EP2226895B1 - Antenna for receiving satellite radio signals emitted circularly in a polarisation direction - Google Patents
Antenna for receiving satellite radio signals emitted circularly in a polarisation direction Download PDFInfo
- Publication number
- EP2226895B1 EP2226895B1 EP10001881.1A EP10001881A EP2226895B1 EP 2226895 B1 EP2226895 B1 EP 2226895B1 EP 10001881 A EP10001881 A EP 10001881A EP 2226895 B1 EP2226895 B1 EP 2226895B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- emitter
- loop
- loop antenna
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005404 monopole Effects 0.000 claims description 80
- 239000004020 conductor Substances 0.000 claims description 62
- 230000010287 polarization Effects 0.000 claims description 62
- 230000005855 radiation Effects 0.000 claims description 37
- 238000010586 diagram Methods 0.000 claims description 29
- 101710195281 Chlorophyll a-b binding protein Proteins 0.000 claims description 23
- 101710143415 Chlorophyll a-b binding protein 1, chloroplastic Proteins 0.000 claims description 23
- 101710181042 Chlorophyll a-b binding protein 1A, chloroplastic Proteins 0.000 claims description 23
- 101710091905 Chlorophyll a-b binding protein 2, chloroplastic Proteins 0.000 claims description 23
- 101710095244 Chlorophyll a-b binding protein 3, chloroplastic Proteins 0.000 claims description 23
- 101710127489 Chlorophyll a-b binding protein of LHCII type 1 Proteins 0.000 claims description 23
- 101710184917 Chlorophyll a-b binding protein of LHCII type I, chloroplastic Proteins 0.000 claims description 23
- 101710102593 Chlorophyll a-b binding protein, chloroplastic Proteins 0.000 claims description 23
- 238000010168 coupling process Methods 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 22
- 230000008878 coupling Effects 0.000 claims description 20
- 239000003990 capacitor Substances 0.000 claims description 12
- 230000005684 electric field Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- 230000001419 dependent effect Effects 0.000 claims description 7
- 230000001965 increasing effect Effects 0.000 claims description 7
- 230000002349 favourable effect Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 238000004904 shortening Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 239000013598 vector Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000005672 electromagnetic field Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 229920000535 Tan II Polymers 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/29—Combinations of different interacting antenna units for giving a desired directional characteristic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/32—Vertical arrangement of element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/32—Vertical arrangement of element
- H01Q9/36—Vertical arrangement of element with top loading
Definitions
- the invention relates to an antenna for receiving circularly in a direction of rotation of the polarization of radiated satellite radio signals
- US 5 751 252 A discloses an antenna for receiving radio signals radiated circularly in a direction of rotation of the polarization, at least two emitters connected to an antenna connection, each linearly polarized in a spatial direction and connected via a matching and phase shifter network.
- One of the radiators is formed as a loop antenna of a conductor loop, which has at least one bridged by a capacity interruption for their electrically effective shortening.
- a loop antenna connection point for feeding in a ring current is formed on the loop antenna.
- the other of the two radiators with its radiator junction and the loop antenna junction of the loop antenna are connected via the matching and phase shifter network, which is designed so that in reciprocal operation of the antenna, the radiation fields of the loop antenna and the other radiator in the far field of the antenna with different phases are superimposed.
- the further radiator has a polarization oriented essentially perpendicular to the polarization of the loop antenna and a substantially orthogonal phase in the far field.
- Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves.
- program contents are transmitted, for example, in frequency bands closely adjacent to each other separated frequency bands, as in FIG. 1 is shown. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.33 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz.
- the signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave.
- circularly polarized antennas are used to receive in the corresponding direction of rotation.
- Such antennas are for example off DE-A-4008505 and DE-A-10163793 known.
- This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth. Similar satellite broadcasting systems are currently being planned.
- the from the DE-A-4008505 known antenna is constructed on a substantially horizontally oriented conductive base and consists of crossed horizontal dipoles with V-shaped downwardly inclined, consisting of linear ladder parts Dipolhhann which are mechanically fixed at an azimuthal angle of 90 degrees to each other and at the top of a on the conductive base surface mounted linear vertical conductor are mounted.
- the from the DE-A-10163793 known antenna is also constructed on a generally horizontally oriented conductive base and consists of crossed azimuthally mounted at 90 ° to each other frame structures. In both antennas, the mutually spatially offset by 90 ° antenna parts in the electrical phase are interconnected shifted by 90 ° to each other to generate the circular polarization.
- Both types of antennas are particularly suitable for the reception of satellite signals emitted by high-flying satellites - so-called HEOS.
- the signals of geostationary satellites - known as GEOS - are incident at lower elevation angles in regions remote from the equatorial zones.
- the reception of such signals is possible with the two antenna types mentioned only with comparatively small antenna gain and therefore problematic due to the - due to economic reasons - weak transmitter power of the satellites. Added to this is the difficulty of designing antennas with a smaller height, which is imperative especially for mobile applications.
- As further antennas of this type are known in the prior art patch antennas, which are also less efficient in terms of the reception at a low elevation angle.
- the object of the invention is therefore to provide an antenna with low height, which is particularly suitable for the high-power reception of low elevation angles incident circularly polarized in one direction emitted satellite signals and with which the signal-noise ratio can be optimally designed during one.
- an antenna of this type is advantageously combined in a common space with antenna structures, which also receive a circularly polarized field and which together with these antenna structures in an antenna diversity system or a system for digital beam shaping Azimuthal beam swing can be used.
- This combination is particularly interesting for receiving systems in which signals from GEO satellites and HEO satellites in closely adjacent frequency bands are to be received equally.
- the antenna combination is characterized by a particularly low mutual coupling of the antennas with each other.
- antennas which from the DE-A-4008505 and the DE-A-10163793 Problems arise from the fact that the individual antenna parts are placed on crossed at a right angle planes and these levels in addition to the conductive ground plane stand vertically.
- Such antennas can not be produced sufficiently economically, as desired, for example, for use in the automotive industry. This applies in particular to the frequencies of several gigahertz common in satellite antennas, for which a particularly high mechanical accuracy is necessary in the interest of polarization R unit, the impedance matching and the reproducibility of the directional diagram in the series production of the antennas.
- the required in antennas according to the present invention manufacturing tolerances can be maintained in an advantageous manner much easier.
- Another very important advantage of the present invention results from the property that in addition to the horizontally polarized loop antenna 14 at least one further radiator 7 is present, which has a polarization oriented perpendicular to the polarization of the loop antenna 14. In the presence of terrestrially vertically polarized signals, this emitter can advantageously also be used to receive these signals.
- the distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction.
- the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna.
- the object of the invention with respect to polarization and radiation patterns on the basis of the design of the antenna structure for generating corresponding currents in the transmission mode of Antenna solved.
- the object of the invention for the receiving operation is solved. All considerations made below about currents on the antenna structure and their phases or their phase reference point thus refer to the reciprocal operation of the receiving antenna as a transmitting antenna, unless the receiving mode is specifically addressed.
- the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case but applies due to the naturally valid reciprocity relationship for the directional diagrams of the receiving case.
- the property is that according to the reciprocity law when operating the antenna as a transmitting antenna in the far field generated electric field strength vector even at relatively low elevation angles of the radiation describes a purely circular circular polarization with azimuthal omnidirectional in the technical sense.
- phase-locked combination of the horizontally polarized loop antenna 14 with the at least one vertical emitter 7 is done by superposition of the distant radiation fields of the two emitters by 90 ° by correspondingly different phase supply and corresponding amplitude supply of the two antennas.
- the distant radiation field in a plane perpendicular to the direction of propagation two mutually perpendicular and by 90 ° in phase differing field strength vectors are generated, which represent the desired circularly polarized field.
- the phase reference points B - or else the phase centroids - of the two antennas to coincide, which is achieved by rotationally symmetrical arrangement about the common center Z of the antennas.
- the circular or polygonal loop antenna 14 arranged horizontally in a plane with a constant spacing 4 as the height h above the base surface 6.
- This acts essentially similar to a loop antenna over a conductive surface.
- the elevation angle of the main beam direction can be adjusted by selecting the height h and the horizontal extent-that is, the radius in a circular design of the loop antenna 14. In this case, a zero point in the vertical direction and in the horizontal direction can be achieved.
- the achievement of a desired vertical directional pattern requires a horizontal extension of the loop antenna such that its total orbital length is no longer small compared to the free-space electrical wavelength ⁇ 0 .
- the loop antenna into n equal portions of the cable length .DELTA.s is therefore ⁇ 0/8 divided by break points 5 ', which are connected to each other by inserting a capacitor.
- the capacitances are preferably selected such that resonances occur at the operating frequency fm together with the properties of the line sections.
- Such an antenna can advantageously for an azimuthally pure Rund characterizing be designed.
- the at least one vertical radiator 7, which in the example of the Fig.2 is present in the center Z of the loop antenna 14 and whose azimuthal radiation pattern is also omnidirectional, resulting for the antenna according to the invention, the desired circularly polarized radiation field with pure omnidirectional.
- the antenna according to the invention is advantageously suitable in particular for satellite radio reception in vehicles, where antennas with azimuthal omnidirectional characteristics are mounted on the electrically conductive vehicle outer skin.
- Fig. 2 shows a circular loop antenna 14 with radius R, which may also be designed polygonal. At its center in the center Z is its phase reference point B. The structure is subdivided into "n" line sections, each with the length ⁇ s. The total orbital length is S. The antenna acts as a loop antenna with dimensions in the range of the wavelength, wherein nevertheless a homogeneous current distribution is achieved by dividing the structure and inserting capacitances 16 according to the invention. As a result, the length of the antenna is electrically shortened and creates a homogeneous, horizontally polarized electromagnetic field all around.
- the loop antenna 14 is arranged at a constant height h above the conductive base 6. The main vertical beam direction can be adjusted by selecting the height h and the radius of the loop antenna 14. It can be achieved a zero point in the vertical direction and in the horizontal direction.
- the conductor impedance of the circulating line over the conductive base 6 is Zw.
- resonance can be set for the loop antenna 14, so that the antenna impedance occurring at the loop antenna connection point 3 can be made substantially real.
- the line of length S is to be divided into a sufficient number of sections by insertion of capacitances 16.
- .DELTA.s S / n made sufficiently small, so the equality is .DELTA.s all sections not necessarily required, as long as a capacitor 16 is inserted only after each section whose value-described upward criterion of the relative length ⁇ s / ⁇ 0 of the relevant part.
- radiator 7 is in the example of Fig. 2 in the center Z of the loop antenna 14, an electrically short, vertically oriented monopole 7a attached.
- the deviation of the positioning of the monopole 7a from the center Z should not exceed in the interest of circularity of the radiation pattern of ⁇ 0 / 20th
- a matching network 25 with Umsymmetrierglied 29 and a switched after phase shifter network 23 are connected via a two-wire line 26.
- the radiator junction 2 of the monopole 7a is followed by the matching network 25 for impedance matching and the signals of the monopole 7a and the loop antenna are superimposed in the summing network 53; this in turn is connected to the antenna connection point 28.
- the phase of the phase shifter network 23 and all the networks are adjusted in their interaction such that the radiation fields of the loop antenna 14 and the monopole 7a in the far field of the antenna with a phase difference of 90 ° and with equal intensity are superimposed.
- the latter is designed according to the invention in such a way that it acts inductively high impedance with respect to the current flowing in the common mode longitudinal current, which is superimposed on the current in the push-pull current pair on the two conductors. It is thereby achieved that the two-wire line 26 does not influence the radiation field of the monopole 7a.
- a two-wire line 26 there are a number of possibilities. In practice, for example, it can be advantageously produced by a printed on a support two-wire line, which is designed to increase the inductance as a meander. Additionally, by choosing its length, a desired phase relationship can be established.
- the vertical radiation pattern can be filled to low elevation angles for these signals.
- the trained as a rod antenna monopole 7a has in its vertical directional characteristic a similar main beam direction as the horizontally polarized loop antenna 14, but provides for low elevation angle a larger contribution than this.
- both the weighting of the properties of the two antenna signals can be set differently and additionally the necessary phase condition can be maintained.
- the influence of a symmetrical vertical feed line not in the center Z in the form of the symmetrical two-wire line 26 does not diminish the polarization purity of the loop antenna 14 itself.
- the connection of one terminal on the unbalanced side of the matching and Umsymmetrierglieds 25, 29 for further switching of the antenna assembly is advantageously carried out using a guided over the conductive base 6 microstrip line 30.
- the other terminal on the unbalanced side of Umsymmetrierglieds 29 is electrically connected to the conductive base 6 connected. Due to the symmetry properties of the two-wire line 26, the effects of the currents flowing toward one another in the opposite direction compensate each other sufficiently on the conductors of the two-wire line 26, so that these also do not influence the radiation properties of the loop antenna 14. As explained below, are However, with respect to the azimuthal radiation pattern of the monopole 7a, depending on the radius R of the loop antennas 14, a residual imbalance may occur.
- both the axial ratio and the spatial orientation of the ellipse for elliptical polarization can be adjusted.
- This adjustability can according to the invention in a very advantageous manner, for.
- antenna diversity technologies are used to continuously optimize the receive power by current adjustment of the ellipticity of the polarization in the distorted by multipath propagation reception field.
- a horizontally arranged loop antenna 14 is placed at a distance of about 1/10 of the wavelength above the conductive base 6.
- the diameter of the loop antenna 14 is advantageously not chosen substantially smaller than 1/4 of the wavelength.
- one with a capacity 16 with a reactance of about -200 ohms connected interruption point 5 is introduced at intervals of about 1/8 of the wavelength.
- the loop antenna 14 By virtue of the capacitances 16 according to the invention, it is possible on the loop antenna 14 to achieve an azimuthally constant current distribution necessary for the round radiation, although the stretched length of the loop antennas 14 is not short in comparison to the wavelength ⁇ . On the other hand, this length is again necessary to effect a practical impedance of the loop antenna 14.
- Figure 15 (a) For example, the vertical diagram of such an antenna according to the invention is shown.
- the loop antenna 14 has an edge length of about 3 cm and a height h of 13 mm for the realization of both of the vertical directional diagram Fig. 15 (a) as well as a matching conductor characteristic impedance Zw proved to be favorable.
- the satellite broadcasting system is additionally supported by the regionally radiating vertically polarized terrestrial signals in another frequency band closely adjacent to the frequency band of similar bandwidth, it is desirable to use the vertical radiation pattern for the vertical component of the electric field strength at low elevation angles fill.
- the connection according to the invention of the loop antenna 14 and of the further polarized further radiator 7 - mostly realized as a vertical monopole - allows this aspect to be considered in a particularly advantageous manner.
- Fig. 3 an antenna according to the invention is shown, wherein the further radiator 7, which is oriented perpendicular to the plane of the loop antenna 14, is formed from a group of monopoles 7a. These are arranged rotationally symmetrical to the center Z and within the loop antenna 14. The monopolies are connected to each other at their lower end via lines in the center Z and form there the radiator junction 2. In the not too large diameter of the annulus on which the monopoles 7a are arranged around the center Z and 7a is not too small number of monopolies the azimuthal directional diagram of the thus designed radiator 7 sufficiently omnidirectional.
- Fig. 4 shows an advantageous embodiment of an antenna according to the invention similar to in FIG. 2 , wherein the loop antenna 14 for reducing the residual asymmetry of the arrangement with respect to the azimuthal directional diagram of the monopole 7 has two antenna connection points 3a, 3b opposite each other in the plane of symmetry SE, to which balancing and matching networks 25, 29 arranged in the loop plane are connected, their outputs via same phase shifter networks 23 are connected in parallel and connected to the two-wire line 26.
- the arranged in the center Z further radiator 7 is designed as a monopoly 7b with horizontal, rotationally symmetrical to the center Z arranged ladder parts as roof capacity. These ladder parts are symmetrical to the plane of symmetry SE executed.
- a further advantageous embodiment of the invention is similar to that shown in Figure four, but with conductor parts of the loop antenna 14 are used to form the rotationally symmetrical roof capacity 12.
- the function of the loop antenna 14 is not affected by the connection of the roof capacitance 12 of the monopoly.
- Fig. 14 is the antenna according to the invention as in Fig. 5 illustrated, but with a common radiator junction 2 for the common feed of the loop antenna 14 and the vertical monopoly with roof capacity 7b.
- the circularly polarized field is formed by splitting the waves incident on the vertical monopole antenna and the horizontal arms of the roof capacitance 12 on the loop antenna 14 right and left, the distance to the next capacitance 16 on the loop antenna being to the right is selected differently than the distance to the next capacitance 16 on the loop antenna towards the left side.
- the loop antenna is thus so to rotate around the z-axis against the Dachkapazi2011 that arise on the left and right sides different angular distances ⁇ and ⁇ between the horizontal arms of the roof capacity and the next capacity.
- FIG. 6 shows a further advantageous embodiment of the invention according to the principle of operation of the antenna in Fig. 2 but with a vertical feed line 26 arranged in the center Z for supplying the loop antenna 14, the feed line 26 forming a vertical monopole 7a and the loop antenna 14 forming a roofing capacity 12 of the monopole 7.
- the loop antenna 14 is formed with two antenna connection points 3a, 3b arranged symmetrically to each other and one matching network 25 in the loop plane as well as with a central connection to the vertical feed line to the matching network 33, which is designed as a two-wire line 26.
- the effects of the currents of the loop antenna 14 flowing in push-pull mode in the opposite direction compensate each other on the conductors of the two-wire line 26.
- the reception voltage of the monopole 7a becomes at its radiator junction 2 as a common mode of the two-wire line 26 at one output and the receiving voltage of the loop antenna 14th is supplied as a push-pull mode of the two-wire line 26 at the other output of the matching network 33 to the power divider and phase shifter network 31 for amplitude-matched and phase-different superposition of the signals at the antenna terminal 28.
- Fig. 7 shows a further advantageous embodiment of the antenna according to the principle of operation of the antenna in Fig. 6 , but with a designed as a square with the center Z loop antenna 14, which by four arranged in a square, horizontally disposed and connected at their ends via capacitances 16 dipoles 21 with a connected via leads 18, centrally in the Phase reference point B arranged distribution network 10 is formed.
- the dipole system acts as a roofing capacity of the vertical monopole formed in this manner, similar to FIG FIG. 5 explained.
- the reception of horizontal or vertical electric field components is effected via the summation 34 or the difference formation 35 and the phase-different superimposition of the signals via the phase shifter network 23 and the summation network 53.
- a further advantageous embodiment is in Fig. 8 an antenna arrangement shown with phase-different superposition of the received voltages from the horizontal and the vertical electric field components of a loop antenna 14 and a monopole antenna 7a formed by the vertical two-wire line 26. Similar to in Fig. 4 Here again, in order to improve the symmetry of the arrangement, two antenna connection points 3a, 3b with matching networks 25 in the plane of the loop antenna 14 are present in the plane of symmetry SE.
- the adjustment of the common mode to normal ratio on the vertical two-wire line 26 takes place, whereby the ratio of the portion of the vertically polarized low elevation field of the main beam direction to the portion of the horizontally polarized field Field with higher elevation of the main beam direction is set.
- the adjustment of the phases necessary for the generation of the circular polarization takes place with the aid of this summing network 53.
- the axial ratio and the spatial orientation of the ellipse for elliptical polarization can be set by selecting the above-mentioned common-mode-to-differential ratio and the phase adjustment ,
- Fig. 9 is the antenna - for example similar to the embodiment as in FIG. 2 - But designed as a multi-frequency area antenna.
- the capacitances 16 are each formed in each case from identical bipolar networks, preferably each consisting of a circuit comprising a plurality of dummy elements. So that's different Operating frequencies different capacitance values effective, which allow the resonance for the design of the real antenna impedance at these different operating frequencies.
- FIG. 1 is the situation shown that two satellite radio frequency bands with small bandwidth Bu or Bo closely adjacent at a high frequency in the L-band or in the S-band, at least at a frequency of fm> 1 GHz with the same directions, ie z , B. left-rotating circular polarization (LHCP) are radiated.
- LHCP left-rotating circular polarization
- Fig. 10 shows an antenna arrangement with a vertically polarized monopole 7 formed as a rod antenna and a horizontally polarized loop antenna 14 according to the invention with respect to the transmission case common phase reference point B, but with separate supply of signals to the terminal for vertical polarization 49 and for connection for horizontal polarization 48th Der At these terminals, connected hybrid couplers 45 with 90 ° positive and negative phase difference with respect to the LHCP terminal 28a and the RHCP terminal 28b enables the separate availability of LHCP or RHCP signals of different circular polarization directions of rotation.
- the monopole 7 embodied as a rod antenna 32 has an interruption point 5 connected to a dummy element 8 in order to design its vertical diagram.
- the one substantially perpendicular monopole 7 contains at least one interruption point 5 which connects or bridges with the design of the vertical diagram with at least one dummy element 8 is.
- the vertical diagram can be advantageously adapted to the requirements.
- the antenna connection point 2 is formed at the base of the monopole 7 at the connection to the matching network 33.
- FIG. 11 A similar antenna arrangement is in Fig. 11 however, the realization of the monopole 7 is similar to the antenna arrangement in FIG. 10 by the combination of acting as a roof capacitance loop antenna 14 and the two-wire line 26 takes place.
- a combined matching circuit 50 By means of a combined matching circuit 50, both the adaptation of the loop antenna 14 and the adjustment of the monopole 7 as well as the setting of a common phase reference point B are created.
- a loop antenna 14 - as in FIG. 6 - Provided with two opposing antenna connection points 3a, 3b and connected thereto and located in the loop level matching networks 25, which are implemented, for example, as ⁇ / 4 transformation lines.
- the outputs of the matching networks 25 are connected in parallel in addition.
- the received signal is fed via the two-wire line 26 to a matching network 25 located on the base area 6, the output of which is in turn connected to one of the two inputs of a signal combination circuit designed in particular as a 90 ° hybrid coupler 45.
- the antenna arrangement can also advantageously be used for polarization diversity by switching between reception for LHCP and RHCP waves.
- FIG. 13 In a further particularly economical embodiment of such an antenna with circularly polarized field with reversible direction of rotation is in FIG. 13 - similar to the antenna in FIG. 12 -
- the separate monopoly 7 saved.
- the two-wire line 26 For the reception with vertical polarization is also the two-wire line 26 - similar to FIG. 8 - exploited.
- the difference of 90 ° between the phases of the horizontal field component picked up by the vertical two-wire line 26 with the loop antenna 14 as the roof capacitance 12 and that picked up by the loop antenna 14 is set their combination with this phase difference is present at the microstrip conductor 30 to the matching network 54 and thus also at the junction 28.
- the antenna receives a circularly polarized field.
- a circuit combining the receive signals of the loop antenna 14 at the output of the matching networks 25 from the horizontally polarized electric field and the receiving signals of the vertical two-wire line 26 from the vertically polarized electric field comprises an LHCP / RHCP switch 55 for reversing the polarity of the receiving voltage of the loop antenna 14.
- the latter can be added in this way with different signs of the received voltage from the vertically polarized electric field, so that between the reception of the LHCP field and the RHCP field by switching the LHCP / RHCP switch 55 can be switched.
- Triggered by a switchover control between LHCP and RHCP received signals located in the receiver signals of differently polarized polarization of the satellite signals are available alternately on different transmission paths.
- the antenna in FIG. 8 explained - can also be a corresponding network 61 of reactances in the ground connected strand of the vertical two-wire line 26 are switched.
- the adjustment of the common mode to differential ratio on the vertical two-wire line 26 can be set.
- the received voltages from the horizontal and the vertical electric field components are superimposed phase-differently according to the circular polarization.
- the common-mode to differential ratio on the vertical two-wire line 26 the ratio of the low-polarization vertically-polarized field of the main beam direction to the proportion of the higher polarization horizontally-polarized field of the main beam direction can be adjusted.
- the antenna is combined with another azimuth circular radiator whose polarization is circular and the phase of circular polarization rotates at the azimuthal angle of the propagation vector - ie, at a complete azimuthal orbit of 2 ⁇ .
- the mode of operation of these antennas is essentially based on the fact that the individual antenna parts are placed on planes crossed at right angles and perpendicular to the ground plane and the antenna parts of the different planes are interconnected by 90 ° in phase in order to produce the circular polarization.
- FIG. 15a is the vertical directional characteristic of the LHCP polarized electromagnetic field of a previously described inventive antenna shown.
- the phase of this field is independent of the azimuthal angle and thus the phase for the azimuthal angles 0 ° and 180 ° are each marked with the same angle - in the example 0 °.
- the antenna gain of the combined antenna arrangement can increase 0 ° for the azimuthal angle and weaken 180 ° for the azimuthal angle and even adjust a zero point of the directional diagram with a suitable adjustment of the amplitudes at a desired elevation angle, as in Fig. 16 is shown.
- the azimuthal directional diagram while maintaining the elevation directional diagram, results from the same angle .phi., In .sup.-, due to the phase change of the circular polarization of the crossed emitter (7d) with the azimuthal angle of the propagation vector turned one way or the other.
- the directional diagram of the combined antenna arrangement in mobile use advantageously z. B. be tracked with his main direction pointing to the satellite or, for example, a disturber by directional assignment of the zero point of the directional diagram are selectively hidden.
- satellite reception on vehicles can hereby be in the context of a dynamically tracked setting of the directional diagram, the signal-noise ratio while driving optimally designed.
- Fig. 17 the combined antenna arrangement according to the invention is shown with a crossed emitter 7b indicated by the construction space 42, as it is described, for example, in US Pat EP 1 239 543 B1 , there in Fig. 10a, is shown.
- the vertical antenna conductor 20 indicated there is here in FIG Fig. 17 is executed as an equivalent vertical monopole 7a in the center Z and is decoupled from the junction 56 of the crossed radiator 49 due to symmetry conditions.
- the latter is connected via the controllable phase shifter 39 to the summing network 53, in which the signals of the loop antenna 14, the vertical monopole 7a and the crossed emitter 49 are combined with the respectively suitable weighting to the received signal of the combined antenna arrangement.
- an antenna of the type shown in FIG DE-A-4008505 or a patch antenna with the vertical monopole 7a in the center Z, as well as an arrangement over the ground plane of parallel crossed dipoles are combined.
- All arrangements of n equal horizontal radiating elements 59 can be used for this, if they are arranged so that their centers give the corners of an equilateral polygon, and if the rotation of the arrangement about the z-axis by an angle of 360 ° / n, the structure in depicts itself and if the feed in each case in the direction of rotation of adjacent radiator elements differs in phase by 360 ° / n.
- Fig. 25 Such arrangements are shown respectively for the example of four and five radiator elements.
- a novel radiator 7c with circular polarization and azimuthal omnidirectional diagram, the phase of which rotates with the azimuthal angle of the propagation vector, is hereinafter referred to as ring line radiator 7c designated used.
- ring line radiator 7c designated used.
- FIG. 15 (b) For example, the vertical diagram of such an antenna according to the invention is shown.
- the ring line radiator 7c is arranged as a polygonal or circular, arranged rotationally symmetrically about the center Z Ring line in a horizontal plane with the height h1 extending over the conductive base 6, designed.
- the ring line can be fed in such a way that it adjusts the current distribution of a current line wave whose phase difference over a cycle is just 2 ⁇ , thus the elongated length of the ring line corresponds to the wavelength ⁇ , which adjusts itself to the ring line.
- the radiation contributions of the horizontally polarized individual conductor sections are superimposed in the far field in such a way that the desired radiation with circular polarization and the required phase dependence adjusts itself to the azimuthal propagation direction and the substantially omnidirectional azimuthal directional characteristic.
- D ⁇ / ⁇ .
- the wavelength ⁇ on the loop is equal to the free space wavelength ⁇ 0 .
- the wavelength ⁇ on the loop can be made by increasing the line inductance and / or the line capacitance to the conductive base 6. This can be done in a known per se, for example, preferably by introducing concentrated inductive elements in the line structure or, for example by meandering design of the ring conductor.
- Fig. 18 shows such a combined antenna arrangement, consisting of the loop antenna 14 and the combined with a phase difference monopole 7a for generating the circularly polarized radiation field with azimuthal independent phase position and a concentric with center Z arranged circular ring radiator 7c with loop connection point 19 for superimposing its circular polarized radiation field, however, with azimuthally dependent phase position and to control the azimuthal main direction via the controllable phase shifter 39.
- the phase center of the ring line radiator 7c is due to the described phase distribution on the rotationally symmetric loop structure in the center Z of the antenna array and thus falls with the described phase reference point B of the loop antenna 14th and that of the monopole 7a together - regardless of the position of the controllable phase shifter 39.
- Ring line radiator 7c takes place starting from the ring line connection point 19 via the power divider and phase shifter network 31, at whose outputs are shifted by 90 ° to each other in phase signals, which in each case via a matching network 25 via the leads 18 to ⁇ / 4 apart ring line Supply points 22a and 22b are connected along the loop structure.
- a ring line radiator 7c of this type has the particular advantage that it is concentric with the loop antenna 14 and designed in comparison to this with a larger diameter.
- a transverse dimension which is customary for the loop antenna 14 can be designed within wide limits, but is generally smaller than ⁇ / 4 and can therefore be designed within the ring line radiator 7c with a diameter ⁇ / ⁇ .
- the diameters of the two emitters can be designed within wide limits independently of each other in the interest of designing their vertical directional patterns and the resulting vertical directional pattern of the antenna array at the antenna port 28.
- the distance h of the plane of the loop antenna 14 from the conductive base 6 from the distance h1 between the plane of the loop emitter 7c and the conductive base 6 can be chosen to be different, although it is particularly economical to manufacture if both emitters are in printed form, for example printed on the same sheet carrier.
- FIG 16 (a) is an example of the vertical diagram and in Fig. 16 (b) the horizontal diagram of such an antenna according to the invention is shown.
- the loop antenna 14 has an edge length of about 3 cm and a height h of 13 mm and for the square shaped loop emitter has an edge length of about 3.4 cm, which corresponds to about 1 ⁇ 4 of the wavelength, and a height h of 10 mm for the realization of both the directional diagram according to Fig. 16 proved favorable.
- the loop antenna 14 is connected via the common-mode high-resistance two-wire line 26 via a matching network 25 and the monopole 7a is connected via a matching network 25 and via the phase shifter network 23 to the summing network 53 to form the circular polarized radiation with azimuthal phase independence.
- the ring line connection point 19 is connected via the controllable phase shifter 39 to the summation network 53 and the signals are superimposed there with the appropriate weight for generating the desired vertical directional diagram of the antenna arrangement with adjustable azimuthal main direction at the antenna port 28 the other signals.
- the generation of the continuous line shaft on the ring line radiator 7c takes place in accordance with FIG. 18 but through the ⁇ / 4 coupling conductor 43 in FIG FIG. 20 , This is performed in a respect to the line impedance characteristic distance over a straight length of ⁇ / 4 parallel to the ring line radiator 7c.
- the ⁇ / 4 coupling conductor 43 can be economically applied to the same carrier as the ring line radiator 7c and optionally the loop antenna 14 printed.
- the generation of the continuous line shaft takes place on the ring line radiator 7c in accordance with FIG. 20 however, by ⁇ / 4 directional coupler 44 in FIG FIG. 21 , To a microstrip conductor 30, a ⁇ / 4-coupling conductor 43 is guided in parallel, which forms the ⁇ / 4-directional coupler 44 together with the coupled to the ring line radiator 7c ⁇ / 4-coupler 43.
- the ring line radiator 7c is similar to an antenna as in FIG. 18 , but formed as a closed square line ring over the conductive base 6 with the edge length of ⁇ / 4 in a plane at a distance h1 above the conductive base 6.
- the loop antenna 14 is arranged with its capacitances 6 as a square conductor structure within the ring line radiator 7c with the same center Z. The remaining antennas are not shown for reasons of clarity.
- the ramped ⁇ / 4 coupling conductor 43 is in FIG. 22 the ramped ⁇ / 4 coupling conductor 43 to emphasize.
- a vertical feed line 18 leads to a coupling spacing 58 at one of the corners, from where it essentially meets the base area 6 according to a ramp function below an adjacent corner in order to electrically connect with the latter to be connected.
- This form of coupling is particularly advantageous for economic production because, due to the square design of the ring line radiator 7c, the ramped ⁇ / 4 coupling conductor 43 can be designed on a planar support.
- impedance matching at the ring line connection point 19 can also be brought about in an advantageous manner.
- the ring line radiator 7c is designed as square as in FIG. 22 , However, is fed at its corners in each case via a feed line 18, which runs in each case over an equal length as a microstrip conductor 30 on the conductive base surface 6 and which each contains an equally long vertical conductor. The remaining antennas are not shown for reasons of clarity.
- the supply lines 18 are - starting from the ring line connection point 19 - connected to a power distribution network, which consists of connected in chain ⁇ / 4-long microstrip conductors 30 (15a, 15b, 15c).
- the characteristic impedances of the microstrip conductors 30 are - starting from a low characteristic impedance at the ring line connection point 19 - to which one of the supply lines 18 is directly connected - stepped up in such a way that the signals fed in at the corners into the ring line radiator 7c have the same powers and in each case by 90 ° in the phase continuously lagging differ.
- the remaining antenna parts are also not shown for reasons of clarity.
- an advantageous extension of the invention is in the antenna in FIG. 24 another radiator in the form of an outer ring channel radiator 7e present.
- the ring line radiator 7c whose circumference corresponds to exactly one wavelength ⁇ -ie one full period-the circumference of the outer ring channel radiator 7e is selected to be two wavelengths ⁇ , so that upon excitation with signals shifted in phase by 90 ° to one another at ⁇ / 4 spaced loop feeders 22 along the outer loop structure adjusts a continuous line wave on the loop emitter 7d.
- This feed takes place in the example in FIG. 24 in both loops in a similar manner via the matching networks 25 and the power divider and phase shifter network 31.
- the junction 21 of the outer loop radiator 7e is also connected to the summing network 53, so that the effects of the radiation of the outer outer ring radiator 7e depending on the weight Antenna connector 28 occur.
- the signals at the loop antenna monopole connection point 27, at the ring line connection point 19 and at the connection point 21 of the outer loop emitter 7e are weighted together via controllable phase shifters 39 in the summation network 53, so that at the antenna connection 28 in the set azimuthal main direction increased antenna gain is achieved. Due to the larger diameter of the outer ring line radiator 7e, its contribution is more sharply focused than that of the circularly polarized ring line 7c. Although the polarization is no longer purely circular by connecting the outer loop emitter 7e, the radiation gain for certain situations can be increased by this measure due to the overall sharper focusing.
- FIG. 26 instead of the ring line radiator 7c in FIG. 22 a circle group radiator 7f from the in FIG. 25 described type shown.
- This consists of several in a parallel to the conductive base 6 and at a distance to this arranged plane and around the center Z azimuth rotationally symmetrical on a circle K. arranged horizontally polarized radiator elements 59. Via leads 18 with phase shifter network a common circular array radiator junction 60 is provided.
- each radiating element 59 is energized with a current of equal amplitude but phase-wise such that the magnitude of the current phase equals the azimuth angle ⁇ originating from an azimuthal reference line the azimuthal position of the radiator element 59 is selected so that the current phase increases or decreases with increasing azimuth angle ⁇ .
- the horizontally polarized radiator elements 59 are arranged at the vertices of a square with center Z and oriented in each case perpendicular to the connecting lines between the relevant vertex and the center Z.
- the horizontally polarized radiator elements 59 are each connected via an equally long lead 18 to the terminals of a power divider and phase shifter network.
- the latter is made of chain-connected formed on the conductive base 6 ⁇ / 4-long microstrip conductors 30 with the sections 15a, 15b, 15c, whose characteristic impedance - starting from a low characteristic impedance at the circular array radiator junction 60 - to which one of the leads 18 is directly connected - are staggered in such a way that the signals fed at the corners in the radiating elements 59 have the same powers and each lag 90 ° in the phase continuously lag.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
Die Erfindung betrifft eine Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter SatellitenfunksignaleThe invention relates to an antenna for receiving circularly in a direction of rotation of the polarization of radiated satellite radio signals
Insbesondere bei Satelliten-Rundfunksystemen kommt es besonders auf die Wirtschaftlichkeit sowohl bezüglich der vom Satelliten abgestrahlten Sendeleistung als auch auf die Effizienz der Empfangsantenne an. Satellitenfunksignale werden aufgrund von Polarisationsdrehungen auf dem Übertragungsweg in der Regel mit zirkular polarisierten elektromagnetischen Wellen übertragen. Vielfach werden Programminhalte zum Beispiel in frequenzmäßig dicht nebeneinander liegenden getrennten Frequenzbändern übertragen, wie dies in
Die aus der
Beide Antennenformen sind besonders für den Empfang von Satellitensignalen geeignet, welche von hoch fliegenden Satelliten - so genannten HEOS - abgestrahlt werden. Die Signale geostationärer Satelliten - von so genannten GEOS - fallen jedoch in den von der Äquatorial-Zonen entfernten Regionen unter niedrigerem Elevationswinkel ein. Der Empfang solcher Signale ist mit den beiden genannten Antennenformen nur mit vergleichsweise kleinem Antennengewinn möglich und deshalb aufgrund der - aus wirtschaftlichen Gründen bedingten - schwachen Senderleistung der Satelliten problematisch. Hinzu kommt die Schwierigkeit der Gestaltung von Antennen mit kleinerer Bauhöhe, welche insbesondere für mobile Anwendungen zwingend gefordert ist. Als weitere Antennen dieser Art sind nach dem Stand der Technik Patch-Antennen bekannt, welche jedoch bezüglich des Empfangs unter niedrigem Elevationswinkel ebenfalls weniger leistungsfähig sind.Both types of antennas are particularly suitable for the reception of satellite signals emitted by high-flying satellites - so-called HEOS. However, the signals of geostationary satellites - known as GEOS - are incident at lower elevation angles in regions remote from the equatorial zones. The reception of such signals is possible with the two antenna types mentioned only with comparatively small antenna gain and therefore problematic due to the - due to economic reasons - weak transmitter power of the satellites. Added to this is the difficulty of designing antennas with a smaller height, which is imperative especially for mobile applications. As further antennas of this type are known in the prior art patch antennas, which are also less efficient in terms of the reception at a low elevation angle.
Aufgabe der Erfindung ist es deshalb, eine Antenne mit geringer Bauhöhe anzugeben, welche insbesondere auch für den leistungsstarken Empfang von unter niedrigen Elevationswinkeln einfallenden zirkular in einer Drehrichtung polarisiert ausgestrahlten Satellitensignalen geeignet ist und mit der sich das Signal-Störverhältnis während einer optimal gestalten lässt.The object of the invention is therefore to provide an antenna with low height, which is particularly suitable for the high-power reception of low elevation angles incident circularly polarized in one direction emitted satellite signals and with which the signal-noise ratio can be optimally designed during one.
Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.This object is solved by the features of the independent claims.
Weiterhin ist eine Antenne dieser Art vorteilhaft in einem gemeinsamen Bauraum mit Antennenstrukturen kombinierbar, welche ebenfalls ein zirkular polarisiertes Feld empfangen und welche gemeinsam mit diesen Antennenstrukturen in einem Antennen-Diversitysystem oder einem System für digitale Strahlformung mit azimutaler Strahlschwenkung eingesetzt werden können. Diese Kombination ist insbesondere auch für Empfangssysteme interessant, in denen Signale von GEO-Satelliten und HEO-Satelliten in eng benachbarten Frequenzbändern gleichermaßen empfangen werden sollen. Die Antennenkombination zeichnet sich hierbei durch eine besonders geringe wechselseitige Verkopplung der Antennen untereinander aus.Furthermore, an antenna of this type is advantageously combined in a common space with antenna structures, which also receive a circularly polarized field and which together with these antenna structures in an antenna diversity system or a system for digital beam shaping Azimuthal beam swing can be used. This combination is particularly interesting for receiving systems in which signals from GEO satellites and HEO satellites in closely adjacent frequency bands are to be received equally. The antenna combination is characterized by a particularly low mutual coupling of the antennas with each other.
Für die Herstellung von Antennen, welche aus der
Die Verteilung der Ströme auf einer Antenne im Empfangsbetrieb ist vom Abschlusswiderstand an der Antennenanschlussstelle abhängig. Im Gegensatz hierzu ist im Sendebetrieb die auf den Speisestrom an der Antennenanschlussstelle bezogene Verteilung der Ströme auf den Antennenleitern vom Quellwiderstand der speisenden Signalquelle unabhängig und ist somit eindeutig mit dem Richtdiagramm und der Polarisation der Antenne verknüpft. Aufgrund dieser Eindeutigkeit in Verbindung mit dem Gesetz der Reziprozität, nach welchem die Strahlungseigenschaften - wie Richtdiagramm und Polarisation - im Sendebetrieb wie im Empfangsbetrieb identisch sind, wird die erfindungsgemäße Aufgabe bezüglich Polarisation und Strahlungsdiagramme an Hand der Gestaltung der Antennenstruktur zur Erzeugung entsprechender Ströme im Sendebetrieb der Antenne gelöst. Damit ist auch die erfindungsgemäße Aufgabe für den Empfangsbetrieb gelöst. Alle im Folgenden durchgeführten Betrachtungen über Ströme auf der Antennenstruktur und deren Phasen beziehungsweise deren Phasenbezugspunkt beziehen sich somit auf den reziproken Betrieb der Empfangsantenne als Sendeantenne, wenn nicht ausdrücklich der Empfangsbetrieb angesprochen ist.The distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction. In contrast, in the transmission mode, the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna. Because of this uniqueness in connection with the law of reciprocity, according to which the radiation properties - such as directional diagram and polarization - are identical in the transmission mode as in the receiving mode, the object of the invention with respect to polarization and radiation patterns on the basis of the design of the antenna structure for generating corresponding currents in the transmission mode of Antenna solved. Thus, the object of the invention for the receiving operation is solved. All considerations made below about currents on the antenna structure and their phases or their phase reference point thus refer to the reciprocal operation of the receiving antenna as a transmitting antenna, unless the receiving mode is specifically addressed.
Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:
-
Fig. 1 : Frequenzbänder zweier Satelliten-Rundfunksignale mit in derselben Drehrichtung zirkular polarisierter Ausstrahlung in dichter Frequenznachbarschaft; -
Fig. 2 : Antennemit der Schleifenantenne 14 über leitender Grundfläche 6 mit horizontaler Polarisation und mit einem alsStabantenne ausgebildeten Monopol 7a als weiterenStrahler 7 im Zentrum Z der horizontalen Schleifenantenne 14 für den Empfang vertikal polarisierterFelder mit Anpassnetzwerk 25 und Phasenschieber-Netzwerk 23 zur phasenunterschiedlichen Überlagerung des Empfangs der horizontal und vertikal polarisierten Feldanteile im Summations-Netzwerk 53. -
Fig. 3 : Antenne wie in , jedoch mit einem aus mehreren rotationssymmetrisch zum ZentrumFigur 2Z angeordneten Monopolen 7a - deren Empfangssignale im gemeinsamen Phasenbezugspunkt B zusammengefasst sind -als weiterer Strahler 7. -
Fig. 4 : Antenne wie in , jedoch mit einerFigur 2Schleifenantenne 14 mit zwei aus Symmetriegründen einander gegenüberliegend gebildeten Antennenanschlussstellen 3a, 3b mit einem im ZentrumZ angeordneten Monopol 7b mit einer aus horizontalen Leiterelementen rotationssymmetrisch zum Zentrum Z gebildeten Dachkapazität als weiterenStrahler 7. -
Fig. 5 : Antenne wie in , wobei jedoch LeiterteileFigur 414a der Schleifenantenne 14 zur Bildung der rotationssymmetrischen Dachkapazität 12 herangezogen sind. -
Fig. 6 : Antenne nach dem Funktionsprinzip der Antenne inFig. 2 , jedoch mit einer vertikalen Zuleitung 26 zur Speisung derSchleifenantenne 14, wobei die Zuleitung 26 zusätzlich einen vertikalen Monopol 7a und dieSchleifenantenne 14eine Dachkapazität 12 desMonopols 7a bildet. -
Fig. 7 : Antenne nach dem Funktionsprinzip der Antenne inFig. 6 , jedoch mit einer als Quadrat mit dem ZentrumZ gestalteten Schleifenantenne 14. -
Fig. 8 : nicht beanspruchte Antennenanordnung mit phasenunterschiedlicher Überlagerung der Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen einer Schleifenantenne 14 und einer durch die vertikale Zweidrahtleitung 26gebildeten Monopolantenne 7. -
Fig. 9 : Antenne wie inFig. 2 , wobei anstelle diskreter Kapazitäten dieKapazität 16, die jeweils aus einer Schaltung aus mehreren Blindelementen gebildet ist, derart, dass bei unterschiedlichen Frequenzen unterschiedliche Kapazitätswerte wirksam sind. -
Fig. 10 : kombinierte Antennenanordnung für getrennte Verfügbarkeit von LHCP- beziehungsweise RHCP-Signalen unterschiedlicher Satellitensignale an unterschiedlichen Antennenanschlussstellen 28a, 28b mit einem als Stabantenne ausgebildeten, vertikal polarisierten Monopol 7, einer horizontal polarisierten Schleifenantenne 14 und einem 90°-Hybridkoppler 45. -
Fig. 11 : Antennenanordnung wie in , jedoch mit einer Realisierung desFigur 10Monopols 7 gemäß der Antennenanordnung in durch die Kombination der Wirkungen der Schleifenantenne 14 als Dachkapazität und der Zweidrahtleitung 26;Figur 6 -
Fig. 12 : Antenne zur alternativen Auskopplung von RHCPbeziehungsweise LHCP-Signalen für Diversity-Technologien angesteuert durch einen in einem Radioempfängermodul 52 befindlichen Umschalter. -
Fig. 13 : Antenne für Diversity-Technologien mit LHCP/RHCP-Umschalter 55 wie inFig. 12 , jedoch, ähnlich wie bei der Antenne inFig. 8 ohne gesonderten Monopol 7. Der Empfang bei vertikaler Polarisation ist durch dieZweidrahteitung 26 bewirkt. Der für die Überlagerung der Empfangssignale der Schleifenantenne und des Monopols geforderte Phasenunterschied istdurch das Netzwerk 61 bewirkt. -
Fig. 14 : Antenne wie inFig. 5 , jedoch mit einer gemeinsamen Strahleranschlussstelle 2 für die gemeinsame Speisung der Schleifenantenne 14 und des vertikalen Monopolsmit Dachkapazität 7b. -
Fig. 15 : Vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes- a) einer Antenne wie in
Fig. 2 mit zirkularer Polarisation bei niedrigen Elevationswinkeln und mit azimutaler Unabhängigkeit der Phase der Strahlung. - b) eines gekreuzten Strahlers 7d nach dem Stand der Technik bzw.
eines Ringleitungsstrahlers 7c wie inFig. 19 mit zirkularer Polarisation bei hohen Elevationswinkeln; wobei sich die Phase der zirkularen Polarisation mit dem azimutalen Winkel des Ausbreitungsvektors dreht
- a) einer Antenne wie in
-
Fig. 16 :- a) Vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes einer
2,3 GHz nach der Erfindung entsprechendAntenne für Figur 18 , bestehend aus einer Schleifenantenne 14mit vertikalem Monopol 7a in Kombinationmit einem Ringleitungsstrahler 7cbei Abmessungen von 3,4cm x 3,4 cm x 1,3 cm der Gesamtstruktur, wobei sich die Charakteristik aus der gleichphasigen Überlagerung der Strahlung gemäßFig. für15a und Figur 15bden Azimutwinkel 0° (rechts) und 180° (links) ergibt. - b) Horizontale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes unter einem Elevationswinkel von etwa 30° mit minimaler Strahlung für den Azimutwinkel von 180°.
- a) Vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes einer
-
Fig. 17 : Antenne nach der Erfindung bestehend aus der Schleifenantenne 14 mit zwei symmetrisch angeordneten Schleifenantennen- 3a, 3b und Monopol 7b mit im Zentrum Z gekennzeichnetem Bauraum für einen gekreuztenAnschlussstellen Strahler 42 mit zirkularer Polarisation nach dem Stand derTechnik und Anschlussstelle 56 zur phaseneinstellbaren Überlagerung von dessen Strahlung im Summations-Netzwerk 53 mit Hilfe des steuerbaren Phasendrehglieds 39 -
Fig. 18 : Antenne wie inFigur 17 , jedoch anstelle eines zentral angebrachtengekreuzten Strahles 42 mit einem erfindungsgemäßneuartigen Ringleitungsstrahler 7c zur Erzeugung eines zirkular polarisierten Feldes mit azimutal abhängiger Phase mit einer durch Einspeisung an A/4 voneinander entfernten Ringleitungs- 20a, 20b von um 90° in der Phase unterschiedlichen Signalen zur Erzeugung einer umlaufenden Welle von einer Wellenlänge über den Umfang der Leitung.Einspeisestellen -
Fig. 19 :Ringleitungsstrahler 7c jedoch über vier jeweils um λ/4 längs der Ringleitung versetzte Einspeisestellen 22 von in der Phase jeweils um 90° versetzten Signalen gespeist. Die Speisequellen können auf an sich bekannte Weise durch Leistungsteilung und 90°-Hybridkoppler 45 gewonnen werden. -
Fig. 20 : Antenne nach der Erfindung wie in , jedoch zur Erzeugung der fortlaufenden Leitungswelle mit einem in günstigem Abstand - bezüglich des Leitungs-Wellenwiderstands -Figur 18parallel zum Ringleitungsstrahler 7c geführten λ /4-Koppelleiter 43 -
Fig. 21 : Antenne wie inFigur 20 , jedoch mit λ/4-Richtkoppler 44.Zu einem Mikrostreifenleiter 30 ist ein λ/4-Koppelleiter 43 parallel geführt, welcher zusammen mit dem anden Ringleitungsstrahler 7c angekoppelten λ/4-Koppelleiter 43 den λ/4-Richtkoppler 44 bildet. -
Fig. 22 : Antenne nach der Erfindung mit quadratisch ausgeführter Schleifenantenne 14 und einem als geschlossenen quadratischen Leitungsring mit der Kantenlänge von λ/4gestalteten Ringleitungsstrahler 7c. Die Ankopplung anden Ringleitungsstrahler 7c erfolgt berührungslos über den rampenförmig gestalteten λ/4-Koppelleiter 57 mit der Ringleitungs-Anschlussstelle 19 -
Fig. 23 : Antenne nach der Erfindungmit quadratischem Ringleitungsstrahler 7c wie in mit einem Leistungs-Verteilnetzwerk bestehend aus in Kette geschalteten λ/4-langen Mikrostreifenleitern 30 (15a,15b,15c) zur Einspeisung an den Ecken des quadratischen Ringleitungsstrahlers 7c.Figur 22 -
Fig. 24 : Antenne nach derErfindung mit Schleifenantenne 14,Monopol 7a,Ringleitungsstrahler 7c und dem zusätzlichen äußeren Ringleitungsstrahler 7d, auf dem eine fortlaufende Leitungswelle von zwei Wellenlängen erzeugt ist zur Anhebung des Strahlungsgewinns durch Anhebung der Strahlungsbündelung -
Fig. 25 : Kreisgruppenstrahler nach der Erfindung mit n gleichen rotationssymmetrisch um das Zentrum Z angeordneten horizontal polarisierten Strahlerelementen 59, deren Speisung jeweils im Drehsinn benachbarter Strahlerelemente sich in der Phase um jeweils 360°/n unterscheidet.Fig. 25 oben: n =4.Fig. 25 unten: n =5. -
Fig. 26 : Kreisgruppenstrahler 7f gemäß einer Anordnung wie inFig. 25 mit an den Eckpunkten eines Quadrats mit Zentrum Z angeordneten horizontal polarisierten Strahlerelementen 59mit Zuleitungen 18 und Leistungsteiler- und Phasenschiebernetzwerk aus λ/4-langen Mikrostreifenleitern 30 15a, 15b, 15c.mit den Teilstücken
-
Fig. 1 : Frequency bands of two satellite broadcast signals with circularly polarized radiation in the same direction of rotation in dense frequency neighborhood; -
Fig. 2 Antenna with theloop antenna 14 overconductive base 6 with horizontal polarization and with a designed as arod antenna monopoly 7a as afurther radiator 7 in the center Z of thehorizontal loop antenna 14 for receiving vertically polarized fields with matchingnetwork 25 andphase shifter network 23 for phase difference superposition of Receiving the horizontally and vertically polarized field components in thesummation network 53. -
Fig. 3 : Antenna as inFIG. 2 , However, with one of a plurality of rotationally symmetrical to the center Z arrangedmonopolies 7a - whose received signals are combined in the common phase reference point B - as a further radiator. 7 -
Fig. 4 : Antenna as inFIG. 2 , but with aloop antenna 14 with two 3a, 3b arranged opposite one another for reasons of symmetry, with aantenna connection points monopole 7b arranged in the center Z with a roof capacitance formed from horizontal conductor elements rotationally symmetrical to the center Z as anotherradiator 7. -
Fig. 5 : Antenna as inFIG. 4 However, whereinconductor parts 14a of theloop antenna 14 are used to form the rotationallysymmetrical roof capacity 12. -
Fig. 6 : Antenna according to the principle of operation of the antenna inFig. 2 but with avertical feed line 26 for feeding theloop antenna 14, thefeed line 26 additionally forming avertical monopole 7a and theloop antenna 14 forming aroofing capacity 12 of themonopole 7a. -
Fig. 7 : Antenna according to the principle of operation of the antenna inFig. 6 but with aloop antenna 14 designed as a square with the center Z. -
Fig. 8 : Unclaimed antenna arrangement with phase-different superimposition of the received voltages from the horizontal and vertical electric field components of aloop antenna 14 and amonopole antenna 7 formed by the vertical two-wire line 26. -
Fig. 9 : Antenna as inFig. 2 in which, instead of discrete capacitances, thecapacitance 16, which is formed in each case from a circuit of a plurality of dummy elements, is such that different capacitance values are effective at different frequencies. -
Fig. 10 Combined antenna arrangement for separate availability of LHCP or RHCP signals of different satellite signals at different 28a, 28b with a vertically polarizedantenna connection points monopole 7 formed as a rod antenna, a horizontally polarizedloop antenna 14 and a 90 °hybrid coupler 45. -
Fig. 11 : Antenna arrangement as inFIG. 10 , but with a realization of themonopole 7 according to the antenna arrangement in FIGFIG. 6 by combining the effects of theloop antenna 14 as the roof capacitance and the two-wire line 26; -
Fig. 12 : Antenna for alternative coupling of RHCP and LHCP signals for diversity technologies driven by a switch located in a radio receiver module 52. -
Fig. 13 : Antenna for diversity technologies with LHCP /RHCP 55 switch as inFig. 12 , however, similar to the antenna inFig. 8 without aseparate monopole 7. Reception in the case of vertical polarization is effected by the two-wire line 26. The for the superposition of the received signals of the Loop antenna and the monopole required phase difference is effected by thenetwork 61. -
Fig. 14 : Antenna as inFig. 5 but with acommon radiator junction 2 for the common feed of theloop antenna 14 and the vertical monopole withroofing capacity 7b. -
Fig. 15 : Vertical directivity of the LHCP polarized electromagnetic field- a) an antenna as in
Fig. 2 with circular polarization at low elevation angles and with azimuthal independence of the phase of the radiation. - b) a crossed
radiator 7d according to the prior art or aring line radiator 7c as inFig. 19 with circular polarization at high elevation angles; wherein the phase of the circular polarization rotates with the azimuthal angle of the propagation vector
- a) an antenna as in
-
Fig. 16 :- a) Corresponding vertical directional characteristic of the LHCP polarized electromagnetic field of a 2.3 GHz antenna according to the invention
FIG. 18 consisting of aloop antenna 14 withvertical monopole 7a in combination with aring line radiator 7c with dimensions of 3.4 cm x 3.4 cm x 1.3 cm of the overall structure, wherein the characteristic of the in-phase superposition of the radiation according toFig. 15a and Figure 15b for theazimuth angle 0 ° (right) and 180 ° (left). - b) Horizontal directional characteristic of the LHCP polarized electromagnetic field at an elevation angle of about 30 ° with minimum radiation for the azimuth angle of 180 °.
- a) Corresponding vertical directional characteristic of the LHCP polarized electromagnetic field of a 2.3 GHz antenna according to the invention
-
Fig. 17 Antenna according to the invention consisting of theloop antenna 14 with two symmetrically arranged loop 3a, 3b andantenna connection points monopole 7b with a space marked in the center Z for a crossedRadiator 42 with circular polarization according to the prior art andconnection point 56 for the phase-adjustable superposition of its radiation in thesummation network 53 by means of the controllable phase shifter 39th -
Fig. 18 : Antenna as inFIG. 17 However, instead of a centrally mounted crossedbeam 42 with a novelring line radiator 7c according to the invention for generating a circularly polarized field with azimuthally dependent phase with a by A / 4 remote ring 20a, 20b of 90 ° in phase different signals for generating a circumferential wave of one wavelength over the circumference of the line.line feed points -
Fig. 19 :Ring line radiator 7c, however, fed via four in each case by λ / 4 along the ring line offset feed points 22 of the phase in each case offset by 90 ° signals. The feed sources can be obtained in a manner known per se by power sharing and 90 °hybrid coupler 45. -
Fig. 20 : Antenna according to the invention as inFIG. 18 , However, for generating the continuous line wave with a at a favorable distance - with respect to the line characteristic impedance - parallel to thering line radiator 7c guided λ / 4-coupling conductor 43rd -
Fig. 21 : Antenna as inFIG. 20 , but with λ / 4-directional coupler 44. To amicrostrip conductor 30, a λ / 4coupling conductor 43 is guided in parallel, which forms the λ / 4directional coupler 44 together with the coupled to thering line radiator 7c λ / 4-coupler 43. -
Fig. 22 : Antenna according to the invention with square executedloop antenna 14 and designed as a closed square line ring with the edge length of λ / 4ring line radiator 7c. The coupling to thering line radiator 7c takes place contactlessly via the ramp-shaped λ / 4coupling conductor 57 with the ringline connection point 19 -
Fig. 23 : Antenna according to the invention withsquare loop emitter 7c as inFIG. 22 comprising a power distribution network consisting of λ / 4-long microstrip conductors 30 (15a, 15b, 15c) connected in a chain for feeding in at the corners of the square ring-shapedradiator 7c. -
Fig. 24 Antenna according to the invention withloop antenna 14,monopole 7a,ring line radiator 7c and the additionalouter ring radiator 7d, on which a continuous line wave of two wavelengths is generated to increase the radiation gain by increasing the beamforming -
Fig. 25 : Circular array according to the invention with n the same rotationally symmetrical about the center Z arranged horizontally polarizedradiator elements 59, the feed respectively in the direction of rotation of adjacent radiator elements differs in phase by 360 ° / n.Fig. 25 above: n = 4.Fig. 25 below: n = 5. -
Fig. 26 Circular array radiator 7f according to an arrangement as inFig. 25 with at the vertices of a square center Z arranged horizontally polarizedradiator elements 59 withleads 18 and power divider and phase shifter network of λ / 4-long microstrip conductors 30 with the 15a, 15b, 15c.sections
Obwohl die erfindungsgemäße Aufgabe auf eine Empfangsantenne gerichtet ist, werden nachfolgend die Eigenschaften der Antenne aus Gründen der besseren Nachvollziehbarkeit für den reziproken Betrieb der Antenne als Sendeantenne beschrieben, wobei der Sendefall aber aufgrund der naturgemäß geltenden Reziprozitätsbeziehung auch für die Richtdiagramme des Empfangsfalls zutrifft.Although the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case but applies due to the naturally valid reciprocity relationship for the directional diagrams of the receiving case.
Im Folgenden werden die Grundlagen zur Gestaltung von Antennen erläutert, welche der erfindungsgemäßen Antenne zugrunde liegen.In the following, the principles for the design of antennas are explained, which are based on the antenna according to the invention.
Der besondere Vorteil einer Antenne nach der Erfindung, wie sie zum Beispiel in
Dies wird durch phasenstarre Kombination der horizontal polarisierten Schleifenantenne 14 mit dem mindestens einen vertikalen Strahler 7 erreicht und geschieht durch Überlagerung der fernen Strahlungsfelder der beiden Strahler um 90° durch entsprechend unterschiedliche Phasenpeisung und entsprechender Amplitudenspeisung der beiden Antennen. Damit sind im fernen Strahlungsfeld in einer Ebene senkrecht zur Ausbreitungsrichtung zwei aufeinander senkrecht stehende und um 90° in der Phase sich unterscheidende Feldstärke- Vektoren erzeugt, die das gewünschte zirkular polarisierte Feld darstellen. Für die Erzeugung der Rundcharakteristik ist es erforderlich, dass die Phasenbezugspunkte B - oder auch Phasenschwerpunkte genannt - der beiden Antennen zusammenfallen, was durch rotationssymmetrische Anordnung um das gemeinsame Zentrum Z der Antennen erreicht wird.This is achieved by phase-locked combination of the horizontally polarized
Dies wird zum einen erreicht durch die kreisförmige oder polygonale horizontal in einer Ebene mit konstantem Abstand 4 als Höhe h über der Grundfläche 6 angeordneten Schleifenantenne14. Diese wirkt im Wesentlichen ähnlich wie eine Rahmenantenne über einer leitenden Fläche. Unter der Voraussetzung einer azimutal konstanten Strombelegung auf der Schleifenantenne 14 kann der Elevationswinkel der Hauptstrahlrichtung über die Wahl der Höhe h und der horizontalen Ausdehnung - das heißt dem Radius bei kreisförmiger Gestaltung der Schleifenantenne 14 - eingestellt werden. Dabei kann eine Nullstelle in vertikaler Richtung und in horizontaler Richtung erreicht werden. Die Erzielung eines gewünschten vertikalen Richtdiagramms erfordert jedoch eine horizontale Ausdehnung der Schleifenantenne in der Weise, dass ihre Gesamt-Umlauflänge nicht mehr klein ist im Vergleich zur elektrischen Freiraum-Wellenlänge λ0. Erfindungsgemäß wird die Schleifenantenne deshalb in n gleiche Leitungsabschnitte der Länge Δs < λ0/8 durch Unterbrechungsstellen 5 unterteilt, welche jeweils durch Einfügen von einer Kapazität miteinander verbunden sind. Die Kapazitäten sind dabei vorzugsweise so gewählt, dass sich zusammen mit den Eigenschaften der Leitungsabschnitte Resonanz bei der Betriebsfrequenz fm einstellt. Eine derartige Antenne kann in vorteilhafter Weise für eine azimutal reine Rundcharakteristik gestaltet werden. In Verbindung mit dem mindestens einen vertikalen Strahler 7, welcher im Beispiel der
Die ringförmig umlaufende Leiterlänge S ist in n gleich lange Stücke mit der Länge Δs = S/n unterteilt. Der Leiter-Wellenwiderstand der umlaufenden Leitung über der leitenden Grundfläche 6 sei Zw. Die kapazitive Reaktanz ΔX pro Leitungstück Δs und damit der in dieses Leiterstück jeweils einzufügende Kapazitätswert C = 1/(ω*ΔX) ist bei Annahme einer gestreckten Länge Δs und bei näherungsweise ringförmiger Leitung mit großem Radius R der ringförmigen Schleifenantenne 14 gegenüber der Leiterhöhe h definiert durch
Es ergibt sich in guter Näherung für den in das Leitungsstück Δs einzufügenden Kapazitätswert C:
Kreisfrequenz der Satellitensignale = ω; Freiraumwellenlänge der Satellitensignale = λ0 Angular frequency of the satellite signals = ω; Free space wavelength of the satellite signals = λ 0
Mit dieser Dimensionierung der Kapazitätswerte C lässt sich für die Schleifenantenne 14 Resonanz einstellen, so dass die an der Schleifenantennen-Anschlussstelle 3 auftretende Antennenimpedanz weitgehend reell gestaltet werden kann.With this dimensioning of the capacitance values C, resonance can be set for the
Um in guter Näherung ein Runddiagramm zu erhalten, ist die Leitung der Länge S durch Einfügung von Kapazitäten 16 in ausreichend viele Teilstücke zu teilen. Für eine sinnvolle Unterteilung gilt: Δs/λ0 < 1/8. Sind die Teilstücke Δs = S/n ausreichend klein gewählt, so ist die Gleichheit Δs aller Teilstücke nicht unbedingt erforderlich, solange nur nach jedem Teilstück eine Kapazität 16 eingefügt wird, deren Wert sich nach oben beschriebenem Kriterium aus der relativen Länge Δ s/λ0 des betreffenden Teilstücks errechnet.In order to obtain a round diagram to a good approximation, the line of length S is to be divided into a sufficient number of sections by insertion of
Als weiterer Strahler 7 ist im Beispiel der
Zur Vermeidung von Unsymmetrien des azimutalen Richtdiagramms des Monopols 7a,bewirkt durch die im Wesentlichen vertikal verlaufende Zweidrahtleitung 26, ist Letztere erfindungsgemäß in der Weise gestaltet, dass sie bezüglich des im Gleichtakt fließenden Längsstroms, welcher dem im Gegentakt fließenden Strompaar auf den beiden Leitern überlagert ist, induktiv hochohmig wirkt. Dadurch wird erzielt, dass die Zweidrahtleitung 26 das Strahlungsfeld des Monopols 7a nicht beeinflusst. Für die Gestaltung einer solchen Zweidrahtleitung 26 gibt es eine Reihe von Möglichkeiten. In der Praxis kann sie zum Beispiel auf vorteilhafte Weise durch eine auf einem Träger gedruckte Zweidrahtleitung hergestellt werden, welche zur Erhöhung der Induktivität als Mäander ausgeführt ist. Zusätzlich kann durch Wahl ihrer Länge eine gewünschte Phasenbeziehung hergestellt werden.To avoid asymmetries of the azimuthal directional pattern of the
Über unterschiedliche Gewichtung bei der Überlagerung der beiden Antennensignale kann das vertikale Richtdiagramm zu niedrigen Elevationswinkeln hin für diese Signale aufgefüllt werden. Der als Stabantenne ausgebildete Monopol 7a besitzt in seiner vertikalen Richtcharakteristik eine ähnliche Hauptstrahlrichtung wie die horizontal polarisierte Schleifenantenne 14, liefert jedoch für niedrige Elevationswinkel einen größeren Beitrag als diese. Mit Hilfe der Netzwerke 25, 23, 53 kann sowohl die Gewichtung der Eigenschaften der beiden Antennensignale unterschiedlich eingestellt werden und zusätzlich die nötige Phasenbedingung eingehalten werden.By different weighting in the superposition of the two antenna signals, the vertical radiation pattern can be filled to low elevation angles for these signals. The trained as a
Der Einfluss einer nicht im Zentrum Z befindlichen symmetrischen vertikalen Speiseleitung in Form der symmetrischen Zweidrahtleitung 26 schmälert die Polarisationsreinheit der Schleifenantenne 14 selbst nicht. Die Verbindung des einen Anschlusses auf der unsymmetrischen Seite des Anpass-und Umsymmetrierglieds 25, 29 zur weiterführenden Schaltung der Antennenanordnung erfolgt vorteilhaft mit Hilfe eines über der leitenden Grundfläche 6 geführten Mikrostreifenleiters 30. Der andere Anschluss auf der unsymmetrischen Seite des Umsymmetrierglieds 29 ist mit der elektrisch leitenden Grundfläche 6 verbunden. Aufgrund der Symmetrieeigenschaften der Zweidrahtleitung 26 kompensieren sich die Wirkungen der zueinander in entgegen gesetzter Richtung fließenden Ströme auf den Leitern der Zweidrahtleitung 26 in ausreichendem Maße, so dass auch diese die Strahlungseigenschaften der Schleifenantenne 14 nicht beeinflussen. Wie im Folgenden erläutert wird, sind auch die vom elektromagnetischen Empfangsfeld erzeugten Ströme auf diesen Leitern ohne Einfluss auf die Wirkungen an der Antennenanschlussstelle 3. Bezüglich des azimutalen Strahlungsdiagramms des Monopols 7a kann sich jedoch abhängig vom Radius R der Schleifenantennen 14 eine Restunsymmetrie einstellen.The influence of a symmetrical vertical feed line not in the center Z in the form of the symmetrical two-
Es entspricht dem Wesen der vorliegenden Erfindung, dass durch Einstellung der Anpassnetzwerke 25 und des Phasenschieber-Netzwerks 23 sowohl das Achsenverhältnis als auch die räumliche Ausrichtung der Ellipse für elliptische Polarisation eingestellt werden können. Diese Einstellbarkeit kann erfindungsgemäß in sehr vorteilhafter Weise, z. B. in Antennendiversity-Technologien, eingesetzt werden, um im durch Mehrwegeausbreitung verzerrten Empfangsfeld die Empfangsleistung durch aktuelle Anpassung der Elliptizität der Polarisation laufend zu optimieren.It is in accordance with the spirit of the present invention that by adjusting the
Als Beispiel zur Gestaltung des Empfangs im Bereich eines Elevationswinkels zwischen 25° und 65° (typischer Winkelbereich für GEO-stationären Satellitenempfang) bei azimutaler Rundcharakteristik ist eine horizontal angeordnete Schleifenantenne 14 im Abstand von etwa 1/10 der Wellenlänge über der leitenden Grundfläche 6 platziert. Der Durchmesser der Schleifenantenne 14 ist vorteilhaft nicht wesentlich kleiner als 1/4 der Wellenlänge gewählt. Längs der Leiterführung ist in Abständen von etwa 1/8 der Wellenlänge jeweils eine mit einer Kapazität 16 mit einem Blindwiderstand von etwa -200 Ohm beschaltete Unterbrechungsstelle 5 eingebracht. Durch Wirkung der erfindungsgemäßen Kapazitäten 16 ist es möglich auf der Schleifenantenne 14 eine für die Rundstrahlung notwendige azimutal konstante Stromverteilung zu erzielen, obwohl die gestreckte Länge der Schleifenantennen 14 im Vergleich zur Wellenlänge λ nicht kurz ist. Diese Länge ist andererseits wiederum notwendig, um eine praktikable Impedanz der Schleifenantenne 14 zu bewirken. In
Eine weitere gegenüber den aus dem Stand der Technik bekannten Antennen, wie z.B. solchen aus der
Für den Fall, dass das Satelliten-Rundfunksystem zusätzlich durch die bereichsweise Ausstrahlung vertikal polarisierter terrestrischer Signale in einem weiteren, in der Frequenz dicht benachbartem Frequenzband ähnlicher Bandbreite unterstützt wird, ist es wünschenswert, das vertikale Richtdiagramm für die Vertikalkomponente der elektrischen Feldstärke zu niedrigen Elevationswinkeln hin aufzufüllen. Die erfindungsgemäße Verbindung der Schleifenantenne 14 und des dazu senkrecht polarisierten weiteren Strahlers 7 - zumeist realisiert als vertikaler Monopol - erlaubt es diesen Aspekt in besonders vorteilhafter Weise zu berücksichtigen.In the event that the satellite broadcasting system is additionally supported by the regionally radiating vertically polarized terrestrial signals in another frequency band closely adjacent to the frequency band of similar bandwidth, it is desirable to use the vertical radiation pattern for the vertical component of the electric field strength at low elevation angles fill. The connection according to the invention of the
In
In
In
In einer weiteren vorteilhaften Ausgestaltung ist in
In einer weiteren vorteilhaften Ausgestaltung in
In
Insbesondere für den Empfang von geostationären Satelliten, deren Signale in nördlichen Breiten unter vergleichsweise niedriger Elevation einfallen, ist vorgesehen, dass der eine im Wesentlichen senkrechte Monopol 7 mindestens eine Unterbrechungsstelle 5 enthält, die zur Gestaltung des Vertikaldiagramms mit mindestens einem Blindelement 8 beschaltet bzw. überbrückt ist. Auf diese Weise kann das Vertikaldiagramm auf vorteilhafte Weise den Erfordernissen angepasst werden. Die Antennenanschlussstelle 2 ist im Fußpunkt des Monopols 7 am Anschluss zum Anpassnetzwerk 33 gebildet.In particular for the reception of geostationary satellites whose signals occur in northern latitudes with comparatively low elevation, it is provided that the one substantially
Eine ähnliche Antennenanordnung ist in
In einer weiteren vorteilhaften Antennenanordnung zur alternativen Auskopplung von RHCP- beziehungsweise LHCP-Signalen ist, wie in
In einer weiteren besonders wirtschaftlichen Ausgestaltung einer derartigen Antenne mit zirkular polarisiertem Feld bei umschaltbarem Drehsinn ist in
Wie bereits im Zusammenhang mit der Antenne in
Gemäß der Erfindung wird die Antenne in den obigen Ausgestaltungen mit einem weiteren Strahler mit azimutalem Runddiagramm kombiniert, dessen Polarisation zirkular ist und die Phase der zirkularen Polarisation sich mit dem azimutalen Winkel des Ausbreitungsvektors dreht - also bei einem kompletten azimutalen Umlauf um den Winkel 2π. Wie bereits oben erwähnt, erfüllen die aus der
Bei Kombination eines derartigen gekreuzten Strahlers 7d in der Weise, dass dessen Phasenbezugspunkt B mit dem der bisher beschriebenen erfindungsgemäßen Antenne zusammenfällt und die Signale der beiden Antennen über ein steuerbares Phasendrehglied 39 und ein Summations-Netzwerk amplitudengerecht zusammengefasst werden, bildet sich in vorteilhafter Weise im azimutalen Richtdiagramm der kombinierten Antennenanordnung eine Hauptrichtung der Strahlung aus, welche von der Einstellung des Phasendrehglieds 39 abhängig ist.When combining such a crossed
Die Wirkungsweise der Überlagerung der Signale wird an Hand der
In
In einer besonders vorteilhaften Weiterentwicklung der Erfindung wird an Stelle eines Strahlers vom beschriebenen Typ "gekreuzter Strahler" ein erfindungsgemäß neuartiger weiterer Strahler 7c mit zirkularer Polarisation und azimutalem Rundstrahldiagramm, dessen Phase sich mit dem azimutalen Winkel des Ausbreitungsvektors dreht, im Folgenden zur Unterscheidung als Ringleitungsstrahler 7c bezeichnet, eingesetzt. In
Erfindungsgemäß ist der Ringleitungsstrahler 7c als eine rotationssymmetrisch um das Zentrum Z angeordnete polygonale oder kreisförmige geschlossene Ringleitung in einer horizontalen Ebene mit der Höhe h1 über der leitenden Grundfläche 6 verlaufend, gestaltet.According to the invention, the
Erfindungsgemäß kann die Ringleitung in der Weise gespeist werden, dass sich auf ihr die Stromverteilung einer laufenden Leitungswelle einstellt, deren Phasenunterschied über einen Umlauf gerade 2π beträgt, somit die gestreckte Länge der Ringleitung der Wellenlänge λ entspricht, die sich auf der Ringleitung einstellt. Die Strahlungsbeiträge der horizontal polarisierten einzelnen Leiterabschnitte überlagern sich im Fernfeld in der Weise, dass sich die gewünschte Strahlung mit zirkularer Polarisation und der geforderten Phasenabhängigkeit von der azimutalen Ausbreitungsrichtung und der im Wesentlichen omnidirektionalen azimutalen Richtcharakteristik einstellt. Bei kreisförmiger Gestaltung der Ringleitung beträgt ihre Horizontalausdehnung somit D = λ/π. Bei einer Ringleitung wie sie in
Die Schleifenantenne 14 ist über die für Gleichtaktströme hochohmige Zweidrahtleitung 26 über ein Anpassnetzwerk 25 und der Monopol 7a ist über ein Anpassnetzwerk 25 und über das Phasenschieber-Netzwerk 23 an das Summations-Netzwerk 53 zur Bildung der zirkular polarisierten Strahlung mit azimutaler Unabhängigkeit der Phase angeschlossen. Ebenso ist die Ringleitungs-Anschlussstelle 19 über das steuerbare Phasendrehglied 39 an das Summations-Netzwerk 53 angeschlossen und die Signale sind dort mit der geeigneten Gewichtung zur Erzeugung des gewünschten vertikalen Richtdiagramms der Antennenanordnung mit einstellbarer azimutaler Hauptrichtung am Antennenanschluss 28 den anderen Signalen überlagert.The
Zur Vervollkommnung der azimutalen Symmetrie wird vorteilhaft der Ringleitungsstrahler 7c in
In einer vorteilhaften Ausführungsform der Erfindung erfolgt die Erzeugung der fortlaufenden Leitungswelle auf dem Ringleitungsstrahler 7c in Anlehnung an
In einer weiteren vorteilhaften Ausführungsform der Erfindung erfolgt die Erzeugung der fortlaufenden Leitungswelle auf dem Ringleitungsstrahler 7c in Anlehnung an
In
In
In einer vorteilhaften Erweiterung der Erfindung ist bei der Antenne in
In einer vorteilhaften Weiterentwicklung der Erfindung ist in
-
Antenne 1
Antenna 1 -
Strahleranschlussstelle 2
Spotlight connection 2 -
Schleifenantennen-Anschlussstelle 3
Loop Antenna Junction 3 -
Schleifenantennen-Anschlussstellen 3a,3b,3c,3d
3a, 3b, 3c, 3dLoop antenna pads -
Abstand der Höhe h, h1 4, 4aDistance of height h,
h1 4, 4a -
Unterbrechung, Unterbrechungsstelle 5Interruption, point of
interruption 5 -
Grundfläche 6
Base area 6 -
Strahler 7
Spotlight 7 -
Vertikaler Monopol 7a
Vertical monopoly 7a -
Vertikaler Monopol m. Dachkapazität 7bVertical monopoly m.
Roof capacity 7b -
Ringleitungsstrahler 7c
Ring line radiator 7c -
Gekreuzter Strahler 7dCrossed
spotlight 7d -
Äußerer Ringleitungsstrahler 7eOuter
ring line radiator 7e -
Kreisgruppenstrahler 7f,
Circle group radiator 7f, -
Blindelement 8
Blind element 8 - Kreisantennen-Anschlussstelle (9)Circular antenna connection point (9)
-
Verteilungsnetzwerk 10
Distribution network 10 -
Horizontale Ausdehnung 11
Horizontal extension 11 -
Dachkapazität 12
Roof capacity 12 - Strahler 13Spotlight 13
-
Schleifenantenne 14
Loop antenna 14 -
Leiterteile der Schleifenantennen 14aConductor parts of the
loop antennas 14a -
Leistungsverteilnetzwerk 15a, 15b, 15c
15a, 15b, 15cPower distribution network -
Kapazität 16
Capacity 16 - Horizontaldipole 17Horizontal dipoles 17
-
Zuleitung 18
Supply line 18 -
Ringleitungs-Anschlussstelle 19Ring
line connection point 19 -
Ringleitungs-Einspeisestelle 20a,20bRing
20a, 20bline feed point -
Äußere Ringleitungs-Anschlussstelle 21
External loop connection 21 -
Ringleitungs-Einspeisestelle 22Ring
line feed point 22 -
Phasenschieber-Netzwerk 23
Phase shifter network 23 - Antenne eines anderen Funk-Dienstes 24Antenna of another radio service 24
-
Anpassnetzwerk 25
Matching network 25 -
Zweidrahtleitung 26Two-
wire line 26 -
Schleifenantenne-Monopol-Anschlussstelle 27Loop
Antenna Monopole Junction 27 -
Antennenanschluss 28
Antenna connector 28 -
Antennenanschluss für LHCP 28aAntenna connection for
LHCP 28a -
Antennenanschluss für RHCP 28bAntenna connector for
RHCP 28b -
Umsymmetrierglied 29Balancing
element 29 -
Mikrostreifenleiter 30
Microstrip conductor 30 -
Leistungsteiler- und Phasenschiebernetzwerk 31Power divider and
phase shifter network 31 - Stabantenne 32Rod antenna 32
-
Anpassnetzwerk 33
Matching network 33 -
Summenbildung 34
Summation 34 -
Differenzbildung 35
Difference 35 - Äußere Ringleitung 36Outer ring line 36
- Diversity-Umschalters 37Diversity switch 37
- Diversity-Steuermodul 38Diversity control module 38
-
Steuerbares Phasendrehglied 39Controllable phase-shifting
member 39 - Abstand 40Distance 40
- Blindwiderstand 41Reactance 41
-
gekreuzter Strahler 42crossed
spotlight 42 -
Richtkoppelleiter 43
Directional coupler 43 -
zweiter Richtkoppelleiter 44second
directional coupling conductor 44 -
90"-Hybridkoppler 4590 "
hybrid coupler 45 -
LHCP-Anschluss 46
LHCP connection 46 -
RHCP-Anschluss 47
RHCP port 47 -
Anschluss Horizontalpolarisation 48Terminal
horizontal polarization 48 -
Anschluss Vertikalpolarisation 49Connection
vertical polarization 49 -
kombinierte Anpassschaltung 50combined matching
circuit 50 -
Schaltung aus mehreren Blindelementen 51Circuit of a plurality of
dummy elements 51 - LHCP/RHCP-Radiomodul 52LHCP / RHCP radio module 52
-
Summations-Netzwerk 53
Summation network 53
Claims (24)
- Antenna for reception of satellite radio signals emitted circularly in a rotational direction of the polarization, comprising at least two emitters (7, 7a, 14) connected to an antenna terminal (28), each linearly polarized in a spatial direction and connected via a matching and phase shifting network (25, 23; 33, 31; 45; 54, 61), having the following features:- one of the at least two emitters is formed as loop antenna (14), formed of a conductor loop arranged in a substantially horizontal plane parallel above a substantially horizontally oriented conductive base (6),- the conductor loop comprises at least one break point bridged by a capacitance (16) for its electrically effective shortening,- in cooperation with the at least one break point of the conductor loop, a loop antenna connection point (3, 3a, 3b, 3c, 3d) of the loop antenna (14) is formed on the loop antenna (14) for feeding a ring current,- the second of the at least two emitters (7, 7a) with its emitter connection point (2) and the loop antenna connection point (3, 3a, 3b, 3c, 3d) of the loop antenna (14) are connected via the matching and phase shifting network (25, 23; 33, 31; 45; 54, 61), which is adapted such that at reciprocal operation of the antenna the radiation fields of the loop antenna (14) and of the second emitter (7, 7a) are superposed in the far field of the antenna with different phases,- the second emitter (7, 7a) comprises a polarization oriented substantially perpendicular to the polarization of the loop antenna (14) and a substantially orthogonal phase in the far field,- a third emitter (7c, 7f, 14, 42) is provided having a circular polarization and an azimuthally dependent phase, provided in the center (Z) of the antenna or provided in rotational symmetry about the center (Z), whose reception signals are fed from its emitter connection point (19, 56) via a controllable phase rotation element (39) to a summation network (53) and thereat added in a weighted manner to the other reception signals for forming a main direction in the azimuthal directional diagram such that the azimuthal main direction establishes variably by variably setting the phase rotation element (39).
- Antenna according to claim 1,
characterized in that a plurality of break points are provided bridged by a capacitance (16) wherein the number and each capacitance value of the capacitances (16) distributed about the circumference of the loop antenna (14) are selected such that both an azimuthally constant current distribution on the loop antenna (14) and a resonance of the capacitances (16) together with the effects of the electrical conductors of the loop antenna are provided. - Antenna according to claim 1 to 2,
characterized in that at reciprocal operation of the antenna, the radiation fields of the loop antenna (14) and of the second emitter (7, 7a) are superposed in the far field of the antenna for generation of radiation with circular polarization having substantially similar amplitude in the angular range of the elevation between 30° and 60° and a phase difference of 90°. - Antenna according to one of the claims 1 to 3,
characterized in that the loop antenna connection point (3, 3a, 3b, 3c, 3d) of the loop antenna (14) is formed by the at least one break point of the conductor loop, and the loop antenna (14) is formed in rotational symmetry about a center Z in a plane, and the second emitter (7) is arranged as short vertical monopole (7a) above the conductive base (6) running through the center of the loop antenna (14), and that the emitter connection point (2) of the monopole (7a) and the loop antenna connection point (3, 3a, 3b, 3c, 3d) of the loop antenna (14) are connected to said antenna terminal (28) via the matching and phase shifting network (25, 23). - Antenna according to claim 4,
characterized in that the plane of the loop antenna (14) is arranged at a distance (4) of height h of the electrically conductive base (6) and the electrically short vertical monopole (7a) is arranged above the electrically conductive base (6) of the loop antenna (14) and the elevation angle of the main emitting direction is set by the choice of the distance (4) of height h and the horizontal extent of the loop antenna (14) and by the ratio between the amplitudes of the loop antenna (14) and of the monopole (7a). - Antenna according to one of the claims 1 to 5,
characterized in that the loop antenna connection point (3, 3a, 3b, 3c, 3d) of the loop antenna (14) is connected through a two-wire line (26), provided between the plane of the conductor loop and the electrically conductive base (6) and having a matching network (25) with a resymmetrization element (29), with the phase shifting network (23) and summation network (53), provided on the conductive base (6), and with said antenna terminal (28) such that the desired phase relationship establishes by the choice of the length of the two-wire line (26) and the phase shifting network (23). - Antenna according to one of the claims 1 to 3 or 6,
characterized in that the second emitter (7), oriented perpendicular to the plane of the loop antenna (14), is formed of a group of monopoles (7a) arranged in rotational symmetry to a center Z of the antenna and within the loop antenna (14) and the monopoles are connected with one another at their lower end via lines in the center Z and thereat form the emitter connection point (2) of the second emitter (7). - Antenna according to claim 6,
characterized in that in the loop antenna (14) for reducing the residual unbalance of the arrangement, two antenna connection points (3a, 3b), opposite of each other in the symmetry plane SE, or a plurality of connection points are arranged at equal distances from one another and connected to resymmetrization and matching networks (25, 29), whose outputs are connected in parallel via similar phase shifting networks (23) and connected to the two-wire line (26). - Antenna according to one of the claims 1 to 6 or 8,
characterized in that the second emitter (7) is arranged in a center Z of the antenna and is configured as monopole (7b) with horizontal conductor parts arranged in rotational symmetry to the center Z as top-loading capacitor, and also symmetrical to the symmetry plane SE. - Antenna according to claim 9,
characterized in that conductor parts of the loop antenna (14) are connected in a electrically conductive manner to conductor parts of the monopole (7b) to form the top-loading capacitor (12) in rotational symmetry, and the top-loading capacitor (12) is configured both in terms of compliance with the rotational symmetry and the symmetry with respect to the symmetry plane SE. - Antenna according to claim 1,
characterized in that a two-wire line (26) is arranged in a center Z of the antenna for feeding the loop antenna (14) and the two-wire line (26) forms a vertical monopole (7a) as second emitter and the loop antenna (14) forms a top-loading capacitor (12) of the monopole (7a) and the loop antenna (14) includes one, two or more symmetrically arranged antenna connection points (3a, 3b, ...) each having a matching network (25) in the loop plane, and the reception voltage of the monopole (7a) is fed at its emitter connection point (2) as common mode of the two-wire line (26) at an output and the reception voltage of the loop antennas (14) is fed as push-pull mode of the two-wire line (26) at the other output of the matching network (33) to the phase shifting network (31) for an amplitude-suitable and phase different superposition of the signals at the antenna terminal (28), wherein the phase shifting network (31) is also configured as power divider network. - Antenna according to claim 1,
characterized in that a two-wire line (26) is arranged in a center Z of the antenna for feeding the loop antenna (14) and the two-wire line (26) forms a vertical monopole (7a) as second emitter and the loop antenna (14) forms a top-loading capacitor (12) of the monopole (7a) and the loop antenna (14) includes one, two or more symmetrically arranged antenna connection points (3a, 3b, ...) each having a matching network (25) in the loop plane, and one of the two conductors of the two-wire line (26) is conductively connected to the conductive base (6) at a ground connection point (62) for weighting the reception of the horizontally polarized and the vertically polarized electrical field via a two-pole network (61) for adjusting the common-mode-to-push-pull relationship of the vertical two-wire line (26), and the other of the two conductors is connected to said antenna output terminal (28) via the matching network (54), and the setting of the phases necessary for the generation of the circular polarization is given by using said two-pole network (61). - Antenna according to one of the claims 1 to 12,
characterized in that the antenna is provided as a multi-frequency band antenna, and, instead of at least one discrete capacitance (16), two-pole networks (51), consisting of a circuit of several reactance elements, are inserted into the break points of the loop antennas (14), and the two-pole networks (51) have different reactance values at different operating frequencies. - Antenna according to one of the claims 1 to 11,
characterized in that the reception signals of the loop antenna (14) and of the second emitter configured as monopole (7a) are fed to the two inputs of a signal combination circuit formed as 90° hybrid coupler (45) and a LHCP/RHCP switch (55) at the antenna connection point (28) is connected to the outputs of the 90° hybrid coupler - controlled by a switching control located in a radio receiver module (52), so that the satellite reception signals of the two directions of rotation of the polarization are alternatively available for polarization diversity. - Antenna according to one of the claims 1 to 13,
characterized in that the third emitter is a crossed emitter (42) provided in a center Z of the antenna. - Antenna according to one of the claims 1 to 13,
characterized in that the third emitter is provided as patch antenna for circular polarization. - Antenna according to one of the claims 1 to 13,
characterized in that the third emitter is a ring line emitter (7c) with circular polarization and azimuthally dependent phase, which is provided as polygonal or circular closed ring line arranged in rotational symmetry about the center Z of the antenna and extending in a horizontal plane with height h1 above the conductive base (6), and which is electrically excited such that the current distribution of a travelling line wave establishes on the ring line, whose phase difference across one cycle is 2π, and thus the extended length of the ring line corresponds to the line wavelength λ. - Antenna according to claim 17,
characterized in that the ring line emitter (7c) is configured in a circular shape with its center at the center Z and two ring line feed points (22) are provided with a distance from each other of λ/4 along the ring line structure for generation of a travelling line wave on the ring line emitter (7c), to which signals of equal size are fed via feed lines (18) connected to the closed ring line, which are shifted 90° in phase to one another. - Antenna according to claim 18,
characterized in that a power divider and phase shifting network (31) is provided, which is connected on one side with a ring line connection point (19), that on the other side the two signals of the same size, shifted 90° in phase to one another, are available to be fed into the ring line, and in that the ring line connection point (19) is connected via the controllable phase shifting element (39) to the summation network (53). - Antenna according to claim 18 or 19,
characterized in that for generation of a travelling line wave on the ring line emitter (7c), instead of the ring line feed points (22), a directional coupling conductor (43) is provided, which is guided parallel to the ring line emitter (7c) over an extended length of λ/4 in a favorable coupling distance in relation to the line wave impedance, and the directional coupling conductor (43) is connected on the one side via a feed line (18) and a matching network (25) to the ring line connection point (19) and on the other side via a feed line (18) to the conductive base (6). - Antenna according to claim 20,
characterized in that the loop antenna (14) is implemented as square loop having a loop antenna connection point (3) and the ring line emitter (7c) is implemented as closed square line ring, with the length of the edge of λ/4 above the conductive base (6) at a distance h1 above the conductive base (6), and a ramp-shaped directional coupling conductor (57) with an advantageous length of λ/4 is provided for generation of a travelling line wave on the ring line emitter (7c) and for non-contact coupling to the ring line emitter (7c), which, starting from the ring line connection point (19) on the conductive base (6), leads via a vertical feed line (18) to one of the corners except for a coupling distance (58), to meet from there substantially in accordance with a ramp function below an adjacent corner with the base (6) and is conductively connected with the latter via the ground terminal (62). - Antenna according to claim 1,
characterized in that the third emitter is a ring line emitter (7c) with circular polarization and azimuthally dependent phase, which is provided as polygonal or circular closed ring line arranged in rotational symmetry about the center Z of the antenna and extending in a horizontal plane with height h1 above the conductive base (6), and that a fourth emitter is provided in the form of an outer ring line emitter (7e), whose circumference corresponds to two wavelengths λ, so that a travelling line wave establishes when excited with signals shifted 90° in phase to one another at ring line feed points (22) having a distance to each other of λ/4 along the outer ring line structure, and that the generation of said signals is provided, starting from the connection point (21) of the outer ring line, in a similar manner as for feeding of the third emitter configured as ring line emitter (7c), and the signals are summarized in a weighted manner at the loop antenna monopole connection point (27) at the ring line connection point (19) and at the connection point (21) of the outer ring line (7e) via several controllable phase shifting elements (39) in the summation network (53), so that an increased antenna gain is achieved in the established azimuthal main direction at the antenna terminal (28). - Antenna according to one of the claims 1 to 13,
characterized in that the third emitter is a circular assembly emitter (7f), consisting of a plurality of horizontally polarized emitting elements (59) arranged in a plane parallel to the conductive base (6) and at a distance therefrom and arranged in azimuthally rotational symmetry about the center Z on a circle (K), having a common circular assembly emitter connection point (60) connected via feed lines (18) with power divider and phase shifting network (31), wherein at reciprocal operation of the antenna the excitation of the circular assembly emitter (7f) is effected such that each emitting element (59) is excited with current of the same amplitude but with a phase according to the manner that the amount of the current phase is selected equally to the azimuth angle (φ), starting from an azimuthal reference line, of the azimuthal position of the emitting element (59), so that the current phase increases or decreases with increasing azimuth angle (φ). - Antenna for reception of satellite radio signals emitted circularly in a rotational direction of the polarization, comprising two emitters (7b, 14) connected to an antenna terminal (28), each linearly polarized in a spatial direction, having the following features:- one of the two emitters is formed as loop antenna (14), formed of a conductor loop arranged in a substantially horizontal plane parallel above a substantially horizontally oriented conductive base (6),- the conductor loop comprises a plurality of break points bridged by a capacitance (16) for its electrically effective shortening,- the second (7b) of the two emitters is configured as monopole (7b) with top-loading capacitor (12) and horizontal arms through which the feeding of the loop antenna (14) is effected, wherein the loop antenna (14) and the monopole (7b) are commonly fed by a common emitter connection point (2) via a matching network (25),- wherein conductor parts of the loop antenna (14) are connected in an electrically conductive manner with conductor parts of the monopole (7b) for forming the top-loading capacitor (12),- wherein the loop antenna (14) is azimuthally rotated in relation to the top-loading capacitor (12) about the axis of the center Z such that in the leftward rotational direction and the rightward rotational direction different respective azimuthal angular distances α and β result between the horizontal arms of the top-loading capacitor (12) and the respective next break point (5) with the inserted capacitance (16) at the loop antenna (14),- the monopole (7b) comprises a polarization oriented substantially perpendicular to the polarization of the loop antenna (14) and a substantially orthogonal phase in the far field,- a third emitter (7c, 7f, 14, 42) is provided having a circular polarization and an azimuthally dependent phase, provided in the center (Z) of the antenna or provided in rotational symmetry about the center (Z), whose reception signals are fed from its emitter connection point (19, 56) via a controllable phase rotation element (39) to a summation network (53) and thereat added in a weighted manner to the other reception signals for forming a main direction in the azimuthal directional diagram such that the azimuthal main direction establishes variably by variably setting the phase rotation element (39).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009011542A DE102009011542A1 (en) | 2009-03-03 | 2009-03-03 | Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2226895A2 EP2226895A2 (en) | 2010-09-08 |
EP2226895A3 EP2226895A3 (en) | 2010-12-15 |
EP2226895B1 true EP2226895B1 (en) | 2013-04-10 |
Family
ID=42245979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10001881.1A Active EP2226895B1 (en) | 2009-03-03 | 2010-02-24 | Antenna for receiving satellite radio signals emitted circularly in a polarisation direction |
Country Status (3)
Country | Link |
---|---|
US (1) | US8537063B2 (en) |
EP (1) | EP2226895B1 (en) |
DE (1) | DE102009011542A1 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2296227B1 (en) * | 2009-09-10 | 2018-02-21 | Delphi Deutschland GmbH | Antenna for receiving circular polarised satellite radio signals |
KR101872460B1 (en) | 2011-01-27 | 2018-06-29 | 갈트로닉스 코포레이션 리미티드 | Broadband dual-polarized antenna |
DE102012003460A1 (en) | 2011-03-15 | 2012-09-20 | Heinz Lindenmeier | Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals |
US20130201066A1 (en) * | 2012-02-02 | 2013-08-08 | Harris Corporation | Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods |
US20130201070A1 (en) * | 2012-02-02 | 2013-08-08 | Harris Corporation | Wireless communications device having loop waveguide transducer with spaced apart coupling points and associated methods |
US20130201065A1 (en) * | 2012-02-02 | 2013-08-08 | Harris Corporation | Wireless communications device having loop antenna with four spaced apart coupling points and associated methods |
RU2515551C2 (en) * | 2012-05-10 | 2014-05-10 | Олег Кириллович Апухтин | Method of turning polarisation plane of radio waves |
CN102882004B (en) * | 2012-06-29 | 2016-08-03 | 华为技术有限公司 | A kind of electromagnetic dipole antenna |
WO2014025277A1 (en) * | 2012-08-09 | 2014-02-13 | Tatarnikov Dmitry Vitaljevich | Compact circular polarization antenna system with reduced cross-polarization component |
US8870069B2 (en) * | 2012-08-22 | 2014-10-28 | Symbol Technologies, Inc. | Co-located antenna arrangement |
US20150214629A1 (en) * | 2012-08-27 | 2015-07-30 | Nihon Dengyo Kosaku Co., Ltd. | Antenna |
WO2014110508A1 (en) * | 2013-01-11 | 2014-07-17 | Chi-Chih Chen | Multiple-input multiple-output ultra-wideband antennas |
US8923452B2 (en) * | 2013-03-18 | 2014-12-30 | Lockheed Martin Corporation | Noise-based gain adjustment and amplitude estimation system |
GB2512111B (en) * | 2013-03-20 | 2017-02-15 | British Broadcasting Corp | Antenna arrangement for transmitting two or more polarisations of radio signal |
US20140312834A1 (en) * | 2013-04-20 | 2014-10-23 | Yuji Tanabe | Wearable impact measurement device with wireless power and data communication |
JP2015070587A (en) * | 2013-10-01 | 2015-04-13 | セイコーエプソン株式会社 | Antenna and electronic device |
US10158178B2 (en) * | 2013-11-06 | 2018-12-18 | Symbol Technologies, Llc | Low profile, antenna array for an RFID reader and method of making same |
US9847571B2 (en) * | 2013-11-06 | 2017-12-19 | Symbol Technologies, Llc | Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same |
US9847576B2 (en) * | 2013-11-11 | 2017-12-19 | Nxp B.V. | UHF-RFID antenna for point of sales application |
US9735822B1 (en) * | 2014-09-16 | 2017-08-15 | Amazon Technologies, Inc. | Low specific absorption rate dual-band antenna structure |
US10261167B2 (en) * | 2014-09-22 | 2019-04-16 | Symbol Technologies, Llc | Co-located locationing technologies |
JP6077036B2 (en) * | 2015-03-18 | 2017-02-08 | 日本電信電話株式会社 | Loop antenna |
EP3091610B1 (en) * | 2015-05-08 | 2021-06-23 | TE Connectivity Germany GmbH | Antenna system and antenna module with reduced interference between radiating patterns |
US9912050B2 (en) * | 2015-08-14 | 2018-03-06 | The Boeing Company | Ring antenna array element with mode suppression structure |
CN105514613B (en) * | 2015-08-20 | 2019-06-18 | 广东通宇通讯股份有限公司 | A kind of ultra-wideband dual-polarized antenna vibrator |
CN107968264B (en) * | 2016-10-20 | 2020-07-31 | 上海诺基亚贝尔股份有限公司 | Polygonal loop antenna, communication device, and antenna manufacturing method |
DE102018201580B4 (en) * | 2018-02-01 | 2019-11-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | CIRCUIT |
JP6885359B2 (en) * | 2018-02-28 | 2021-06-16 | トヨタ自動車株式会社 | Array antenna |
DE102018211931A1 (en) * | 2018-07-18 | 2020-01-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Mode swirling device |
EP3844885A1 (en) * | 2018-08-31 | 2021-07-07 | Hach Lange GmbH | Antenna network matching |
US11056800B2 (en) * | 2018-10-16 | 2021-07-06 | Google Llc | Antenna arrays integrated into an electromagnetic transparent metallic surface |
DE102019201262A1 (en) | 2019-01-31 | 2020-08-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Participant in a communication system with a magnetic antenna |
KR102236706B1 (en) * | 2020-01-10 | 2021-04-05 | 경상국립대학교산학협력단 | Near field loop antenna |
US11165167B2 (en) * | 2020-02-07 | 2021-11-02 | Deere & Company | Antenna system for circularly polarized signals |
CN111816992B (en) * | 2020-06-03 | 2022-12-06 | 昆山睿翔讯通通信技术有限公司 | Method for realizing polarization reconfigurable antenna based on characteristic mode |
US11808910B2 (en) * | 2020-07-28 | 2023-11-07 | Saudi Arabian Oil Company | Method and apparatus for looking ahead of the drill bit |
CN114122684B (en) * | 2020-08-30 | 2023-04-18 | 华为技术有限公司 | Antenna device and wireless device |
KR20220034547A (en) * | 2020-09-11 | 2022-03-18 | 삼성전기주식회사 | Antenna apparatus and electric device |
US11764487B2 (en) * | 2021-03-30 | 2023-09-19 | Rf Venue, Inc. | Diversity antenna with a uniform omnidirectional radiation pattern |
US20220345190A1 (en) * | 2021-04-22 | 2022-10-27 | Honeywell International Inc. | Vehicle communication system with dual transmit antennas |
CN113964504B (en) * | 2021-09-09 | 2023-01-13 | 华南理工大学 | Multi-edge annular dual-polarization high-gain broadband base station antenna and communication equipment |
DE102022000191A1 (en) * | 2022-01-19 | 2023-07-20 | Heinz Lindenmeier | Antenna module for a receiver for mobile reception of positioning satellite signals |
CN114883777B (en) * | 2022-04-24 | 2024-03-26 | 西安矩阵无线科技有限公司 | High storage ratio circularly polarized antenna |
CN115966894B (en) * | 2023-03-17 | 2023-05-12 | 广东工业大学 | Ultra-wideband double-circular polarized antenna |
Family Cites Families (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2217911A (en) * | 1938-08-12 | 1940-10-15 | Rca Corp | Radio communication |
US2460260A (en) * | 1945-10-03 | 1949-01-25 | Farnsworth Res Corp | Antenna for radiating circularly polarized waves |
NL71398C (en) * | 1947-09-01 | |||
US3623110A (en) * | 1968-09-10 | 1971-11-23 | Sony Corp | Loop antenna with spaced impedance elements |
US3942119A (en) | 1973-03-02 | 1976-03-02 | Hans Kolbe & Co. | Multiple-transmission-channel active antenna arrangement |
DE2552002C3 (en) | 1975-11-20 | 1979-07-19 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | Interference-suppressed receiving antenna near the heating conductor on the window pane of a motor vehicle |
DE2552049C3 (en) | 1975-11-20 | 1979-01-04 | Hans Heinrich Prof. Dr. 8035 Gauting Meinke | Interference-suppressed receiving antenna near the heating conductor on the window pane of a motor vehicle |
US4083051A (en) * | 1976-07-02 | 1978-04-04 | Rca Corporation | Circularly-polarized antenna system using tilted dipoles |
DE2907369C2 (en) * | 1979-02-24 | 1984-10-18 | Dornier System Gmbh, 7990 Friedrichshafen | Antenna arrangement for towing bodies |
JPS5763941A (en) * | 1980-10-06 | 1982-04-17 | Nippon Telegr & Teleph Corp <Ntt> | Radio transmitter and receiver |
DE3315458A1 (en) | 1983-04-28 | 1984-11-08 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ACTIVE WINDSHIELD ANTENNA FOR ALL POLARIZATION TYPES |
DE3410415A1 (en) | 1984-03-21 | 1985-09-26 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ACTIVE AERIAL IN THE REAR WINDOW OF A MOTOR VEHICLE |
DE3517247A1 (en) | 1985-05-13 | 1986-11-13 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ANTENNA DIVERSITY RECEIVING SYSTEM FOR ELIMINATION OF RECEIVING ERRORS |
DE3618452C2 (en) | 1986-06-02 | 1997-04-10 | Lindenmeier Heinz | Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein |
DE3820229C1 (en) | 1988-06-14 | 1989-11-30 | Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier | |
DE3907493A1 (en) | 1989-03-08 | 1990-09-20 | Lindenmeier Heinz | DISC ANTENNA WITH ANTENNA AMPLIFIER |
DE3911178A1 (en) | 1989-04-06 | 1990-10-11 | Lindenmeier Heinz | WINDOW ANTENNA SYSTEM WITH ANTENNA AMPLIFIER |
DE3914424A1 (en) | 1989-05-01 | 1990-12-13 | Lindenmeier Heinz | ANTENNA WITH VERTICAL STRUCTURE FOR TRAINING AN EXTENDED AREA CAPACITY |
US5801663A (en) | 1989-05-01 | 1998-09-01 | Fuba Automotive Gmbh | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
US5266960A (en) | 1989-05-01 | 1993-11-30 | Fuba Hans Kolbe Co. | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
DE4008505A1 (en) | 1990-03-16 | 1991-09-19 | Lindenmeier Heinz | Mobile antenna for satellite communication system - uses etching process on substrate with two part assembly |
DE4101629C3 (en) | 1991-01-21 | 2003-06-26 | Fuba Automotive Gmbh | Antenna diversity system with at least two antennas for the mobile reception of meter and decimeter waves |
DE4216377A1 (en) | 1992-05-18 | 1993-11-25 | Lindenmeier Heinz | Radio antenna arrangement near vehicle window panes |
DE4318869C2 (en) | 1993-06-07 | 1997-01-16 | Lindenmeier Heinz | Radio antenna arrangement on the window pane of a motor vehicle and method for determining its wiring |
DE4441761A1 (en) | 1994-11-23 | 1996-05-30 | Lindenmeier Heinz | Multi-antenna scanning diversity system for vehicles |
DE19510236A1 (en) | 1995-03-21 | 1996-09-26 | Lindenmeier Heinz | Flat antenna with low overall height |
CN1081836C (en) * | 1995-06-21 | 2002-03-27 | 摩托罗拉公司 | Method and antenna for providing omnidirectional pattern |
DE19607045A1 (en) | 1996-02-24 | 1997-08-28 | Lindenmeier Heinz | Receiving antenna scanning diversity system for the meter wave range for vehicles |
DE19612958A1 (en) | 1996-04-01 | 1997-10-02 | Fuba Automotive Gmbh | Antenna amplifier on a window pane |
DE19614068A1 (en) | 1996-04-09 | 1997-10-16 | Fuba Automotive Gmbh | Flat antenna |
DE19618333A1 (en) | 1996-05-07 | 1997-11-13 | Lindenmeier Heinz | Circuit arrangement for functional testing of mobile radio reception systems |
US5926141A (en) | 1996-08-16 | 1999-07-20 | Fuba Automotive Gmbh | Windowpane antenna with transparent conductive layer |
DE19636125B4 (en) | 1996-09-06 | 2007-12-06 | Fuba Automotive Gmbh & Co. Kg | Space diversity method and circuitry |
DE19637327B4 (en) | 1996-09-13 | 2009-04-09 | Delphi Delco Electronics Europe Gmbh | Frequency diversity arrangement |
DE19740254A1 (en) | 1996-10-16 | 1998-04-23 | Lindenmeier Heinz | Radio antenna arrangement e.g. for GSM |
DE19646100A1 (en) | 1996-11-08 | 1998-05-14 | Fuba Automotive Gmbh | Flat antenna |
EP0848459B1 (en) | 1996-12-13 | 2006-10-11 | FUBA Automotive GmbH & Co. KG | PCB-line connector |
DE19806834A1 (en) | 1997-03-22 | 1998-09-24 | Lindenmeier Heinz | Audio and television antenna for automobile |
US6130645A (en) | 1998-01-14 | 2000-10-10 | Fuba Automotive Gmbh & Co. Kg | Combination wide band antenna and heating element on a window of a vehicle |
DE19817573A1 (en) | 1998-04-20 | 1999-10-21 | Heinz Lindenmeier | Antenna for multiple radio services |
DE19834577B4 (en) | 1998-07-31 | 2011-12-29 | Delphi Technologies, Inc. | antenna system |
JP2000077934A (en) * | 1998-08-27 | 2000-03-14 | Yasushi Koshiro | Polarization switching loop antenna |
DE19847653A1 (en) | 1998-10-15 | 2000-04-20 | Heinz Lindenmeier | Device for suppressing the reception of interference emitted by the vehicle |
DE19847887A1 (en) | 1998-10-18 | 2000-04-20 | Heinz Lindenmeier | Scanning antenna diversity system for vehicle determines maximum current reception signal level for current reception situation in very short level comparison periods not affecting reception |
DE19854169A1 (en) | 1998-11-24 | 2000-05-25 | Heinz Lindenmeier | Window antenna with high-frequency connected heating field |
DE19858465A1 (en) | 1998-12-17 | 2000-06-21 | Heinz Lindenmeier | Scanning diversity antenna system for vehicles has logic switch changed back to incremental mode from maximum level switching mode if noise detected by diversity processor |
DE19916855A1 (en) | 1999-04-14 | 2000-10-26 | Heinz Lindenmeier | Radio telephone system with group antenna for vehicles |
DE19930571B4 (en) | 1999-07-02 | 2010-04-29 | Delphi Delco Electronics Europe Gmbh | Diagnostic device for a multi-antenna arrangement |
DE10033336A1 (en) | 1999-08-11 | 2001-04-12 | Heinz Lindenmeier | Diversity antenna for diversity system in vehicle has edge conductor on side of conducting surface with minimum length of about tenth of wavelength, forming low impedance coupling line |
DE10010226A1 (en) | 1999-08-31 | 2001-03-01 | Lindenmeier Heinz | Antenna arrangement for fixing to window of motor vehicle, has antenna connection terminal provided in free-field formed with window closed between sealing strip and window control device |
TW432746B (en) * | 1999-11-08 | 2001-05-01 | Acer Neweb Corp | Circular polarization antenna for wireless data communication |
US6960984B1 (en) * | 1999-12-08 | 2005-11-01 | University Of North Carolina | Methods and systems for reactively compensating magnetic current loops |
DE10102616A1 (en) | 2000-02-17 | 2001-08-23 | Heinz Lindenmeier | Antenna diversity system with phase-regulated summation of antenna signals has logic switch switched to different setting to change received signal paths if received signal noise detected |
US6262690B1 (en) * | 2000-10-13 | 2001-07-17 | Motorola, Inc. | Method for efficiently generating selectable antenna polarization |
DE10100812B4 (en) | 2001-01-10 | 2011-09-29 | Heinz Lindenmeier | Diversity antenna on a dielectric surface in a vehicle body |
US6618016B1 (en) * | 2001-02-21 | 2003-09-09 | Bae Systems Aerospace Inc. | Eight-element anti-jam aircraft GPS antennas |
DE10163793A1 (en) | 2001-02-23 | 2002-09-05 | Heinz Lindenmeier | Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition |
US6768457B2 (en) | 2001-03-02 | 2004-07-27 | Fuba Automotive Gmbh & Co. Kg | Diversity systems for receiving digital terrestrial and/or satellite radio signals for motor vehicles |
ATE323978T1 (en) | 2001-03-02 | 2006-05-15 | Fuba Automotive Gmbh | DIVERSITY SYSTEM FOR RECEIVING DIGITAL TERRESTRIAL AND/OR SATELLITE RADIO SIGNALS FOR VEHICLES |
DE10114769B4 (en) | 2001-03-26 | 2015-07-09 | Heinz Lindenmeier | Active broadband antenna |
JP2005518172A (en) | 2002-02-22 | 2005-06-16 | ダイムラークライスラー・アクチェンゲゼルシャフト | Method and system for testing at least one antenna |
DE10209060B4 (en) | 2002-03-01 | 2012-08-16 | Heinz Lindenmeier | Reception antenna arrangement for satellite and / or terrestrial radio signals on vehicles |
US6812902B2 (en) * | 2002-05-13 | 2004-11-02 | Centurion Wireless Technologies, Inc. | Low profile two-antenna assembly having a ring antenna and a concentrically-located monopole antenna |
DE10245813A1 (en) | 2002-10-01 | 2004-04-15 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Active broadband reception antenna with reception level control |
DE10258367A1 (en) | 2002-12-12 | 2004-07-08 | Daimlerchrysler Ag | Multi-objective method and multi-objective sensor device for the distance and angle localization of target objects in the vicinity |
DE10304431A1 (en) | 2003-02-04 | 2004-08-05 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Scanning antenna diversity system is used for frequency modulated audio wireless signals in a road vehicle |
DE10304911B4 (en) * | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Combination antenna arrangement for multiple radio services for vehicles |
DE10304909B4 (en) | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Antenna with monopoly character for several radio services |
US6927735B2 (en) | 2003-02-25 | 2005-08-09 | Fuba Automotive Gmbh & Co. Kg | Antenna arrangement in the aperture of an electrically conductive vehicle chassis |
JP4297840B2 (en) * | 2004-06-24 | 2009-07-15 | 古野電気株式会社 | Circularly polarized loop antenna |
DE102006006266A1 (en) | 2005-02-13 | 2006-08-24 | Lindenmeier, Heinz, Prof. Dr. Ing. | Reception system for receiving digitally modulated radio signals on moving vehicle, updates reference phase when phase reference signal that carries current reference phase related to reference signal occurs |
DE202005008338U1 (en) | 2005-05-24 | 2005-12-22 | Fuba Automotive Gmbh & Co. Kg | Antenna configuration for radio reception in motor vehicle e.g. cabriolet, has bulk connection for transducers and arranged in roof system, over springy contact that is between movable metallic components of system and metallic carriage |
WO2007011191A1 (en) * | 2005-07-22 | 2007-01-25 | Electronics And Telecommunications Research Institute | Small monopole antenna having loop element included feeder |
DE102006039357B4 (en) | 2005-09-12 | 2018-06-28 | Heinz Lindenmeier | Antenna diversity system for radio reception for vehicles |
DE102006057520A1 (en) | 2005-12-15 | 2007-06-21 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with in-phase oscillation of antenna signals |
DE102007011636A1 (en) | 2007-03-09 | 2008-09-11 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for radio reception with diversity function in a vehicle |
EP1978647A3 (en) | 2007-04-05 | 2013-10-09 | Delphi Delco Electronics Europe GmbH | Broadband receiver system |
DE102007017478A1 (en) | 2007-04-13 | 2008-10-16 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity |
EP2037593A3 (en) | 2007-07-10 | 2016-10-12 | Delphi Delco Electronics Europe GmbH | Antenna diversity array for relatively broadband radio reception in automobiles |
DE102007039914A1 (en) | 2007-08-01 | 2009-02-05 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna diversity system with two antennas for radio reception in vehicles |
EP2034557B1 (en) * | 2007-09-06 | 2012-02-01 | Delphi Delco Electronics Europe GmbH | Antenna for satellite reception |
DE102008003532A1 (en) | 2007-09-06 | 2009-03-12 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for satellite reception |
DE102008047937A1 (en) | 2008-09-18 | 2010-03-25 | Delphi Delco Electronics Europe Gmbh | Broadcasting Reception System |
-
2009
- 2009-03-03 DE DE102009011542A patent/DE102009011542A1/en not_active Withdrawn
-
2010
- 2010-02-24 EP EP10001881.1A patent/EP2226895B1/en active Active
- 2010-03-03 US US12/716,318 patent/US8537063B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20100253587A1 (en) | 2010-10-07 |
EP2226895A3 (en) | 2010-12-15 |
DE102009011542A1 (en) | 2010-09-09 |
US8537063B2 (en) | 2013-09-17 |
EP2226895A2 (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2226895B1 (en) | Antenna for receiving satellite radio signals emitted circularly in a polarisation direction | |
EP2458680B1 (en) | Antenna for receiving circular polarised satellite radio signals | |
DE102008003532A1 (en) | Antenna for satellite reception | |
EP2256864B1 (en) | Antenna for circular polarisation with a conductive base | |
EP2592691B1 (en) | Receiver antenna for circular polarised satellite radio signals | |
EP2664025B1 (en) | Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals | |
EP1277252B1 (en) | Dual-polarized dipole array antenna | |
DE69107491T2 (en) | Stripline antenna with guaranteed uniformity of polarization. | |
DE69608132T2 (en) | SLOT SPIRAL ANTENNA WITH INTEGRATED SYMMETRICAL DEVICE AND INTEGRATED LEAD | |
EP1239543B1 (en) | Flat antenna for the mobil satellite communication | |
EP1327287B1 (en) | Dual-polarization antenna array | |
DE69531655T2 (en) | Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna | |
DE69732975T2 (en) | SMALL ANTENNA FOR PORTABLE RADIO | |
DE69707662T2 (en) | COMPOSED AERIAL | |
DE10304911B4 (en) | Combination antenna arrangement for multiple radio services for vehicles | |
DE102016204868B4 (en) | antenna device | |
DE3931752A1 (en) | COAXIAL SLOT ANTENNA | |
DE60035304T2 (en) | monopole antenna | |
EP1969674B1 (en) | Antenna arrangement and use thereof | |
WO2019115363A1 (en) | Slot antenna | |
EP2034557B1 (en) | Antenna for satellite reception | |
DE69203288T2 (en) | Circularly polarized antenna. | |
DE69008170T2 (en) | Circularly polarized all-round antenna with the greatest gain in the horizontal direction. | |
EP2546925B1 (en) | Antenna module | |
DE2521978C3 (en) | Shortwave steep beam antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110517 |
|
17Q | First examination report despatched |
Effective date: 20120405 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 606445 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010002887 Country of ref document: DE Effective date: 20130606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130410 Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130810 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130721 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130812 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130711 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
26N | No opposition filed |
Effective date: 20140113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010002887 Country of ref document: DE Effective date: 20140113 |
|
BERE | Be: lapsed |
Owner name: DELPHI DELCO ELECTRONICS EUROPE G.M.B.H. Effective date: 20140228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140224 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 606445 Country of ref document: AT Kind code of ref document: T Effective date: 20150224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230220 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230223 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240426 Year of fee payment: 15 |