EP2215891A1 - Procede de commande d'un systeme asservi - Google Patents

Procede de commande d'un systeme asservi

Info

Publication number
EP2215891A1
EP2215891A1 EP08804944A EP08804944A EP2215891A1 EP 2215891 A1 EP2215891 A1 EP 2215891A1 EP 08804944 A EP08804944 A EP 08804944A EP 08804944 A EP08804944 A EP 08804944A EP 2215891 A1 EP2215891 A1 EP 2215891A1
Authority
EP
European Patent Office
Prior art keywords
measurement
offset
control
cycle
measurements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804944A
Other languages
German (de)
English (en)
Inventor
Sylvain Come
Thierry Ginestet
David Chaillou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2215891A1 publication Critical patent/EP2215891A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback

Definitions

  • a control device comprises a control chain comprising a sensor measuring a characteristic variable of the system evolving according to a setpoint and a comparator measuring a difference between the setpoint and the value of the variable.
  • the sensor is still called servo sensor.
  • the system is controlled by the difference measured by the comparator.
  • the accuracy of the system response to a setpoint change is generally good. Indeed, the servocontrol tends to cancel the difference between the setpoint and the value of the characteristic variable of the system followed by the servo sensor.
  • the servo chain may experience an offset, hereinafter referred to as "offset", tending to define a non-zero error even if the response of the system is perfectly adapted to the setpoint.
  • the offset can be due to the precision of the components of the servo chain.
  • the offset can change over time as a function of parameters different from the set point influencing the response of the system, parameters such as, for example, the evolution of the ambient temperature or the wear of the components of the servocontrol chain.
  • the invention can be implemented in a backlight control of liquid crystal screens used on aircraft dashboards where it is necessary that the pilot of the aircraft can see these screens regardless of the light ambient of the cockpit.
  • the predominant offset for this backlight application is generated by the ambient lighting of the cockpit, especially when the sun illuminates the liquid crystal screen. A sufficient fraction of ambient illumination is then measured by the internal illumination sensor and comes bias the measurement of it. This parasitic lighting being added to that generated from the backlighting light source, the accuracy of the luminance seen by the driver is degraded.
  • the invention aims to improve the robustness of the control of a slave system by not seeking to minimize the offset but by measuring it in order to compensate for it.
  • the invention is adapted to a slave system by means of a multilevel control cut in time. Indeed, we will use the different levels of system controls to allow the measurement of the offset.
  • the subject of the invention is a method of controlling a slave system by means of a multilevel control cut in time, the method implementing a device receiving a setpoint and comprising a servo chain in which a sensor measures a characteristic variable of the system evolving according to the setpoint, the measurement of the variable being capable of modifying the control of the system through the servocontrol chain, the method being characterized in that it comprises the following operations : • acquire two measurements by means of the sensor, each during a period, the two periods being dissymmetrical with respect to the cutting of the control,
  • the measured offset can be calculated and subtracted from the measurements acquired by the servo sensor by a system of two equations with two unknowns, the two unknowns being the response of the system and the offset of the measurement chain, the two equations being the measures expressed according to the two unknowns.
  • the two equations are not redundant if the two periods are dissymmetrical with respect to the division of the command and thus allow the resolution of the system of equations.
  • the preponderant offset measured by the servo sensor is caused by a physical phenomenon that is interesting to quantify and its value, usually measured by an ancillary system, is used in the definition of the system instruction.
  • the change in the offset is mainly due to variations in ambient lighting, described above as the physical phenomenon.
  • the invention makes it possible to obtain an illumination measurement that is independent of the ambient luminosity.
  • the offset can also be used to adapt the setpoint 1 1 in place of the use of an adjoining sensor for measuring ambient lighting. This makes it possible to use only one sensor for at a time, to slave the control of illumination to the setpoint, and to measure the ambient illumination to generate the setpoint.
  • the setpoint received by the device may be a function of the measured offset.
  • the measurement of the offset mainly due to ambient lighting, is weighted and then added to the setpoint. For example, the illumination setpoint is increased when the ambient brightness increases.
  • FIG. 1 represents in schematic form a slave system for which the invention can be implemented
  • FIGS. 2a to 2d represent, in chronogram form, a command of a system and several examples of measurements making it possible to determine the offset of the servocontrol chain;
  • FIG. 3 represents an example of measurement made by a device according to the invention and makes it possible to eliminate the effect of the offset
  • FIG. 4 represents an exemplary servocontrol chain embodying the invention.
  • FIG. 1 represents an exemplary device for controlling a system 10 as a function of a setpoint 11.
  • the device comprises control means 12 delivering to the system 10 a command 13 through a servo control algorithm.
  • the device further comprises a servo sensor 14 measuring a variable 15 characteristic of the system 10 and evolving as a function of the control 13 and a comparator 1 6 measuring a difference 17 between the setpoint 1 1 and the value of the variable 15. L deviation 17 forms the input data of the control means 12.
  • a method according to the invention is adapted to a multilevel control cut in time.
  • This control is for example cyclic and within one cycle succeeds an active phase during which the system is controlled at a maximum level and an inactive phase during which the system is controlled to a minimum level, for example zero.
  • This type of control is called pulse width modulation control and is well known in the English literature as "Puise With Modulation”.
  • the timing diagram of FIG. 2a denoted PWM, represents the evolution over time of the control of the system 10.
  • the control 13 evolves in two levels. A first low level carries the mark 20 and a second high level carries the mark 21.
  • the system 10 may include light emitting diodes.
  • the low level 20 corresponds to the extinction of the diodes and the high level 21 corresponds to a full power supply of the light emitting diodes.
  • An operating cycle 22 is defined between two rising edges 23 and 24 forming transitions from level 20 to level 21. According to the invention, the method comprises the following operations:
  • the timing diagram of Figure 2b represents an example of implementation of the two periods.
  • the period of the first measurement 31 extends over the duration of the active phase and the period of the second measurement 32 extends over the duration of the inactive phase.
  • the first measurement 31 is carried out as long as the control 13 is high 21 and the second measurement 32 is performed as long as the control 13 is at the low level 20.
  • the synchronization of the two measurements 31 and 32 on the levels 20 and 21 can be done by the control means 12 which further determine the transitions between the levels 20 and 21.
  • the offset is determined directly by the value measured by the sensor 14 during measurement 32.
  • the determination of the response of the system 10 to the control 13 is made in deducing the offset from the value measured by the sensor 14 during measurement 31.
  • This type of determination is simple to implement. Nevertheless, the duration of the measurements depends on the duty cycle and can make measurements inaccurate when the duty ratio is close to 0% or close to 100%. Indeed, in these two cases, one of the two measurements 31 or 32 is performed for a much shorter duration than the other and the shortest measurement is therefore more imprecise than the other.
  • FIGS. 2c and 2d Two other examples of implementation of a method according to the invention are illustrated by the timing diagrams of FIGS. 2c and 2d and make it possible to improve the accuracy of the determination of the offset and of the response of the system by lengthening the periods of measure beyond a given value.
  • measurement periods span at least half of the cycle.
  • the period of a first measurement 33 extends over a complete cycle and the period of a second measurement 34 extends over a final half-cycle.
  • Measure 33 can be expressed as follows:
  • R system represents the response of the system and offset cy ts representing the offset on a full cycle.
  • Measurement 34 depends on the duty cycle. If this ratio is less than 50%, the measure 33 can be expressed as follows:
  • measure 33 can be expressed as follows:
  • M short R system ⁇ 1/2 R max system + OffSte 1/2 cycle (3)
  • R max system representing the response of the system for a duty cycle of 100%.
  • system R system response can be expressed according to:
  • Offset cycle 2 X Offset 1/2 cycle (7)
  • Offset cycle M long "R system (1 0)
  • the offset thus defined can be used to define the control 11 for example in the case of an implementation of the invention for the backlight of a screen considering that the predominant offset is related to the ambient brightness.
  • Figure 3 shows an orthogonal reference two curves 40 and 41 superimposed.
  • the curve 40 shown in fine lines, expresses the response of the system R system according to the duty cycle noted PWM.
  • the PWM duty cycle changes from 0% to 100%.
  • Curve 40 is a line segment extending from an origin 42 of the marker to a point 43 associating the maximum response of system R max system to a duty cycle of 100%.
  • the curve 41 represents, in the same reference, the difference between the measurement 33, long M, and twice the measurement 34, short M, as a function of the duty cycle PWM in the form of a curve 41 in solid line.
  • the curve 41 is formed of two line segments 44 and 45.
  • the segment 44 extends from the origin 42 of the marker to a point 46 associating half of the maximum system response, Vz R max system, to a cyclical ratio of 50%.
  • the segment 44 is superimposed on the curve 40.
  • the segment 45 extends from the point 46 to a point 47 associating a difference between the measurement 33, M bngue, and twice the measurement 34, M short, zero to one cyclical ratio of 100%.
  • the period of a first measurement 35 extends over an initial half-cycle and a second measurement 36 extends over a final half-cycle.
  • a calculation mode similar to the previous one can be implemented to determine the offset and the response of the system by eliminating the effect of the offset.
  • FIG. 4 represents an example of a servo-control chain adapted to the measurements 33 and 34 of FIG. 2c implementing the invention.
  • An alternative of a method according to the invention consists in carrying out the two measurements during the same cycle.
  • the two measurements can overlap or not. Overlap will intervene compulsorily in combination with the variant described with the help of Figure 2c since the measurement 33 already occupies the entire cycle.
  • the measurement 34 is performed during the second half of the same cycle. Performing both measurements during the same cycle limits the effects of an offset that may change over time.

Landscapes

  • Feedback Control In General (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

L'invention concerne un procédé de commande d'un système asservi au moyen d'une commande multiniveau découpée dans le temps (PWM). L'invention consiste à • acquérir deux mesures (31, 32; 33, 34; 35, 36) au moyen du capteur (14), chacune durant une période, les deux périodes étant dissymétriques par rapport au découpage de la commande, • déterminer un offset de la chaîne d'asservissement et une réponse corrigée sans offset du système à la commande en fonction des mesures (31, 32; 33, 34; 35, 36) et des périodes de mesure. L'invention permet, à l'aide de ces deux mesures, d'éliminer l'effet de l'offset dans la chaîne d'asservissement du système.

Description

Procédé de commande d'un système asservi
L'invention concerne un procédé de commande d'un système asservi. Ce procédé est également appelé pilotage asservi ou pilotage en boucle fermée. Dans un pilotage asservi, un dispositif de commande comporte une chaîne d'asservissement comprenant un capteur mesurant une variable caractéristique du système évoluant en fonction d'une consigne et un comparateur mesurant un écart entre la consigne et la valeur de la variable. Le capteur est encore appelé capteur d'asservissement. Le système est commandé par l'écart mesuré par le comparateur.
Dans un pilotage asservi, la précision de la réponse du système à une évolution de consigne est généralement bonne. En effet, l'asservissement tend à annuler l'écart entre la consigne et la valeur de la variable caractéristique du système suivie par le capteur d'asservissement.
Néanmoins, la chaîne d'asservissement peut subire un décalage, appelé par la suite « offset », tendant à définir une erreur non nulle même si la réponse du système est parfaitement adaptée à la consigne. L'offset peut être du à la précision des composants de la chaîne d'asservissement. L'offset peut évoluer dans le temps en fonction de paramètres distincts de la consigne influençant la réponse du système, paramètres tels que par exemple l'évolution de la température ambiante ou encore l'usure des composants de la chaîne d'asservissement.
Le problème est actuellement résolu en agissant sur chacun des offsets des différents composants et en essayant de minimiser leur valeur en optimisant la conception. Bien que coûteuse du fait de l'optimisation nécessaire, cette solution peut être satisfaisante à un instant donné, mais n'empêche pas l'évolution de l'offset dans le temps.
L'invention peut être mise en œuvre dans une commande de rétro-éclairage d'écrans à cristaux liquide utilisés sur des planches de bord d'aéronefs où il est nécessaire que le pilote de l'aéronef puisse voir ces écrans quelle que soit la lumière ambiante du cockpit. Au-delà des offsets électroniques propres à toute chaîne de mesure, l'offset prépondérant pour cette application de rétro-éclairage est généré par l'éclairage ambiant du cockpit, notamment lorsque le soleil illumine l'écran à cristaux liquide. Une fraction suffisante d'éclairement ambiant est alors mesurée par le capteur d'éclairement interne et vient biaiser la mesure de celui-ci. Cet éclairage parasite étant ajouté à celui généré de la source lumineuse de rétro-éclairage, la précision de la luminance vue par le pilote est dégradée.
L'invention vise à améliorer la robustesse de la commande d'un système asservi en ne cherchant plus à minimiser l'offset mais en le mesurant afin de pouvoir le compenser.
L'invention est adaptée à un système asservi au moyen d'une commande multiniveau découpée dans le temps. En effet, on va mettre à profit les différents niveaux de commandes du système pour permettre la mesure de l'offset.
A cet effet, l'invention a pour objet un procédé de commande d'un système asservi au moyen d'une commande multiniveau découpée dans le temps, le procédé mettant en œuvre un dispositif recevant une consigne et comportant une chaîne d'asservissement dans laquelle un capteur mesure une variable caractéristique du système évoluant en fonction de la consigne, la mesure de la variable étant susceptible de modifier la commande du système au travers de la chaîne d'asservissement, le procédé étant caractérisé en ce qu'il comprend les opérations suivantes : • acquérir deux mesures au moyen du capteur, chacune durant une période, les deux périodes étant dissymétriques par rapport au découpage de la commande,
• déterminer un offset de la chaîne d'asservissement et une réponse corrigée sans offset du système à la commande en fonction des mesures et des périodes de mesure.
L'offset mesuré peut être calculé et soustrait des mesures acquises par le capteur d'asservissement par un système de deux équations à deux inconnues, les deux inconnues étant la réponse du système et l'offset de la chaîne de mesure, les deux équations étant les mesures exprimées en fonction des deux inconnues. Les deux équations ne sont pas redondantes si les deux périodes sont dissymétriques par rapport au découpage de la commande et permettent donc la résolution du système d'équations.
Dans une réalisation particulière de l'invention, l'offset prépondérant mesuré par le capteur d'asservissement est provoqué par un phénomène physique qu'il est intéressant de quantifier puis que sa valeur, mesurée habituellement par un système annexe, est utilisée dans la définition de la consigne du système.
Par exemple, dans une commande de rétro-éclairage d'un écran à cristaux liquides, l'évolution de l'offset est principalement due aux variations de l'éclairage ambiant, décrit ci-dessus comme étant le phénomène physique. En déterminant une réponse sans offset du système, l'invention permet de d'obtenir une mesure d'éclairement indépendante de la luminosité ambiante L'offset peut aussi être utilisé pour adapter la consigne 1 1 en lieu et place de l'utilisation d'un capteur annexe de mesure de l'éclairage ambiant. Ceci permet de n'utiliser qu'un seul capteur pour à la fois, asservir la commande d'éclairement à la consigne, et mesurer l'éclairement ambiant pour générer la consigne. Autrement dit, de façon plus générale, la consigne reçue par le dispositif peut être fonction de l'offset mesuré. Ici, la mesure de l'offset, principalement du à l'éclairage ambiant, est pondéré puis additionné à la consigne. Par exemple, on augmente la consigne d'éclairement lorsque la luminosité ambiante augmente.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :
• la figure 1 représente sous forme schématique un système asservi pour lequel l'invention peut être mise en œuvre ;
• les figures 2a à 2d représentent sous forme de chronogramme une commande d'un système et plusieurs exemples de mesures permettant de déterminer l'offset de la chaîne d'asservissement ;
• la figure 3 représente un exemple de mesure réalisée par un dispositif conforme à l'invention et permettent de supprimer l'effet de l'offset ;
• la figure 4 représente un exemple de chaîne d'asservissement mettant en œuvre l'invention.
Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La figure 1 représente un exemple de dispositif de commande d'un système 10 en fonction d'une consigne 11. Le dispositif comporte des moyens de pilotage 12 délivrant au système 10 une commande 13 au travers d'un algorithme d'asservissement. Le dispositif comporte en outre un capteur d'asservissement 14 mesurant une variable 15 caractéristique du système 10 et évoluant en fonction de la commande 13 et un comparateur 1 6 mesurant un écart 17 entre la consigne 1 1 et la valeur de la variable 15. L'écart 17 forme la donnée d'entrée des moyens de pilotage 12.
Un procédé conforme à l'invention est adapté à une commande multiniveau découpée dans le temps. Cette commande est par exemple cyclique et à l'intérieur d'un cycle se succède une phase active pendant laquelle le système est commandé à un niveau maximum et une phase inactive pendant laquelle le système est commandé à un niveau minimum, par exemple nul. Ce type de commande est appelé commande par modulation de largeur d'impulsion et est bien connu dans la littérature anglo- saxonne sous le nom de : « Puise With Modulation ». Le chronogramme de la figure 2a, noté PWM, représente l'évolution dans le temps de la commande du système 10. La commande 13 évolue selon deux niveaux. Un premier niveau bas porte le repère 20 et un second niveau haut porte le repère 21 . Dans l'exemple de mise en œuvre du rétro-éclairage d'un écran à cristaux liquides, le système 10 peut comporter des diodes électroluminescentes. Le niveau bas 20 correspond à l'extinction des diodes et le niveau haut 21 correspond à une alimentation en pleine puissance des diodes électroluminescentes. Un cycle de fonctionnement 22 est défini entre deux fronts montants 23 et 24 formant des transitions du niveau 20 vers le niveau 21 . Selon l'invention, le procédé comprend les opérations suivantes :
• acquérir deux mesures au moyen du capteur 14, chacune durant une période, les deux périodes étant dissymétriques par rapport au découpage de la commande,
• déterminer un offset de la chaîne d'asservissement et une réponse du système à la commande 13 en fonction des mesures et des périodes de mesure.
Le chronogramme de la figure 2b représente un exemple de mise en œuvre des deux périodes. La période de la première mesure 31 s'étend sur la durée de la phase active et la période de la seconde mesure 32 s'étend sur la durée de la phase inactive. Autrement dit, La première mesure 31 est effectuée tant que la commande 13 est au niveau haut 21 et la seconde mesure 32 est effectuée tant que la commande 13 est au niveau bas 20. La synchronisation des deux mesures 31 et 32 sur les niveaux 20 et 21 peut se faire par les moyens de pilotage 12 qui déterminent par ailleurs les transitions entre les niveaux 20 et 21.
Dans l'exemple illustré par le chronogramme de la figure 2b, la détermination de l'offset se fait directement par la valeur mesurée par le capteur 14 durant la mesure 32. La détermination de la réponse du système 10 à la commande 13 se fait en déduisant l'offset de la valeur mesurée par le capteur 14 durant la mesure 31. Ce type de détermination est simple à mettre en œuvre. Néanmoins, la durée des mesures dépend du rapport cyclique et peut rendre les mesures imprécises lorsque le rapport cyclique est proche de 0% ou proche de 100%. En effet dans ces deux cas, une des deux mesures 31 ou 32 est réalisée pendant une durée beaucoup plus courte que l'autre et la mesure la plus courte est donc plus imprécise que l'autre.
Deux autres exemples de mise en œuvre d'un procédé selon l'invention sont illustrés par les chronogrammes des figures 2c et 2d et permettent d'améliorer la précision de la détermination de l'offset et de la réponse du système en allongeant les périodes de mesure au-delà d'une valeur donnée. Par exemple, les périodes des mesures s'étendent sur au moins la moitié du cycle 22.
Dans l'exemple illustré par le chronogramme de la figure 2c, la période d'une première mesure 33 s'étend sur un cycle complet et la période d'une seconde mesure 34 s'étend sur un demi-cycle final.
La mesure 33 peut s'exprimer de la façon suivante :
M longue = R système + OffSθt cycle (1 )
M longue représentant la mesure 33, R système représentant la réponse du système et Offset cycie représentant l'offset sur un cycle complet.
La mesure 34 dépend du rapport cyclique. Si ce rapport est inférieur à 50%, la mesure 33 peut s'exprimer de la façon suivante :
M courte = Offset 1/2 cycle (2) M courte représentant la mesure 34, et Offset 1/2 cycle représentant l'offset sur la moitié du cycle. Si le rapport cyclique est supérieur à 50%, la mesure 33 peut s'exprimer de la façon suivante :
M courte = R système ~ 1/2 R système max + OffSθt 1/2 cycle (3) R système max représentant la réponse du système pour un rapport cyclique de 100%.
Dans les deux cas, rapport cyclique inférieur ou supérieur à 50%, la réponse du système R système peut s'exprimer en fonction de :
M longue " 2 X M courte (4) En effet, dans le cas où le rapport cyclique est inférieur à 50%, on a :
M longue ~ 2 X M courte = (R système + Offset cycle) ~ 2 X Offset 1/2 cycle (5)
= R système (6) en considérant que l'offset est constant sur la totalité du cycle et donc que :
Offset cycle = 2 X Offset 1/2 cycle (7)
Par ailleurs, dans le cas où le rapport cyclique est supérieur à 50%, on a :
M longue ~ 2 X M courte = (R système + Offset cycle)
- 2 X (R système ~ 1/2 R système max + OffSΘt 1/2 cycle ) (8) et donc :
IVl longue -.. X IVI courte = r> système max " r> système (<?)
La réponse du système R système max pour un rapport cyclique de 100% étant une constante connue par ailleurs, il est facile de déterminer la réponde effective du système R système- Cette réponse n'est pas soumise à l'offset.
A partir de la réponse du système, déterminée précédemment, il est aisé de déterminer l'offset si besoin est à partir d'une des deux mesures 33 ou 34. Par exemple, à partir de la mesure 33 on utilise l'équation (1 ) :
Offset cycle = M longue " R système (1 0)
L'offset ainsi défini peut être utilisé pour définir la commande 11 par exemple dans le cas d'une mise en œuvre de l'invention pour le rétroéclairage d'un écran en considérant que l'offset prépondérant est lié à la luminosité ambiante. La figure 3 représente dans un repère orthogonal deux courbes 40 et 41 superposées. La courbe 40, représentée en trait fin, exprime la réponse du système R système en fonction du rapport cyclique noté PWM. Le rapport cyclique PWM évolue de 0% à 100%. La courbe 40 est un segment de droite s'étendant depuis une origine 42 du repère jusqu'à un point 43 associant la réponse maximale du système R système max à un rapport cyclique de 100%.
La courbe 41 représente dans la même repère la différence entre la mesure 33, M longue, et deux fois la mesure 34, M courte, en fonction du rapport cyclique PWM sous forme d'une courbe 41 en trait fort. La courbe 41 est formée de deux segments de droite 44 et 45. Le segment 44 s'étend depuis l'origine 42 du repère jusqu'à un point 46 associant la moitié de la réponse maximale du système, Vz R système max, à un rapport cyclique de 50%. Le segment 44 se superpose à la courbe 40. Le segment 45 s'étend depuis le point 46 jusqu'à un point 47 associant une différence entre la mesure 33, M bngue, et deux fois la mesure 34, M courte, nulle à un rapport cyclique de 100%.
Dans l'exemple illustré par le chronogramme de la figure 2d, la période d'une première mesure 35 s'étend sur un demi-cycle initial et une seconde mesure 36 s'étend sur un demi-cycle final. Un mode calcul semblable au précédent peut être mis en œuvre pour déterminer l'offset et la réponse du système en éliminant l'effet de l'offset.
La figure 4 représente un exemple de chaîne d'asservissement adapté aux mesures 33 et 34 de la figure 2c mettant en œuvre l'invention.
Dans cette chaîne, en plus des éléments déjà présents sur la figure 1 , à savoir le comparateur 16, les moyens de pilotage 12, le système 10 et la capteur 14, on a ajouté sur chacune des deux entrées 50 et 51 du comparateur 16 une fonction de transfert, respectivement 52 et 53 permettant au comparateur 16 de fonctionner sur la courbe 41 , donc en éliminant les effets de l'offset et non sur la courbe 40 comme dans l'art antérieur.
Une variante d'un procédé conforme à l'invention consiste à réaliser les deux mesures pendant un même cycle. Dans cette variante, les deux mesures peuvent se chevaucher ou non. Le chevauchement interviendra de façon obligatoire en combinaison avec la variante décrite à l'aide de la figure 2c puisque la mesure 33 occupe déjà la totalité du cycle. La mesure 34 est réalisée durant la deuxième moitié du même cycle. Le fait de réaliser les deux mesures pendant un même cycle permet de limiter les effets d'un offset risquant d'évoluer dans le temps.

Claims

REVENDICATIONS
1. Procédé de commande d'un système (10) asservi au moyen d'une commande multiniveau découpée dans le temps (PWM), le procédé mettant en œuvre un dispositif recevant une consigne (1 1 ) et comportant une chaîne d'asservissement dans laquelle un capteur (14) mesure une variable (15) caractéristique du système (10) évoluant en fonction de la consigne (1 1 ), la mesure de la variable (15) étant susceptible de modifier la commande du système (10) au travers de la chaîne d'asservissement, le procédé étant caractérisé en ce qu'il comprend les opérations suivantes :
• acquérir deux mesures (31 , 32 ; 33, 34 ; 35, 36) au moyen du capteur (14), chacune durant une période, les deux périodes étant dissymétriques par rapport au découpage de la commande,
• déterminer un offset de la chaîne d'asservissement et une réponse corrigée sans offset du système à la commande en fonction des mesures (31 , 32 ; 33, 34 ; 35, 36) et des périodes de mesure.
2. Procédé de commande selon la revendication 1 , caractérisé en ce que l'offset mesuré est calculé et soustrait des mesures (31 , 32 ; 33, 34 ; 35, 36) acquises par le capteur d'asservissement (14) par un système de deux équations à deux inconnues, les deux inconnues étant la réponse corrigée sans offset du système et l'offset de la chaîne de mesure, les deux équations étant les mesures exprimées en fonction des deux inconnues.
3. Procédé de commande selon l'une des revendications précédentes, caractérisé en ce que la consigne (1 1 ) est fonction de l'offset.
4. Procédé de commande selon l'une des revendications précédentes, caractérisé en ce que la commande est cyclique et en ce qu'à l'intérieur d'un cycle se succède une phase active pendant laquelle le système (10) est commandé à un niveau maximum (21 ) et une phase inactive pendant laquelle le système (10) est commandé à un niveau minimum (20).
5. Procédé de commande selon la revendication 4, caractérisé en ce que la période de la première mesure (31 ) s'étend sur la durée de la phase active et en ce que la période de la seconde mesure (32) s'étend sur la durée de la phase inactive.
6. Procédé de commande selon la revendication 4, caractérisé en ce que les périodes des mesures (33, 34 ; 35, 36) s'étendent sur au moins un demi-cycle.
7. Procédé de commande selon la revendication 6, caractérisé en ce que la période de la première mesure (33) s'étend sur un cycle complet et en ce que la seconde mesure (34) s'étend sur un demi-cycle final.
8. Procédé de commande selon la revendication 6, caractérisé en ce que la période de la première mesure (35) s'étend sur un demi-cycle initial et en ce que la seconde mesure (36) s'étend sur un demi-cycle final.
9. Procédé de commande selon l'une quelconques des revendications 4 à 8, caractérisé en ce que les deux mesures (31 , 32 ; 33, 34 ; 35, 36) ont lieu pendant un même cycle.
EP08804944A 2007-10-02 2008-10-01 Procede de commande d'un systeme asservi Withdrawn EP2215891A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706900A FR2921733B1 (fr) 2007-10-02 2007-10-02 Procede de commande d'un systeme asservi
PCT/EP2008/063119 WO2009043863A1 (fr) 2007-10-02 2008-10-01 Procede de commande d'un systeme asservi

Publications (1)

Publication Number Publication Date
EP2215891A1 true EP2215891A1 (fr) 2010-08-11

Family

ID=39262565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804944A Withdrawn EP2215891A1 (fr) 2007-10-02 2008-10-01 Procede de commande d'un systeme asservi

Country Status (5)

Country Link
US (1) US8258855B2 (fr)
EP (1) EP2215891A1 (fr)
CN (1) CN101843171B (fr)
FR (1) FR2921733B1 (fr)
WO (1) WO2009043863A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524233A (en) 2014-03-04 2015-09-23 Nokia Technologies Oy A method, apparatus and/or computer program for controlling light output of a display
CN106292275B (zh) * 2015-05-29 2019-02-26 明纬(广州)电子有限公司 基于开关机纪录的自适性调控方法
JP6799804B2 (ja) * 2015-09-10 2020-12-16 パナソニックIpマネジメント株式会社 照明装置及びそれを備えた照明システム、移動体
DE102018212529A1 (de) * 2018-07-27 2020-01-30 Robert Bosch Gmbh Verfahren und Steuergerät zum Regeln einer emittierten Lichtleistung einer Lichtquelle eines optischen Sensorsystems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441558B1 (en) * 2000-12-07 2002-08-27 Koninklijke Philips Electronics N.V. White LED luminary light control system
DE10227487B4 (de) * 2002-06-19 2013-11-21 Wilo Se Beleuchtungsvorrichtung
EP1776844B1 (fr) * 2004-07-23 2014-06-25 Koninklijke Philips N.V. Systeme de commande de couleurs par priorite thermique d'un module d'eclairage a semi-conducteurs
US7923935B2 (en) * 2005-04-21 2011-04-12 Radiant Research Limited Illumination control system for light emitters
JP2008543043A (ja) * 2005-05-27 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 異なる色の光を発する半導体の装置の制御
US7755349B2 (en) * 2008-03-03 2010-07-13 Memsic, Inc. Correcting offset in magneto-resistive devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009043863A1 *

Also Published As

Publication number Publication date
CN101843171B (zh) 2012-12-26
FR2921733A1 (fr) 2009-04-03
US20110050147A1 (en) 2011-03-03
US8258855B2 (en) 2012-09-04
FR2921733B1 (fr) 2010-02-26
CN101843171A (zh) 2010-09-22
WO2009043863A1 (fr) 2009-04-09

Similar Documents

Publication Publication Date Title
EP0406116B1 (fr) Procédé et dispositif de gradation de lumière pour lampe fluorescente d&#39;éclairage arrière d&#39;écran à cristaux liquides
EP0041882B1 (fr) Dispositif de prépositionnement de fréquence pour synthétiseur indirect de fréquence, et synthétiseur comportant un tel dispositif
EP2215891A1 (fr) Procede de commande d&#39;un systeme asservi
CA2910558C (fr) Procede et dispositif de generation d&#39;une commande de debit de carburant destine a etre injecte dans une chambre de combustion d&#39;une turbomachine
FR3066875A1 (fr) Dispositif de commande d&#39;emission de lumiere et feu de vehicule
FR3029373A1 (fr) Dispositif electronique associe a un module photovoltaique pour optimiser le debit d&#39;une transmission bidirectionnelle de type vlc
EP2959300A1 (fr) Capteur a accelerometre pendulaire electrostatique et procede de commande d&#39;un tel capteur
FR2509548A1 (fr) Generateur de signaux triangulaires comportant un circuit de compensation du retard de la boucle
FR3095731A1 (fr) Système et procédé de mesure de lumière ambiante
WO2021023576A1 (fr) Procédé d&#39;analyse d&#39;un gaz par un capteur optique
CA2877210A1 (fr) Procede et dispositif d&#39;ajustement d&#39;une valeur seuil de debit carburant
EP2416625B1 (fr) Procédé de commande de diodes électroluminescentes
JP2009212422A (ja) 半導体発光素子の制御
FR2994606A1 (fr) Procede et dispositif de commande de puissance ou de tension d&#39;un consommateur electrique
CH698856B1 (fr) Système de régulation d&#39;un portique à double moyen d&#39;entraînement.
FR2488696A1 (fr) Procede et dispositif de detection du decollement tournant apparaissant dans une turbomachine a deux corps tournants
FR2958976A1 (fr) Procede et dispositif d&#39;elaboration d&#39;un signal de consigne representatif d&#39;un debit de carburant
EP1406141B1 (fr) Procédé et dispositif pour commander automatiquement la poussée d&#39;un moteur d&#39;un aéronef
FR3016053A1 (fr) Systeme et procede de projection video par balayage de faisceau lumineux, afficheur tete haute et dispositif d&#39;eclairage adaptatif pour vehicule automobile utilisant un tel systeme.
EP2862036B1 (fr) Dispositif d&#39;alimentation d&#39;un circuit électronique
FR3090257A1 (fr) Procédé de capture d’images adapté aux sources lumineuses scintillantes et capteur d’images
FR3143818A1 (fr) Procédé de détermination d&#39;un état d&#39;un écran
EP3357753B1 (fr) Procédé d&#39; aide à la conduite et système d&#39; aide à la conduite
EP2469988B1 (fr) Mesure de luminosité au plafond.
EP3171511B1 (fr) Procede et systeme de determination de caracteristiques courant-tension d&#39;une installation photovoltaïque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150501