EP2231767A1 - Films élastomères souples - Google Patents
Films élastomères souplesInfo
- Publication number
- EP2231767A1 EP2231767A1 EP08865809A EP08865809A EP2231767A1 EP 2231767 A1 EP2231767 A1 EP 2231767A1 EP 08865809 A EP08865809 A EP 08865809A EP 08865809 A EP08865809 A EP 08865809A EP 2231767 A1 EP2231767 A1 EP 2231767A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- block
- block copolymer
- weight
- elastomeric film
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001400 block copolymer Polymers 0.000 claims abstract description 100
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 25
- 239000013032 Hydrocarbon resin Substances 0.000 claims abstract description 23
- 229920006270 hydrocarbon resin Polymers 0.000 claims abstract description 23
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 23
- 229920000098 polyolefin Polymers 0.000 claims abstract description 14
- 239000002480 mineral oil Substances 0.000 claims abstract description 9
- 206010021639 Incontinence Diseases 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims description 60
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 43
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 38
- 238000005984 hydrogenation reaction Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 24
- -1 arene hydrocarbon Chemical class 0.000 claims description 19
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000001993 dienes Chemical class 0.000 claims description 13
- 239000000155 melt Substances 0.000 claims description 13
- 239000007822 coupling agent Substances 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 10
- 235000010446 mineral oil Nutrition 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 5
- 239000004711 α-olefin Substances 0.000 claims description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 4
- 229920006271 aliphatic hydrocarbon resin Polymers 0.000 claims description 4
- 125000002897 diene group Chemical group 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 claims description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000010690 paraffinic oil Substances 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- 229920001897 terpolymer Polymers 0.000 claims description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 2
- 239000004793 Polystyrene Substances 0.000 description 23
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 22
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 18
- 229920002223 polystyrene Polymers 0.000 description 17
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229920001195 polyisoprene Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920003345 Elvax® Polymers 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010128 melt processing Methods 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000011925 1,2-addition Methods 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000006653 Ziegler-Natta catalysis Methods 0.000 description 1
- ULFUTCYGWMQVIO-PCVRPHSVSA-N [(6s,8r,9s,10r,13s,14s,17r)-17-acetyl-6,10,13-trimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-17-yl] acetate;[(8r,9s,13s,14s,17s)-3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl] pentano Chemical compound C1CC2=CC(O)=CC=C2[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CCCC)[C@@]1(C)CC2.C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 ULFUTCYGWMQVIO-PCVRPHSVSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical group CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
- C08L53/025—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2353/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2353/02—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/01—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/901—Radial block
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/938—Rubbery property
Definitions
- the invention relates to personal hygiene articles comprising soft elastomeric films of selectively hydrogenated block copolymers.
- the invention further relates soft elastomeric films comprising at least one selectively hydrogenated block copolymer.
- Disposable personal hygiene article such as gloves, diapers and incontinence products are in widespread use.
- Soft, elastic films are particularly useful for personal hygiene articles and their integral components. These articles and their integral components have specific physical requirements. Ideally, these films would meet a variety of properties in addition to softness. For instance, while soft, these films would also need to have sufficient strength and an ability to withstand significant elongation. Since the articles are generally used in at least a slightly stretched condition, the films also need to retain their strength and dimension over time and at body temperature and to apply an appropriate retractive force for their particular application. Further, the films need to be stable in their environments of use and of storage, both before and after construction of the personal hygiene article.
- Soft elastomeric films consisting of isoprene rubber or styrene-isoprene-styrene block copolymers are well known.
- One reason for their application is the inherent softness and strength of polyisoprene .
- Polyisoprene is, however, unsaturated and susceptible to oxidative, thermal and UV degradation.
- Elastomeric films for commercial application are typically melt processed at high temperatures. Unsaturated films such as made from SIS are susceptible to thermal degradation during processing. This limits the temperatures and the amount of shear that unsaturated block copolymers can experience during processing. Further, because elastomeric films used for commercial applications are stored for some time before final product manufacture and product use, long term oxidative and UV stability is important.
- Elastomeric films fabricated from unsaturated block copolymers while soft, present limitations in this regard. It would be advantageous to have a saturated, or hydrogenated, block copolymer which could be melt processed into soft elastomeric films.
- saturated block copolymers such as SEBS generally lack the combined softness and strength required for these applications.
- the present invention provides an elastomeric film made from selectively hydrogenated block copolymers which has the softness of conventional SIS-based films but the stability inherent in saturated conjugated diene rubbers. We have discovered that with the proper combination of block copolymer molecular weight, monoalkenyl arene content and rubber vinyl content such soft elastomeric films can be produced and because of their selectively hydrogenated nature will be stable to thermal, oxidative and UV environments.
- the invention is a personal hygiene article comprising a soft elastomeric film consisting of a coupled, selectively hydrogenated block copolymer.
- the block copolymer has the general formula (A- B) nX where X is the residue of a coupling agent and n is from 2 to 6, the monoalkenyl arene A block has a molecular weight from 6000 to 7000, the vinyl content of the conjugated diene B block prior to hydrogenation is from 60 to 85%, the total molecular weight is from 180,000 to 400,000 and the monoalkenyl arene content is from 9 to 16% wt.
- the block copolymer is highly coupled such that the amount of uncoupled A-B arms is less than 10%.
- the invention is a soft elastomeric film comprising one coupled, selectively hydrogenated block copolymer of relatively low molecular weight and a second coupled, selectively hydrogenated block copolymer of relatively high molecular weight.
- the relatively high molecular weight block copolymer has monoalkenyl arene A blocks with molecular weights from 6000 to 7000, a B block vinyl content from 60 to 85%, a total molecular weight from 180,000 to 400,000, a monoalkenyl arene content from 9 to 16% wt and less than 10% uncoupled diblock.
- the relatively low molecular weight block copolymer has monoalkenyl arene A blocks with molecular weights from 5000 to 7000, a vinyl content of the B block from 60 to 85%, a total molecular weight of 100,000 to 160,000, a monoalkenyl arene content from 16 to 24% wt and less than 10% uncoupled diblock.
- the invention is a soft elastomeric film comprising one coupled, selectively hydrogenated block copolymer having monoalkenyl arene A blocks with molecular weights from 6000 to 7000, a B block vinyl content from 60 to 85%, a total molecular weight from 180,000 to 400,000, a monoalkenyl arene content from 9 to 16% wt and less than 10% uncoupled diblock and an additional component such as a hydrocarbon resin, a polyolefin, a metallocene polyolefin, homopolystyrene or mineral oil.
- the invention is a soft elastomeric film comprising one coupled, selectively hydrogenated block copolymer having monoalkenyl arene A blocks with molecular weights from 6000 to 7000, a B block vinyl content from 60 to 85%, a total molecular weight from 180,000 to 400,000, a monoalkenyl arene content from 9 to 16% wt and less than 10% uncoupled diblock and a controlled distribution block copolymer.
- Figure 1 shows the tensile strain response of Polymer 1, SEBS 1, SIS 1 and S-(EB/S)-S of extruded films in the cross direction.
- Figure 2 shows the tensile strain response of Polymer 1, SEBS 1, SIS 1 and S-(EB/S)-S of extruded films in the machine direction.
- the soft elastomeric films of the present invention are comprised of coupled, selectively hydrogenated block copolymers.
- the block copolymers have a general formula (A-B) nX where X is the residue of a coupling agent and n represents the average number of arms coupled.
- the block copolymers are synthesized using common anionic polymerization techniques.
- the A block represents a polymerized monoalkenyl arene hydrocarbon block.
- the monoalkenyl arene can be selected from styrene, alpha-methylstyrene, para- methylstyrene, vinyl toluene, vinylnaphthalene, and para- butyl styrene or mixtures thereof. Of these, styrene is most preferred.
- the B block represents a polymerized conjugated diene hydrocarbon block.
- the conjugated dienes can be selected from 1, 3-butadiene and substituted butadienes. Of these, 1, 3-butadiene is most preferred.
- butadiene refers specifically to "1, 3-butadiene” .
- the vinyl content of the B block before hydrogenation is from 60 to 85% mol. More preferred are vinyl contents ranging from 65 to 85% mol and most preferred are vinyl contents ranging from 70 to 85% mol.
- vinyl means, for instance, 1, 3-butadiene unit which are polymerized via 1, 2 -addition of the monomer to the living chain.
- the coupled, selectively hydrogenated block copolymer has a relatively high molecular weight.
- the total molecular weight of the block copolymer is from 180,000 to 400,000. At molecular weights lower than 180,000 the polymer becomes too weak for the present application as a load bearing elastic film. At molecular weights higher than 400,000 the viscosity prohibits easy melt processing of the block copolymer. More preferred is the range from 200,000 to 300,000 and most preferred is the range from 210,000 to 270,000.
- the molecular weight of the monoalkenyl arene block is from 6000 to 7000. More preferred is the range from 6100 to 6800 and most preferred is the range from 6200 to 6700.
- the monoalkenyl arene content of the block copolymer is from 8 to 15% wt of the total block copolymer mass. At monoalkenyl arene contents less than 8% wt the elastic films have poor strength and at contents higher than 15% wt the films have reduced softness. More preferred is the range from 9 to 14% wt and most preferred is the range from 10 to 14% wt.
- the relatively high molecular weight block copolymer is combined with a second coupled, selectively hydrogenated block copolymer having a relatively low molecular weight to form a soft elastic film.
- the relatively low molecular weight block copolymer has a total molecular weight from 100,000 to 160,000. More preferred is the range from 110,000 to 150,000 and most preferred is the range from 120,000 to 150,000.
- the molecular weight of the monoalkenyl arene block is from 5000 to 7000. More preferred is the range of 5500 to 7000 and most preferred is the range from 6000 to 7000.
- the monoalkenyl arene content of the block copolymer is from 16 to 24% wt of the total block copolymer mass.
- the relatively high molecular weight block copolymer is present in an amount from 15 to 40 parts by weight of the total composition.
- the second block copolymer is present in an amount from 60 to 85 parts by weight. More preferred is an amount from 20 to 30 parts by weight of the relatively high molecular weight block copolymer and 70 to 80 parts by weight of the second block copolymer.
- the relatively high molecular weight block copolymer is combined with a second selectively hydrogenated controlled distribution block copolymer.
- Controlled distribution block copolymers useful for this invention are described in U.S. Patent 7,169,848.
- the second block copolymer has a general configuration A' -B' , A' -B' -A' , (A'-B')n, (A' -B' -A' ) nX, (A'- B')nX or mixtures thereof wherein prior to hydrogenation each A' block is a monoalkenyl arene polymer block and each B' block is a controlled distribution copolymer block of at least one conjugated diene and at least one monoalkenyl arene. Subsequent to hydrogenation about 0 - 10% of the arene double bonds have been reduced, and at least about 90% of the conjugated diene double bonds have been reduced.
- Each A' block has a molecular weight between about 3,000 and about 60,000 and each B' block has a molecular weight between about 30,000 and about 300,000.
- the molecular weights are expressed as true peak molecular weights. They have been corrected for composition from the apparent GPC molecular weights.
- Each B' block comprises terminal regions adjacent to the A' block that are rich in conjugated diene units and one or more regions not adjacent to the A' blocks that are rich in mono alkenyl arene units.
- the total amount of monoalkenyl arene in the hydrogenated block copolymer is about 20 percent weight to about 80 percent weight.
- the weight percent of monoalkenyl arene in each B' block is between about 10 percent and about 75 percent.
- the monoalkenyl arene blockiness in the B' block is less than 40%.
- the A' block is polymerized styrene and has a molecular weight from 8,000 to 12,000, the overall molecular weight is from 120,000 to 160,000, and the overall styrene content is from 38 to 46%.
- the B' block has from 15 to 40% styrene and the styrene blockiness index of the B' block is less than 10%.
- the term "molecular weights" in this specification refers to the apparent molecular weight in g/mol of the polymer or block of the copolymer.
- the molecular weights referred to in this specification and these claims can be measured with gel permeation chromatography (GPC) using polystyrene calibration standards, such as is done according to ASTM 3536.
- GPC gel permeation chromatography
- polystyrene calibration standards such as is done according to ASTM 3536.
- GPC is a well-known method wherein polymers are separated according to molecular size, the largest molecule eluting first. The chromatograph is calibrated using commercially available polystyrene molecular weight standards.
- the molecular weight of polymers measured using GPC so calibrated are styrene equivalent, or apparent, molecular weights.
- the apparent molecular weight may be converted to true molecular weight when the styrene content of the polymer and the vinyl content of the diene segments are known.
- the detector used is preferably a combination ultraviolet and refractive index detector. Unless otherwise noted, the molecular weights expressed herein are measured at the peak of the GPC trace and are commonly referred to as "peak molecular weights".
- n is the average number of living arms per coupled block copolymer.
- n is preferably from about 2 to about 15 and most preferably from 2 to 6.
- the block copolymer has a linear configuration.
- the block copolymer is referred to as radial, branched or star.
- the coupling reaction may be conducted to link only a fraction of the living arms or may be conducted to yield highly coupled polymers.
- the amount of living arm which is linked in the coupling reaction is reported by a "coupling efficiency" measurement.
- the coupling is generally a statistical process and n is an average number of coupled arms as taught in US Patents 7,001, 956 and 7,009,000.
- the aryl radicals preferably have from 6 to 12 carbon atoms.
- the alkyl radicals preferably have 1 to 12 carbon atoms, more preferably from 1 to 4 carbon atoms. Under melt conditions these alkoxy silane coupling agents can couple further to yield functionalities greater than 4.
- tetra alkoxy silanes are tetramethoxy silane ("TMOS”) , tetraethoxy silane (“TEOS”) , tetrabutoxy silane (“TBOS”), and tetrakis- (2-ethylhexyloxy) -silane (“TEHOS”) . Of these the most preferred is tetramethoxy silane.
- the hydrogenated block copolymers of the present invention are selectively hydrogenated using any of the several hydrogenation processes know in the art.
- the hydrogenation may be accomplished using methods such as those taught, for example, in U.S. Patent Nos. 3,494,942; 3,634,594; 3,670,054; 3,700,633; and Re . 27,145, the disclosures of which are hereby incorporated by reference.
- Any hydrogenation method that is selective for the double bonds in the conjugated polydiene blocks, leaving the aromatic unsaturation in the polystyrene blocks substantially intact, can be used to prepare the hydrogenated block copolymers of the present invention.
- the methods known in the prior art and useful for preparing the hydrogenated block copolymers of the present invention involve the use of a suitable catalyst, particularly a catalyst or catalyst precursor comprising an iron group metal atom, particularly nickel or cobalt, and a suitable reducing agent such as an aluminum alkyl. Also useful are titanium based catalyst systems.
- the hydrogenation can be accomplished in a suitable solvent at a temperature within the range from about 20 0 C to about 100 0 C, and at a hydrogen partial pressure within the range from about 100 psig (689 kPa) to about 5,000 psig (34,473 kPa) .
- Catalyst concentrations within the range from about 10 ppm to about 500 ppm by wt of iron group metal based on total solution are generally used and contacting at hydrogenation conditions is generally continued for a period of time with the range from about 60 to about 240 minutes. After the hydrogenation is completed, the hydrogenation catalyst and catalyst residue will, generally, be separated from the polymer.
- the hydrogenated block copolymers have a hydrogenation degree greater than 80% mol. This means that more than from 80% mol of the conjugated diene double bonds in the B block have been hydrogenated from an alkene to an alkane. Preferably, greater than about 90% mol of the conjugated dienes are hydrogenated. Most preferably, greater than about 95% mol of the conjugated dienes are hydrogenated.
- the hydrogenation is selective such that while high degrees of hydrogenation of the conjugated diene are achieved only minimal hydrogenation of the monoalkenyl arene occurs.
- 0 - 10% mol of the monoalkenyl arene units are hydrogenated.
- Preferably, less than 5% mol of the monoalkenyl arene units are hydrogenated.
- More preferably, less than 1% mol of the monoalkenyl arene units are hydrogenated.
- the coupled, selectively hydrogenated block copolymer is combined with another polymer component.
- the polymer component may be a hydrocarbon resin, a polyolefin, a metallocene polyolefin, homopolystyrene or a mineral oil.
- Hydrocarbon resins compatible with the hydrogenated, conjugated diene block are particularly useful in the present invention.
- the hydrocarbon resins compatible may be selected from the group consisting of compatible C5 hydrocarbon resins, hydrogenated C5 hydrocarbon resins, C5/C9 resins, fully hydrogenated or partially hydrogenated C9 hydrocarbon resins and mixtures thereof.
- Examples of commercial hydrocarbon resins suitable for the invention are OPPERA® and ESCOREZ® from ExxonMobil Chemical, and REGALITE® and REGALREZ® from Eastman Chemical.
- the amount of hydrocarbon resin in the elastomer film is from 5 to 35% wt based on the elastomer film mass. More preferred is 5 to 15% wt of hydrocarbon resin .
- metallocene polyolefins include ethylene/alpha-olefin copolymers, propylene/alpha-olefin copolymers and ethylene/propylene/alpha-olefin terpolymers such as AFFINITY®, ENGAGE® and VERSIFY® polymers from Dow Chemical and EXACT® and VISTAMAXX® polymers from Exxon Mobil.
- homopolystyrene resins include resins having melt flow rates less than 10 g/10min at 200 0 C / 5kg such as PS2500 from Nova Chemical and resins having melt flow rates of greater than 30 g/10 min at 200C/5kg such as PS 3900 from Nova Chemical.
- the melt flow is preferably from 3 to 38 and more preferably from 4 to 18.
- the total monoalkenyl arene content of the composition including both the block copolymer and the homopolystyrene is less than 20% wt .
- the more preferred total monoalkenyl arene content is 15% wt or less.
- mineral oils examples include oils which are compatible with the elastomeric mid-block segment of the elastomeric block copolymer and which do not tend to migrate into the aromatic endblock portions to any significant degree.
- specific examples are paraffinic oils such as Drakeol 34 from Penreco.
- the preferred amount of mineral oil is 10 parts by weight for every hundred parts of block copolymer or less. Because high levels of mineral oil can lead to tacky films or an oil surface film on the material, the amount of oil is to be minimized. The more preferred amount of oil is 5 parts by weight or less. In the most preferred embodiments the softness of the elastomeric film or personal hygiene article is achieved with no oil .
- the high vinyl block copolymers can be blended with the polymers and resins taught herein to form the soft elastic films of the present invention, unsatisfactory results are achieved when they are blended with a significant amount of homo-polypropylenes or polypropylene copolymers made from conventional Ziegler- Natta catalysis.
- the films contain less than 10% of such homo-polyproylenes or propylene copolymers, preferably less than 5% and most preferably 0%.
- the soft elastomeric films can be produced using conventional melt processing equipment.
- suitable equipment for melt processing is a Killion 30:1 KLlOO 1 inch single screw extruder with a 6 inch film die. Larger size single screw extruders with larger dies may also be used.
- the soft elastomeric films of the present invention are characterized by low rubber moduli and sufficiently high tensile strengths.
- soft means having a stress at 100% tensile elongation less than about 100 psi and a stress at 300% tensile elongation less than about 150 psi. In order for these soft films to have practical utility they must also have tensile strengths of at least about 1000 psi.
- melt extrusion operations can lead to the development of structure within extruded block copolymer films. Such structure can in turn result in high stiffness and / or yield stress which decreases the softness in the machine direction.
- soft elastomeric films meeting these conditions also have tensile elongations of at least 500%.
- Hysteresis properties are also important because the elastomeric films of the present invention will be subject to cyclic stresses during use.
- the hysteresis properties most characteristic of the elastic films are the recovered energy, the percent set after a cyclic tensile stress and the peak stress experienced during the cycle.
- the soft elastomeric films of the present invention have recovered energies ranging from 40 to 70%, percent set ranging from 30 to 70% and peak stresses ranging from 116 psi to 218 psi in hysteresis cycles to 300% elongation. In cycles to 100% elongation the films have recovered energies ranging from 55 to 90%, percent set ranging from 7 to 18% and peak stresses ranging from 70 to 160 psi.
- the films of the present invention are useful in personal hygiene articles such as gloves, diapers, incontinence products, disposable undergarments, disposable swimwear for children and the like.
- the personal hygiene articles may be composed essentially of the soft elastomeric film alone as in the case of gloves.
- the soft elastomeric film may make up one or more integral components to the article.
- integral components may be stretch panels, elastic closures, waistbands and the like.
- Polymer 1 is a coupled, selectively hydrogenated block copolymer.
- Polymer 1 is a polymer of the invention.
- the structure of Polymer 1 is (S-EB) nX where S is a polystyrene block having a molecular weight of about 6400, EB is a hydrogenated polybutadiene block having a vinyl content of 77% before hydrogentation, the total apparent molecular weight is about 235,000 and the total styrene content is 12.5%.
- SEBS 1 is a coupled, selectively hydrogenated block copolymer. When used alone to make elastic films SEBS 1 is a comparative polymer. When used in combination with Polymer 1, SEBS 1 is a polymer of the invention.
- the structure of SEBS 1 is (S-EB) nX where S is a polystyrene block having a molecular weight of about 6200, EB is a hydrogenated polybutadiene block having a vinyl content of 77% before hydrogenation, the total apparent molecular weight is about 143,000 and the total polystyrene content is 20%.
- SEBS 2 is a comparative polymer and is a coupled, selectively hydrogenated block copolymer.
- the structure of SEBS 2 is (S-EB) 2 where S is a polystyrene block having a molecular weight of about 5300, EB is a hydrogenated polybutadiene block having a vinyl content of about 40% before hydrogenation, the total apparent molecular weight is about 145,000 and the total polystyrene content is 13%.
- SIS 1 is a comparative polymer and is an unsaturated block copolymer.
- the structure of SIS 1 is S- I-S where S is a polystyrene block having a molecular weight of about 11,100, I is a polyisoprene block, the total apparent molecular weight is about 178,000 and the total polystyrene content is 19%.
- SIS 2 is a comparative polymer and is an unsaturated block copolymer.
- the structure of SIS 2 is S- I-S where S is a polystyrene block having a molecular weight of about 13,000, I is a polyisoprene block, the total apparent molecular weight is about 126,000 and the total polystyrene content is 29%.
- S-(EB/S)-S is a comparative polymer and is a selectively hydrogenated block copolymer.
- S is a styrene block having a molecular weight of about 10,600
- EB/S is a selectively hydrogenated controlled distribution copolymer block of styrene and butadiene where this block has 25% styrene and a styrene blockiness index of about 5%, the total apparent molecular weight is about 40,000 and the total styrene content is 42%.
- Oppera PRlOO is a hydrogenated hydrocarbon resin having a softening point of about 138°C from ExxonMobil .
- Piccotac 9095 is an aromatic modified C5 resin having a softening point of 94°C and available from Eastman Chemical.
- PS2500 and PS3900 are homopolystyrenes having melt flow indices of 7 g/10min and 30 g/10min, respectively, and are commercially available from Nova Chemical .
- Vistamaxx 1100, 1120 and 2125 are metallocene catalyzed polyolefin copolymers commercially available from ExxonMobil.
- Vistamaxx 1100 has a melt flow rate of 3.0 g / 10 min at 230 0 C / 2.16 kg and a density of 0.860 g / cm3.
- Vistamaxx 1120 has a melt flow rate of 21 at 230 0 C / 2.16 kg and a density of 0.861 g / cm3.
- Vistamaxx 2125 has a melt flow rat of 80 g / 10 min at 230°C / 2.16 kg and a density of 0.865 g / cm3.
- Elvax 250 is an ethylene-vinyl acetate copolymer resin having 28% wt vinyl acetate and a melt flow rate of 25g / 10 min at 190 0 C / 2.16 kg and is commercially available from DuPont.
- Irganox 1010 is a phenolic antioxidant and Irgafos 168 is diarylalkyl phosphate stabilizer, both available from Ciba.
- Compound blends were made by premixing all compound components then extruding the preblend on a 25 millimeter Berstorff twin screw extruder at a melt temperature of approximately 205 0 C for compounds containing unhydrogenated polymer and approximately 220 - 227 0 C for compounds containing hydrogenated polymer. The finished compounds were then cast into approximately 125 micron thick films on a Killion 30:1 KLlOO 1 inch single screw extruder with a 6 inch film die. The die temperature was approximately 205 0 C for compounds containing unhydrogenated polymer and 232 - 249°C for compounds containing hydrogenated polymer.
- Elastomeric films were made by compression molding or melt casting. Films made from Polymer 1 were compared to conventional films made from SEBS and SIS.
- Table 101 lists the tensile results for Polymer 1 and SEBS 1 elastomeric films.
- the tensile properties were measured according to ASTM D412.
- the tensile test specimens were cut from a melt pressed film using a D die.
- the tensile tests were conducted using a 500 mm/min crosshead speed and at a temperature of 23°C. These results show that soft elastomeric films having a 100% stress of about 100 psi or less and a tensile strength greater than 1000 psi can be made with neat Polymer 1.
- the film made with SEBS 1 had a relatively high 100% stress at 160 psi and would be unsuitable as a neat polymer for the soft elastic films of the invention.
- Table 102 lists the tensile results for Polymer 1, SEBS 2, SIS 1 and SIS 2.
- the tensile test specimens were cut from melt extruded films in the machine and in the cross, or transverse, directions using a C die. These results show that Polymer 1 is able to make elastomeric films as soft as those made from SIS 1 which, while unsaturated, is commonly used to make soft elastomeric films and is substantially better than SIS 2, a relatively high styrene content SIS.
- SEBS 2 has a comparable styrene content to Polymer 1 its 100% stress in the machine direction is 142 psi, greater than the 82 psi 100% stress of Polymer 1 by a factor of 1.7.
- Table 103 lists the 100% hysteresis results for elastomeric films made from Polymer 1, SEBS 2, SIS 1 and SIS 2. The tests were performed on samples cut in the machine direction and on those cut in the cross, or transverse, direction. These results show that Polymer 1 is able to make elastomeric films as soft as those made from SIS 1 which, while unsaturated, is commonly used to make soft elastomeric films and is substantially better than SIS 2, a relatively high styrene content SIS. While SEBS 2 has a comparable styrene content to Polymer 1 its 100% stress in the machine direction under these conditions is 225 psi, greater than the 91 psi 100% stress of Polymer 1 by a factor of 2.5. In addition, the films of Polymer 1 have the lowest permanent set and the highest elastic ratios of all the films tested.
- Elastomeric films made from blends of block copolymer and hydrocarbon resins were prepared by melt casting.
- Table 201 lists the hysteresis results for blends of Polymer 1 and a hydrocarbon resin, Oppera PRIlO, at various resin levels.
- Oppera PRIlO is a hydrogenated hydrocarbon resin.
- Films were also made from Piccotac 9095, a aromatic modified C5 resin. The tests were performed on samples cut from melt pressed films using a microtensile die.
- the results show that elastomeric films containing block copolymers of the present invention and hydrocarbon resins up to a level of 20% have 100% stress characteristic of soft films.
- the films maintained a 100% modulus less than 100 psi for resin levels ranging from 5 to 20% wt of the total mass of block copolymer plus resin (Examples A - D) . Further, the tensile set of these films was less than about 10 % after elongation to 200%. When the resin was Piccotac 9095 (Examples E - F), low 100% moduli indicating sufficient softness were observed. However, these films had significantly higher tensile sets after 200% elongation. At the 10% wt and 20% wt resin levels the tensile sets were 14.4 and 12.2% respectively after one elongation cycle and 15.4 and 13.2% after the second cycle. Elastomeric films made with hydrogenated hydrocarbon resins were shown to have a significantly better combination of softness and dimensional stability than those made with the aromatic modified resins.
- Elastomeric films were melt cast from blends of Polymer 1 and various metallocene polyolefins at various levels.
- Table 301 lists the hysteresis results for blends of Polymer 1 and a metallocene polyolefins Vistamaxx 2125 and Vistamaxx 1120. The tensile properties were measured in the cross, or transverse, direction.
- the elastomeric films with Vistamaxx 1120 at the 25 and 50% level were suitable for the soft films of the present application having 100% stress of 91.6 and 101.5% respectively.
- Vistamaxx 1120 provided suitable performance but blends with Vistamaxx 1100 or Vistamaxx 2125 did not provide suitable performance.
- Elastomeric films were melt cast from blends of Polymer 1 and homopolystyrene at various levels. Two grades of homopolystyrene were used: PS 2500 having a melt flow rate of 7.0 g/10 min at 200 0 C / 5kg and a flexural modulus of 3450 MPa and PS 3900 having a melt flow rate of 38 g / 10 min at 200 0 C / 5kg and a flexural modulus of 3000 MPa.
- the PS 2500 is a relatively viscous and stiff homopolystyrene.
- the blends were made to match total polystyrene composition targets.
- the total polystyrene content is calculated as the weight percent of polystyrene basis the total amount of block copolymer and homopolystyrene.
- the tensile test specimens were cut from melt extruded films in the machine and in the cross, or transverse, directions using a C-type die.
- Table 401 shows the results.
- the results show that elastomeric films having suitable softness can be made with Polymer 1 and PS 2500 up to 15% total polystyrene content (PSC) and also with Polymer 1 and PS 3900 up to 15% total polystyrene content (PSC) .
- PSC total polystyrene content
- PSC Polymer 1 and PS 3900 up to 15% total polystyrene content
- the elastomeric films had a 100% stress of approximately 80-90 psi when tested in the machine direction and approximately 75-85 psi when tested in the cross direction.
- Table 501 lists the tensile properties of elastomeric films made with various levels of S-(EB/S)-S.
- the tensile test specimens were cut from melt extruded films in the machine and in the cross, or transverse, directions using a C-type die.
- Elastomeric films were melt cast from blends of Polymer 1 and Elvax 250.
- the elastomeric films were composed of a blend of Polymer 1 / Elvax 250 at ratios of 90/10 and 80/20 parts by weight.
- the tensile test specimens were cut from melt extruded films in the machine and in the cross, or transverse, directions using a C-type die .
- Table 601 lists the tensile properties of the elastomeric films.
- Elastomeric films were melt cast from blends of Polymer 1 and SIS 2.
- the elastomeric films were composed of a blend of Polymer 1 and SIS 2 at a ratio of 70/30 parts by weight.
- the tensile samples were cut from a melt extruded film using a C-type die. The tests were performed on samples cut in the machine direction and on those cut in the cross, or transverse, direction.
- Table 701 lists the tensile properties of the elastomeric films.
- Table 702 lists the hysteresis properties of an elastomeric film composed of a blend of Polymer 1 and SIS 2 at a 70:30 weight ratio. Results for SEBS 1 and 2 are also listed. The samples were cut from a melt extruded film using a strip die (3 inches x 0.5 inches) . The hysteresis test protocol consisted of an activation elongation of 500%, a first hysteresis cycle to 200% and a second hysteresis cycle to 200%.
- Table 801 lists the tensile properties of elastomeric films composed of a blend of Polymer 1 and SEBS 1. The samples were cut from a melt extruded film using a C-type die in both the machine and cross, or transverse, direction .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Graft Or Block Polymers (AREA)
- Gloves (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1591307P | 2007-12-21 | 2007-12-21 | |
PCT/US2008/087622 WO2009082685A1 (fr) | 2007-12-21 | 2008-12-19 | Films élastomères souples |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2231767A1 true EP2231767A1 (fr) | 2010-09-29 |
EP2231767A4 EP2231767A4 (fr) | 2011-06-29 |
EP2231767B1 EP2231767B1 (fr) | 2014-10-15 |
Family
ID=40789339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08865809.1A Active EP2231767B1 (fr) | 2007-12-21 | 2008-12-19 | Films élastomères souples |
Country Status (8)
Country | Link |
---|---|
US (1) | US8188192B2 (fr) |
EP (1) | EP2231767B1 (fr) |
JP (1) | JP5249349B2 (fr) |
KR (1) | KR101193772B1 (fr) |
CN (1) | CN101903455B (fr) |
BR (1) | BRPI0820134A2 (fr) |
TW (1) | TWI412556B (fr) |
WO (1) | WO2009082685A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009009104A1 (fr) * | 2007-07-11 | 2009-01-15 | Dow Reichhold Specialty Latex, Llc | Articles élastomériques ayant des propriétés de résistance et de confort souhaitables |
US8618350B2 (en) * | 2011-02-14 | 2013-12-31 | The Procter & Gamble Company | Absorbent articles with tear resistant film |
US8795809B2 (en) | 2011-02-14 | 2014-08-05 | The Procter & Gamble Company | Tear resistant film |
US9771473B2 (en) | 2012-02-24 | 2017-09-26 | Kraton Polymers U.S. Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications |
US20130225020A1 (en) * | 2012-02-24 | 2013-08-29 | Kraton Polymers Us Llc | High flow, hydrogenated styrene-butadiene-styrene block copolymer and applications |
US8859094B2 (en) | 2012-11-09 | 2014-10-14 | The Procter & Gamble Company | Combination of elastomeric film composition and adhesive for a stretch laminate |
US9358759B2 (en) | 2013-12-19 | 2016-06-07 | Kimberly-Clark Worldwide, Inc. | Multilayered elastic laminates with enhanced strength and elasticity and methods of making thereof |
US9428638B2 (en) | 2013-12-19 | 2016-08-30 | Kimberly-Clark Worldwide, Inc. | Strong polyolefin-based thermoplastic elastomeric films and methods of making |
US10213990B2 (en) | 2013-12-31 | 2019-02-26 | Kimberly-Clark Worldwide, Inc. | Methods to make stretchable elastic laminates |
US9802392B2 (en) | 2014-03-31 | 2017-10-31 | Kimberly-Clark Worldwide, Inc. | Microtextured multilayered elastic laminates with enhanced strength and elasticity and methods of making thereof |
KR102546052B1 (ko) * | 2015-06-12 | 2023-06-20 | 크레이튼 폴리머즈 유.에스. 엘엘씨 | 연질 외피용 조성물 및 이의 용도 |
PL3325519T3 (pl) * | 2015-07-24 | 2019-11-29 | Dynasol Elastomeros Sa | Uwodorniony kauczuk o poprawionej użyteczności w kompozycjach TPE |
EP3350262B1 (fr) * | 2015-09-16 | 2023-08-16 | Kraton Polymers U.S. LLC | Compositions de copolymère bloc styrénique |
EP3455267A4 (fr) * | 2016-06-30 | 2020-01-15 | Kraton Polymers U.S. LLC | Compositions de copolymère séquencé à haute teneur en vinyle à rendement amélioré et leurs utilisations |
US11542355B2 (en) * | 2018-10-18 | 2023-01-03 | Dynasol Elastómeros, S.A. De C.V. | Polar modifier systems for high vinyl block copolymerization |
EP4361189A1 (fr) * | 2022-10-26 | 2024-05-01 | Kraton Polymers Nederland B.V. | Composition de copolymère séquencé et ses procédés de préparation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002028965A1 (fr) * | 2000-10-04 | 2002-04-11 | Kraton Polymers Research, B.V. | Composition elastomerique thermoplastique pouvant etre extrudee en films et fibres elastomeriques |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE697838A (fr) | 1966-11-11 | 1967-10-02 | ||
USRE27145E (en) | 1969-05-20 | 1971-06-22 | Side-chain | |
US3634594A (en) | 1969-08-05 | 1972-01-11 | Nippon Musical Instruments Mfg | Touch-responsive tone envelope control circuit for electronic musical instruments |
US3670054A (en) | 1969-10-29 | 1972-06-13 | Shell Oil Co | Block copolymers having reduced solvent sensitivity |
US3700633A (en) | 1971-05-05 | 1972-10-24 | Shell Oil Co | Selectively hydrogenated block copolymers |
US6497694B1 (en) | 1994-07-29 | 2002-12-24 | Kimberly-Clark Worldwide, Inc. | Disposable waste containment garment |
US5790983A (en) | 1995-05-16 | 1998-08-11 | Kimberly-Clark Worldwide, Inc. | Elasticized top garment |
US5953754A (en) | 1997-04-08 | 1999-09-21 | Kimberly-Clark Worldwide, Inc. | Camisole garment |
US6245401B1 (en) | 1999-03-12 | 2001-06-12 | Kimberly-Clark Worldwide, Inc. | Segmented conformable breathable films |
US6270910B1 (en) * | 1998-04-03 | 2001-08-07 | 3M Innovative Properties Company | Anisotropic film |
DE60108964T2 (de) | 2000-06-07 | 2006-04-06 | Kraton Polymers Research B.V. | Knickresistenter medizinischer schlauch |
TWI261600B (en) * | 2001-07-18 | 2006-09-11 | Asahi Kasei Chemicals Corp | Modified block copolymer |
JP4179990B2 (ja) | 2002-01-31 | 2008-11-12 | クレイトン・ポリマーズ・リサーチ・ベー・ベー | 機械的特性と加工性が改善されたブロック共重合体組成物およびそれに用いるスチレン系ブロック共重合体 |
JP4090998B2 (ja) | 2002-01-31 | 2008-05-28 | クレイトン・ポリマーズ・リサーチ・ベー・ベー | 機械的特性と加工性が改善されたブロック共重合体組成物 |
US20030181584A1 (en) | 2002-02-07 | 2003-09-25 | Kraton Polymers U.S. Llc | Elastomeric articles prepared from controlled distribution block copolymers |
US7141621B2 (en) | 2002-02-07 | 2006-11-28 | Kraton Polymers U.S. Llc | Gels from controlled distribution block copolymers |
US7012118B2 (en) * | 2002-02-07 | 2006-03-14 | Kraton Polymers U.S. Llc | Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers |
US7001956B2 (en) | 2002-06-04 | 2006-02-21 | Kraton Polymers U.S. Llc | Articles prepared from hydrogenated block copolymers |
CN1302036C (zh) | 2002-07-11 | 2007-02-28 | 克拉通聚合物研究有限公司 | 偶联的苯乙烯嵌段共聚物及其制备方法 |
EP1408061A1 (fr) * | 2002-10-11 | 2004-04-14 | ATOFINA Research | Procédé pour la production d'un copolymère transparent |
US6984696B2 (en) | 2003-03-28 | 2006-01-10 | Exxonmobil Chemical Patents Inc. | Elastic blends of semicrystalline propylene polymers and high glass transition temperature materials |
US7589152B2 (en) * | 2003-12-22 | 2009-09-15 | Kraton Polymers U.S. Llc | Adhesive formulations for novel radial (S-I/B)x polymers |
US7910208B2 (en) * | 2004-03-03 | 2011-03-22 | Kraton Polymers U.S. Llc | Elastomeric bicomponent fibers comprising block copolymers having high flow |
JP2007526387A (ja) | 2004-03-03 | 2007-09-13 | クレイトン・ポリマーズ・リサーチ・ベー・ベー | 高い流動及び高い弾性を有するブロック共重合体を含有するポリマー組成物 |
DE102005010548A1 (de) * | 2005-03-04 | 2006-09-07 | Byk-Chemie Gmbh | Stabilisierte ungesättigte Polyesterharzmischungen |
US7569281B2 (en) | 2005-07-25 | 2009-08-04 | Kraton Polymers U.S. Llc | Flexible packaging laminate films including a block copolymer layer |
US20070026251A1 (en) | 2005-07-26 | 2007-02-01 | Kraton Polymers U.S. Llc | Flexible packaging laminate films including a block copolymer layer |
US7582702B2 (en) * | 2006-03-24 | 2009-09-01 | Kraton Polymers U.S. Llc | Block copolymer compositons |
-
2008
- 2008-12-19 US US12/339,356 patent/US8188192B2/en active Active
- 2008-12-19 WO PCT/US2008/087622 patent/WO2009082685A1/fr active Application Filing
- 2008-12-19 KR KR1020107013184A patent/KR101193772B1/ko active IP Right Grant
- 2008-12-19 TW TW097149930A patent/TWI412556B/zh active
- 2008-12-19 EP EP08865809.1A patent/EP2231767B1/fr active Active
- 2008-12-19 CN CN2008801211591A patent/CN101903455B/zh active Active
- 2008-12-19 JP JP2010539861A patent/JP5249349B2/ja active Active
- 2008-12-19 BR BRPI0820134-0A patent/BRPI0820134A2/pt not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002028965A1 (fr) * | 2000-10-04 | 2002-04-11 | Kraton Polymers Research, B.V. | Composition elastomerique thermoplastique pouvant etre extrudee en films et fibres elastomeriques |
Non-Patent Citations (1)
Title |
---|
See also references of WO2009082685A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2011508027A (ja) | 2011-03-10 |
TWI412556B (zh) | 2013-10-21 |
KR20100095597A (ko) | 2010-08-31 |
US20090163361A1 (en) | 2009-06-25 |
BRPI0820134A2 (pt) | 2015-05-12 |
CN101903455B (zh) | 2013-01-16 |
EP2231767B1 (fr) | 2014-10-15 |
WO2009082685A1 (fr) | 2009-07-02 |
KR101193772B1 (ko) | 2012-10-23 |
US8188192B2 (en) | 2012-05-29 |
TW200936682A (en) | 2009-09-01 |
EP2231767A4 (fr) | 2011-06-29 |
CN101903455A (zh) | 2010-12-01 |
JP5249349B2 (ja) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8188192B2 (en) | Soft elastomeric films | |
US7001956B2 (en) | Articles prepared from hydrogenated block copolymers | |
KR100788123B1 (ko) | 흐름성 및 탄성이 높은 블록 공중합체를 함유하는 중합체조성물 | |
EP1730201B1 (fr) | Copolymeres blocs presentant une fluidite et une elasticite elevees | |
US20100056721A1 (en) | Articles prepared from certain hydrogenated block copolymers | |
KR100620633B1 (ko) | 신규의 테트라블록 공중합체 및 이것을 함유한 조성물 | |
JP5105107B2 (ja) | 改良された熱可塑性エラストマー組成物 | |
JP2010106200A (ja) | 樹脂組成物およびそれからなるシート状成形体 | |
EP3455267A1 (fr) | Compositions de copolymère séquencé à haute teneur en vinyle à rendement amélioré et leurs utilisations | |
JP2006194318A (ja) | ポリプロピレン樹脂組成物製パイプ | |
US7262248B2 (en) | Articles prepared from high molecular weight tetrablock copolymers | |
US11718771B2 (en) | Polymer composition and fiber or non-woven fabric made therefrom | |
JP5006491B2 (ja) | 共重合体の製造方法、共重合体および該共重合体を含む熱可塑性重合体組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100719 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602008034945 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08L0009000000 Ipc: C08L0053020000 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110531 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08J 5/18 20060101ALI20110525BHEP Ipc: C08L 53/02 20060101AFI20110525BHEP |
|
17Q | First examination report despatched |
Effective date: 20120214 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140701 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 691675 Country of ref document: AT Kind code of ref document: T Effective date: 20141115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008034945 Country of ref document: DE Effective date: 20141127 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 691675 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150115 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150216 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150215 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150116 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008034945 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150716 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141219 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081219 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20161226 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20181220 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211028 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231221 Year of fee payment: 16 Ref country code: DE Payment date: 20231214 Year of fee payment: 16 |