EP2217400A1 - Procédé de brasage de fissures larges - Google Patents

Procédé de brasage de fissures larges

Info

Publication number
EP2217400A1
EP2217400A1 EP08851116A EP08851116A EP2217400A1 EP 2217400 A1 EP2217400 A1 EP 2217400A1 EP 08851116 A EP08851116 A EP 08851116A EP 08851116 A EP08851116 A EP 08851116A EP 2217400 A1 EP2217400 A1 EP 2217400A1
Authority
EP
European Patent Office
Prior art keywords
solder
gap
powder
turbine
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08851116A
Other languages
German (de)
English (en)
Inventor
Raoul Galic
Brigitte Heinecke
Margarete Herz
Claus Krusch
Volker Vosberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08851116A priority Critical patent/EP2217400A1/fr
Publication of EP2217400A1 publication Critical patent/EP2217400A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0018Brazing of turbine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines

Definitions

  • the invention relates to a method for further soldering column.
  • a high temperature solder base material mixture is applied to the defect as a depot in order to allow the high temperature solder to be sucked into the gap in the soldering cycle using the capillary effect.
  • the object is achieved by a method according to claim 1.
  • FIG 1 shows schematically the sequence of the invention
  • Method, Figure 2 is a gas turbine
  • FIG. 3 is a perspective view of a turbine blade
  • FIG. 4 is a perspective view of a combustion chamber
  • FIG. 5 is a list of superalloys.
  • Figure 1 shows schematically the procedure of the method.
  • the component 1, 120, 130, 155 has a substrate 4, preferably of a nickel- or cobalt-based superalloy according to FIG.
  • gaps are gap widths from lmm, in particular from 2mm and especially up to 3mm. Preferably, the gaps are at least 1 mm deep.
  • the gap 7 is preferably cleaned of impurities such as oxides or corrosion products. Thereafter, or instead of removing the oxides by a chemical treatment, the gap 7 is preferably machined to produce a defined contour.
  • a powder 13 is introduced into the gap 7, which does not melt at a soldering temperature T 2 of a solder 10.
  • This is preferably a material similar to the substrate 4 or preferably a material which has the same material of the substrate 4 and in particular consists thereof. This may preferably also be a ceramic.
  • the introduction of the powder 13 can be done in various ways, for example by dry sprinkling, by cold gas spraying, by Schlickereintrag etc.
  • the gap 7 is in particular filled up to a surface 16 of the substrate 4 with the powder 13.
  • the powder 13 does not melt at the soldering temperature T L.
  • solder 10 is applied to the surface 16.
  • the solder 10 preferably has depot grains 19 and a solder deposit 22 of a solder alloy for stabilization at the solder temperature.
  • the depot grains must be wettable in pasty state and must not melt at soldering temperature. If they are not parent material grains, flooding into the gap during brazing must be avoided by the size of the grains.
  • a support can be used to stabilize the solder deposit (paste), which is wetted in the pasty state of the depot, but not from the molten solder.
  • solder deposit 22 melts and is drawn into the gap 7 due to the capillary effect in the capillaries, which are formed by the grains of the powder 13, so that a complete filling of the gap 7 takes place.
  • the depot grains 19 that may be used can be removed.
  • FIG. 2 shows by way of example a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is guided to the burners 107 and mixed there with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 3 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Structures are also called directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr ⁇ 2, Y2Ü3-Zr ⁇ 2, i. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 4 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged in the circumferential direction about an axis of rotation 102 open into a common combustion chamber space 154, create the flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • a ceramic thermal barrier coating may be present and consists for example of ZrC> 2, Y2Ü3-ZrO2, ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products.
  • cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

La présente invention concerne un procédé de réparation de fissures larges (7) dans un substrat (4) permettant d'éviter une séparation de la matière de remplissage (13) et du métal d'apport de brasage, et ce par l'introduction de la matière de remplissage (13) d'abord puis du métal d'apport de brasage (22), lors d'un processus en deux étapes.
EP08851116A 2007-11-20 2008-11-11 Procédé de brasage de fissures larges Withdrawn EP2217400A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08851116A EP2217400A1 (fr) 2007-11-20 2008-11-11 Procédé de brasage de fissures larges

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07022503A EP2062672A1 (fr) 2007-11-20 2007-11-20 Méthode de brasage de fissures larges
PCT/EP2008/065284 WO2009065753A1 (fr) 2007-11-20 2008-11-11 Procédé de brasage de fissures larges
EP08851116A EP2217400A1 (fr) 2007-11-20 2008-11-11 Procédé de brasage de fissures larges

Publications (1)

Publication Number Publication Date
EP2217400A1 true EP2217400A1 (fr) 2010-08-18

Family

ID=39789395

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07022503A Withdrawn EP2062672A1 (fr) 2007-11-20 2007-11-20 Méthode de brasage de fissures larges
EP08851116A Withdrawn EP2217400A1 (fr) 2007-11-20 2008-11-11 Procédé de brasage de fissures larges

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07022503A Withdrawn EP2062672A1 (fr) 2007-11-20 2007-11-20 Méthode de brasage de fissures larges

Country Status (3)

Country Link
US (1) US8123105B2 (fr)
EP (2) EP2062672A1 (fr)
WO (1) WO2009065753A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2335855A1 (fr) * 2009-12-04 2011-06-22 Siemens Aktiengesellschaft Matière de remplissage pour forer des trous d'interconnexion de composants creux, procédé e dispositif correspondants
CH705321A1 (de) 2011-07-19 2013-01-31 Alstom Technology Ltd Lötfolie zum Hochtemperaturlöten und Verfahren zum Reparieren bzw. Herstellen von Bauteilen unter Verwendung dieser Lötfolie.
CH705327A1 (de) * 2011-07-19 2013-01-31 Alstom Technology Ltd Lot zum Hochtemperaturlöten und Verfahren zum Reparieren bzw. Herstellen von Bauteilen unter Verwendung dieses Lotes.
JP6275411B2 (ja) * 2013-08-09 2018-02-07 三菱重工業株式会社 ろう付方法
CN107234311A (zh) * 2017-06-28 2017-10-10 中国航发南方工业有限公司 涡轮导向器裂纹钎焊修复方法
DE102019206433A1 (de) * 2019-05-06 2020-11-12 Siemens Aktiengesellschaft Verschließen von Durchgangslöchern mit Basismaterial und Lotmischung oben drauf

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002108A1 (fr) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
US5806751A (en) * 1996-10-17 1998-09-15 United Technologies Corporation Method of repairing metallic alloy articles, such as gas turbine engine components
EP0892090B1 (fr) 1997-02-24 2008-04-23 Sulzer Innotec Ag Procédé de fabrication de structure monocristallines
EP0861927A1 (fr) 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
DE10030776C2 (de) * 2000-06-23 2002-06-20 Mtu Aero Engines Gmbh Verfahren zur Instandsetzung von metallischen Bauteilen insbesondere für Gasturbinen
US6520401B1 (en) * 2001-09-06 2003-02-18 Sermatech International, Inc. Diffusion bonding of gaps
DE50104022D1 (de) 2001-10-24 2004-11-11 Siemens Ag Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
JP4488830B2 (ja) * 2004-08-03 2010-06-23 株式会社東芝 ガスタービン静翼の再生処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009065753A1 *

Also Published As

Publication number Publication date
WO2009065753A1 (fr) 2009-05-28
EP2062672A1 (fr) 2009-05-27
US20110174867A1 (en) 2011-07-21
US8123105B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
EP2414127B1 (fr) Methode de soudage d'un evidement dans un composant par le depot de cordons de soudure a l'exterieur ou autour du contour ; composant correspondant
EP2369131A1 (fr) Réparation de bords d'un composant à l'aide de bandes PSP et composant
EP2217400A1 (fr) Procédé de brasage de fissures larges
EP2391744B1 (fr) Revêtement par des procédés de revêtement thermiques et non thermiques
EP2274130A1 (fr) Composant avec cordon de soudure et procédé de fabrication d'un cordon de soudure
WO2009118313A2 (fr) Élément à soudures superposées et procédé de production correspondant
EP2186594A1 (fr) Procédé et dispositif de préchauffage lors du soudage utilisant un deuxième faisceau laser
EP2226149A1 (fr) Procédé de soudure en deux étapes
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
EP1797985A1 (fr) Procédé et dispositif de soudage
EP2138258A1 (fr) Procédé de soudage à profil de température à plusieurs niveaux
EP2583784A1 (fr) Préparation d'au moins un poste à souder avant le soudage et composant
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
WO2018114766A1 (fr) Procédé d'assemblage de segments de composants à gaz chaud par brasage et composant à gaz chaud correspondant
EP2558245B1 (fr) Lot contenant du germanium, un composant doté d'un lot et un procédé de soudage
EP2254725A1 (fr) Dispositif de soudage à chambre de soudage et procédé de soudage correspondant
EP2196555A1 (fr) Mélange de poudre de céramique et de verre, composant doté d'un masque et procédé d'application
EP1918063A1 (fr) Poudre de brasage composite comprenant un noyau et un revêtement métallique pour le brasage de pièces de turbine
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique
EP2452775A1 (fr) Procédé de forage raccourci d'un trou
EP2322683A1 (fr) Procédé de revêtement d'un composant doté d'un orifice partiellement fermé et procédé d'ouverture de l'orifice
EP2719493A1 (fr) Poste à souder et composant avec différents matériaux
WO2011057661A1 (fr) Composant comportant des zones de ductilité différente et procédé de fabrication d'un composant
WO2012059306A1 (fr) Détection de fissures au moyen d'un prétraitement cryotechnique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOSBERG, VOLKER

Inventor name: GALIC, RAOUL

Inventor name: HEINECKE, BRIGITTE

Inventor name: NEUHAUS, MARGARETE

Inventor name: KRUSCH, CLAUS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170412