EP2229424A1 - Surface-modified conversion luminous substances - Google Patents
Surface-modified conversion luminous substancesInfo
- Publication number
- EP2229424A1 EP2229424A1 EP08876948A EP08876948A EP2229424A1 EP 2229424 A1 EP2229424 A1 EP 2229424A1 EP 08876948 A EP08876948 A EP 08876948A EP 08876948 A EP08876948 A EP 08876948A EP 2229424 A1 EP2229424 A1 EP 2229424A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphor
- mixtures
- organic
- coating
- phosphor particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title claims description 11
- 238000006243 chemical reaction Methods 0.000 title claims description 9
- 239000002245 particle Substances 0.000 claims abstract description 58
- 238000000576 coating method Methods 0.000 claims abstract description 36
- 239000011248 coating agent Substances 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 150000004679 hydroxides Chemical class 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 150000001282 organosilanes Chemical class 0.000 claims abstract description 9
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 8
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 8
- 239000012190 activator Substances 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 150000004760 silicates Chemical class 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical class [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 93
- 238000000034 method Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910052771 Terbium Inorganic materials 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910052765 Lutetium Inorganic materials 0.000 claims description 5
- -1 Rare earth salts Chemical class 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 4
- 150000002902 organometallic compounds Chemical class 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 3
- 229910003668 SrAl Inorganic materials 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 3
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 2
- 229910002601 GaN Inorganic materials 0.000 claims description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 150000007942 carboxylates Chemical class 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000005401 electroluminescence Methods 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 150000003891 oxalate salts Chemical class 0.000 claims description 2
- 235000021317 phosphate Nutrition 0.000 claims description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 2
- 238000005424 photoluminescence Methods 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 238000007669 thermal treatment Methods 0.000 claims description 2
- 238000005019 vapor deposition process Methods 0.000 claims description 2
- 238000007704 wet chemistry method Methods 0.000 claims description 2
- 229910052776 Thorium Inorganic materials 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- 229910052741 iridium Inorganic materials 0.000 claims 1
- 229910052752 metalloid Inorganic materials 0.000 claims 1
- 150000002738 metalloids Chemical class 0.000 claims 1
- 239000012457 nonaqueous media Substances 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 18
- 239000000725 suspension Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005118 spray pyrolysis Methods 0.000 description 4
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 4
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000003377 silicon compounds Chemical group 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000001856 aerosol method Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- BKPGJUPRWGGYBZ-UHFFFAOYSA-N trimethyl-[methyl-[3-(oxiran-2-ylmethoxy)propyl]silyl]oxysilane Chemical compound C(C1CO1)OCCC[SiH](O[Si](C)(C)C)C BKPGJUPRWGGYBZ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77347—Silicon Nitrides or Silicon Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Definitions
- the invention relates to surface-modified phosphor particles to which a metal, transition metal or Halbmetalloxidbetikung and then an organic coating is applied and their
- the LEDs have large differences in light distribution; both the distribution across an LED is strongly angle dependent ( Figure 1), and the light characteristics from LED to LED within a batch is not uniform.
- the LED manufacturer is forced to undertake expensive and costly binning which results in low yields of salable LEDs (the target bin with light properties meeting the requirements has a yield of up to about 10% of the total production white LEDs are either destroyed, or often put under "open bin"
- 1633-1636 describes how to use nano-phosphors which over have a reactive surface (intrinsic property of nanoparticles that have a high surface to volume ratio and saturate the high surface energy with bonds of any kind) with glycine as the linker to tetramethylrhodamine (dye) to observe charge transfer.
- glycine as the linker to tetramethylrhodamine (dye) to observe charge transfer.
- the method described is unsuitable for bonding phosphors to resins or to achieve compatibility.
- a phosphor paste which consists of a phosphor, a silane-containing dispersant and an organic
- Resin exists.
- the phosphor, dispersant and binder are mixed and the phosphor dispersed in the binder.
- the dispersants used consist of a specific hydrophobic organic radical, a hydrophobic group and a silanol anchor group bonded to the hydrophilic group.
- the object of the present invention was, on the one hand, to avoid the abovementioned disadvantages such as inhomogeneous and non-reproducible distribution of the phosphor particles over the LED chip and, on the other hand, to provide a phosphor which can be easily incorporated into various binding systems.
- this inhomogeneity of the light distribution which is caused by inhomogeneous phosphor layers, is avoided by compatibilization of the phosphor surface with the silicone or epoxy resin.
- compatibilization the surface of the phosphor is provided with functional chemical groups and linkers. These allow adaptation of the phosphor particles to the hydrophilic or hydrophobic properties of the resin. As a result, homogeneous mixtures of resin and phosphor can be produced which do not tend to flocculate.
- the present invention thus relates to surface-modified phosphor particles based on luminescent particles which contain at least one luminescent compound, where (Ca, Sr, Ba) 2 SiO 4 and other silicates having one or more
- Activator ions such as Eu, Ce and Mn and / or codotants based on Fe, Cu and / or Zn are excluded, and wherein the luminescent particles comprise at least one inorganic layer containing oxides / hydroxides of Si, Al, Zr, Zn, Ti and / or mixtures thereof, and then an organic coating of organosilanes or
- Polyorganosiloxanes (silicones) and / or mixtures thereof, is applied.
- the luminescent particles contain at least one of the following compounds:
- Group III nitrides oxides individually or mixtures thereof with one or more activator ions such as Ce, Eu, Mn, Cr, Tb and / or Bi, - A -
- the functional groups on the surface of the phosphor form a entanglement and / or crosslinking or chemical compound with the components of the resin. In this way, a homogeneous
- FIG. 1 black curve
- the CCT is homogeneous over the entire angle range over the LED; i.e. the observer perceives the same color temperature ("light color”) in every position
- the white LED provided with conventional (via mix & fire) phosphors shows a large variance of the CCT, so that the observer in different directions has a different one Perceives light color.
- reactive hydroxy groups are first formed on the surface of the phosphor particles by a metal, transition metal or semimetal oxide by wet chemical or vapor deposition (CVD) processes.
- the inorganic coating preferably contains nanoparticles and / or layers of oxides / hydroxides of Si, Al, Zr, Zn, Ti and / or mixtures thereof. Particularly preferred is a silica / hydroxide
- Coating as it has many reactive hydroxyl groups which facilitates further attachment of an organic coating.
- the inorganic coating of oxides / hydroxides of Al, Zr, Zn, Ti and / or mixtures thereof is preferably substantially transparent, i. it must ensure a 90% to 100% transparency both for the excitation spectrum as well as for the emission spectrum of the conversion phosphors used in each case.
- the transparency of the coating according to the invention can also be less than 90% to 100% for all wavelengths which do not correspond to the excitation and emission wavelengths.
- coated phosphor particles are then provided with an organic, preferably substantially transparent, coating of organosilanes or polyorganosiloxanes (silicones) and / or mixtures thereof.
- This coating is also wet-chemical or by a
- the silicon-organic compounds react with the surface OH groups of the phosphor particles or with the inorganic coating.
- the chains of the organic silicon compound form a more or less porous layer around the phosphor particles.
- Organosilanes used are preferably alkoxysilanes.
- organosilanes are propyltrimethoxysilane, propyltriethoxysilane,
- Dynasylan ® marketed by the company. Sivento products, such.
- Dynasylan HS 2926 Dynasylan HS 2909, Dynasylan HS2907, Dynasylan HS 2781, Dynasylan HS 2776, Dynasylan HS 2627.
- oligomeric vinylsilane and aminosilane hydrolyzate are suitable as organic coatings.
- Functionalized organosilanes are, for example, 3-aminopropyltrimethoxysilane, 3-methacryloxytrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, beta- (3,4-)
- polymeric silane systems or polyorganosiloxanes are described in WO 98/13426 and are described, for. B. sold by the company. Sivento under the trademark Hydrosil ® .
- connection of the silane to an epoxy resin or to a silicone resin should take place.
- high-power LEDs high-power LEDs with an electrical connection power of at least 1 W
- low- or medium-power LEDs electrical connection power ⁇ 1W
- electrical connection power ⁇ 1W electrical connection power
- the particle size of the phosphors according to the invention is between 1 .mu.m and 40 .mu.m, preferably between 2 .mu.m and 20 .mu.m.
- the thickness of the coating according to the invention is between 5 nm and 200 nm, preferably 10 nm and 50 nm.
- Coating is between 5 nm and 50 nm.
- the coating according to the invention is not necessarily homogeneous, but may also be present in the form of islands or in droplet form on the surface of the particles.
- the thickness of the organic coating depends on the molar mass of the organic groups and can be between 0.5 nm and 50 nm, preferably between 1 and 5 nm.
- the amount of organic coating is between 0.02 and 5 wt.% Based on the surface-coated phosphor particles, preferably 0.1 to 2 wt.%.
- the phosphor particle is contained in a wet-chemical or vapor-deposition process with an inorganic layer
- the coating of the phosphor particles is particularly preferably carried out wet-chemically by precipitating the abovementioned oxides or hydroxides in aqueous dispersion.
- the uncoated phosphor is suspended in a reactor in water and by simultaneous addition of at least one metal salt and at least one precipitant under
- This method is particularly suitable for water-sensitive materials as well as for acid or alkali-sensitive substances.
- the educts for producing the phosphor consist of the base material (for example salt solutions of aluminum, yttrium and cerium) and at least one dopant, preferably europium or cerium and optionally further Gd, Lu, Sc, Sm , Tb, Pr and / or Ga- containing materials.
- the base material for example salt solutions of aluminum, yttrium and cerium
- the dopant preferably europium or cerium and optionally further Gd, Lu, Sc, Sm , Tb, Pr and / or Ga- containing materials.
- Suitable starting materials are inorganic and / or organic substances such as nitrates, carbonates, bicarbonates, phosphates, carboxylates, alcoholates, acetates, oxalates, halides, sulfates, organometallic compounds, hydroxides and / or oxides of metals, semimetals, transition metals and / or rare earths , which are dissolved and / or suspended in inorganic and / or organic liquids.
- mixed nitrate solutions, chloride or Hydroxide solutions are used, which contain the corresponding elements in the required stoichiometric ratio.
- the wet-chemical production has over the conventional
- Solid-state diffusion method (English: mixing and firing) generally has the advantage that the resulting materials have a higher uniformity with respect to the stoichiometric composition, the particle size and the morphology of the particles from which the phosphor according to the invention is prepared.
- a phosphor particle consisting e.g. from a mixture of yttrium nitrate, aluminum nitrate and cerium nitrate solution
- the following known methods are preferred:
- spray pyrolysis also called spray pyrolysis
- aqueous or organic salt solutions educts
- chloride or nitrate solutions of the corresponding phosphor treated with a NH 4 HC ⁇ 3 solution thereby forming the phosphor precursor.
- the abovementioned nitrate solutions of the corresponding phosphor educts are mixed at room temperature with a precipitation reagent consisting of citric acid and ethylene glycol and then heated. Increasing the viscosity causes phosphor precursor formation.
- Spray pyrolysis belongs to the aerosol processes which are characterized by spraying solutions, suspensions or dispersions into a reaction chamber (reactor) which has been heated in different ways, as well as the formation and separation of solid particles.
- a reaction chamber reactor
- hot gas temperatures ⁇ 200 0 C find in the spray pyrolysis as a high-temperature process except the
- the preparation of the surface-modified phosphor particles according to the invention can be carried out by various wet-chemical methods, by
- the mixture is finely divided, for example by means of a spraying process and a removal of the solvent accompanied by a pyrolysis, followed by a one- or multi-stage thermal aftertreatment, one step of which can take place in a reducing atmosphere.
- the wet-chemical preparation of the phosphor preferably takes place by the precipitation and / or sol-gel process.
- the annealing at least partially under reducing conditions
- the coating with an inorganic oxide is omitted and the phosphor particles are provided only with an organic coating.
- Any of the outer forms of the phosphor particles, such as spherical particles, platelets, and structured materials and ceramics, can be made by the above methods.
- the excitability of the phosphors according to the invention also extends over a wide range, ranging from about 250 nm to 560 nm, preferably 380 nm up to about 500 nm.
- these phosphors are suitable for excitation by UV or blue emitting primary light sources such as LEDs or conventional discharge lamps (e.g., Hg based).
- Another object of the present invention is a.
- Lighting unit with at least one primary light source whose emission maximum ranges from 250 nm to 530 nm, preferably 380 nm up to about 500 nm, wherein the primary radiation is partially or completely converted by the surface-modified phosphors according to the invention into longer-wave radiation.
- this lighting unit emits white or emits light with a certain color point (color-on-demand principle).
- Lighting unit is the light source to a luminescent arrangement based on ZnO, TCO (Transparent Conducting Oxide), ZnSe or SiC-based arrangement or also on an organic light-emitting layer-based arrangement (OLED).
- ZnO Transparent Conducting Oxide
- ZnSe Organic Light-emitting layer-based arrangement
- the light source is a source that shows electroluminescence and / or photoluminescence. Furthermore, the light source may also be a plasma or discharge source.
- the phosphors of the present invention may be either dispersed in a resin (eg, epoxy or silicone resin), placed directly on the primary light source or remotely located therefrom, depending on the application (the latter arrangement also incorporates "remote phosphor technology”).
- a resin eg, epoxy or silicone resin
- the advantages of the "remote phosphor technology” are known in the art and eg in the following publication: Japanese Journ. of Appl. Phys. Vol. 44, no. 21 (2005). L649-L651.
- Coupling of the illumination unit between the coated phosphor and the primary light source is realized by a light-conducting arrangement.
- the primary light source is installed at a central location and this is optically coupled to the phosphor by means of light-conducting devices, such as light-conducting fibers.
- the lighting requirements adapted lights can only be realized consisting of one or different phosphors, which can be arranged to form a luminescent screen, and a light guide, which is coupled to the primary light source realize.
- Another object of the present invention is the use of the phosphors according to the invention for the partial or complete conversion of blue or in the near UV emission of a light-emitting diode.
- Another object of the present invention is the use of the phosphors according to the invention in electroluminescent materials, such as electroluminescent films (also called phosphors or light foils) in which, for example, zinc sulfide or zinc sulfide doped with Mn 2+ , Cu + , or Ag + as an emitter is used, which emit in the yellow-green range.
- electroluminescent materials such as electroluminescent films (also called phosphors or light foils) in which, for example, zinc sulfide or zinc sulfide doped with Mn 2+ , Cu + , or Ag + as an emitter is used, which emit in the yellow-green range.
- Electroluminescent films are e.g. Advertising, display backlighting in liquid crystal displays (LC displays) and thin-film transistor displays (TFT displays), self-illuminating license plates, floor graphics (in conjunction with a non-slip and non-slip laminate), in display and / or control elements, for example in automobiles, trains , Ships and planes or household, gardening, measuring or sports and leisure equipment.
- LC displays liquid crystal displays
- TFT displays thin-film transistor displays
- self-illuminating license plates in conjunction with a non-slip and non-slip laminate
- floor graphics in conjunction with a non-slip and non-slip laminate
- display and / or control elements for example in automobiles, trains , Ships and planes or household, gardening, measuring or sports and leisure equipment.
- a YAG: Ce phosphor are suspended in 1 liter of ethanol in a 2 L reactor with ground cover, heating mantle and reflux condenser. To this is added a solution of 17 g of ammonia water (25% by weight of NH 3 ) in 170 g of water. With stirring, a solution of 48 g of tetraethyl orthosilicate (TEOS) in 48 g of anhydrous ethanol slowly (about 1 ml / min) was added dropwise at 65 0 C. After completion of the addition, the suspension is stirred after 2 hours, brought to room temperature and filtered off. The residue is washed with ethanol and dried.
- TEOS tetraethyl orthosilicate
- Heating mantle and reflux condenser suspended in 1 liter of ethanol To this is added a solution of 17 g of ammonia water (25% by weight of NH 3 ) in 170 g of water. While stirring, a solution of 35 g of tetraethyl orthosilicate (TEOS) in 35 g of anhydrous ethanol is slowly added dropwise (about 1 ml / min) at 65 ° C. After completion of the addition, the suspension is stirred after 2 hours, brought to room temperature and filtered off. The residue is washed with ethanol and dried.
- TEOS tetraethyl orthosilicate
- Embodiment 4 Coating of a Nitride Phosphor Powder with Al 2 O 3
- Exemplary Embodiment 5b Silanes Especially For Silicone Phosphor
- the suspension is then filtered off and washed free of salt with deionised water.
- the drying is carried out at 14O 0 C for 20 h.
- the phosphor powder thus obtained is then sieved by means of a 20 ⁇ m sieve.
- Al 2 O 3 coated phosphor are suspended in 1350 ml of deionized water while stirring vigorously.
- Embodiment 6 Production of an LED
- Diameter of 0.5 ⁇ m mixed Diameter of 0.5 ⁇ m mixed.
- the two resin blends are united, stirred and degassed. Thereafter, 10 ml are filled into the storage vessel of a Jetdispensers or fferendosierventildispensers. Bonded COB (Chip on Board) raw LED packages are placed under the dispensing valve. Now the dispender glob tops are dripped from the resin mixture onto the chips of the raw LED packages. These coated LEDs are tempered in a drying oven at 150 0 C for 1 hour. The resin hardens.
- Fig. 1 Uncoated phosphors (1) in resin (3) incorporated over the LED chip (2).
- the left graph represents the state just after the application of the phosphor resin mixture to the chip. After curing of the resin (4), the state of the phosphor resin mixture is as follows (right sketch): the larger phosphor particles show a strong tendency for sedimentation. As a result, the particles are distributed inhomogeneously. This distribution is "frozen" after resin consolidation.
- Fiq.2 Inventively coated phosphors (1) in resin (3) incorporated over the LED chip (2).
- the left figure shows the homogeneous distribution of the uniform phosphor powders. This homogeneity is made possible by the compatibilization of the phosphor surface according to the invention with the resin properties. During curing, there is no disruption of distribution, because the
- the surface-bonded polymer chains improve the dispersibility of the phosphor particles in the resin.
- the polymer chains can act as "spacers" and thus prevent the agglomeration of phosphor particles, and furthermore a binding of the compatibilized phosphor particles to the resin (crosslinking or crosslinking)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007056342A DE102007056342A1 (en) | 2007-11-22 | 2007-11-22 | Surface modified phosphor particles, useful e.g. for converting blue or near UV lying emission into visible white radiation, comprise luminescent particles containing silicate compounds |
PCT/EP2008/009142 WO2010060437A1 (en) | 2007-11-22 | 2008-10-29 | Surface-modified conversion luminous substances |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2229424A1 true EP2229424A1 (en) | 2010-09-22 |
EP2229424B1 EP2229424B1 (en) | 2015-10-21 |
Family
ID=40576949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08876948.4A Not-in-force EP2229424B1 (en) | 2007-11-22 | 2008-10-29 | Surface-modified conversion luminous substances |
Country Status (9)
Country | Link |
---|---|
US (1) | US8801968B2 (en) |
EP (1) | EP2229424B1 (en) |
JP (1) | JP5713681B2 (en) |
KR (1) | KR101553086B1 (en) |
CN (1) | CN101874094B (en) |
DE (1) | DE102007056342A1 (en) |
MY (1) | MY160437A (en) |
TW (1) | TWI487768B (en) |
WO (1) | WO2010060437A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013079056A2 (en) | 2011-12-01 | 2013-06-06 | Bundesdruckerei Gmbh | Electro-optical security element |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011077838A1 (en) * | 2009-12-25 | 2011-06-30 | コニカミノルタエムジー株式会社 | Silica nanoparticles having fluorescent substance confined therein, and labeling agent for biosubstance |
DE102010034322A1 (en) * | 2010-08-14 | 2012-02-16 | Litec-Lp Gmbh | Surface modified silicate phosphors |
US9196785B2 (en) | 2010-08-14 | 2015-11-24 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified quantum dot luminophores |
US9234129B2 (en) | 2010-08-14 | 2016-01-12 | Seoul Semiconductor Co., Ltd. | Surface-modified quantum dot luminophores |
US9614129B2 (en) | 2010-08-14 | 2017-04-04 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified luminophores |
JP5820606B2 (en) * | 2011-04-23 | 2015-11-24 | 株式会社日本セラテック | Method for manufacturing phosphor material, phosphor material, and light emitting device |
KR101772588B1 (en) | 2011-08-22 | 2017-09-13 | 한국전자통신연구원 | MIT device molded by Clear compound epoxy and fire detecting device including the MIT device |
CN102391691A (en) * | 2011-09-01 | 2012-03-28 | 江苏双乐化工颜料有限公司 | Light-storing pigment and coating method thereof |
CN102504814B (en) * | 2011-10-20 | 2013-11-20 | 中国科学院上海硅酸盐研究所 | Direct white light fluorescent material excited by ultraviolet light and preparation method and application thereof |
US9006966B2 (en) | 2011-11-08 | 2015-04-14 | Intematix Corporation | Coatings for photoluminescent materials |
EP2794464B1 (en) * | 2011-12-22 | 2023-11-22 | Samsung Electronics Co., Ltd. | Surface modified nanoparticles |
DE102012107797A1 (en) * | 2012-08-23 | 2014-02-27 | Osram Opto Semiconductors Gmbh | A method of manufacturing a semiconductor light emitting device and light emitting semiconductor device |
TWI516572B (en) | 2012-12-13 | 2016-01-11 | 財團法人工業技術研究院 | Phosphors, and light emitting device employing the same |
WO2014187530A1 (en) * | 2013-05-23 | 2014-11-27 | Merck Patent Gmbh | Phosphors |
CN103396799A (en) * | 2013-07-25 | 2013-11-20 | 惠州市西顿工业发展有限公司 | LED (light-emitting diode) lamp as well as preparation method of red emitting inorganic luminescent material used in LED lamp |
JPWO2015046004A1 (en) * | 2013-09-25 | 2017-03-09 | 信越化学工業株式会社 | Infrared phosphor |
WO2015079507A1 (en) * | 2013-11-27 | 2015-06-04 | 株式会社ルミネッサス | Light-emitting material and method for producing same |
DE112015001628B4 (en) | 2014-04-02 | 2021-07-22 | Denka Company Limited | Hydrophobic phosphor and light emitting device |
CN104017558B (en) * | 2014-04-14 | 2016-08-17 | 江苏矽时代材料科技有限公司 | A kind of method improving LED encapsulation fluorescent material settling property |
KR20160007239A (en) * | 2014-07-11 | 2016-01-20 | 한화토탈 주식회사 | Light emitting device comprising anisotropic metal nanoparticles-dielectric core-shell nanostructure |
JP5729698B1 (en) * | 2014-10-14 | 2015-06-03 | 株式会社ルミネッサス | Luminescent body and manufacturing method thereof |
CN104371732A (en) * | 2014-11-14 | 2015-02-25 | 天津理工大学 | Method for preparing fluorescent gel glass by adopting hydrophobic semiconductor quantum dots |
US20180086973A1 (en) * | 2015-01-20 | 2018-03-29 | Denka Company Limited | Phosphor and light-emitting device |
EP3289044A1 (en) | 2015-04-27 | 2018-03-07 | Merck Patent GmbH | Silicate phosphors |
KR102397910B1 (en) | 2015-07-06 | 2022-05-16 | 삼성전자주식회사 | Fluoride phosphor, manufacturing method of the same, and light emitting device |
US10253257B2 (en) | 2015-11-25 | 2019-04-09 | Intematix Corporation | Coated narrow band red phosphor |
KR101689989B1 (en) * | 2016-01-27 | 2016-12-26 | 티오켐 주식회사 | Process for Producing Phosphorescent Pigments Having Excellent Afterglow |
FR3053353B1 (en) | 2016-06-30 | 2018-07-27 | Aledia | PROCESS FOR PRODUCING PHOTOLUMINESCENT PARTICLES |
US11031529B2 (en) * | 2016-09-26 | 2021-06-08 | Lumileds Llc | Wavelength converting material for a light emitting device |
DE102017104128A1 (en) | 2017-02-28 | 2018-08-30 | Osram Gmbh | Conversion element, optoelectronic component and method for producing a conversion element |
CN109135749B (en) * | 2018-09-29 | 2020-06-09 | 中国科学院长春光学精密机械与物理研究所 | Hybrid composite fluorescent powder and preparation method and application thereof |
CN111378428A (en) * | 2018-12-28 | 2020-07-07 | Tcl集团股份有限公司 | Quantum dot organic silicon resin composition and preparation method thereof |
JP6787417B2 (en) | 2019-02-08 | 2020-11-18 | 日亜化学工業株式会社 | Nitride phosphor manufacturing method and nitride phosphor |
NL2023498B1 (en) * | 2019-07-12 | 2021-02-04 | Physee Group B V | Optical structures comprising luminescent materials for plant growth optimization |
CN110467913B (en) * | 2019-07-23 | 2023-04-11 | 英特美光电(苏州)有限公司 | Coating method of large-particle-size LED fluorescent powder |
JP2023019650A (en) * | 2021-07-29 | 2023-02-09 | 住友化学株式会社 | Resin composition containing phosphor |
JP7345948B1 (en) * | 2023-06-15 | 2023-09-19 | エルティーアイ株式会社 | Luminous particles and method for producing phosphorescent particles |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4781647A (en) * | 1987-05-04 | 1988-11-01 | Hasbro, Inc. | Toy doll construction with phosphorescent hair fibers |
US4921727A (en) * | 1988-12-21 | 1990-05-01 | Rca Licensing Corporation | Surface treatment of silica-coated phosphor particles and method for a CRT screen |
JPH09279137A (en) * | 1996-04-10 | 1997-10-28 | Toshiba Corp | Fluorescent substance for cathode-ray tube |
DE19639783A1 (en) | 1996-09-27 | 1998-04-02 | Merck Patent Gmbh | Modified pearlescent pigments for water-based paint systems |
EP0907970B1 (en) * | 1997-03-03 | 2007-11-07 | Koninklijke Philips Electronics N.V. | White light-emitting diode |
JP2000144128A (en) * | 1998-04-23 | 2000-05-26 | Konica Corp | Stimulable phosphor and its production, and panel for converting radiation image and its production |
JP2005330490A (en) * | 1998-04-23 | 2005-12-02 | Konica Minolta Holdings Inc | Stimulable phosphor and its preparation process, and radiation image transformation panel and its preparation process |
US6177030B1 (en) * | 1998-04-23 | 2001-01-23 | Konica Corporation | Stimulable phosphor and radiation image conversion panel by use thereof |
WO2001042385A2 (en) * | 1999-12-07 | 2001-06-14 | Global Products Sales And Marketing, Llc. | Long persistent phosphor incorporated within a fabric material |
DE10051242A1 (en) * | 2000-10-17 | 2002-04-25 | Philips Corp Intellectual Pty | Light-emitting device with coated phosphor |
JP2002174699A (en) * | 2000-12-07 | 2002-06-21 | Konica Corp | Radiation image conversion panel using rare earth activated alkaline earth metal fluoride halide-based stimulable phosphor |
JP4214681B2 (en) * | 2001-01-18 | 2009-01-28 | コニカミノルタホールディングス株式会社 | Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor particles |
JP4972844B2 (en) | 2001-03-30 | 2012-07-11 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
JP4804661B2 (en) * | 2001-07-11 | 2011-11-02 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
US6787988B2 (en) * | 2001-11-13 | 2004-09-07 | Durel Corporation | Process for treating previously coated phosphor particles |
JP2004137351A (en) * | 2002-10-17 | 2004-05-13 | Sony Corp | Composite material, artificial luminous skin and artificial luminous body |
JP2006008838A (en) * | 2004-06-25 | 2006-01-12 | Konica Minolta Medical & Graphic Inc | Stimulable phosphor, method for producing the same, radiation image conversion panel and method for producing the same |
CN101712869B (en) * | 2005-02-28 | 2013-04-10 | 电气化学工业株式会社 | Fluorescent substance and process for producing the same, and luminescent element using the same |
US7994702B2 (en) | 2005-04-27 | 2011-08-09 | Prysm, Inc. | Scanning beams displays based on light-emitting screens having phosphors |
JP5057692B2 (en) * | 2005-04-27 | 2012-10-24 | サムソン エルイーディー カンパニーリミテッド. | Backlight unit using light emitting diode |
JP2007016195A (en) * | 2005-07-11 | 2007-01-25 | Toda Kogyo Corp | Composite phosphor and method for producing the same |
WO2007017049A1 (en) * | 2005-08-11 | 2007-02-15 | Merck Patent Gmbh | Photonic material with regularly arranged cavities |
KR20070043151A (en) | 2005-10-20 | 2007-04-25 | 삼성전기주식회사 | Dispersant with silane head and phosphor paste compositions comprising the same |
JP4895574B2 (en) * | 2005-11-02 | 2012-03-14 | シャープ株式会社 | Wavelength conversion member and light emitting device |
JP4902183B2 (en) * | 2005-12-06 | 2012-03-21 | 日立マクセル株式会社 | Functional infrared fluorescent particles |
US20080176076A1 (en) * | 2006-05-11 | 2008-07-24 | University Of Victoria Innovation And Development Corporation | Functionalized lanthanide rich nanoparticles and use thereof |
DE102006027133A1 (en) | 2006-06-12 | 2007-12-13 | Merck Patent Gmbh | Process for the preparation of garnet phosphors in a pulsation reactor |
EP2060616A4 (en) * | 2006-09-15 | 2010-08-04 | Mitsubishi Chem Corp | Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device |
-
2007
- 2007-11-22 DE DE102007056342A patent/DE102007056342A1/en not_active Withdrawn
-
2008
- 2008-10-29 MY MYPI2010002232A patent/MY160437A/en unknown
- 2008-10-29 US US12/743,476 patent/US8801968B2/en not_active Expired - Fee Related
- 2008-10-29 WO PCT/EP2008/009142 patent/WO2010060437A1/en active Application Filing
- 2008-10-29 CN CN200880117395.6A patent/CN101874094B/en not_active Expired - Fee Related
- 2008-10-29 EP EP08876948.4A patent/EP2229424B1/en not_active Not-in-force
- 2008-10-29 KR KR1020107013757A patent/KR101553086B1/en active IP Right Grant
- 2008-10-29 JP JP2010540036A patent/JP5713681B2/en not_active Expired - Fee Related
- 2008-11-20 TW TW097144945A patent/TWI487768B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2010060437A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013079056A2 (en) | 2011-12-01 | 2013-06-06 | Bundesdruckerei Gmbh | Electro-optical security element |
DE102011119821A1 (en) | 2011-12-01 | 2013-06-06 | Bundesdruckerei Gmbh | Electro-optical security element |
Also Published As
Publication number | Publication date |
---|---|
US8801968B2 (en) | 2014-08-12 |
KR20100106984A (en) | 2010-10-04 |
CN101874094A (en) | 2010-10-27 |
TWI487768B (en) | 2015-06-11 |
TW200938608A (en) | 2009-09-16 |
EP2229424B1 (en) | 2015-10-21 |
MY160437A (en) | 2017-03-15 |
KR101553086B1 (en) | 2015-09-14 |
JP2011504544A (en) | 2011-02-10 |
WO2010060437A1 (en) | 2010-06-03 |
DE102007056342A1 (en) | 2009-05-28 |
JP5713681B2 (en) | 2015-05-07 |
CN101874094B (en) | 2014-07-30 |
US20110090683A1 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2229424B1 (en) | Surface-modified conversion luminous substances | |
EP2209869B1 (en) | Surface-modified phosphors | |
EP2212401B1 (en) | Method for the production of coated luminescent substances | |
EP2576725B1 (en) | Luminescent substances | |
WO2010075908A1 (en) | Surface-modified silicate fluorescent substances | |
EP2519986B1 (en) | Potting compound as a diffusion barrier for water molecules | |
EP2616523B1 (en) | Silicophosphate luminophores | |
EP2129740B1 (en) | Method for producing illuminants based on orthosilicates for pcleds | |
EP2207866A1 (en) | Coated phosphor particles with refractive index adaption | |
DE102010031755A1 (en) | Aluminate phosphors | |
EP2619283B1 (en) | Silicate fluorescent substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RUEGER, REINHOLD Inventor name: WINKLER, HOLGER Inventor name: PETRY, RALF Inventor name: VOSGROENE, TIM |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140904 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 33/50 20100101ALN20150615BHEP Ipc: C09K 11/02 20060101AFI20150615BHEP Ipc: C09K 11/59 20060101ALI20150615BHEP Ipc: C09K 11/80 20060101ALI20150615BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150703 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 756605 Country of ref document: AT Kind code of ref document: T Effective date: 20151115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008013505 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160221 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160222 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160122 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008013505 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160810 |
|
26N | No opposition filed |
Effective date: 20160722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151221 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 756605 Country of ref document: AT Kind code of ref document: T Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171025 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171025 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180912 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008013505 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181029 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |