially adjacent to the sealing line 39 arranged inner annular surface 40 is in the illustrated embodiment about 4 ° (exaggerated drawn).
  • the outer annular surface 42 which lies in a direction perpendicular to the longitudinal central axis L extending plane and extending to the outer diameter D a of the control valve member 26.
  • the angle ⁇ between the outer annular surface 42 and the control valve seat 29 is in the illustrated embodiment about 22 °, so that in the sequence of the angle ⁇ between the outer annular surface 42 and the inner annular surface 40 is about 154 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Injektor (1) zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, insbesondere Common-Rail-Injektor, mit einem zwischen einer Schließstellung und einer Öffnungsstellung verstellbaren Einspritzventilelement (10), das mittels eines, ein hülsenförmiges Steuerventilelement (26) mit einem inneren Füh- rungsdurchmesser (D1) aufweisenden, Steuerventils (27) ansteuerbar ist, wobei eine umlaufende Dichtlinie (39) bei geschlossenem Steuerventil (27) an einem Steuerventilsitz (29) anliegt. Erfindungsgemäß ist vorgesehen, dass die Dichtlinie (39) mit Radialabstand (a) zum inneren Führungsdurchmesser (D1) angeordnet ist.

Description

Beschreibung
Titel
Kraftstoffinjektor
Stand der Technik
Die Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, insbesondere einen Common-Rail-Injektor, gemäß dem Oberbegriff des Anspruchs 1.
Aus der EP 1 612 403 Al ist ein Common-Rail-Injektor mit einem in axialer Richtung druckausgeglichenen Steuerventil bekannt. Mittels des Steuerventils kann der Kraftstoffdruck innerhalb einer von einem Einspritzventilelement begrenzten Steuerkammer beeinflusst werden. Durch die Variation des Kraftstoffdrucks innerhalb der Steuerkammer wird das Einspritzventilelement zwischen einer Öffnungsstellung und ei- ner Schließstellung verstellt, wobei das Einspritzventilelement in seiner Öffnungsstellung den Kraftstofffluss in den Brennraum einer Brennkraftmaschine freigibt. Zur Realisierung der axialen Druckausgeglichenheit des Steuerventils umfasst dieses ein mittels eines elektromagnetischen Aktua- tors verstellbares, hülsenförmiges Steuerventilelement, dessen stirnseitige Dichtlinie mit einem Steuerventilsitz zusammenwirkt. Dabei ist die kreisringförmige Dichtlinie direkt am inneren Führungsdurchmesser der Steuerventilhülse ausgebildet. Der Führungsdurchmesser des hülsenförmigen Steuerventilelementes entspricht dabei dem Außendurchmesser eines axial in das Steuerventilelement hineinragenden Bolzens zuzüglich eines minimalen Spiels. Im Neuzustand des Injektors hat die Dichtlinie eine minimale Breitenerstre- ckung. Dies führt zu extrem hohen Flächenpressungen, was wiederum durch die hohen wirkenden Impulskräfte und durch die Reibung zwischen dem Steuerventilelement und dem Steuerventilsitz zu einer starken Abplattung der Dichtkante führt. Hieraus resultiert eine Abnahme der Flächenpressung, was wiederum zu Undichtigkeiten des Steuerventils führen kann .
Offenbarung der Erfindung Technische Aufgabe
Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Injektor vorzuschlagen, bei dem Undichtigkeiten zwischen dem Steuerventilelement und dem Steuerventilsitz, zu- mindest weitgehend, vermieden werden.
Technische Lösung
Diese Aufgabe wird mit einem Injektor mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen.
Der Erfindung liegt der Gedanke zugrunde, die insbesondere kreisringförmige Dichtlinie (Dichtkante) des Injektors mit einem (Innen-) Durchmesser auszubilden, der größer ist als der innere Führungsdurchmesser. Anders ausgedrückt befindet sich die Dichtlinie, im Gegensatz zum Stand der Technik, bei einem nach dem Konzept der Erfindung ausgebildeten Injektor nicht direkt an der Innenbohrung des Steuerventilelementes, sondern ist mit Radialabstand zu dieser nach au- ßen versetzt angeordnet. Bevorzugt befindet sich die Dichtlinie dabei am radial äußeren Rand einer Sitzbegrenzung des Steuerventilelementes. Der Vorschlag, die Dichtlinie mit einem Durchmesser auszubilden, der größer ist als der inne- re Führungsdurchmesser des Steuerventilelementes, erscheint zunächst überraschend, da hierdurch auf eine axiale Druck- ausgeglichenheit verzichtet wird - es entsteht eine innere Druckstufe, an der aus einer Steuerkammer strömender Kraftstoff angreifen und damit das Steuerventilelement mit einer Kraft in Öffnungsrichtung beaufschlagen kann. Der beschriebene Effekt wird in Kauf genommen, da bei einem nach dem Konzept der Erfindung ausgebildeten Injektor Verschleißerscheinungen im Bereich der Dichtkante mit Vorteil minimiert werden, was in der Folge die Gefahr von Undichtigkeiten er- heblich reduziert. Während des Betriebs des Injektors wird sich die ursprünglich sehr scharfkantige Dichtlinie in radialer Richtung verbreitern (abplatten), bevorzugt jedoch maximal auf eine Radialerstreckung zwischen etwa 50μm und 150μm (in Abhängigkeit der tatsächlich wirkenden Drücke, Durchmesser und Kräfte) . Von besonderem Vorteil ist dabei, dass diese Verbreiterung im Gegensatz zum Stand der Technik bei einem nach dem Konzept der Erfindung ausgebildeten Injektor in radialer Richtung nach innen zum Hochdruckbereich erfolgt, so dass sich in der Folge die Druckstufe während des Betriebs verkleinert.
Um die aus der Anordnung der Dichtlinie mit Radialabstand zum Führungsdurchmesser resultierende Druckstufe am Steuerventilelement so gering wie möglich auszubilden, befindet sich die Dichtlinie in Weiterbildung der Erfindung nicht unmittelbar an der Grenze zum Außendurchmesser des Steuerventils, sondern ist relativ zu diesem mit Radialabstand, also nach radial innen versetzt, angeordnet. Besonders be- vorzugt ist eine Ausführungsform, bei der der Radialabstand zwischen dem inneren Führungsdurchmesser und der Dichtlinie im Neuzustand des Injektors lediglich etwa 20 μm bis 120μm, vorzugsweise etwa 30μm bis lOOμm beträgt.
Wie eingangs erwähnt, führt eine am Innenumfang des Steuerventilelementes angeordnete Dichtlinie zu plastischen Verformungen, insbesondere am Steuerventilsitz, und verringert dadurch die Festigkeitswerte. Dies ist insbesondere bei als Flachsitz ausgebildeten Steuerventilsitzen und bei konischen Steuerventilwinkeln mit einem flachen Kegelwinkel von etwa 120° und weniger als 180° der Fall. Da jedoch gerade derartig ausgebildete Steuerventilsitze deutlich weniger Schlupf zwischen dem Steuerventilelement und dem Steuerven- tilsitz aufweisen, zeichnen sie sich durch einen geringen Reibverschleiß aus. Daher ist die Anordnung der Dichtlinie mit Radialabstand zum inneren Führungsdurchmesser besonders vorteilhaft in Kombination mit als Flachsitz oder als Kegelsitz mit einem geringen Kegelwinkel ausgebildeten Steu- erventilsitzen . Unter einem Kegelwinkel wird dabei der Winkel zwischen zwei diametral gegenüberliegenden Schrägabschnitten des Kegels verstanden, also der doppelte Winkel zwischen der Kegelfläche und der Längsmittelachse des Steuerventilelementes .
Von besonderem Vorteil ist eine Ausführungsform, bei der radial innen an die Dichtlinie eine innere Ringfläche angrenzt, die innenkonusförmig ausgebildet ist, also winklig zum Steuerventilsitz, genauer zur Steuerventilsitzfläche, verläuft. Eine derartig ausgebildete innere Ringfläche bildet eine Sitzbegrenzung, deren radial äußere Grenze von der Dichtlinie gebildet ist. Bevorzugt beträgt der Winkel, unter dem sich die innere Ringfläche von dem Steuerventilsitz (Steuerventilsitzfläche) weg erstreckt, zwischen etwa 0,1° und etwa 50°. Besonders bevorzugt ist der Winkel aus einem Bereich zwischen etwa 0,5° und etwa 5° gewählt.
Von Vorteil ist eine Ausführungsform, bei der sich die innere Ringfläche ausgehend von der Dichtlinie radial bis an den inneren Führungsdurchmesser erstreckt und nicht an eine zusätzlich innerste Ringfläche angrenzt, die winklig zur inneren Ringfläche verlaufen würde. Bei einer sich in radi- aler Richtung bis an den inneren Führungsdurchmesser erstreckenden inneren Ringfläche wird die Sitzbegrenzung radial innen von der Kante zwischen der inneren Ringfläche und dem Führungsabschnitt des Steuerventilelementes gebildet, wobei der Innendurchmesser der Kante dem Führungs- durchmesser des Steuerventilelementes entspricht.
Um die auftretenden Belastungen im Bereich der Dichtlinie und damit plastische Verformungen weiter zu minimieren, ist in Weiterbildung der Erfindung mit Vorteil vorgesehen, dass der Winkel, der von der radial inneren Ringfläche und einer radial außen an die Dichtlinie angrenzenden äußeren Ringfläche aufgespannt wird, größer ist als 90°. Bevorzugt ist der Winkel größer als 100° gewählt. Besonders bevorzugt ist eine Ausführungsform mit einem Winkel von etwa 120°. Es sind auch inverse Konusformen (Innenkonus), vorzugsweise mit einem entsprechenden Winkel von bis zu etwa - 120°, realisierbar .
Insbesondere dann, wenn der Steuerventilsitz als Flachsitz oder als Kegelsitz mit einem flachen Kegelwinkel ausgebildet ist, ist eine Ausführungsform bevorzugt, bei der die radial außen an die Dichtlinie angrenzende äußere Ringfläche zum Steuerventilsitz, genauer zur Steuerventilsitzflä- che, geneigt ist. Der Winkel sollte dabei so bemessen sein, dass einerseits eine ausreichende Sitzbegrenzung sichergestellt ist und andererseits eine Stützfunktion für die Dichtlinie gewährleistet ist. Besonders bevorzugt beträgt der Winkel zwischen etwa 10° und etwa 50°, insbesondere zwischen etwa 20° und etwa 45°. Besonders bevorzugt beträgt der Winkel etwa 30°.
Besonders bevorzugt ist eine Ausführungsform, bei der die winklig zum Steuerventilsitz angeordnete äußere Ringfläche in radialer Richtung nicht bis zum Außenumfang des Steuerventilelementes reicht, sondern bei der die äußere Ringfläche mit Radialabstand zu der Dichtlinie in eine Außenringfläche übergeht. Bevorzugt liegt diese Außenringfläche (äu- ßerste Ringfläche) in einer senkrecht zur Längsmittelachse des Steuerventilelementes liegenden Ebene. Bevorzugt ist die Radialerstreckung der äußeren, unmittelbar an die Dichtlinie angrenzenden, Ringfläche so gewählt, dass die Dichtlinie einen größeren Axialabstand zur radial äußersten Kante der äußeren Ringfläche als zur radial innersten Kante der inneren Ringfläche aufweist.
Es ist auch eine Ausführungsform realisierbar, bei der die äußere Ringfläche nicht zum Steuerventilsitz (Steuerventil- sitzfläche) geneigt ist, sondern in einer solchen Ebene liegt. Dabei kann sich die äußere Ringfläche bei dieser Bauform bevorzugt in radialer Richtung bis zum Außendurchmesser des Steuerventilelementes erstrecken. Die nicht schräge Anordnung der äußeren Ringfläche ist insbesondere für als Kegelsitz ausgebildete Steuerventilsitze vorteilhaft. Besonders bevorzugt ist der Winkel zwischen der außen an die Dichtlinie angrenzenden Ringfläche und dem Steuerventilsitz größer als der Winkel zwischen der radial innen an die Dichtfläche angrenzenden Ringfläche und dem Steuerventilsitz .
In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass die Dichtlinie des Injektors, insbesondere auch nach einer gewissen Laufzeit, höchstens eine Radialerstreckung von 150μm, vorzugsweise von weniger als 50μm aufweist. Bevorzugt ist die Radialerstreckung der Dichtkante unmittelbar nach der Neuherstellung des Injektors (wesentlich) kleiner als 50μm.
Kurze Beschreibung der Zeichnungen
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:
Fig. 1: eine schematische Darstellung eines als Common- Rail-Injektor ausgebildeten Injektors mit einem hülsenförmigen Steuerventilelement,
Fig. 2: eine vergrößerte Darstellung eines Details aus
Fig. 1 gemäß einer ersten Ausführungsform und
Fig. 3: eine vergrößerte Darstellung eines Details aus Fig. 1 gemäß einer zweiten, alternativen Ausführungsform. Ausführungsformen der Erfindung
In den Figuren sind gleiche Bauteile und Bauteile mit der gleichen Funktion mit den gleichen Bezugszeichen gekenn- zeichnet.
In Fig. 1 ist ein als Common-Rail-Injektor ausgebildeter Injektor 1 zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine (nicht gezeigt) eines Kraft- fahrzeugs dargestellt. Eine Hochdruckpumpe 2 fördert Kraftstoff aus einem Vorratsbehälter 3 in einen Kraftstoff- Hochdruckspeicher 4 (Rail) . In diesem ist Kraftstoff, insbesondere Diesel oder Benzin, unter hohem Druck von in diesem Ausführungsbeispiel etwa 2000 bar gespeichert. An den Kraftstoff-Hochdruckspeicher 4 ist der Injektor 1 neben anderen, nicht gezeigten, Injektoren über jeweils eine Versorgungsleitung 5 angeschlossen. Die Versorgungsleitung 5 mündet in einen Druckraum 6 des Injektors 1. Mittels einer Rücklaufleitung 7 ist ein Niederdruckbereich 8 des Injek- tors 1 an den Vorratsbehälter 3 angeschlossen. Über die Rücklaufleitung 7 kann eine später noch zu erläuternde Steuermenge an Kraftstoff von dem Injektor 1 zum dem Vorratsbehälter 3 abfließen.
Innerhalb eines Injektorkörpers 9 ist in diesem Ausführungsbeispiel ein Einspritzventilelement 10 axial verstellbar angeordnet. Das Einspritzventilelement 10 ist mit einem unteren Abschnitt in einem Düsenkörper 11 geführt, der mittels einer nicht gezeigten Überwurfmutter gegen den Injek- torkörper 9 verspannt ist. Mit seinem in der Zeichnungsebene oberen Abschnitt ist das Einspritzventilelement 10 in einen in axialer Richtung weisenden Hülsenabschnitt 12 einer Drosselplatte 13 geführt. Das Einspritzventilelement 10 weist an seiner Spitze 14 eine Schließfläche 15 auf, mit welcher das Einspritzventilelement 10 in eine dichte Anlage an einen innerhalb des Du- senkörpers 11 ausgebildeten Einspritzventilelementsitz 16 bringbar ist. Wenn das Einspritzventilelement 10 an seinem Einspritzventilelementsitz 16 anliegt, d. h. sich in einer Schließstellung befindet, ist der Kraftstoffaustritt aus einer Düsenlochanordnung 17 gesperrt. Ist es dagegen von seinem Einspritzventilelementsitz 16 abgehoben, kann Kraftstoff unmittelbar aus dem Druckraum 6 über am Außenumfang des Einspritzventilelementes 10 ausgebildete Axialkanäle 18 und den an diese anschließenden Ringraum 19 zwischen dem unteren Abschnitt des Einspritzventilelementes 10 und dem Düsenkörper 11 an dem Einspritzventilelementsitz 16 vorbei zur Düsenlochanordnung 17 strömen und dort im Wesentlichen unter Hochdruck (Rail-Druck) stehend in den nicht gezeigten Brennraum gespritzt werden.
Von einer oberen Stirnseite 20 des Einspritzventilelementes 10, welches neben der gezeigten einteiligen Ausführung auch mehrteilig ausbildbar ist, und dem in der Zeichnungsebene unteren Hülsenabschnitt 12 der Drosselplatte 13 wird eine Steuerkammer 21 begrenzt, deren Umfangswand radial außen vom Druckraum 6 begrenzt ist. Die Steuerkammer 21 ist über eine radial in dem Hülsenabschnitt 12 verlaufende Zulaufdrossel 22 mit dem Druckraum 6 verbunden. Über die Zulauf- drossel 22 wird die Steuerkammer 21 mit unter Hochdruck stehendem Kraftstoff aus dem Druckraum 6 versorgt. Die Steuerkammer 21 ist über einen, in dem oberen, plattenför- migen Abschnitt der Drosselplatte 13 angeordneten, Ablaufkanal 23 mit Ablaufdrossel 24 mit einer Ventilkammer 25 verbunden, die radial außen von einem hülsenförmigen Steu- erventilelement 26 eines Steuerventils 27 (Servo-Ventil) begrenzt ist. Aus der Ventilkammer 25 kann Kraftstoff in den Niederdruckbereich 8 des Injektors einströmen, wenn das von einem elektromagnetischen Aktuator 28 betätigbare Steu- erventilelement 26 von seinem Steuerventilsitz 29, der an der Drosselplatte 13 ausgebildet ist, abgehoben, d. h. das Steuerventil 27 geöffnet ist. Die Durchflussquerschnitte der Zulaufdrossel 22 und der Ablaufdrossel 24 sind dabei derart aufeinander abgestimmt, dass bei geöffnetem Steuer- ventil 27 ein Nettoabfluss von Kraftstoff (Steuermenge) aus der Steuerkammer 21 über die Ventilkammer 25 in den Niederdruckbereich 8 des Injektors 1 und von dort aus über die Rücklaufleitung 7 in den Vorratsbehälter 3 resultiert.
Innerhalb des Steuerventilelementes 26 ist ein Druckstift 30 aufgenommen, der die in axialer Richtung wirkenden Druckkräfte innerhalb der Ventilkammer 25 aufnimmt und die Ventilkammer 25 in axialer Richtung in der Zeichnungsebene nach oben abdichtet. Der Druckstift 30 stützt sich dabei an einem Verschlussdeckel 31 ab, wozu der Druckstift 30 einen Haltekörper 32 für Elektromagnete 33 des Aktuators 28 in axialer Richtung zentrisch und mit Radialabstand durchsetzt. Bei abgeschalteter Brennkraftmaschine sinkt der Druckstift 30 ab und liegt bis zum erneuten Druckaufbau an der Oberseite der Drosselplatte 13 auf. Der Außendurchmesser des zylindrischen Druckstiftes 30 entspricht dem inneren Führungsdurchmesser D1 des Steuerventilelementes 26 abzüglich eines Führungsspiels. Zusätzlich wird das Steuerventilelement 26 an seinem Außendurchmesser Da, mit dem er ein Plattenbauteil 34 mit Axialabstand zu der Drosselplatte 13 durchsetzt, geführt. Wie aus Fig. 1 zu erkennen ist, ist in dem gezeigten Ausführungsbeispiel eine Ankerplatte 35 des elektromagnetischen Aktuators 28 einstückig mit dem Steuerventilelement 26 ausgebildet. Wird der Elektromagnet 33 des elektromagne- tischen Aktuators 28 bestromt, hebt das hülsenförmige Steuerventilelement 26 von seinem Steuerventilsitz 29 ab, wodurch der Druck innerhalb der Steuerkammer 21 rapide abfällt und sich das Einspritzventilelement 16 in axialer Richtung in der Zeichnungsebene nach oben in die Steuerkam- mer 21 hineinbewegt, wodurch die Düsenlochanordnung 17 freigegeben wird und Kraftstoff in den Brennraum strömen kann .
Zur Beendigung des Einspritzvorgangs wird die Bestromung des Elektromagnetes 33 des Aktuators 28 unterbrochen. Eine Steuerschließfeder 36, die sich am Verschlussdeckel 31 abstützt, bewegt das Steuerventilelement 26 zurück auf seinen Steuerventilsitz 29. Durch den durch die Zulaufdrossel 22 nachströmenden Kraftstoff steigt der Druck in der Steuer- kammer 21 rapide an, wodurch das Einspritzventilelement 10, unterstützt durch die Federkraft einer Schließfeder 37, die sich einenends an einem Umfangsbund 38 des Steuerventilelementes 26 und anderenends an der unteren Stirnseite des Hülsenabschnittes 12 abstützt, in Richtung des Einspritz- ventilelementsitzes 16 bewegt wird, wodurch wiederum der Kraftstofffluss aus der Düsenlochanordnung 17 in den Brennraum unterbrochen wird.
Im geschlossenen Zustand des Steuerventils 27 liegt das Steuerventilelement 26 mit einer stirnseitigen, kreisringförmig konturierten Dichtlinie 39 am Steuerventilsitz 29 an. Die Dichtlinie 39 ist, wie im Folgenden anhand der Fig. 2 und 3 erläutert werden wird, nicht unmittelbar benachbart zu dem inneren Führungsdurchmesser D1 des Steuerventilelementes 26, sondern mit Radialabstand zu diesem nach außen versetzt angeordnet. Die nach der Herstellung sehr scharfkantige Dichtkante verbreitert sich durch die im Betrieb auftretende Belastung auf eine Radialerstreckung zwischen etwa 50μm und etwa 150μm. Aufgrund der im Betrieb wirkenden Druckkräfte wird die Dichtlinie 39 ein Stück weit von unter Hochdruck stehendem Kraftstoff in radialer Richtung nach außen unterwandert.
In Fig. 2 ist eine mögliche Ausbildung eines Details aus Fig. 1 vergrößert dargestellt. Aus Übersichtlichkeitsgründen ist von dem Steuerventilelement 26 lediglich die linke Hälfte gezeigt. Das Steuerventilelement 26 mit dem inneren Führungsdurchmesser D1 ist in seiner Schließstellung gezeigt, in der es mit seiner stirnseitigen, kreisringförmig konturierten Dichtlinie am Steuerventilsitz 29 anliegt. Der Steuerventilsitz 29 ist in dem gezeigten Ausführungsbeispiel als Flachsitz ausgebildet. Zu erkennen ist, dass die Dichtlinie 39 nicht unmittelbar an dem inneren Führungsdurchmesser D1 angrenzt, sondern mit Radialabstand a zu diesem angeordnet ist. Der Radialabstand a beträgt in dem gezeigten Ausführungsbeispiel lOOμm. Der Radialabstand a vom inneren Führungsdurchmesser D1, also von der inneren Führungsbohrung des Steuerventilelementes 26 bis zur Dichtlinie 39, wird überbrückt von einer einzigen inneren Ringfläche 40, die in dem gezeigten Ausführungsbeispiel unter einen Winkel OC zum Steuerventilsitz 29 (Steuerventilsitzfläche) verläuft. Der Winkel OC beträgt in dem gezeigten Ausführungsbeispiel etwa 5° (übertrieben gezeichnet), wobei sich die innere Ringfläche 40, ausgehend von der Dichtlinie 39, sowohl axial als auch radial vom Steuerventilsitz 29 weg erstreckt. Die innere Ringfläche 40 bildet eine Sitzbe- grenzung und wird radial außen von der Dichtlinie 39 und radial innen von einer umlaufenden Kante 41 am Übergang zum inneren Führungsdurchmesser D1 begrenzt.
Radial außen grenzt an die Dichtlinie 39 eine sich ebenfalls in axialer sowie in radialer Richtung von dem Steuerventilsitz 29 weg erstreckende äußere Ringfläche 42 an. Der Winkel ß zwischen dem Steuerventilsitz 29 und der äußeren Ringfläche 42 beträgt in dem gezeigten Ausführungsbeispiel etwa 30° und ist damit (deutlich) größer als der Winkel CC. In der Folge ergibt sich ein Winkel γ zwischen der äußeren Ringfläche und der inneren Ringfläche 40 von etwa 145°. Wie aus Punkt zwei zu erkennen ist, ist der Axialabstand zwischen der Dichtlinie 39 und der radial äußeren Kante 43 der äußeren Ringfläche 42 größer als der Axialabstand zwischen der Dichtlinie 39 und der inneren Kante 41 der inneren Ringfläche 40.
An der radial äußeren Kante 43 der äußeren Ringfläche 42 grenzt eine Außenringfläche 44 (äußerste Ringfläche) an, die in einer senkrecht zur Längsmittelachse L verlaufenden Ebene liegt und sich bis zum Außendurchmesser Da des Steuerventilelementes 26 erstreckt. Die Radialerstreckung der Außenringfläche 44 (bzw. von deren axialer Projektionsflä- che) entspricht einem Vielfachen der Radialerstreckung a (Radialabstand der Dichtlinie zum inneren Führungsumfang) der inneren Ringfläche 40 (bzw. von deren axialer Projektionsfläche) .
In Fig. 3 ist ein alternatives Ausführungsbeispiel gezeigt. Bei dem gezeigten Ausführungsbeispiel ist der Steuerventilsitz 29 nicht als Flachsitz, sondern als konischer Kegelsitz ausgebildet, wobei der Kegelwinkel δ in dem gezeigten Ausführungsbeispiel etwa 160° beträgt. Zu erkennen ist die Dichtlinie 39 (Dichtkante), die mit Radialabstand a zum inneren Führungsdurchmesser D1, d. h. zur Führungsbohrung im
Steuerventilelement 26 angeordnet ist. Der Winkel CC zwi- sehen der Mantelfläche des Steuerventilsitzes 29 und der radial benachbart zur Dichtlinie 39 angeordneten inneren Ringfläche 40 beträgt in dem gezeigten Ausführungsbeispiel etwa 4° (übertrieben gezeichnet).
Radial außen grenzt an die Dichtlinie 39 die äußere Ringfläche 42 an, die in einer senkrecht zur Längsmittelachse L verlaufenden Ebene liegt und sich bis zum Außendurchmesser Da des Steuerventilelementes 26 erstreckt. Der Winkel ß zwischen der äußeren Ringfläche 42 und dem Steuerventilsitz 29 beträgt in dem gezeigten Ausführungsbeispiel etwa 22°, so dass in der Folge der Winkel γ zwischen der äußeren Ringfläche 42 und der inneren Ringfläche 40 etwa 154° beträgt .

Claims

Ansprüche
1. Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, insbesondere Common-Rail-Inj ektor, mit einem zwischen einer Schließstellung und einer Öffnungsstellung verstellbaren Einspritzventilelement (10), das mittels eines, ein hülsenförmiges Steuerventilelement (26) mit einem inneren Führungsdurchmesser (D1) aufweisenden, Steuerventils (27) ansteuerbar ist, wobei eine umlaufende Dichtlinie (39) bei geschlossenem Steuerventil (27) an einem Steuerventilsitz (29) anliegt,
dadurch gekennzeichnet,
dass die Dichtlinie (39) mit Radialabstand (a) zum inneren Führungsdurchmesser (D1) angeordnet ist.
2. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass die Dichtlinie (39) mit Radialabstand (a) zum Außendurchmesser (Da) des Steuerventilelementes (26) angeordnet ist.
3. Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Radialabstand (a) zwischen dem Führungsdurchmesser (D1) und der Dichtlinie (39) etwa 20μm bis etwa 120μm beträgt.
4. Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steuerventilsitz (29) als Flachsitz oder als Kegelsitz, vorzugsweise mit einem Kegelwinkel zwischen etwa 120°und etwa - 120°, ausgebildet ist.
5. Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine radial innen an die Dichtlinie (39) an- grenzende innere Ringfläche (40) zum Steuerventilsitz (29) abgewinkelt ist, vorzugsweise unter einem Winkel (α) zwischen etwa 0,1° und etwa 50°, insbesondere zwischen etwa 0,5° und etwa 5°.
6. Injektor nach Anspruch 5, dadurch gekennzeichnet, dass sich die innere Ringfläche (40) radial bis an den inneren Führungsdurchmesser (D1) erstreckt.
7. Injektor nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass eine radial außen an die Dichtlinie (39) angrenzende äußere Ringfläche (42) und die radial innere Ringfläche (40) einen Winkel (γ) größer als 90°, vorzugsweise größer als 100°, bevorzugt größer als 110°, besonders bevorzugt größer als 120°, insbesondere bevorzugt größer als 140° aufspannen.
8. Injektor nach Anspruch 7, dadurch gekennzeichnet, dass die äußere Ringfläche (42) zum Steuerventilsitz (29) geneigt ist, vorzugsweise unter einem Winkel (ß) zwischen etwa 10° und etwa 50°, insbesondere un- ter einem Winkel zwischen etwa 20° und etwa 45°, besonders bevorzugt unter einem Winkel von etwa 30°.
9. Injektor nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die äußere Ringfläche (42) in eine radial außerhalb von dieser angeordneten, mit der äußeren Ringfläche (42) einen Winkel einschließende Außenringfläche (44) übergeht, die bevorzugt in einer senkrecht zur Längsmittelachse (L) des Steuerventilelementes (26) verlaufenden Ebene liegt.
10. Injektor nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die äußere Ringfläche (42) in einer senkrecht zur Längsmittelachse (L) des Steuerventilelementes (26) verlaufenden Ebene liegt, die sich vorzugsweise radial bis zum Außendurchmesser (Da) des Steuerventilelementes (26) erstreckt.
11. Injektor nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Winkel (OC) zwischen der inneren Ringfläche (40) und dem Steuerventilsitz (29) kleiner ist als der Winkel (ß) zwischen der äußeren Ringfläche (42) und dem Steuerventilsitz (29).
EP08871452.2A 2008-01-22 2008-12-03 Kraftstoffinjektor Not-in-force EP2235356B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810005534 DE102008005534A1 (de) 2008-01-22 2008-01-22 Kraftstoffinjektor
PCT/EP2008/066725 WO2009092484A1 (de) 2008-01-22 2008-12-03 Kraftstoffinjektor

Publications (2)

Publication Number Publication Date
EP2235356A1 true EP2235356A1 (de) 2010-10-06
EP2235356B1 EP2235356B1 (de) 2015-10-14

Family

ID=40340349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08871452.2A Not-in-force EP2235356B1 (de) 2008-01-22 2008-12-03 Kraftstoffinjektor

Country Status (3)

Country Link
EP (1) EP2235356B1 (de)
DE (1) DE102008005534A1 (de)
WO (1) WO2009092484A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040956A1 (de) * 2008-08-04 2010-02-11 Robert Bosch Gmbh Kraftstoff-Injektor
ATE500411T1 (de) 2008-12-29 2011-03-15 Fiat Ricerche Brennstoffeinspritzsystem mit hoher betriebswiederholbarkeit und -stabilität für einen verbrennungsmotor
DE102009046563A1 (de) * 2009-11-10 2011-05-12 Robert Bosch Gmbh Kraftstoffinjektor
EP2383454A1 (de) 2010-04-27 2011-11-02 C.R.F. Società Consortile per Azioni Kraftstoffeinspritzratenmodellierung in einem Verbrennungsmotor
EP2405121B1 (de) 2010-07-07 2013-10-09 C.R.F. Società Consortile per Azioni Einspritzanlage für einen Verbrennungsmotor
US9212639B2 (en) 2012-11-02 2015-12-15 Caterpillar Inc. Debris robust fuel injector with co-axial control valve members and fuel system using same
US11746734B2 (en) 2018-08-23 2023-09-05 Progress Rail Services Corporation Electronic unit injector shuttle valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277229T3 (es) 2004-06-30 2007-07-01 C.R.F. Societa Consortile Per Azioni Servovalvula para controlar el inyector de combustible de un motor de combustion interna.
DE202005021916U1 (de) * 2005-12-12 2011-05-12 C.R.F. Società Consortile per Azioni, Orbassano Kraftstoffeinspritz-System für einen Verbrennungsmotor
DE102006027485A1 (de) * 2006-06-14 2007-12-20 Robert Bosch Gmbh Kraftstoffeinspritzventil mit Sicherheitssteuerventil
DE102007060396A1 (de) * 2007-12-03 2009-06-04 Robert Bosch Gmbh Mechanische Löschung von Schließprellern bei Einspritzdüsen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009092484A1 *

Also Published As

Publication number Publication date
DE102008005534A1 (de) 2009-07-23
EP2235356B1 (de) 2015-10-14
WO2009092484A1 (de) 2009-07-30

Similar Documents

Publication Publication Date Title
EP2235354B1 (de) Kraftstoffinjektor, dessen steuerventilelement einen stützbereich aufweist
EP2235356B1 (de) Kraftstoffinjektor
EP2201240B1 (de) Injektor
WO2009016003A1 (de) Kraftstoffeinspritzventil mit verbesserter dichtheit am dichtsitz eines druckausgeglichenen steuerventils
WO2008138800A1 (de) Injektor mit piezoaktor
EP2294309B1 (de) Kraftstoff-injektor
EP2310662B1 (de) Kraftstoff-injektor
EP2156050B1 (de) Druckverstärkungssystem für mindestens einen kraftstoffinjektor
EP2226494A1 (de) Kraftstoff-Injektor mit piezoelektrischem Aktuator sowie hydraulischem Koppler
WO2009141182A1 (de) Kraftstoff-injektor
EP1939441A2 (de) Kraftstoffinjektor
EP2499352B1 (de) Kraftstoffinjektor
DE102008042227A1 (de) Kraftstoff-Injektor
DE102007005382A1 (de) Leckagefreier Injektor
DE102009027494A1 (de) Kraftstoff-Injektor mit druckausgeglichenem Steuerventil
EP2195523A1 (de) Injektor mit steuerventilhülse
EP2195522B1 (de) Injektor mit hülsenförmigem steuerventilelement
DE102006047935A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE102009000283A1 (de) Injektor zum Einspritzen von Kraftstoff
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
EP2204570B1 (de) Kraftstoff-Injektor
DE102008005535A1 (de) Kraftstoffinjektor
EP2085604A1 (de) Injektor zum Einspritzen von Kraftstoff
WO2008095743A1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennstoffmaschinen
WO2010081576A1 (de) Kraftstoff-injektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008013489

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0047020000

Ipc: F02M0063000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 47/02 20060101ALI20150429BHEP

Ipc: F02M 63/00 20060101AFI20150429BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013489

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160114

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151203

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230223

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231