EP2208268A1 - Zündkerze mit masseelektrodenträger - Google Patents
Zündkerze mit masseelektrodenträgerInfo
- Publication number
- EP2208268A1 EP2208268A1 EP08846605A EP08846605A EP2208268A1 EP 2208268 A1 EP2208268 A1 EP 2208268A1 EP 08846605 A EP08846605 A EP 08846605A EP 08846605 A EP08846605 A EP 08846605A EP 2208268 A1 EP2208268 A1 EP 2208268A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spark plug
- ground electrode
- chamber
- carrier
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 28
- 239000000956 alloy Substances 0.000 claims description 50
- 229910045601 alloy Inorganic materials 0.000 claims description 49
- 229910000510 noble metal Inorganic materials 0.000 claims description 45
- 238000003466 welding Methods 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229910001369 Brass Inorganic materials 0.000 claims description 6
- 239000010951 brass Substances 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 108091006149 Electron carriers Proteins 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910000923 precious metal alloy Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/54—Sparking plugs having electrodes arranged in a partly-enclosed ignition chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/46—Sparking plugs having two or more spark gaps
- H01T13/467—Sparking plugs having two or more spark gaps in parallel connection
Definitions
- the invention relates to a spark plug according to the preamble of claim 1.
- spark plugs are known from the prior art.
- the aim of the invention is to simplify the production of such spark plugs, especially in view of the fact that complicated to be made complex components are avoided and the spark plug is made of easily manufacturable parts. This is especially important for mass production.
- the electrical properties of such spark plugs should at least match those of comparable spark plugs, if not exceed these properties. Accordingly, care must be taken to ensure optimum power supply to the individual ground electrodes.
- a spark plug according to the invention should allow it to be formed as a prechamber spark plug or as a swirl chamber spark plug.
- the ignition properties and the thermal conductivity of the ignition electrodes should be optimized to achieve better hot corrosion resistance.
- ground electrodes on a separate carrier ensures a uniform supply of current to the ground electrodes, without any current dissipation, e.g. via an antechamber or vortex chamber in direct contact with the ground electrodes. Since the ground electrode carrier is arranged at a distance from the inner wall surface of the chamber, that is, an antechamber or vortex chamber, the ground electrodes and their support constitute a system independent of the wall portion of the chamber. This allows easy readjustment of the electrodes and thus can Use-related electrode burn-off to be corrected.
- the carrier and the ground electrodes Due to the possibility of making the carrier and the ground electrodes in particular as a one-piece component, considerable advantages in terms of manufacture result. Furthermore, the fact that the ground electrodes can be manufactured as a one-piece component and that there is a gap between the ground electrode carrier and the inner wall of the pre-chamber or swirl chamber results in improved thermal conductivity from the ignition electrodes to the spark plug housing.
- the particular shape of the ground electrodes and the manner of application of noble metal alloy provides further advantages in terms of improved ignition performance.
- a particularly simple production with stable construction of the spark plug is achieved by the special shape of the mass electrode carrier.
- the cylindrical ring Cross-section having mass electrode support is adjusted in a simple manner in a circumferentially constant distance from the inner wall surface of the wall part of the vortex or pre-chamber, so that defined conditions with respect to combustion and power line arise.
- the structure and assembly of the spark plug are simplified, since the cylindrical annular ground electrode carrier and also a cylindrical ring-shaped cross-section vortex chamber or an antechamber in a simple manner can be placed on the spark plug and fastened there.
- the ground electrode carrier can be formed on its inner wall surface with a thread or also have a smooth surface; the same applies to a vortex chamber or antechamber.
- At least one nose can be formed, which fixes the cylinder ring in its position.
- the ground electrode carrier, the cylinder ring and the pre-chamber or the swirl chamber abut each other to ensure good heat transfer and / or good power line.
- the features of claim 4 offer advantages in terms of the function of the spark plug.
- ground electrode carrier It is advantageous if one, three or five ground electrodes are carried by the ground electrode carrier and / or if the ground electrodes are distributed on the ground electrode carrier equidistant from each other about the center electrode and / or if each of the finger-like ground electrodes extending from the ground electrode carrier is transverse to its longitudinal extent has at least in some areas rechteckfömigen or cylindrical ring section-shaped cross-section.
- the ground electrode supports are easy to manufacture or give good burn-off properties.
- the spark plug contributes when the at least one or each of the ground electrode (s) in the form of a finger goes off the carrier and its brennraum suiter end portion extending parallel to the longitudinal axis and / or the facing surface region of the center electrode and / or if the spark gap between is formed parallel to the longitudinal axis extending, opposite surface areas of the ground electrode and the center electrode.
- the spark plug housing can be manufactured with the required accuracy without too much effort.
- the distance between the outer surface of the ground electrode carrier and the wall part of the chamber is smaller than the thickness of the wall part of the chamber and / or that the thickness of the ground electrode carrier is three to fifteen times, preferably is five to ten times, the thickness of the spark gap and / or that the distance between the outer wall surface of the ground electrode carrier and the inner wall surface of the chamber 50 to 200% of the thickness of the spark gap.
- combustion chamber end of the wall portion of a vortex chamber overhangs the combustion chamber end of the center electrode and / or the ground electrodes and / or that in the wall portion of the chamber opposite each ground electrode extending parallel to the ground electrode, optionally open to the combustion chamber end of the Wandungsmaschines slot is formed, which frees the access to the end region of the ground electrode, improve the ignition characteristics of the spark plug or allow readjustment of the ground electrodes relative to the center electrode.
- the wall part of the chamber and the carrier are electrically conductive and are electrically connected to the spark plug housing and / or if each finger-shaped ground electrode from its wearer in the direction is bent toward the center electrode and after another turn in a direction substantially parallel to the center electrode and / or if the wall part of the chamber, the envelope and / or the at least one ground electrode with its support of nickel-based alloy and / or high temperature stainless steel and / or hot corrosion resistant , are made of heat conductive metal alloys, and / or that the antechamber is made of brass.
- An embodiment of a spark plug which is optimized with regard to the burn-off properties and the accuracy of the ignition is achieved if it is provided that the wall part of the chamber and the carrier are electrically conductive and electrically conductively connected to the spark plug housing and / or that each finger-shaped ground electrode is separated from its Carrier is bent in the direction of the center electrode and after a further turn in a direction approximately parallel to the center electrode and / or that the wall portion of the chamber, the envelope and / or the at least one ground electrode are made with its support made of nickel-based alloy and / or high-temperature stainless steel and / or hot corrosion-resistant, good thermal conductivity metal alloys, and / or that the pre-chamber is made of brass.
- Fig. 1 shows a schematic longitudinal section through an embodiment of a spark plug according to the invention.
- Figures 2, 2a, 2b, 2c, 2d and 2e show embodiments of a center electrode.
- Fig. 3 shows an applied noble metal alloy.
- 4 and 5 show views of an embodiment of a spark plug according to the invention.
- Figs. 6, 7, 10 and 11 show embodiments of a spark plug according to the invention.
- 8, 9, 12, 13 and 14a to f show schematically the application of noble metal alloy on respective surface areas of a ground electrode or a center electrode.
- Fig. 15 shows in detail a cylinder ring inserted between a ground electrode carrier and the inner wall surface of a vortex chamber.
- Fig. 1 shows a schematic longitudinal section through an embodiment of a spark plug according to the invention.
- Figures 2, 2a, 2b, 2c, 2d and 2e show embodiments of a center electrode.
- Fig. 3 shows an applied noble metal alloy.
- 4 and 5 show views of an
- a spark plug for use in an internal combustion engine, in particular for their use in a gasoline engine.
- a spark plug housing 2 is supported, wherein from the insulating body 1, a base center electrode 3a is enclosed or going off.
- the center electrode 3 On this base center electrode 3a of the spark plug, the center electrode 3 is mounted.
- This center electrode 3 may be formed of a single pin-like component. It can be provided that, as in the present case, the center electrode 3 is filled with a material 3b of high thermal conductivity in order to allow a better heat conduction from the electrode surfaces 12 to the base center electrode 3a.
- the combustion-chamber-side end of the center electrode 3 may be formed by a quiver 28, which is advantageously fastened to the base center electrode 3 a, in particular by repeated welding, in the region 3 '. This leads to a further improvement in heat dissipation.
- At least one ground electrode 4 is arranged over the circumference of the center electrode 3.
- one, three or five ground electrode (s) 4 are supported by a ground electrode support 6, and desirably the ground electrodes 4 are distributed on the ground electrode support 6 equidistantly around the center electrode 3.
- the ground electrode carrier 6 is carried by the spark plug housing 2, or is fixed thereto or departing therefrom.
- the at least one ground electrode 4 is in the form of a finger from the carrier 6 or finger-like ground electrodes 4 may be fastened or welded to the carrier 6.
- the fingers 4 and the carrier 6 can also be designed as a one-piece component.
- the combustion chamber side end portion 11 of the fingers extends parallel to the longitudinal axis A of the spark plug or to the facing surface region 12 of the center electrode 3.
- the ignition gap 13 is formed between the opposing surface areas 26, 12 of the ground electrode 4 and the center electrode 3.
- the spark plug housing 2 has two concentric, cylindrical end shoulders 17, 18, of which the inner end shoulder 17 projects beyond the outer end shoulder 18 in the direction of the combustion chamber.
- a simple mounting of the carrier 6 or a chamber 5a or 5b results when on the concentric, circular periphery owning Endab mechanismsn 17, 18 each have an external thread and on the inner wall surface 19 of the Wandungsteils 8 of the respective chamber 5a, 5b and on the inner wall surface 20 of the carrier 6 is formed in each case one adapted to the respective external thread internal thread.
- the heat conduction from the electrodes 4 to the spark plug housing 2 is improved when the carrier 6 is screwed or welded onto the end paragraph 18 or screwed or placed and then welded or connected by multiple circumferential welds with the final paragraph 18.
- the ground electrode carrier 6, and in particular also the portion 41 of each finger-like ground electrode 4 leaving the carrier 6, are arranged at a distance 21 from the inner wall surface 7 of the chamber 5a or 5b. This distance is provided in order to ensure a defined or independent current flow in the ground electrode carrier 6 and the chamber 5a and 5b and the wall part 8 regardless of the ground electrode support 6 screw on the spark plug housing 2 or to be able to remove it. Furthermore, as already mentioned above, the distance 21 enables an independent or defined heat dissipation from the electrodes 4 to the spark plug housing 2.
- a spark plug with a chamber is shown as
- Prechamber 5a is formed, and thus the mass electrodes 4 and the center electrode 3 circumferentially and the combustion chamber side, that surrounds all sides.
- Fig. 4 5, 6 and 10 is a Spark plug with a vortex chamber 5b shown, which surrounds the ground electrodes 4 and the center electrode 3 only circumferentially.
- the spark plug according to the invention may have an antechamber 5a or a swirl chamber 5b. Also, mixed types or modifications of such chambers can be provided. A simple structure and a simple production of the corresponding parts arise when, as shown in FIGS.
- the wall part 8 of the combustion chamber side open swirl chamber 5b or the wall part 8 of the center electrode 3 and the ground electrodes 4 surrounding antechamber 5a and the ground electrode carrier 6 have annular cross-section or are each formed by a cylinder ring.
- Through holes 10 are formed for the passage of ignited gas jets.
- the area of the end wall is 9.
- a simple production and the ignition properties are supported when the carrier 6 and the cylindrical annular wall part 8 of the respective chamber 5a, 5b are arranged concentrically to form a predetermined distance 21 to each other.
- the distance 21 between the support 6 and the wall part 8 of the respective chamber 5a, 5b is advantageously less than the thickness 22 of the wall part 8 of the chamber 5a, 5b.
- the thickness 23 of the carrier 6 may be three to fifteen times, preferably five to ten times, of the spark gap 13.
- the distance 21 between the outer wall surface 29 of the carrier 6 and the inner wall surface 7 of the chamber 5a and 5b is advantageously 50 to 200% of the thickness of the spark gap 13.
- Each finger-shaped ground electrode 4 is advantageously bent from its support 6 directly or by forming a direction of the support wall continuing section 41 in the direction of the center electrode 3 and has after another turn 30 to the center electrode 3 approximately parallel direction. This ensures that the base formed by the ground electrode support 6 a correspondingly greater distance from the center electrode 3 than those surfaces of the ground electrode 4, which limit the spark gap 13 with the center electrode 3.
- peripheral areas or radially outwardly facing surface areas 12 of center electrode 3 and / or surface 26 facing the center electrode 3 are the respective finger-shaped areas
- the noble metal alloy can be applied to areas 48 of the cylindrical part of the center electrode 3, which may be formed by welded or integrally formed plate-shaped areas or elevations, as shown in FIGS are. Also on the ground electrodes 4 such raised portions 48 can be formed, to which the noble metal alloy is melted.
- the ground electrode (s) 4 is finger-shaped and are the combustion chamber end located end portions 11 of the individual ground electrodes 4 at a constant distance from the center electrode 3 in the longitudinal direction and / or parallel extend to the ignition gap 13 forming surface 12 of the center electrode 3.
- noble metal alloy 24 is applied or formed , in particular melted or welded.
- the noble metal alloy 24 is in particular formed from Ir / Rh, Pt / Rh, Ir / Pt / Rh and is alloyed or melted onto the respective surface by means of a laser operated continuously or advantageously discontinuously.
- the wall part 8 of the chamber 5a, 5b, the sheath 28 of the center electrode 3 and / or the at least one ground electrode 4 with its carrier 6 are made of nickel-based alloy and / or high-temperature stainless steel and / or hot corrosion-resistant, good thermal conductivity metal alloys; the antechamber 5a can also be made of brass.
- the noble metal alloy 24 in adjacent, optionally overlapping or closely dense or merging with their lateral areas tracks 40 parallel or transverse to the longitudinal extent of the center electrode 3 on the the ignition gap 13 limiting surfaces of the center electrode 3 and / or on the end portions 11 of the individual ground electrodes 4 is applied.
- Webs 40 in a plurality of superimposed layers 41 is applied. It is also possible to melt the precious metal alloy 24 flake-like webs and / or applied in adjacent and / or superimposed webs, as shown in FIG. 3 im
- End regions (s) 11 of the respective ground electrode (s) 4 is formed or applied.
- noble metal alloy sheets 40 may on the raised portions 48 of the center electrode 3 and / or the center electrode 3 facing end surface areas
- the number of finger-shaped ground electrodes 4 is odd or that the ground electrodes 4 do not face each other with respect to the central axis A of the center electrode 3.
- ground electrodes are already attached to the ground electrode support 6 or in one piece with it, as with the corresponding application tools, that is
- the surface of the ground electrode 4 facing the center electrode 3 and / or its noble metal alloy 24 may be adapted to the surface course of the center electrode 3 or the noble metal alloy 24 applied thereto or a comparable one
- each ground electrode 4 is a parallel to the ground electrode 4 extending, optionally open to the combustion chamber end of the Wandungsmaschines 8, slot 16 is formed, the access to the end portion 11 of the respective
- Ground electrode 4 for maintenance purposes is paramount. Good burn-off properties result when, as shown in FIG. 4, the combustion-chamber-side end of the wall part 8 of a vortex chamber 5b projects beyond the combustion-chamber-side end of the center electrode 3 and the provided ground electrodes 4.
- the ignition gap 13 or the distance between the individual ground electrodes 4 and the center electrode 3 and the noble metal alloy 24 applied to the respective ground electrode 4 and / or on the center electrode 3 0.1 to 1, 0 mm, preferably 0.15 to 0.5 mm.
- Stable ignition surfaces are obtained when the noble metal alloy 24 is applied in particular adjacent tracks 40, wherein the width B of the applied webs 40 is 1, 5 to 8 times, preferably 2 to 5 times, the height H of the applied web 40 , It is advantageous if the width B of an applied web 40 is one third to one tenth, preferably one quarter to one eighth, the width of the end region 11 of a finger-shaped ground electrode 4 in the region of the ignition gap 13.
- the cross-section of the tracks 40 may be rectangular or correspond to the elongated half of an ellipsoid.
- the finger-shaped ground electrodes 4 surrounded by a swirl chamber 5b are bent from their support 6 towards the center electrode 3 and that an bent portion 51 has an end region 11 of the finger-like earth electrode 4, which runs substantially parallel to the surface of the center electrode 3 and whose center electrode 3 facing surface 26 and / or the surface 14 of the end portion 11 of the ground electrode 4, the noble metal 24 has.
- passage openings 10 are formed in the wall part 8 and / or in the cover wall 9 of the prechamber 5a, in the form of burning fuel ignited in the prechamber 5a Gas jets emerges, wherein the arrangement and direction of the individual passage recesses 10 is made such that a number, preferably all, of the antechamber exiting 5a gas jet propagates in diverging directions (n).
- the end wall 9 and the cylindrical wall 8 of the antechamber 5a may be integrally formed or joined together by welding.
- the noble metal alloy 24 to the corresponding surfaces of the spark plug can, as shown schematically in Figs. 8, 9 and 12 to 14, proceed.
- the central electrode 3 facing end portions 11 of the ground electrodes 4 and / or on the center electrode 3, in particular on the radially oriented, combustion chamber side surface areas 12, optionally in several steps, precious metal alloy 24 on or melted and / or welded.
- a wire or rod 44 made of noble metal alloy 24 of the respective surface 12, 26 is approximated and moved either parallel or transversely relative to the respective longitudinal extension of the finger of the ground electrode 4 and the surface or axis of the center electrode 3 and with the material of the finger 4th or the center electrode 3 or with already applied noble metal alloy firmly connected or welded or fused.
- the melting and / or welding is carried out according to the invention throughout with a pulsed laser beam 43.
- Fig. 8 shows schematically the application of noble metal alloy 24 in tracks 40 which are parallel to the longitudinal axis A of the center electrode 3. Similarly, the noble metal alloy can be applied in tracks on the surface 26 of the end portion 11 of the ground electrodes 4. When applying the noble metal alloy 24, a relative movement takes place between the rod or wire 44 and the surface 12 or 26.
- FIG. 9 shows the application of noble metal alloy 24 to the end region 11 of a finger-like ground electrode 4 transversely to the longitudinal extent of the ground electrode 4.
- This ground electrode 4 is advantageously already connected or integrally formed with the ground electrode carrier 6 during the application of the noble metal alloy 24.
- the noble metal alloy 24 may be deposited in adjacent webs 40 and / or limited local elongated regions, or deposited in superimposed layers 41. Depending on the desired composition of the noble metal alloy 24, mixing or alloying of, if appropriate, applied in successive application steps, possibly different noble metal alloys 24 with one another or with the surface material can take place during application.
- Figs. 12 and 13 show the application of noble metal alloy 24 on surveys
- Precious metal alloy 24 as shown in FIG. 14a positioned on the region to be alloyed electrode 3 and then at the front and rear ends by means of a Melting point 56 fixed.
- a Melting point 56 fixed.
- the fixed piece of wire 57 is then melted or bonded to the surface 12. It can also gem. 14a to 14e, a plurality of wire sections 57 are fastened next to one another, and only as a final step, the entire noble metal wire pieces with the surface of the center electrode 3 and the surface of the end portion 11 of the ground electrode support fingers 4 merged or applied to these surfaces.
- Fig. 6, 10 and 11 show an embodiment of a spark plug according to the invention, in which the center electrode 3 has a plurality of substantially mutually parallel, identically formed, fingers 31, which in each case a finger-shaped ground electrode 4 is opposite.
- the mutually facing, the ignition gap 13 bounding surfaces 26 of the fingers 31 of the center electrode 3 and the finger-shaped ground electrodes 4 carry adjacent molten sheets 40 of precious metal alloy 24.
- the individual finger-shaped ground electrodes 4 are arranged on a ground electrode carrier 6, which is arranged at a distance 18 from the inner wall surface of the wall electrode 8 surrounding this grounding member 8 an antechamber 5a and a swirl chamber 5b.
- the tracks 40 of the noble metal alloy 24 on the center electrode 3 and on the ground electrode 4 are parallel to each other.
- the tracks 40 on the center electrode 3 are parallel with respect to the tracks 40 on the ground electrode 4.
- the ground electrode carrier 6 and the wall part 8 of the chamber 5 a, 5 b are electrically conductively connected to the spark plug housing 2.
- the center electrode 3 is connected to the base center electrode 3a of the spark plug by welding, and this base center electrode 3a is guided in the insulator body 1 and electrically insulated from the housing by the insulator body.
- the top wall 9 of the antechamber 5a is advantageously formed in one piece with the wall part 8.
- Fig. 4 shows a spark plug with a swirl chamber 5b.
- the finger-shaped ground electrodes are formed integrally with the carrier 6; However, it is readily possible to weld the ground electrodes 4 to the carrier 6.
- FIG. 3 shows the application of a noble metal alloy 24 in the form of adjacent webs 40 which overlap each other at most laterally, wherein the individual webs 40 can also be applied in the form of superimposed layers 41.
- the ratio of the width B and the height H of the individual webs depends on the selected alloy material and the base material.
- FIG. 2 shows an enlarged view of a center electrode 3, which is constructed from an electrode inner part 27 and a cylindrical shell 28 surrounding this electrode inner part 27, on which elevations 48 are formed.
- the electrode inner part can be advantageously carried out of good heat conducting material 3b.
- the opposite, the ignition gap delimiting surfaces 11, 26 of the finger-shaped ground electrodes 4 and the center electrode 3 may be formed such that over the width and height of the Zündspaltes 13, the opposing surfaces, apart from the curves of the individual webs 40, parallel. The applied to the ground electrodes 4 and the electrode 3
- Noble metal alloy layers may advantageously have the same structure or surface structure.
- a noble metal alloy 24 not only the alloys of precious metals used but also the pure metals are understood. It is possible to apply pure metals or different noble metal alloys and to melt an alloy during application. The pure metals can also be deposited or applied unalloyed and form the ignition surfaces.
- the surface 26 of the ground electrodes 4, which faces the center electrode 3, extends over a length range of the ground electrode 4 as it leaves the electrode carrier 6 to an extent of about 30 to 70%, in particular 40 to 60%.
- the ground electrodes have over their longitudinal extension a substantially constant cross-sectional shape, in particular in its portion along which the surface 26 is formed. This apparent in particular from FIGS. 1, 4 and 5 form of the ground electrodes 4 allows easy production of existing sheets or blanks and results in a defined power and heat dissipation.
- This constant cross-section is present in particular in the section of the ground electrodes 4, which is located on the combustion chamber side of the turn 51.
- the ground electrodes 4 are designed such that they extend from their support 6 substantially straight and without bending in the direction of the combustion chamber and have a constant cross-sectional shape over their longitudinal extension. After a turn in the end in the direction of the intended center electrode ends the bent portion of the ground electrode 4 and forms an ignition surface 26 from.
- the finger-like center electrodes opposite the ground electrodes 4 have a surface 12 facing the surface 26 and are derived from a center electrode 3 placed on a base electrode 3a.
- FIG. 15 shows a detailed view of a spark plug according to the invention. In one
- a cylinder ring 50 is inserted.
- This cylinder ring 50 can be held in position with at least one nose 53 formed on the inner wall surface 19 of the wall part 8 and / or welded to the support 6 and / or the shoulder 17.
- the wall portion 50 is in operation after appropriate thermal expansion with its outer surface on the inner wall surface 19 of the chamber and with its inner wall surface on the outer wall surface 52 of the ground electrode carrier 6 at.
- the cylinder ring 50 is just like the ground electrode support 6 on the end paragraph 17, of which the ground electrode support 6 is supported or supported.
- the cylinder ring 50 may be made of brass.
- the height H of the cylinder ring 50 is 50 to 100% of the distance between the end paragraph 17 and the bend 51 of the finger-like electrodes.
- the cylinder ring 50 may advantageously be made of metal or ceramic, thus providing good thermal conductivity, e.g. like brass, own.
Landscapes
- Spark Plugs (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0177507A AT506140B1 (de) | 2007-11-05 | 2007-11-05 | Zündkerze |
PCT/AT2008/000389 WO2009059339A1 (de) | 2007-11-05 | 2008-10-24 | Zündkerze mit masseelektrodenträger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2208268A1 true EP2208268A1 (de) | 2010-07-21 |
EP2208268B1 EP2208268B1 (de) | 2011-05-11 |
Family
ID=40242642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08846605A Active EP2208268B1 (de) | 2007-11-05 | 2008-10-24 | Zündkerze mit masseelektrodenträger |
Country Status (10)
Country | Link |
---|---|
US (1) | US8143772B2 (de) |
EP (1) | EP2208268B1 (de) |
AT (2) | AT506140B1 (de) |
AU (1) | AU2008324739B2 (de) |
BR (1) | BRPI0820495B1 (de) |
CA (1) | CA2704609C (de) |
DK (1) | DK2208268T3 (de) |
ES (1) | ES2366009T3 (de) |
PT (1) | PT2208268E (de) |
WO (1) | WO2009059339A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564740B2 (en) | 2014-12-02 | 2017-02-07 | Federal-Mogul Ignition Gmbh | Spark plug for a gas-powered internal combustion engine |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100990206B1 (ko) * | 2009-10-14 | 2010-10-29 | 정인태 | 내연기관의 점화플러그 |
US8584648B2 (en) | 2010-11-23 | 2013-11-19 | Woodward, Inc. | Controlled spark ignited flame kernel flow |
US9172217B2 (en) | 2010-11-23 | 2015-10-27 | Woodward, Inc. | Pre-chamber spark plug with tubular electrode and method of manufacturing same |
US9476347B2 (en) | 2010-11-23 | 2016-10-25 | Woodward, Inc. | Controlled spark ignited flame kernel flow in fuel-fed prechambers |
AT510582B1 (de) | 2011-02-21 | 2012-05-15 | Francesconi Christian | Zündkerze |
AT511157B1 (de) | 2011-02-21 | 2014-01-15 | Francesconi Christian | Zündkerze |
AT511866B1 (de) * | 2011-08-22 | 2014-01-15 | Ge Jenbacher Gmbh & Co Ohg | Zündkerze für eine brennkraftmaschine |
US9856848B2 (en) | 2013-01-08 | 2018-01-02 | Woodward, Inc. | Quiescent chamber hot gas igniter |
US8839762B1 (en) | 2013-06-10 | 2014-09-23 | Woodward, Inc. | Multi-chamber igniter |
US9765682B2 (en) | 2013-06-10 | 2017-09-19 | Woodward, Inc. | Multi-chamber igniter |
DE102013221963B4 (de) * | 2013-10-29 | 2019-10-17 | Dkt Verwaltungs-Gmbh | Vorkammerzündkerze |
EP3271561B1 (de) | 2015-03-20 | 2018-12-12 | Woodward, Inc. | Paralleles vorkammerzündungssystem |
US9653886B2 (en) | 2015-03-20 | 2017-05-16 | Woodward, Inc. | Cap shielded ignition system |
US10465557B2 (en) | 2015-09-01 | 2019-11-05 | Rolls-Royce North American Technologies, Inc. | Magnetic squeeze film damper system for a gas turbine engine |
US9890689B2 (en) | 2015-10-29 | 2018-02-13 | Woodward, Inc. | Gaseous fuel combustion |
DE102017102128B4 (de) | 2016-02-18 | 2019-01-24 | Federal-Mogul Ignition Gmbh | Zündkerze für eine gasbetriebene Brennkraftmaschine |
DE102020206663A1 (de) * | 2020-05-28 | 2021-12-02 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vorkammer-Zündkerze mit profilierter Masseelektrode |
DE102022214083A1 (de) | 2022-12-20 | 2024-06-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Elektrode mit länglicher Erhebung oder Nut und Zündkerze mit einer solchen Elektrode als Masseelektrode |
US20240337234A1 (en) * | 2023-04-06 | 2024-10-10 | Caterpillar Inc. | Sparkplug having cathode and anode compositions for extended service life |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2776394A (en) * | 1953-02-26 | 1957-01-01 | Bendix Aviat Corp | Screened spark plug |
AT410150B (de) * | 2001-06-05 | 2003-02-25 | Jenbacher Ag | Zündkerze einer brennkraftmaschine |
AT410151B (de) | 2001-06-05 | 2003-02-25 | Jenbacher Ag | Zündkerze einer brennkraftmaschine |
DE50300292D1 (de) * | 2002-07-22 | 2005-03-10 | Jenbacher Ag Jenbach | Zündkerze |
AT413904B (de) * | 2003-09-19 | 2006-07-15 | Ge Jenbacher Ag | Zündkerze |
JP2007035570A (ja) * | 2005-07-29 | 2007-02-08 | Denso Corp | 点火プラグおよび燃焼機関 |
-
2007
- 2007-11-05 AT AT0177507A patent/AT506140B1/de not_active IP Right Cessation
-
2008
- 2008-10-24 CA CA2704609A patent/CA2704609C/en active Active
- 2008-10-24 DK DK08846605.7T patent/DK2208268T3/da active
- 2008-10-24 EP EP08846605A patent/EP2208268B1/de active Active
- 2008-10-24 AU AU2008324739A patent/AU2008324739B2/en not_active Ceased
- 2008-10-24 PT PT08846605T patent/PT2208268E/pt unknown
- 2008-10-24 ES ES08846605T patent/ES2366009T3/es active Active
- 2008-10-24 WO PCT/AT2008/000389 patent/WO2009059339A1/de active Application Filing
- 2008-10-24 US US12/740,702 patent/US8143772B2/en active Active
- 2008-10-24 BR BRPI0820495A patent/BRPI0820495B1/pt active IP Right Grant
- 2008-10-24 AT AT08846605T patent/ATE509400T1/de active
Non-Patent Citations (1)
Title |
---|
See references of WO2009059339A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564740B2 (en) | 2014-12-02 | 2017-02-07 | Federal-Mogul Ignition Gmbh | Spark plug for a gas-powered internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
ES2366009T3 (es) | 2011-10-14 |
DK2208268T3 (da) | 2011-09-05 |
BRPI0820495A2 (pt) | 2015-06-16 |
CA2704609A1 (en) | 2009-05-14 |
AT506140B1 (de) | 2009-11-15 |
PT2208268E (pt) | 2011-08-25 |
US20110089803A1 (en) | 2011-04-21 |
CA2704609C (en) | 2016-07-12 |
WO2009059339A1 (de) | 2009-05-14 |
AT506140A1 (de) | 2009-06-15 |
AU2008324739A1 (en) | 2009-05-14 |
EP2208268B1 (de) | 2011-05-11 |
BRPI0820495B1 (pt) | 2018-10-09 |
US8143772B2 (en) | 2012-03-27 |
ATE509400T1 (de) | 2011-05-15 |
AU2008324739B2 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2208268B1 (de) | Zündkerze mit masseelektrodenträger | |
EP1265329B1 (de) | Zündkerze einer Brennkraftmaschine | |
EP0675272B1 (de) | Vorkammerzündeinrichtung | |
AT510582B1 (de) | Zündkerze | |
AT511157B1 (de) | Zündkerze | |
DE10133229B4 (de) | Zündkerze mit Ir-Legierungsplättchen | |
DE69400185T2 (de) | Zündkerzenelektrode zur Anwendung in einem Verbrennungsmotor | |
EP0238520A1 (de) | Zündkerze mit gleitfunkenstrecke. | |
DE102014117714B4 (de) | Zündkerze für eine mit Gas betriebene Brennkraftmaschine | |
EP0880642B1 (de) | Vorrichtung zum reinigen von abgasen aus verbrennungskraftmaschinen | |
AT506139B1 (de) | Zündkerze mit edelmetallbeschichtung | |
DE102007050634A1 (de) | Zündkerze | |
DE10025048A1 (de) | Mittelelektrode mit Edelmetallarmierung | |
EP1881573B1 (de) | Zündeinrichtung, insbesondere Zündkerze für eine Verbrennungsmaschine und Verfahren zur Positionierung von wenigstens einer Masseelektrode in der Zündeinrichtung. | |
DE102024101440A1 (de) | Zündkerze | |
DE4128392A1 (de) | Zuendkerze | |
DE202024101181U1 (de) | Zündkerze | |
DE2733608C3 (de) | Gasfeuerzeug mit elektrischer Zündeinrichtung | |
DE1476321C (de) | Zündkerze | |
AT522986A1 (de) | Zündkerze | |
DD276570A1 (de) | Langlebensdauerzuendkerze |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100406 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008003530 Country of ref document: DE Effective date: 20110622 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BUECHEL, VON REVY & PARTNER |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20110809 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2366009 Country of ref document: ES Kind code of ref document: T3 Effective date: 20111014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110812 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110911 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: BEATE KOENIG, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: KOENIG, BEATE, DIPL.-PHYS. DR.RER.NAT., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111123 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008003530 Country of ref document: DE Effective date: 20120214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATWIL AG, CH Ref country code: CH Ref legal event code: PUE Owner name: FRANCESCONI TECHNOLOGIE GMBH, AT Free format text: FORMER OWNER: FRANCESCONI, CHRISTIAN, AT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: KOENIG, BEATE, DIPL.-PHYS. DR.RER.NAT., DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150305 AND 20150311 Ref country code: PT Ref legal event code: PC4A Owner name: FRANCESCONI TECHNOLOGIE GMBH, AT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE Effective date: 20120207 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE Effective date: 20150302 Ref country code: ES Ref legal event code: PC2A Owner name: FRANCESCONI TECHNOLOGIE GMBH Effective date: 20150401 Ref country code: DE Ref legal event code: R081 Ref document number: 502008003530 Country of ref document: DE Owner name: FRANCESCONI TECHNOLOGIE GMBH, AT Free format text: FORMER OWNER: FRANCESCONI, CHRISTIAN, KAPFENBERG, AT Effective date: 20150302 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: KOENIG, BEATE, DIPL.-PHYS. DR.RER.NAT., DE Effective date: 20150302 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: KOENIG, BEATE, DIPL.-PHYS. DR.RER.NAT., DE Effective date: 20120207 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Effective date: 20150302 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Effective date: 20120207 Ref country code: DE Ref legal event code: R081 Ref document number: 502008003530 Country of ref document: DE Owner name: GE JENBACHER GMBH & CO OG, AT Free format text: FORMER OWNER: FRANCESCONI, CHRISTIAN, KAPFENBERG, AT Effective date: 20150302 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE Effective date: 20150302 Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE Effective date: 20120207 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: SD Effective date: 20150430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 509400 Country of ref document: AT Kind code of ref document: T Owner name: FRANCESCONI TECHNOLOGIE GMBH, AT Effective date: 20150605 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20150623 Ref country code: FR Ref legal event code: TP Owner name: FRANCESCONI TECHNOLOGIE GMBH, AT Effective date: 20150623 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: GE JENBACHER GMBH AND CO OG, AT Free format text: FORMER OWNER: FRANCESCONI TECHNOLOGIE GMBH, AT Ref country code: CH Ref legal event code: NV Representative=s name: R.A. EGLI AND CO, PATENTANWAELTE, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008003530 Country of ref document: DE Owner name: GE JENBACHER GMBH & CO OG, AT Free format text: FORMER OWNER: FRANCESCONI TECHNOLOGIE GMBH, KAPFENBERG, AT Ref country code: DE Ref legal event code: R082 Ref document number: 502008003530 Country of ref document: DE Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: GE JENBACHER GMBH & CO OG Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: GE JENBACHER GMBH & CO OG, AT Effective date: 20151217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20151021 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: GE JENBACHER GMBH & CO OG, AT Effective date: 20151223 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: GE KAPFENBERG GMBH; AT Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: FRANCESCONI TECHNOLOGIE GMBH Effective date: 20151008 Ref country code: NL Ref legal event code: PD Owner name: GE JENBACHER GMBH & CO OG; AT Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: GE KAPFENBERG GMBH Effective date: 20151008 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20151006 Year of fee payment: 8 Ref country code: BE Payment date: 20151021 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20160204 AND 20160210 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 509400 Country of ref document: AT Kind code of ref document: T Owner name: GE KAPFENBERG GMBH, AT Effective date: 20160321 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170424 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: GE KAPFENBERG GMBH; AT Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT NOM PROPRIETAIRE; FORMER OWNER NAME: FRANCESCONI TECHNOLOGIE GMBH Effective date: 20151022 Ref country code: BE Ref legal event code: MM Effective date: 20161031 Ref country code: BE Ref legal event code: PD Owner name: FRANCESCONI TECHNOLOGIE GMBH; AT Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: FRANCESCONI, CHRISTIAN Effective date: 20150224 Ref country code: BE Ref legal event code: PD Owner name: GE JENBACHER GMBH & CO OG; AT Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: GE KAPFENBERG GMBH Effective date: 20151022 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R008 Ref document number: 502008003530 Country of ref document: DE Ref country code: DE Ref legal event code: R039 Ref document number: 502008003530 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R040 Ref document number: 502008003530 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230920 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231102 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 16 Ref country code: CH Payment date: 20231102 Year of fee payment: 16 Ref country code: AT Payment date: 20230921 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240919 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240919 Year of fee payment: 17 |