EP2208215B1 - Schaltanordnung und verfahren zum ansteuern eines elektromagnetischen relais - Google Patents
Schaltanordnung und verfahren zum ansteuern eines elektromagnetischen relais Download PDFInfo
- Publication number
- EP2208215B1 EP2208215B1 EP07846672.9A EP07846672A EP2208215B1 EP 2208215 B1 EP2208215 B1 EP 2208215B1 EP 07846672 A EP07846672 A EP 07846672A EP 2208215 B1 EP2208215 B1 EP 2208215B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- relay coil
- switching
- relay
- switching device
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000012360 testing method Methods 0.000 claims description 124
- 230000004044 response Effects 0.000 claims description 113
- 238000005259 measurement Methods 0.000 claims description 32
- 238000012806 monitoring device Methods 0.000 claims description 32
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000013016 damping Methods 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000000454 anti-cipatory effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
Definitions
- the invention relates to a switching arrangement for driving a relay coil having a relay relay and having electromagnetic relay, wherein in a current path with the relay coil two switching devices are arranged such that a first switching device with a first terminal of the relay coil and a second switching device with a second terminal of the relay coil communicates; a drive device is provided which is set up to close both switching devices in order to establish a current flow through the relay coil and to open both switching devices in order to interrupt a current flow through the relay coil.
- the invention also relates to a corresponding method for driving an electromagnetic relay.
- Electromagnetic relays In electrical devices, electromagnetic relays are often used to perform controlled switching operations. Electromagnetic relays usually consist of a relay coil and at least one pair of electrical relay contacts. If an electric current is applied to the relay coil, a magnetic field is generated around the relay coil, whereby - in the case of self-opening relays - a closure of the relay contacts is effected so that a current flow through the relay contacts is possible. If the current flowing through the relay coil interrupted again, the movable part of the relay contacts is moved back, for example by means of a spring means in its initial position, causing an opening of the relay contacts and interrupts the flow of current through them. For self-closing relays are the contacts closed in the de-energized state of the relay coil and open in the current-carrying state.
- Electromagnetic relays are usually used where, by means of a comparatively low current from a drive circuit, a comparatively larger current in a switching circuit to be switched on or off.
- the electromagnetic relay forms in this case a galvanic decoupling of the drive circuit and the switching circuit.
- Electromagnetic relays are used, for example, in electrical protective devices for monitoring electrical energy supply networks in order to trigger a tripping of an electrical circuit breaker in the event of a fault in the electrical energy supply network by closing the relay contacts of a so-called "command relay", thus interrupting the fault current.
- electromagnetic relays it is of utmost importance to reliably prevent unintentional switching on or off in order to ensure a high degree of safety in the event of a fault on the one hand, and to avoid costly false triggering on the other hand.
- the relay coil is not only controlled by a possibly error-prone single switching device, but instead via two switching devices located in the current path of the relay coil.
- the relay coil is only activated when both switching devices are closed at the same time.
- a switching device is opened, the current flow through the relay coil is interrupted.
- Such a switching arrangement is for example from the German patent DE 44 09 287 C1 known from which a relay coil emerges, which is located with two switching devices in the form of transistors in a current path.
- the invention has for its object to provide a circuit arrangement and a method of the type mentioned above, which allow a predictive review of the relay coil and the two switching devices to possibly occurred errors.
- a switching arrangement of the type mentioned in which the drive means for emitting test signals to the first and the second switching means is arranged, wherein the test signals are such that they do not affect the current state of the relay contacts; an input of a conversion device is acted upon by a measurement voltage which is tapped between a connection of the relay coil and one of the switching devices, wherein the conversion device is set up to convert the measurement voltage into a binary response signal; and connected to an output of the conversion device is a monitoring device which evaluates the course of the binary response signal during the transmission of the test signals by the control device and indicates an error in the relay coil or one of the switching devices if the course of the binary response signal deviates from an expected curve.
- the particular advantage of the switching arrangement according to the invention is that a comparatively inexpensive examination of the correct function of the relay coil and the two switching devices is already possible if no faulty switching operation of the relay has yet been carried out. In this way, as it were, a forward check of the relay coil and the two switching devices can be performed for possible errors.
- "anticipatory" means that a check of the functionality can take place without bringing about a switching action of the relay contacts. For this purpose, only a single measuring signal in the form of the measuring voltage is tapped and monitored in comparatively inexpensive manner. A malfunction of the two switching devices or the relay coil can be advantageously achieved both when switched on and when the relay coil is switched off by the two switching devices are acted upon with test signals that do not affect the current state of the relay contacts.
- the two switching devices are semiconductor switches, in particular transistors.
- Such semiconductor switches can be switched on and off particularly quickly and with low switching power.
- a further advantageous embodiment of the switching arrangement according to the invention further provides that in the current path of the relay coil between each terminal of the relay coil and a switching device, a terminal of a respective damping capacitor is arranged. Due to the damping effect of the capacitors, the course of the measuring voltage and thus the course of the binary response signal can be extended in time so that a particularly simple evaluation is possible.
- a further advantageous embodiment of the switch arrangement according to the invention further provides that the conversion device has a parallel to the current path of the relay coil arranged voltage divider, theressstagerabgriff is acted upon on the one hand with the measuring voltage and on the other hand supplied to obtain a binary response signal to a control input of another switching device. In this way, a binary response signal from the measurement voltage can be generated without much circuit complexity.
- the further switching device may be, for example, a semiconductor switch, in particular a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Field-effect transistors are driven by voltages and are therefore particularly well suited in the present case for the conversion of the measurement voltage into a binary response signal.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the above-mentioned object is achieved by a method for driving an electromagnetic relay having a relay coil and relay contacts, in which both switching devices are closed to establish a current flow through the relay coil and to interrupt a current flow through the relay coil both switching devices are opened, wherein the switching devices are arranged in a current path with the relay coil such that the first switching device is connected to a first terminal of the relay coil and the second switching device to a second terminal of the relay coil, wherein in the inventive method, the drive means test signals delivers to the two switching devices that do not affect the current state of the relay contacts; between a terminal of the relay coil and one of the switching devices, a measuring voltage is tapped; the measuring voltage is converted into a binary response signal; and an error in the relay coil or one of the two switching devices is indicated if the course of the binary response signal deviates from an expected course.
- a check of the drive circuit of the electromagnetic relay can advantageously take place in a forward-looking manner.
- time-delayed test signals are delivered to the two switching devices, which are shorter than a response time of the relay.
- the time is regarded as the response time of the relay, which requires a magnetic field generated by the relay coil to respond to sudden change in a voltage applied to the relay coil voltage with a change in the switching state of the relay contacts.
- the relay coil is switched off in the case of a completely established magnetic field, the magnetic field only builds up with a certain time delay. Only when the magnetic field strength is no longer sufficient to hold the relay contacts in their previous position, the state of the relay contacts changes. If you switch back on the timely Relay coil, so the magnetic field builds up again and the relay contacts remain in their state without change.
- a magnetic field of the relay coil in a sudden application of a voltage to the - previously de-energized - relay coil requires a certain period of time until its magnetic field strength sufficient to control the relay contacts. If the current flow is interrupted in good time, the state of the relay contacts does not change.
- test signals must therefore be so short in terms of their duration that no change in the state of the relay contacts occurs due to the inertia of the magnetic field of the relay coil which builds up or degrades.
- a check of the two switching devices and the relay coil for possible errors can be carried out with the inventive method, both in the currentless as well as in the current-carrying state of the relay coil.
- a check can be carried out according to an advantageous development by the first switching device is permanently driven, while the second switching device is controlled by a pulsed test signal.
- the timing of the binary response signal can be compared continuously with the expected course.
- a particularly advantageous embodiment of the method according to the invention provides, however, that to determine whether an error is present in the relay coil or one of the switching devices, the binary response signal is compared to the expected course at least two characteristic times, wherein between the characteristic times at least one change with respect to the condition of at least one test signal.
- the computing power required for the comparison of the monitoring device is kept relatively low, since the course of the binary response signal and the expected course in the simplest case only have to be compared with each other at two particularly characteristic times and therefore a continuous comparison is not necessary.
- the method according to the invention should be repeated at regular time intervals.
- test signals are emitted by the control device depending on the state of the relay contacts.
- FIG. 1 shows a schematic block diagram of an embodiment of a switching arrangement for driving an electromagnetic relay.
- a drive circuit of the electromagnetic relay comprises in a current path 10 a series connection of a relay coil 11 with a first switching device 12a and a second switching device 12b, the switching devices 12a and 12b in FIG FIG. 1 merely exemplified by mechanical switching devices.
- the switching devices 12a and 12b may be formed by mechanical switches or semiconductor switches, such as transistors.
- V + a high or low voltage level is indicated.
- the high voltage level V + may be at 10V while the low voltage level is V-0V.
- the first switching device 12a communicates with a first terminal 11a of the relay coil 11 on the high voltage level V + side, while the second low-voltage side switching device 12b connects with a second terminal 11b of the relay coil 11.
- the first and second switching devices 12a and 12b are connected to their drive inputs with a drive device 13 in connection. Via the drive device 13, the switching devices 12a and 12b can be switched on or off.
- the control device 13 is set up for the delivery of test signals to the control inputs of the first and second switching devices 12a and 12b, as will be explained in more detail later.
- a measuring voltage U mess is tapped off via a branch 14 and fed to a converting device 15.
- the conversion device 15 is configured to convert the measurement voltage U mess into a binary response signal BS and to deliver this at its output.
- the binary response signal BS is supplied to a monitoring device 16, which can exchange information with the drive device 13.
- the monitoring device 16 can either - as in FIG. 1 represented - form an independent unit or - deviating from the representation in FIG. 1 - Be integrated in the drive device 13.
- Both the drive device 13 and the monitoring device 16 may include a microprocessor or other logic device (eg, an ASIC) that controls their operation.
- the measuring voltage U mess can also be arranged at the connection between the first switching device 12a and the first terminal of the relay coil 11.
- the sequence of the test signals for monitoring the current path 10 described below is correspondingly reversed to the two in such a case Distribute switching devices 12a and 12b, the error cases described below are also adapted accordingly.
- the following examples is intended by a tap of the measuring voltage U mess according to FIG. 1 , So be assumed that between the second switching device 12b and the second terminal of the relay coil 11.
- FIG. 2 a switching arrangement for driving an electromagnetic relay, for example, as in FIG. 2 be shown constructed.
- FIG. 1 appropriate components are in FIG. 2 the same reference numerals used.
- the switching devices 12a and 12b are shown in FIG. 2 as semiconductor switches in the form of transistors.
- a group of switching elements is indicated, which correspond to the conversion device 15 FIG. 1 equivalent.
- the core of the conversion device 15 forms in accordance with the embodiment FIG. 2 a voltage divider 22, which consists of two ohmic resistors 22a and 22b by way of example. Between the two ohmic resistors 22a and 22b is apalssmaschinerabgriff 23, on the one hand with the branch 14 for the measuring voltage and on the other hand is in communication with a control input of a further switching device 24.
- Another ohmic resistor 26 is used to adjust the voltage level of the binary response signal BS.
- a terminal of a first damping capacitor 27a is connected, which lies with its other terminal at the low voltage level V-. Accordingly, at the connection between the second switching device 12b and the second terminal 11b of the relay coil 11 with its one terminal, a second damping capacitor 27b is connected, whose second terminal is also at the low voltage level V-.
- FIG. 2 illustrates the functioning of the in FIG. 2 illustrated switching arrangement, in particular with regard to the review of the two switching devices 12a and 12b and the relay coil 11 for possible errors, will be explained in more detail. This is except on FIG. 2 also on the FIGS. 3 to 7 Referenced.
- the control device 13 initially serves to establish a current flow through the relay coil 1 or to interrupt it by simultaneously opening or closing the switching devices 12a and 12b.
- a current flow through the relay coil 11 is produced, whereby a developed corresponding magnetic field in the relay coil 11 and from a certain magnetic field strength, causing a change in the state of the (not shown) relay contacts of the electromagnetic relay.
- the control device 13 opens the two switching devices 12a and 12b, so that the magnetic field generated by the relay coil 11 degrades again. If the field strength generated by the magnetic field is no longer sufficient to hold the relay contacts in their position, they will change to their normal position, for example due to the action of a spring force.
- the voltage applied to this branch 14 measuring voltage U mess is fed to the converting device 15, where they are in a binary Response signal BS is implemented.
- the course of the binary response signal BS is compared by the monitoring device 16 with an expected course, and an error in the current path 10 is detected if the expected course and the actual course of the binary response signal BS differ from each other.
- the monitoring device 16 is able to exchange information with the control device 13, for example via the beginning of sending the test signals P_A, P_B to the two switching devices 12a and 12b to be informed.
- a corresponding error message can be issued, which informs an operator of a device in which the electromagnetic relay is installed, about the error.
- the operator of the corresponding device can then replace the corresponding faulty module, even before it can lead to an actual malfunction of the electromagnetic relay.
- a check of the current path 10 for possible errors can be carried out both in the currentless and in the current-carrying state of the relay coil and correspondingly switched off or switched relay contacts, without affecting the state of the relay contacts thereby.
- the curves of the test signals P_A and P_B are shown in the two upper diagrams, while in the The following ten diagrams each on the left side of the measuring voltages applied to the branch 14, shown for the error-free case and for various error cases, while shown on the right side respectively resulting from the respective measurement voltages binary response signals for the error-free case and for various error cases are.
- a second test signal P_B is initially supplied to the second switching device 12b to start a test run.
- This test signal P_B brings the second switching device 12b in its closed state.
- the duration of the test signal P_B is in this case such that even in the event that the first switching device 12a should be permanently short-circuited due to an error, the duration of a resulting then by the relay coil 11 current flow has no effect on the state of the relay contacts.
- the duration of the test signal P_B must therefore be less than the response time of the relay already explained earlier.
- the duration of a test signal for this purpose can be selected between a lower and an upper limit, the lower limit indicating the time required to generate a correct binary response signal in the converter 15 and the upper limit at a sufficiently safe distance from the Response time of the relay should be.
- the possible range for the duration of the test signals may be between about 40 and about 200 ⁇ s.
- the delivery of the test signal P_B to the second switching device 12b is terminated after such a short period of time chosen again and there is a signal pause, while no test signal to the switching devices 12a or 12b is delivered.
- another test signal P_A is delivered to the first switching device 12a, which causes the switching device 12a to close.
- the test signal P_A must be so short in terms of its duration that even if the second switching device 12b erroneously should be in a permanently short-circuited state, the state of the relay contacts is not affected. The duration of the test signal P_A must therefore also be below the response time of the relay.
- test run After completion of this test signal sequence of the test run is completed; After any break, another test run can be started. For example, it can be provided that a renewed test run is initiated every 250 ⁇ s.
- the course of the measuring voltage U mess corr should now with the addition of FIG. 2 be explained. For this purpose, it is assumed that the two switching devices 12a and 12b work properly and initially both are in the locked state.
- the measuring voltage is U mess corr on a middle, predetermined by the voltage divider 22 voltage level.
- the binary response signal BS korr is at a high level since the measurement voltage U mess corr sufficient to souzuberichtn the further switching device 24.
- the switching device 12b is closed and the measurement voltage U mess corr at the branch 14 is pulled to the low voltage level V-pull, since the second switching device 12b, the lower resistor 22b of the voltage divider 22 bridges.
- the course of the measuring voltage U mess corr in FIG. 3 Thus, a sudden drop can be taken as soon as the test signal P_B closes the switching device 12b.
- the binary response signal BS corr decreases to a low level, since the further switching device due to the low applied measurement voltage U mess corr locks.
- the second switching device 12b again switches to the blocked state and the previously discharged damping capacitors 27a and 27b are charged via the upper resistor 22a of the voltage divider 22.
- this charging process takes place so slowly that an increase in the measuring voltage U mess corr during the signal break barely noticeable.
- the increase of the measuring voltage U mess corr is at least not sufficient to convert the further switching device 24 of the conversion device 15 in its current-permeable state, so that the binary response signal BS corr remains during the signal pause remains at the low level. If after the signal pause the test signal P_A acts on the first switching device 12a and brings them into their current-permeable state, the snubber capacitors 27a and 27b are charged comparatively fast, since the upper resistor 22a of the voltage divider 22 is bridged and the high voltage level V + directly across the snubber capacitors 27a and 27b is applied. This fast charging process can also be recognized on the Course of the measuring voltage U mess corr . which increases steeply during the delivery of the second measurement signal P_A.
- the measurement voltage is U mess corr at the high voltage level V +.
- the binary response signal BS korr abruptly rises to its high level. If the delivery of the first test signal P_A is terminated after the corresponding time has expired, the discharge capacitors 27a and 27b are again discharged via the lower resistor 22b of the voltage divider 22 at the branch 14 to the predetermined mean voltage level corresponding to the voltage divider 22.
- the binary response signal is transmitted to the monitoring device 16, which compares the course of the binary response signal with an expected course.
- Such a comparison can either be carried out continuously during the entire test run or it can be discontinuous only at certain characteristic points in time to save on the one hand computing capacity of the monitoring device and on the other hand insensitive to insignificant deviations of the binary response signal from the expected course, which is not due to an error in Current path 10 would indicate.
- FIG. 3 For this purpose, two monitoring times t 1 and t 2 are entered, which are indicated in the course of the binary response signals in each case with circles. Consequently, for the correct course of the binary response signal, a low signal level must be set at measurement time t 1 and a high signal level at measurement time t 2 . If the monitoring device 16 recognizes the correct course on the basis of the signal levels measured at these times, it closes to one faultless current path 10 and does not take any further action until the next test run is initiated.
- the error case F1 should be considered that the second switching device 12b permanently blocks due to an error.
- the delivery of a test signal P_B to the second switching device 12b has no effect, since the permanently blocking switching device 12b can not be brought into a current-permeable state. Consequently, the corresponding measurement voltage remains U mess F ⁇ 1 on the set by the voltage divider 22 average voltage level and does not decrease, as indicated by the dashed lines of the correct measurement voltage U mess corr expected to depend on the low voltage level V-. Accordingly, the binary response signal BS F 1 remains at its high level.
- the first switching device 12a After completion of the test signal P_A, the first switching device 12a turns off again, and the damping capacitors 27a and 27b discharge to the mean voltage level predetermined by the voltage divider 22.
- the monitoring device 16 thus detects during the test run a binary response signal BS F 1 , which is permanently at the high level.
- the monitoring device 16 detects a deviation of the binary response signal BS F1 from the expected curve (indicated by dashed lines) at time t 1 , since the binary response signal BS F 1 is at a high level and not as expected low level. From this, the monitoring device 16 detects an error in the current path 10 and outputs an error signal to warn the operator of an electrical device containing the electromagnetic relay.
- the fault case F2 is to be considered that the second switching device 12b is permanently short-circuited, so that a current flow through the switching device 12b is constantly possible.
- the voltage applied to the branch 14 for this case U mess F ⁇ 2 is already before the beginning of the test run because of the shorted switching device 12b at the low voltage level V-. Switching on the test signal P_B has no influence on this, since the switching device is in any case in the open state.
- the resulting binary response signal BS F 2 is thus permanently at its low level before the start of the test run and during the delivery of the test signal P_B.
- the monitoring device 16 is supplied in this error case F2 a permanently low level lying binary response signal BS F 2 .
- the binary response signal BS F 2 is discretely viewed at the times t 1 and t 2 , a deviation is detected at the time t 2 , where the binary response signal AS F 2 is at a low level instead of the expected high level.
- the monitoring device 16 therefore outputs an error signal for indicating an error in the current path 10.
- the next fault F3 includes the two faults that the switching device 12a permanently locks or a line break in the relay coil 11 is present (or both), so that a current flow through the relay coil 11 is not possible.
- the measuring voltage U mess F ⁇ 3 starts in this case on the by the Voltage divider 22 predetermined average voltage potential and drops at the delivery of the test signal P_B due to the then shorted second switching device 12b to the low voltage level. Accordingly, the binary response signal BS F 3 falls to its low level.
- the damping capacitor 27b (in the case of a line break in the relay coil 11) or both damping capacitors 27a and 27b (with the first switching device 12a permanently locked) re-charge via the upper resistor 22a of the voltage divider 22, this charging process, as already mentioned, occurring so slowly, that no change in the state of the other switching device 24 takes place.
- the binary response signal BS F 3 is consequently still at a low level.
- the delivery of a test signal P_A to the first switching device 12a can not generate a current flow through the switching device 12a and the relay coil 11, so that the charging process the attenuation capacitors 27a and 27b is continued correspondingly slowly via the resistor 22a, so that even during the delivery of the test signal P_A the measuring voltage applied to the branch 14 U mess F ⁇ 3 is not sufficient to effetstoffuzatuln the further switching device 24.
- the binary response signal BS F 3 consequently remains at a low level.
- the monitoring device 16 is supplied at the times t 1 and t 2 each have a low level of the binary response signal BS F 3 , so that it detects a deviation from the expected course at time t 2 and emits an error signal.
- the fault case F4 should be considered that the first switching device 12a permanently short-circuited is.
- the measurement voltage starts U mess F ⁇ 4 in this case already at the beginning of the test run at the high voltage level V +. Accordingly, the binary response signal BS F 4 is at the high level.
- a delivery of the test signal P_B closes the second switching device 12b and thus lowers the voltage level at the branch 14 to the low voltage level V-. This jump can be recognized according to the course of the measuring voltage U mess F ⁇ 4 and also on the resulting binary response signal BS F 4 .
- the second switching device 12b blocks again, so that the capacitors 27a and 27b are charged very quickly via the permanently short-circuited switching device 12a to the high voltage level V +.
- the binary response signal BS F 4 thus jumps back to the high level already in the signal pause. Consequently, a delivery of the test signal P_A to the first switching device 12a no longer has any effect on the measurement voltage U mess F ⁇ 4 and the resulting binary response signal BS F 4 , since the first switching device 12a is already permanently short-circuited and the branch 14 is already at the high voltage level V +.
- the monitoring device 16 is thus in this case, the error in FIG. 3 shown course of the binary response signal BS F 4 supplied. Even with discrete consideration, only the time t 1 and t 2 , the monitoring device 16 detects a deviation of the binary response signal BS F 4 from the expected course at time t 1 and outputs an error signal.
- test Start the test signal P_B is first output by the drive device 13 to the second switching device 12b according to step 40.
- a certain period of time for example 40 ⁇ s
- step 43 during the signal pause again a predetermined period of time, for example again 40 ⁇ s, waited during which no test signal is delivered.
- step 44 it is checked in step 44 whether the binary response signal has reached the expected low level (in FIG. 4 as "0") is located.
- step 45 the test signal P_A is turned on to turn on the switching device 12a.
- the test signal P_A is maintained in step 46 for a predetermined period of time, for example 40 ⁇ s again, before it is checked in step 47 with the monitoring device 16 whether the binary response signal is at the expected high level (the high level is in FIG. 4 exemplified by "1"). If a deviation of the binary response signal is detected, an error message is again output. If a correct binary response signal is detected, the test signal P_A is turned off in a next step 48 and the test run is successfully completed ("TEST OK").
- test process can be initiated again with activation of the sequence "TEST Start” to ensure a permanent check of the current path 10.
- a so-called pulse-width modulated holding current can be driven through the relay coil 11 which averaged over the time produces a lower power (and thus lower power dissipation in the relay coil) and is sufficient to the relay contacts in their activated To maintain state.
- the inertia of the electromagnetic relay is exploited, since the magnetic field in the relay coil 11 - as described above - has degraded so far only after a certain response time that the relay contacts would go back to their deactivated state, so that in accordance short pulse this response time always falls below and the relay contacts remain permanently in their activated state.
- the already pulsed activation of the second switching device 12b is advantageously used as a pulsed test signal P_B for monitoring the corresponding measurement voltage U mess at the branch 14.
- a pulsed test signal P_B for monitoring the corresponding measurement voltage U mess at the branch 14.
- the resulting correct course of the measuring voltage U mess corr * and the resulting correct course of the binary response signal BS corr * is in FIG. 6 shown in the two diagrams in the second line.
- the course of the measuring voltage U mess corr * and the binary response signal BS corr * should be related to FIG. 2 be explained.
- the switching device 12a is in its closed state at the beginning of the test sequence, while the switching device 12b is disabled due to the missing test signal P_B.
- the high voltage level V + which controls the further switching device 24, is established causes and the binary response signal BS corr * consequently holds high.
- the test signal P_B is output, the then closed switching device 12b pulls the measuring voltage U mess corr * at the branch 14 to the lower voltage level V-, since here the lower resistor 22b of the voltage divider 22 is bridged. Accordingly, both the measuring voltage decrease U mess corr * as well as the resulting binary response signal BS korr * abruptly.
- the second switching device 12b locks again.
- an overvoltage is induced by the sudden interruption of the current flow and the therefore degrading magnetic field, which degrades slowly via a current flow through the resistor 25a and the diode 25b.
- the measuring voltage picked up at the branch 14 increases U mess corr * first over the high voltage level V + and then gradually drops back to the high voltage level V +.
- the test signal P_B must be turned on again to close the current path 10 again.
- the monitoring device 16 is the course of the binary response signal BS supplied. As in the de-energized state of the relay coil, a check of the correct course of the binary response signal can be carried out continuously or discontinuously. In FIG. 6 For the discontinuous consideration, two characteristic times t 3 and t 4 are picked out, to which the monitoring device 16 checks the course of the binary response signal. With a correct course of the binary response signal corresponding to BS corr * , therefore, a low level must be detected at time t 3 and a high level at time t 4 .
- the switching device 12a Since the switching device 12a is permanently held in its closed state by the delivery of a continuous test signal P_A anyway, a state of the first switching device 12a permanently short-circuited by an error can not be detected by means of the test sequence when the relay coil 11 is current-carrying. However, since this would initially lead to any malfunction of the electromagnetic relay - the first switching device 12a should be permanently shorted anyway - the undetectability of such a fault is not a disadvantage of the test run. Such an error would be in the already described above review in the de-energized state of the relay coil can be easily recognized.
- the error case F5 should be treated so that the second switching device 12b is in a permanently locked state.
- the branch 14 would remain permanently at the high voltage level V + by the intentionally short-circuited switching device 12a. Since a delivery of the test signal P_B due to the faulty permanently locked second switching device 12b has no influence on the switching state of this second switching device 12b, the measuring voltage remains U mess F ⁇ 5 at the branch 14 regardless of the state of the test signal P_B at the high voltage level V +.
- the resulting binary response signal BS F5 consequently remains continuously at the high level, so that the monitoring device 16 detects a deviation of the course of the binary response signal BS F5 from the expected course.
- the monitoring device 16 at time t 3 and t 4 at time t 3, a deviation of the binary signal BS response F5 solid, which is in place at a low to a high level, and may generate an error signal.
- the error case F6 is to be dealt with that the second switching device 12b is permanently short-circuited.
- the measuring voltage is U mess F ⁇ 6 at the branch 14 by the permanently short-circuited switching device 12b continuously at the low voltage level V-, so that the course of the measuring voltage U mess F ⁇ 6 . as in FIG. 6 shown results.
- the measuring voltage U mess F ⁇ 6 This is independent of the test signal P_B at the low voltage level V-, so that the resulting binary response signal BS F 6 remains permanently low level.
- the monitoring device 16 can monitor both the continuous and the discontinuous monitoring of the course of the binary response signal consequently notice a deviation from the expected course; in a discontinuous view, the monitoring device 16 detects a low level of the binary response signal BS F 6 instead of an expected high level at time t 4 , so that an error signal can be output.
- the fault F7 should be considered that either the relay coil 11 has a line break or the first switching device 12a permanently locks.
- the measuring voltage starts U mess F ⁇ 7 at the branch 14 initially at a set via the voltage divider 22 average voltage level, since the second switching device 12b blocks the flow of current.
- the binary response signal BS F7 thus starts at a high level.
- the measuring voltage U mess F ⁇ 7 * remains at the low voltage level V- as long as the test signal P_B keeps the second switching device 12b in the closed state.
- the damping capacitor 27b in the case of a line break in the relay coil 11
- both damping capacitors with the first switching device 12a permanently locked
- the binary response signal BS F7 initially remains at low level.
- the monitoring device 16 thus detects a Deviation of the binary response signal BS F7 from the expected course.
- the monitor 16 detects a low level at time t 4 instead of an expected high level of the binary response signal and may issue an error signal.
- test start the test signal P_B is turned on in a first step 71.
- step 72 a check is made in step 73 as to whether the binary response signal BS has entered a low level ("0").
- the time period required in step 72 only has to be dimensioned so long that the response of the binary response signal BS to the second switching device 12b switched on by the test signal P_B can be detected correctly.
- step 73 If a deviation of the binary response signal BS from the expected low level is detected in step 73 at time t 3 , an error message is output. If, however, the binary response signal BS corresponds to the expected course in step 73, the test signal P_B is switched off again in step 74 after the expiry of a time period sufficient for the generation of the necessary holding current, and a further short period of time is waited in step 76, which is dimensioned such that a reaction of the binary response signal can be detected. In step 77, it is checked whether the binary response signal BS is at the expected high level. If this is not the case, an error is again output. However, if the binary response signal is at the expected high level, the test run is successfully completed and can be restarted after a predetermined period of time.
- the enabled exchange of information between the control device 13 and the monitoring device 16 makes it possible for the monitoring device 16 to include the expected course of the binary response signal matching the respective desired state of the relay coil 11 (either currentless or current flowing through) in its check.
- the monitoring device If, nevertheless, a precise error differentiation is desired, then either a continuous monitoring of the binary response signal by means of the monitoring device must be carried out, or the number of measurement times must be correspondingly longer by further characteristic points in time be increased, as this further meaningful deviations of the binary response signal can be specified. In this case, it is possible that the monitoring device also outputs the error type with its error message.
- the relay coil 11 can be checked when checking the level according to step 77 (cf. FIG. 7 ) are issued at a detected deviation, a more specific error message indicating that either the second switching device 12b is permanently short-circuited or the first switching device 12a permanently locks or the relay coil 11 has a conductor break.
- step 77 cf. FIG. 7
- Such error messages can be helpful, for example, in repairing a defective relay module or in the search for a systematic error cause.
Landscapes
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Relay Circuits (AREA)
Description
- Die Erfindung betrifft eine Schaltanordnung zum Ansteuern eines eine Relaisspule und Relaiskontakte aufweisenden elektromagnetischen Relais, bei der in einem Strompfad mit der Relaisspule zwei Schalteinrichtungen derart angeordnet sind, dass eine erste Schalteinrichtung mit einem ersten Anschluss der Relaisspule und eine zweite Schalteinrichtung mit einem zweiten Anschluss der Relaisspule in Verbindung steht; es ist eine Ansteuereinrichtung vorgesehen, die dazu eingerichtet ist, zum Herstellen eines Stromflusses durch die Relaisspule beide Schalteinrichtungen zu schließen und zum Unterbrechen eines Stromflusses durch die Relaisspule beide Schalteinrichtungen zu öffnen. Die Erfindung betrifft außerdem ein entsprechendes Verfahren zum Ansteuern eines elektromagnetischen Relais.
- In elektrischen Geräten werden zur Durchführung von gesteuerten Schalthandlungen häufig elektromagnetische Relais eingesetzt. Elektromagnetische Relais bestehen üblicherweise aus einer Relaisspule und zumindest einem Paar elektrischer Relaiskontakte. Wird an die Relaisspule ein elektrischer Strom angelegt, so wird um die Relaisspule ein Magnetfeld erzeugt, wodurch - bei selbstöffnenden Relais - ein Schließen der Relaiskontakte bewirkt wird, so dass ein Stromfluss über die Relaiskontakte möglich ist. Wird der durch die Relaisspule fließende Strom wieder unterbrochen, so wird der bewegliche Teil der Relaiskontakte beispielsweise mittels einer Federeinrichtung in seine Ausgangslage zurückbewegt, was ein Öffnen der Relaiskontakte bewirkt und den Stromfluss über diese unterbricht. Bei selbstschließenden Relais sind die Kontakte im stromlosen Zustand der Relaisspule geschlossen und im stromdurchflossenen Zustand geöffnet.
- Elektromagnetische Relais werden üblicherweise dort eingesetzt, wo mittels eines vergleichsweise geringen Stromes aus einem Ansteuerstromkreis ein vergleichsweise größerer Strom in einem Schaltstromkreis ein- oder ausgeschaltet werden soll. Das elektromagnetische Relais bildet in diesem Fall eine galvanische Entkopplung des Ansteuerstromkreises und des Schaltstromkreises.
- Elektromagnetische Relais werden beispielsweise in elektrischen Schutzgeräten zur Überwachung elektrischer Energieversorgungsnetze eingesetzt, um im Falle eines Fehlers (z.B. eines Kurzschlusses) in dem elektrischen Energieversorgungsnetz durch Schließen der Relaiskontakte eines sogenannten "Kommandorelais" eine Auslösung eines elektrischen Leistungsschalters zu veranlassen und so den Fehlerstrom zu unterbrechen. Beim Einsatz von elektromagnetischen Relais in solchen sicherheitsrelevanten Gebieten ist es von größter Wichtigkeit, ein ungewolltes Ein- oder Ausschalten sicher zu verhindern, um einerseits eine große Sicherheit im Fehlerfall zu gewährleisten und andererseits kostenträchtige Fehlauslösungen zu vermeiden.
- Um eine Überwachung des Zustandes der Relaiskontakte vorzunehmen, bietet es sich zunächst an, ihren tatsächlichen Zustand, d.h. geöffnet oder geschlossen, an die Ansteuereinrichtung der Relaisspule zurückzukoppeln. Bei einer Abweichung zwischen dem Soll- und dem Istzustand der Relaiskontakte wird auf einen Fehler in der Relaisansteuerung geschlossen.
- Eine solche Überwachung ist jedoch vergleichsweise aufwändig, weil hierbei die von dem Relais erreichte galvanische Entkopplung zwischen Ansteuerstromkreis und Schaltstromkreis zur Rückkopplung der Information über den Zustand der Relaiskontakte überschritten werden muss. Außerdem lässt sich ein Fehler hierbei nur dann erkennen, wenn er bereits eingetreten ist, also die Relaiskontakte bereits einen ungewünschten Zustand eingenommen haben. Eine vorausschauende Überwachung ist nicht möglich.
- Daher wurden Bestrebungen vorgenommen, den Ansteuerstromkreis der Relaisspule möglichst fehlersicher auszugestalten. Fehler können bei Schalteinrichtungen beispielsweise durch ein Verschmelzen der Schaltkontakte durch eine zu hohe Schaltleistung oder zu hohe Temperatur entstehen, so dass die entsprechende Schalteinrichtung dauerhaft kurzgeschlossen ist. Bei Halbleiterschaltern, wie z.B. Transistoren, ist ein ähnlicher Effekt als ein sogenanntes "Durchlegieren" der Anschlüsse des Halbleiterschalters bekannt. Ebenso kann es sowohl bei mechanischen Schalteinrichtungen als auch bei Halbleiterschaltern vorkommen, dass sie aufgrund eines internen Fehlers den Stromfluss dauerhaft sperren. Ferner kann auch bei der Relaisspule selbst ein Fehler auftreten, bei dem z.B. durch Leitungsbruch kein Stromfluss durch die Relaisspule mehr möglich ist.
- Zur möglichst fehlersicheren Ausgestaltung des Ansteuerstromkreises wird die Relaisspule nicht nur über eine ggf. fehleranfällige einzige Schalteinrichtung angesteuert, sondern stattdessen über zwei im Strompfad der Relaisspule liegende Schalteinrichtungen. Die Relaisspule wird nur dann angesteuert, wenn beide Schalteinrichtungen gleichzeitig geschlossen sind. Sobald eine Schalteinrichtung geöffnet ist, wird der Stromfluss durch die Relaisspule unterbrochen. Hierdurch wird eine relativ große Zuverlässigkeit der Ansteuerung gegen ungewolltes Aktivieren der Relaisspule erreicht, da eine schadhafte, dauerhaft kurzgeschlossene Schalteinrichtung allein keine ungewollte Aktivierung der Relaisspule bewirken kann. Eine solche Schaltanordnung ist beispielsweise aus der deutschen Patentschrift
DE 44 09 287 C1 bekannt, aus der eine Relaisspule hervorgeht, die mit zwei Schalteinrichtungen in Form von Transistoren in einem Strompfad liegt. - Eine andere solche Schaltanordnung ist aus dem Dokument
EP 0 673 050 A bekannt. - Der Erfindung liegt die Aufgabe zugrunde, eine Schaltanordnung und ein Verfahren der eingangs genannten Art anzugeben, die eine vorausschauende Überprüfung der Relaisspule und der beiden Schalteinrichtungen auf ggf. aufgetretene Fehler erlauben.
- Diese Aufgabe wird bezüglich der Schaltanordnung durch eine Schaltanordnung der eingangs genannten Art gelöst, bei der die Ansteuereinrichtung zum Aussenden von Prüfsignalen an die erste und die zweite Schalteinrichtung eingerichtet ist, wobei die Prüfsignale derart beschaffen sind, dass sie den momentanen Zustand der Relaiskontakte nicht beeinflussen; ein Eingang einer Umsetzeinrichtung mit einer Messspannung beaufschlagt ist, die zwischen einem Anschluss der Relaisspule und einer der Schalteinrichtungen abgegriffen wird, wobei die Umsetzeinrichtung zum Umsetzten der Messspannung in ein binäres Antwortsignal eingerichtet ist; und mit einem Ausgang der Umsetzeinrichtung eine Überwachungseinrichtung verbunden ist, die während des Aussendens der Prüfsignale durch die Ansteuereinrichtung den Verlauf des binären Antwortsignals auswertet und einen Fehler in der Relaisspule oder einer der Schalteinrichtungen anzeigt, wenn der Verlauf des binären Antwortsignals von einem erwarteten Verlauf abweicht.
- Der besondere Vorteil der erfindungsgemäßen Schaltanordnung besteht darin, dass eine vergleichsweise unaufwendige Überprüfung der korrekten Funktion der Relaisspule und der beiden Schalteinrichtungen bereits dann möglich ist, wenn noch keine fehlerhafte Schalthandlung des Relais durchgeführt worden ist. Auf diese Weise kann sozusagen vorausschauend eine Überprüfung der Relaisspule und der beiden Schalteinrichtungen auf mögliche Fehler durchgeführt werden. "Vorausschauend" bedeutet in diesem Zusammenhang also, dass eine Überprüfung der Funktionsfähigkeit stattfinden kann, ohne eine Schalthandlung der Relaiskontakte herbeizuführen. Hierzu wird in vergleichsweise unaufwändiger Weise nur ein einziges Messsignal in Form der Messspannung abgegriffen und überwacht. Eine Fehlfunktion der beiden Schalteinrichtungen oder der Relaisspule lässt sich vorteilhaft sowohl bei eingeschaltetem als auch bei ausgeschaltetem Zustand der Relaisspule erreichen, indem die beiden Schalteinrichtungen mit Prüfsignalen beaufschlagt werden, die den momentanen Zustand der Relaiskontakte jedoch nicht beeinflussen.
- Wird bei der Überwachung ein Fehler in einer der Schalteinrichtungen oder in der Relaisspule entdeckt, so kann ein Betreiber eines Gerätes, in das das elektromagnetische Relais eingebaut ist - beispielsweise der Betreiber eines entsprechenden elektrischen Schutzgerätes - über eine diesbezügliche Fehlermeldung informiert werden, so dass er ein Auswechseln der das Relais und seine Ansteuerschaltung tragenden Baugruppe veranlassen kann.
- Gemäß einer vorteilhaften Ausführungsform ist vorgesehen, dass die beiden Schalteinrichtungen Halbleiterschalter, insbesondere Transistoren, sind. Solche Halbleiterschalter können besonders schnell und mit geringen Schaltleistungen ein- und ausgeschaltet werden.
- Eine weitere vorteilhafte Ausführungsform der erfindungsgemäßen Schaltanordnung sieht ferner vor, dass im Strompfad der Relaisspule jeweils zwischen einem Anschluss der Relaisspule und einer Schalteinrichtung ein Anschluss jeweils eines Dämpfungskondensators angeordnet ist. Durch die dämpfende Wirkung der Kondensatoren kann der Verlauf der Messspannung und damit der Verlauf des binären Antwortsignals derart zeitlich gestreckt werden, dass eine besonders einfache Auswertung möglich ist.
- Eine weitere vorteilhafte Ausführungsform der erfindungsgemäßen Schalteranordnung sieht ferner vor, dass die Umsetzeinrichtung einen parallel zu dem Strompfad der Relaisspule angeordneten Spannungsteiler aufweist, dessen Spannungsteilerabgriff einerseits mit der Messspannung beaufschlagt ist und andererseits zur Gewinnung des binären Antwortsignals einem Ansteuereingang einer weiteren Schalteinrichtung zugeführt wird. Auf diese Weise kann ohne großen Schaltungsaufwand ein binäres Antwortsignal aus der Messspannung erzeugt werden.
- Bei der weiteren Schalteinrichtung kann es sich beispielsweise um einen Halbleiterschalter, insbesondere einen MOSFET (Metal Oxide Semiconductor Field Effect Transistor) handeln. Feldeffekttransistoren werden über Spannungen angesteuert und eignen sich daher im vorliegenden Fall für die Umsetzung der Messspannung in ein binäres Antwortsignal besonders gut.
- Hinsichtlich des Verfahrens wird die oben genannte Aufgabe durch ein Verfahren zum Ansteuern eines eine Relaisspule und Relaiskontakte aufweisenden elektromagnetischen Relais gelöst, bei dem zum Herstellen eines Stromflusses durch die Relaisspule beide Schalteinrichtungen geschlossen werden und zum Unterbrechen eines Stromflusses durch die Relaisspule beide Schalteinrichtungen geöffnet werden, wobei die Schalteinrichtungen in einem Strompfad mit der Relaisspule derart angeordnet sind, dass die erste Schalteinrichtung mit einem ersten Anschluss der Relaisspule und die zweite Schalteinrichtung mit einem zweiten Anschluss der Relaisspule in Verbindung steht, wobei bei dem erfindungsgemäßen Verfahren die Ansteuereinrichtung Prüfsignale an die beiden Schalteinrichtungen abgibt, die den momentanen Zustand der Relaiskontakte nicht beeinflussen; zwischen einem Anschluss der Relaisspule und einer der Schalteinrichtungen wird eine Messspannung abgegriffen; die Messspannung wird in ein binäres Antwortsignal umgesetzt; und ein Fehler in der Relaisspule oder einer der beiden Schalteinrichtungen wird angezeigt, wenn der Verlauf des binären Antwortsignals von einem erwarteten Verlauf abweicht. Mit dem beschriebenen Verfahren kann in vorteilhafter Weise vorausschauend eine Überprüfung des Ansteuerstromkreises des elektromagnetischen Relais stattfinden.
- Als vorteilhafte Weiterbildung wird es zudem angesehen, wenn im geöffneten Zustand der Relaiskontakte zeitversetzt Prüfsignale an die beiden Schalteinrichtungen abgegeben werden, die kürzer sind als eine Ansprechzeit des Relais.
- Hierbei wird als Ansprechzeit des Relais diejenige Zeit angesehen, die ein von der Relaisspule erzeugtes Magnetfeld benötigt, um bei sprunghafter Veränderung einer an der Relaisspule anliegenden Spannung mit einer Veränderung des Schaltzustandes der Relaiskontakte zu reagieren.
- Wird beispielsweise bei einem vollständig aufgebauten Magnetfeld die Relaisspule abgeschaltet, so baut sich das Magnetfeld erst mit einer gewissen Zeitverzögerung ab. Erst wenn die Magnetfeldstärke nicht mehr ausreicht, die Relaiskontakte in ihrer bisherigen Position zu halten, ändert sich der Zustand der Relaiskontakte. Schaltet man rechtzeitig wieder die Relaisspule ein, so baut sich das Magnetfeld wieder auf und die Relaiskontakte verharren ohne Änderung in ihrem Zustand.
- Im umgekehrten Fall benötigt ein Magnetfeld der Relaisspule bei einem sprunghaften Anlegen einer Spannung an die - zuvor stromlose - Relaisspule eine gewisse Zeitdauer, bis seine Magnetfeldstärke ausreicht, die Relaiskontakte anzusteuern. Wird der Stromfluss rechtzeitig wieder unterbrochen, so ändert sich der Zustand der Relaiskontakte nicht.
- Die Prüfsignale müssen daher hinsichtlich ihrer Zeitdauer so kurz beschaffen sein, dass durch die Trägheit des sich auf- oder abbauenden Magnetfeldes der Relaisspule keine Änderung des Zustandes der Relaiskontakte eintritt.
- Eine Überprüfung der beiden Schalteinrichtungen und der Relaisspule auf mögliche Fehler lässt sich mit dem erfindungsgemäßen Verfahren sowohl im stromlosen als auch im stromdurchflossenen Zustand der Relaisspule durchführen.
- Konkret kann eine Überprüfung im stromlosen Zustand der Relaisspule und beim Abgriff der Messspannung zwischen dem zweiten Anschluss der Relaisspule und der zweiten Schalteinrichtung beispielsweise durchgeführt werden, indem die Prüfsignale in folgender Abfolge abgegeben werden:
- a) ein Prüfsignal wird an die zweite Schalteinrichtung abgegeben;
- b) während einer Signalpause wird kein Prüfsignal abgegeben;
- c) ein Prüfsignal wird an die erste Schalteinrichtung abgegeben.
- Beim Abgriff der Messspannung zwischen dem ersten Anschluss der Relaisspule und der ersten Schalteinrichtung ist die Verteilung der Prüfsignale auf die Schalteinrichtungen entsprechend umzukehren.
- Im stromdurchflossenen Zustand der Relaisspule kann eine Überprüfung gemäß einer vorteilhaften Weiterbildung erfolgen, indem die erste Schalteinrichtung dauerhaft angesteuert wird, während die zweite Schalteinrichtung über ein gepulstes Prüfsignal angesteuert wird.
- Der zeitliche Verlauf des binären Antwortsignals kann beispielsweise kontinuierlich mit dem erwarteten Verlauf verglichen werden. Eine besonders vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht allerdings vor, dass zur Bestimmung, ob ein Fehler in der Relaisspule oder einer der Schalteinrichtungen vorliegt, das binäre Antwortsignal zu zumindest zwei charakteristischen Zeitpunkten mit dem erwarteten Verlauf verglichen wird, wobei zwischen den charakteristischen Zeitpunkten zumindest eine Änderung hinsichtlich des Zustands mindestens eines Prüfsignals stattgefunden hat. Bei dieser Ausführungsform wird die für den Vergleich benötigte Rechenleistung der Überwachungseinrichtung relativ gering gehalten, da der Verlauf des binären Antwortsignals und der erwartete Verlauf im einfachsten Fall nur an zwei besonders charakteristischen Zeitpunkten miteinander verglichen werden müssen und folglich ein kontinuierlicher Vergleich nicht nötig ist. Da eine hundertprozentige Deckungsgleichheit des binären Antwortsignals und des erwarteten Verlaufs üblicherweise ohnehin nur schwer zu erreichen sein wird, besteht ein weiterer Vorteil dieser Ausführungsform darin, dass bei sinnvoller Wahl der betrachteten Zeitpunkte - nämlich in ausreichendem Anstand zu denjenigen Zeitpunkten, zu denen eine Veränderung der Prüfsignale stattfindet - unbedeutende Abweichungen zwischen dem Verlauf des binären Antwortsignals und dem erwarteten Verlauf nicht zu einer Fehlermeldung führen.
- Um eine ständige Überwachung der beiden Schalteinrichtungen und der Relaisspule auf möglich Fehler vornehmen zu können, sollte das erfindungsgemäße Verfahren in regelmäßigen Zeitabständen wiederholt werden.
- Vorteilhafterweise werden von der Ansteuereinrichtung je nach Zustand der Relaiskontakte unterschiedliche Prüfsignale abgegeben.
- Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert. Hierzu zeigen
- Figur 1
- ein schematisches Blockschaltbild einer allgemeinen Ausführungsform einer Schaltanordnung zum Ansteuern eines elektromagnetischen Relais,
- Figur 2
- ein Schaltbild einer möglichen Ausführungsform einer Schaltanordnung zum Ansteuern eines elektromagnetischen Relais,
- Figur 3
- mehrere Diagramme zur Erläuterung von beispielhaften Prüfsignalen und die hierdurch hervorgerufenen Messspannungen und binären Antwortsignale bei einer Überprüfung im stromlosen Zustand der Relaisspule,
- Figur 4
- ein Verfahrensablaufschema zur Erläuterung eines Ausführungsbeispiels einer Überprüfung im stromlosen Zustand der Relaisspule,
- Figur 5
- eine Prüfsignalfolge für eine Überwachung im stromdurchflossenen Zustand der Relaisspule,
- Figur 6
- mehrere Diagramme zur Erläuterung von beispielhaften Prüfsignalen und die hierdurch hervorgerufenen Messspannungen und binären Antwortsignale bei einer Überprüfung im stromdurchflossenen Zustand der Relaisspule und
- Figur 7
- ein Verfahrensablaufschema zur Erläuterung eines Ausführungsbeispiels einer Überprüfung im stromdurchflossenen Zustand der Relaisspule.
-
Figur 1 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels einer Schaltanordnung zum Ansteuern eines elektromagnetischen Relais. Ein Ansteuerstromkreis des elektromagnetischen Relais umfasst in einem Strompfad 10 eine Reihenschaltung einer Relaisspule 11 mit einer ersten Schalteinrichtung 12a sowie einer zweiten Schalteinrichtung 12b, wobei die Schalteinrichtungen 12a und 12b inFigur 1 lediglich beispielhaft durch mechanische Schalteinrichtungen symbolisiert sind. Die Schalteinrichtungen 12a und 12b können durch mechanische Schalter oder Halbleiterschalter, wie beispielsweise Transistoren, gebildet sein. - Mit "V+" und "V-" ist ein hohes bzw. niedriges Spannungsniveau angedeutet. Beispielsweise kann das hohe Spannungsniveau V+ bei 10 V liegen, während das niedrige Spannungsniveau V-bei 0 V liegt. Die erste Schalteinrichtung 12a steht mit einem ersten Anschluss 11a der Relaisspule 11 auf der Seite des hohen Spannungsniveaus V+ in Verbindung, während die zweite Schalteinrichtung 12b auf der Seite des niedrigen Spannungsniveaus V- mit einem zweiten Anschluss 11b der Relaisspule 11 in Verbindung steht.
- Die erste und die zweite Schalteinrichtung 12a und 12b stehen mit ihren Ansteuereingängen mit einer Ansteuereinrichtung 13 in Verbindung. Über die Ansteuereinrichtung 13 können die Schalteinrichtungen 12a und 12b ein- oder ausgeschaltet werden. Die Ansteuereinrichtung 13 ist zur Abgabe von Prüfsignalen an die Ansteuereingänge der ersten und der zweiten Schalteinrichtung 12a und 12b eingerichtet, wie später näher erläutert werden wird.
- An der Verbindung des zweiten Anschlusses 11b der Relaisspule 11 mit der zweiten Schalteinrichtung 12b wird über einen Abzweig 14 eine Messspannung Umess abgegriffen und einer Umsetzeinrichtung 15 zugeführt. Die Umsetzeinrichtung 15 ist dazu eingerichtet, die Messspannung Umess in ein binäres Antwortsignal BS umzusetzen und dieses an ihrem Ausgang abzugeben. Das binäre Antwortsignal BS wird einer Überwachungseinrichtung 16 zugeführt, die mit der Ansteuereinrichtung 13 Informationen austauschen kann. Die Überwachungseinrichtung 16 kann entweder - wie in
Figur 1 dargestellt - eine eigenständige Einheit bilden oder aber - abweichend von der Darstellung inFigur 1 - in die Ansteuereinrichtung 13 integriert sein. Sowohl die Ansteuereinrichtung 13 als auch die Überwachungseinrichtung 16 können einen Mikroprozessor oder einen anderen Logikbaustein (z.B. einen ASIC) aufweisen, der die ihre Funktionsweise steuert. - Abweichend zur Darstellung in
Figur 1 kann die Messspannung Umess auch an der Verbindung zwischen der ersten Schalteinrichtung 12a und dem ersten Anschluss der Relaisspule 11 angeordnet sein. Die im folgenden beschriebene Abfolge der Prüfsignale zur Überwachung des Strompfades 10 ist in einem solchen Fall entsprechend umgekehrt auf die beiden Schalteinrichtungen 12a und 12b zu verteilen, die unten beschriebenen Fehlerfälle sind ebenfalls entsprechend anzupassen. Im den folgenden Beispielen soll jedoch von einem Abgriff der Messspannung Umess gemäßFigur 1 , also zwischen der zweiten Schalteinrichtung 12b und dem zweiten Anschluss der Relaisspule 11 ausgegangen werden. - In einer möglichen konkreteren Ausführungsform kann eine Schaltanordnung zum Ansteuern eines elektromagnetischen Relais beispielsweise wie in
Figur 2 gezeigt aufgebaut sein. Für derFigur 1 entsprechende Komponenten werden inFigur 2 dieselben Bezugszeichen verwendet. - In
Figur 2 ist eine Relaisspule 11 gezeigt, die auf der Seite des hohen Spannungsniveaus V+ mit ihrem ersten Anschluss 11a mit einer ersten Schalteinrichtung 12a verbunden ist, während der zweite Anschluss 11b der Relaisspule 11 auf der Seite des niedrigen Spannungsniveaus V- mit einer zweiten Schalteinrichtung 12b in Verbindung steht. - Beispielhaft sind die Schalteinrichtungen 12a und 12b in Figur 2 als Halbleiterschalter in Form von Transistoren dargestellt.
- Mittels einer gestrichelt dargestellten Umrandung ist eine Gruppe von Schaltelementen angegeben, die der Umsetzeinrichtung 15 gemäß
Figur 1 entspricht. Kernstück der Umsetzeinrichtung 15 bildet bei der Ausführungsform gemäßFigur 2 ein Spannungsteiler 22, der beispielhaft aus zwei ohmschen Widerständen 22a und 22b besteht. Zwischen den beiden ohmschen Widerständen 22a und 22b liegt ein Spannungsteilerabgriff 23, der einerseits mit dem Abzweig 14 für die Messspannung und andererseits mit einem Steuereingang einer weiteren Schalteinrichtung 24 in Verbindung steht. - Eine parallel zu der Relaisspule 11 und der Schalteinrichtung 12a angeordnete Reihenschaltung 25 aus einem ohmschen Widerstand 25a und einer Diode 25b dient zum Abfangen von Überspannungen, die beim Unterbrechen des Stromflusses durch die Relaisspule 11 entstehen können. Ein weiterer ohmscher Widerstand 26 dient zur Einstellung des Spannungsniveaus des binären Antwortsignals BS.
- An der Verbindung der ersten Schalteinrichtung 12a mit dem ersten Anschluss 11a der Relaisspule 11 ist ein Anschluss eines ersten Dämpfungskondensators 27a verbunden, der mit seinem anderen Anschluss auf dem niedrigen Spannungsniveau V-liegt. Entsprechend ist an der Verbindung zwischen der zweiten Schalteinrichtung 12b und dem zweiten Anschluss 11b der Relaisspule 11 mit seinem einen Anschluss ein zweiter Dämpfungskondensator 27b verbunden, dessen zweiter Anschluss ebenfalls auf dem niedrigen Spannungsniveau V- liegt.
- Im Folgenden soll die Funktionsweise der in
Figur 2 dargestellten Schaltanordnung, insbesondere hinsichtlich der Überprüfung der beiden Schalteinrichtungen 12a und 12b und der Relaisspule 11 auf mögliche Fehler, näher erläutert werden. Hierzu wird außer aufFigur 2 auch auf dieFiguren 3 bis 7 Bezug genommen. - Die Ansteuereinrichtung 13 dient zunächst dazu, durch gleichzeitiges Öffnen bzw. Schließen der Schalteinrichtungen 12a und 12b einen Stromfluss durch die Relaisspule 1 herzustellen oder diesen zu unterbrechen. Durch gleichzeitiges Schließen der beiden Schalteinrichtungen 12a und 12b wird ein Stromfluss durch die Relaisspule 11 hergestellt, wodurch sich ein entsprechendes Magnetfeld in der Relaisspule 11 entwickelt und ab einer gewissen Magnetfeldstärke, eine Veränderung des Zustandes der (nicht dargestellten) Relaiskontakte des elektromagnetischen Relais bewirkt. Um den Stromfluss in der Relaisspule zu unterbrechen öffnet die Ansteuereinrichtung 13 die beiden Schalteinrichtungen 12a und 12b, so dass sich das von der Relaisspule 11 erzeugte Magnetfeld wieder abbaut. Reicht die von dem Magnetfeld erzeugte Feldstärke nicht mehr aus, um die Relaiskontakte in ihrer Stellung zu halten, gehen diese - beispielsweise durch Federkrafteinwirkung - in ihre normale Stellung über.
- Für den Fall, dass ein Fehler in einer der beiden Schalteinrichtungen 12a und 12b oder der Relaisspule 11 vorliegt, kann die ordnungsgemäße Ansteuerung der Relaisspule 11 und damit des an den Relaiskontakten angeordneten Schaltstromkreises nicht mehr gewährleistet werden. Für den beispielhaften Fall, dass es sich bei dem elektromagnetischen Relais um ein Kommandorelais zum Ansteuern eines elektrischen Leistungsschalters handelt, kann durch eine solche Fehlfunktion beispielsweise eine ungewollte Fehlauslösung des Leistungsschalters hervorgerufen oder eine gewollte Auslösung des Leistungsschalters verhindert werden. Deswegen findet eine Überprüfung des aus den beiden Schalteinrichtungen 12a und 12b und der Relaisspule bestehenden Strompfades 10 statt. Abhängig davon, ob sich die Relaisspule 11 im stromlosen oder stromdurchflossenen Zustand, werden seitens der Ansteuereinrichtung 13 an die Schalteinrichtungen 12a und 12b unterschiedliche Prüfsignale P_A, P_B abgegeben, die eine Veränderung des Spannungsniveaus am Abzweig 14 zur Folge haben.
- Die an diesem Abzweig 14 anliegende Messspannung Umess wird der Umsetzeinrichtung 15 zugeführt, wo sie in ein binäres Antwortsignal BS umgesetzt wird. Der Verlauf des binären Antwortsignals BS wird von der Überwachungseinrichtung 16 mit einem erwarteten Verlauf verglichen, und es wird ein Fehler im Strompfad 10 erkannt, wenn der erwartete Verlauf und der tatsächliche Verlauf des binären Antwortsignals BS voneinander abweichen. Um den erwarteten Verlauf und den tatsächlichen Verlauf des binären Antwortsignals BS miteinander vergleichen zu können, ist die Überwachungseinrichtung 16 in der Lage, mit der Ansteuereinrichtung 13 Informationen auszutauschen, um beispielsweise über den Beginn der Absendung der Prüfsignale P_A, P_B an die beiden Schalteinrichtungen 12a und 12b informiert zu sein.
- Wenn die Überwachungseinrichtung 16 einen Fehler im Strompfad 10 erkennt, kann eine entsprechende Fehlermeldung abgegeben werden, die einen Betreiber eines Gerätes, in dem das elektromagnetische Relais eingebaut ist, über den Fehler informiert. Der Betreiber des entsprechenden Gerätes kann daraufhin die entsprechende fehlerbehaftete Baugruppe austauschen, noch bevor es zu einer tatsächlichen Fehlfunktion des elektromagnetischen Relais kommen kann.
- Eine Überprüfung des Strompfades 10 auf mögliche Fehler kann sowohl im stromlosen als auch im stromdurchflossenen Zustand der Relaisspule und entsprechend bei ausgeschalteten oder eingeschalteten Relaiskontakten erfolgen, ohne den Zustand der Relaiskontakte dabei zu beeinflussen.
- Im Folgenden soll zunächst anhand der
Figuren 2 ,3 und4 erläutert werden, wie eine Überprüfung des Strompfades 10 bei (gewollt) stromloser Relaisspule erfolgen kann. - In
Figur 3 sind hierzu in den beiden oberen Diagrammen die Verläufe der Prüfsignale P_A und P_B gezeigt, während in den folgenden zehn Diagrammen jeweils auf der linken Seite die Messspannungen, die am Abzweig 14 anliegen, für den fehlerfreien Fall sowie für verschiedene Fehlerfälle gezeigt, während auf der rechten Seite jeweils die aus den jeweiligen Messspannungen resultierenden binären Antwortsignale für den fehlerfreien Fall sowie für verschiedene Fehlerfälle dargestellt sind. - Wie
Figur 3 entnehmbar ist, wird zum Starten eines Prüfdurchlaufs zunächst der zweiten Schalteinrichtung 12b ein Prüfsignal P_B zugeführt. Dieses Prüfsignal P_B bringt die zweite Schalteinrichtung 12b in ihren geschlossenen Zustand. - Die Dauer des Prüfsignals P_B ist hierbei so beschaffen, dass auch für den Fall, dass die erste Schalteinrichtung 12a aufgrund eines Fehlers dauerhaft kurzgeschlossen sein sollte, die Dauer eines dann durch die Relaisspule 11 resultierenden Stromflusses keine Auswirkung auf den Zustand der Relaiskontakte hat. Die Dauer des Prüfsignals P_B muss daher geringer sein als die bereits früher erläuterte Ansprechzeit des Relais. Üblicherweise kann die Dauer eines Prüfsignals hierfür zwischen einer unteren und einer oberen Grenze gewählt werden, wobei die untere Grenze diejenige Zeit angibt, die benötigt wird, um in der Umsetzeinrichtung 15 ein korrektes binäres Antwortsignal zu generieren und die obere Grenze in ausreichend sicherem Abstand von der Ansprechzeit des Relais liegen sollte. Beispielsweise kann der möglich Bereich für die Zeitdauer der Prüfsignale zwischen etwa 40 und etwa 200µs liegen.
- Wie
Figur 3 entnehmbar ist, wird die Abgabe des Prüfsignals P_B an die zweite Schalteinrichtung 12b nach einer solchermaßen gewählten kurzen Zeitdauer wieder beendet und es folgt eine Signalpause, während der kein Prüfsignal an die Schalteinrichtungen 12a oder 12b abgegeben wird. Auf die Schaltpause folgend wird ein weiteres Prüfsignal P_A an die erste Schalteinrichtung 12a abgegeben, das ein Schließen der Schalteinrichtung 12a bewirkt. Auch das Prüfsignal P_A muss hinsichtlich seiner Zeitdauer derart kurz beschaffen sein, dass selbst wenn sich die zweite Schalteinrichtung 12b fehlerhafterweise in einem dauerhaft kurzgeschlossenen Zustand befinden sollte, der Zustand der Relaiskontakte nicht beeinflusst wird. Die Zeitdauer des Prüfsignals P_A muss deshalb auch unterhalb der Ansprechzeit des Relais liegen. - Nach Beendigung dieser Prüfsignalfolge ist der Prüfdurchlauf beendet; nach einer beliebigen Pause kann ein weiterer Prüfdurchlauf gestartet werden. So kann beispielsweise vorgesehen sein, dass alle 250µs ein erneuter Prüfdurchlauf initiiert wird.
- Die in der zweiten Zeile der
Figur 3 angeordneten Diagramme zeigen den Verlauf der MessspannungFigur 2 erläutert werden. Hierzu wird davon ausgegangen, dass die beiden Schalteinrichtungen 12a und 12b einwandfrei funktionieren und sich zunächst beide im gesperrten Zustand befinden. - Zunächst befindet sich die Messspannung
Figur 3 kann somit ein sprunghaftes Absinken entnommen werden, sobald das Prüfsignal P_B die Schalteinrichtung 12b schließt. Entsprechend sinkt das binäre Antwortsignal BSkorr auf einen niedrigen Pegel ab, da die weitere Schalteinrichtung aufgrund der niedrigen anliegenden Messspannung - Der Anstieg der Messspannung
- Wie bereits im Zusammenhang mit
Figur 2 erläutert, wird das binäre Antwortsignal an die Überwachungseinrichtung 16 übertragen, die den Verlauf des binären Antwortsignals mit einem erwarteten Verlauf vergleicht. Ein solcher Vergleich kann entweder kontinuierlich während des gesamten Prüfdurchlaufs durchgeführt werden oder er kann diskontinuierlich nur an bestimmten charakteristischen Zeitpunkten erfolgen, um einerseits Rechenkapazität der Überwachungseinrichtung einzusparen und andererseits unsensibel für unbedeutende Abweichungen des binären Antwortsignals vom erwarteten Verlauf zu sein, die nicht auf einen Fehler im Strompfad 10 hindeuten würden. - In
Figur 3 sind hierzu zwei Überwachungszeitpunkte t1 und t2 eingetragen, die im Verlauf der binären Antwortsignale jeweils mit Kreisen angedeutet sind. Für den korrekten Verlauf des binären Antwortsignals muss sich folglich beim Messzeitpunkt t1 ein niedriger Signalpegel und beim Messzeitpunkt t2 ein hoher Signalpegel einstellen. Erkennt die Überwachungseinrichtung 16 den korrekten Verlauf anhand der zu diesen Zeitpunkten gemessenen Signalpegel, so schließt sie auf einen fehlerfreien Strompfad 10 und unternimmt keine weiteren Handlungen, bis der nächste Prüfdurchlauf eingeleitet wird. - Im Folgenden sollen die Verläufe der jeweiligen Messspannungen und der daraus resultierenden binären Antwortsignale für die Fehlerfälle diskutiert werden, dass eine der beiden Schalteinrichtungen 12a oder 12b dauerhaft kurzgeschlossen ist oder dauerhaft sperrt oder ein Leitungsbruch in der Relaisspule 11 vorliegt.
- Zunächst soll der Fehlerfall F1 betrachtet werden, dass die zweite Schalteinrichtung 12b aufgrund eines Fehlers dauerhaft sperrt. In diesem Fall hat die Abgabe eines Prüfsignals P_B an die zweite Schalteinrichtung 12b keinerlei Effekt, da die dauerhaft sperrende Schalteinrichtung 12b hierdurch nicht in einen stromdurchlässigen Zustand gebracht werden kann. Folglich verharrt die entsprechende Messspannung
- Als nächstes soll der Fehlerfall F2 betrachtet werden, dass die zweite Schalteinrichtung 12b dauerhaft kurzgeschlossen ist, so dass ein Stromfluss über die Schalteinrichtung 12b ständig möglich ist. Die für diesen Fall am Abzweig 14 anliegende Messspannung
- Der nächste Fehlerfall F3 umfasst die beiden Fehler, dass die Schalteinrichtung 12a dauerhaft sperrt oder ein Leitungsbruch in der Relaisspule 11 vorliegt (oder beides), so dass ein Stromfluss über die Relaisspule 11 nicht möglich ist. Die Messspannung
- Schließlich soll der Fehlerfall F4 betrachtet werden, dass die erste Schalteinrichtung 12a dauerhaft kurzgeschlossen ist. Da in diesem Fall der obere Widerstand 22a des Spannungsteilers 22 dauerhaft überbrückt ist, startet die Messspannung
Figur 3 dargestellte Verlauf des binären Antwortsignals BS F4 zugeführt. Auch bei diskreter Betrachtung lediglich der Zeitpunkt t1 und t2 erkennt die Überwachungseinrichtung 16 eine Abweichung des binären Antwortsignals BS F4 vom erwarteten Verlauf zum Zeitpunkt t1 und gibt ein Fehlersignal ab. - Der zeitliche Ablauf des Prüfdurchlaufs bei diskontinuierlicher Prüfung zu den Zeitpunkten t1 und t2 ist in
Figur 4 nochmals anhand eines Verfahrensfließbildes zusammengefasst dargestellt. Nach Beginn des Prüfdurchlaufs ("TEST Start") wird zunächst gemäß Schritt 40 von der Ansteuereinrichtung 13 an die zweite Schalteinrichtung 12b das Prüfsignal P_B abgegeben. Gemäß Schritt 41 wird eine bestimmte Zeitdauer, beispielsweise 40µs abgewartet, bevor im Schritt 42 das zweite Prüfsignal P_B wieder ausgeschaltet wird. In Schritt 43 wird während der Signalpause wiederum eine vorgegebene Zeitdauer, beispielsweise wieder 40µs, gewartet, während der kein Prüfsignal abgegeben wird. Nach Ablauf dieser Zeitdauer wird im Schritt 44 überprüft, ob das binäre Antwortsignal auf dem erwarteten niedrigen Level (inFigur 4 als "0" bezeichnet) liegt. Ist dies nicht der Fall, wird eine Fehlermeldung ausgegeben. Ergibt die Überprüfung in Schritt 44 jedoch, dass das binäre Antwortsignal auf dem erwarteten niedrigen Pegel liegt, so wird gemäß Schritt 45 das Prüfsignal P_A eingeschaltet, um die Schalteinrichtung 12a durchzuschalten. Das Prüfsignal P_A wird in Schritt 46 für eine vorgegebene Zeitdauer, beispielsweise wieder 40µs, aufrechterhalten, bevor im Schritt 47 mit der Überwachungseinrichtung 16 überprüft wird, ob das binäre Antwortsignal auf dem erwarteten hohen Pegel liegt (der hohe Pegel ist inFigur 4 beispielhaft mit "1" angegeben). Wird eine Abweichung des binären Antwortsignals festgestellt, wird wiederum eine Fehlermeldung ausgegeben. Wird ein korrektes binäres Antwortsignal erkannt, so wird in einem nächsten Schritt 48 das Prüfsignal P_A ausgeschaltet und der Testdurchlauf ist erfolgreich abgeschlossen ("TEST OK"). - Nach Ablauf einer vorbestimmten Zeitdauer kann der Prüfvorgang erneut mit Aktivierung der Sequenz "TEST Start" eingeleitet werden, um eine dauerhafte Überprüfung des Strompfades 10 zu gewährleisten.
- Anhand der
Figuren 5 bis 7 soll nun die Überwachung des Strompfades 10 für den Fall einer (gewollt) stromdurchflossenen Relaisspule 11 dargestellt werden. Auch in diesem Fall gilt wieder die Anforderung, dass die Überprüfung keinerlei Einfluss auf den Zustand der Relaiskontakte haben darf. - In
Figur 5 ist zunächst der Einschalt- und Haltevorgang des elektromagnetischen Relais dargestellt. Bekannterweise benötigt eine Relaisspule zum Ansteuern der Relaiskontakte, beispielsweise während eines Einschaltens der Relaiskontakte, eine höhere Energiezufuhr als zum Halten der Relaiskontakte in ihrer angesteuerten Stellung. Folglich werden zum Zeitpunkt t0 zunächst zum Bewegen der Relaiskontakte die beiden Schalteinrichtungen 12a und 12b gleichzeitig eingeschaltet. Durch die gleichzeitige Ansteuerung beider Schalteinrichtungen 12a und 12b wird ein dauerhaft hoher Stromfluss durch die Relaisspule 11 gewährleistet, so dass die Kontakte schnell in ihre aktivierte Stellung gebracht werden können. Diese Aktivierungsphase der Relaiskontakte dauert gemäßFigur 5 ab dem Startzeitpunkt t0 bis zum Zeitpunkt t*, in dem die Relaiskontakte in ihrem aktivierten Zustand gebracht worden sind. - Danach kann durch ein gepulstes Ansteuern der zweiten Schalteinrichtung 12b ein sogenannter pulsweitenmodulierter Haltestrom durch die Relaisspule 11 getrieben werden, der über die Zeit gemittelt eine geringere Leistung (und damit auch geringere Verlustleistung in der Relaisspule) erzeugt und ausreichend ist, um die Relaiskontakte in ihrem aktivierten Zustand zu halten. Auch hier wird wiederum die Trägheit des elektromagnetischen Relais ausgenutzt, da sich das Magnetfeld in der Relaisspule 11 - wie bereits zuvor beschrieben - erst nach einer gewissen Ansprechzeit so weit abgebaut hat, dass die Relaiskontakte wieder in ihren deaktivierten Zustand übergehen würden, so dass bei entsprechend kurzer Pulsung diese Ansprechzeit immer unterschritten wird und die Relaiskontakte dauerhaft in ihrem aktivierten Zustand verharren.
- Diese Vorgehensweise, durch einen pulsweitenmodulierten Stromfluss in der Relaisspule 11 einen insgesamt geringeren Haltestrom für die elektromagnetische Relais zur Verfügung zu stellen, ist an sich bereits bekannt.
- Zur Überwachung des Strompfades 10 wird nun die ohnehin gepulste Ansteuerung der zweiten Schalteinrichtung 12b vorteilhaft als gepulstes Prüfsignal P_B zur Überwachung der entsprechenden Messspannung Umess am Abzweig 14 mitausgenutzt. Zur Erläuterung ist hierzu in
Figur 6 in den oberen beiden Diagrammen jeweils der Verlauf der Prüfsignale P_A und P_B während einer Pulsung des Prüfsignals P_B, wie sie inFigur 5 durch eine Umrandung hervorgehoben ist, dargestellt. Hierbei wird das Prüfsignal P_A kontinuierlich abgegeben, während das Prüfsignal P_B gepulst abgegeben wird. - Der hieraus resultierende korrekte Verlauf der Messspannung
Figur 6 in den beiden Diagrammen in der zweiten Zeile dargestellt. Der Verlauf der MessspannungFigur 2 erläutert werden. - Für den Fall, dass sowohl die beiden Schalteinrichtungen 12a und 12b als auch die Relaisspule 11 fehlerfrei sind, befindet sich zu Beginn der Prüfsequenz die Schalteinrichtung 12a in ihrem geschlossenen Zustand, während die Schalteinrichtung 12b aufgrund des fehlenden Prüfsignals P_B gesperrt ist. Am Abzweig 14 stellt sich folglich das hohe Spannungsniveau V+ ein, das ein Durchsteuern der weiteren Schalteinrichtung 24 bewirkt und das binäre Antwortsignal BSkorr* folglich auf hohem Pegel hält. Bei Abgabe des Prüfsignals P_B zieht die dann geschlossene Schalteinrichtung 12b die Messspannung
-
- Der Überwachungseinrichtung 16 wird der Verlauf der binären Antwortsignals BS zugeführt. Wie bereits im stromlosen Zustand der Relaisspule kann eine Prüfung des korrekten Verlaufes des binären Antwortsignals kontinuierlich oder diskontinuierlich durchgeführt werden. In
Figur 6 sind für die diskontinuierliche Betrachtung zwei charakteristische Zeitpunkte t3 und t4 herausgegriffen, zu denen die Überwachungseinrichtung 16 den Verlauf des binären Antwortsignals überprüft. Bei einem korrekten Verlauf des binären Antwortsignals entsprechend BSkorr* muss folglich zum Zeitpunkt t3 ein niedriger Pegel und zum Zeitpunkt t4 ein hoher Pegel erkannt werden. - Im Folgenden sollen nun die möglichen erkennbaren Fehlerfälle, nämlich eine dauerhaft kurzgeschlossene oder eine dauerhaft gesperrte Schalteinrichtung 12b, eine dauerhaft gesperrte Schalteinrichtung 12a oder ein Leitungsbruch in der Relaisspule 11 erläutert werden.
- Da die Schalteinrichtung 12a ohnehin dauerhaft durch Abgabe eines kontinuierlichen Prüfsignals P_A in ihrem geschlossenen Zustand gehalten wird, lässt sich ein durch einen Fehler dauerhaft kurzgeschlossener Zustand der ersten Schalteinrichtung 12a mittels der Prüfsequenz bei stromdurchflossener Relaisspule 11 nicht erkennen. Da dies jedoch zunächst zu keiner Fehlfunktion des elektromagnetischen Relais führen würde - die erste Schalteinrichtung 12a soll ohnehin dauerhaft kurzgeschlossenen sein - stellt die Nichterkennbarkeit eines solchen Fehlers keinen Nachteil des Prüfdurchlaufs dar. Ein solcher Fehler würde bei der bereits voranstehend beschrieben Überprüfung im stromlosen Zustand der Relaisspule leicht erkannt werden können.
- Zunächst soll der Fehlerfall F5 behandelt werden, dass sich die zweite Schalteinrichtung 12b in einem dauerhaft gesperrten Zustand befindet. In einem solchen Fall würde der Abzweig 14 durch die gewollt kurzgeschlossene Schalteinrichtung 12a dauerhaft auf dem hohen Spannungsniveau V+ verharren. Da ein Abgeben des Prüfsignals P_B aufgrund der fehlerhaft dauerhaft gesperrten zweiten Schalteinrichtung 12b keinen Einfluss auf den Schaltzustand dieser zweiten Schalteinrichtung 12b hat, verharrt die Messspannung
- Als nächstes soll der Fehlerfall F6 behandelt werden, dass die zweite Schalteinrichtung 12b dauerhaft kurzgeschlossen ist. In diesem Fall ist die Messspannung
Figur 6 gezeigt, ergibt. Die Messspannung - Schließlich soll der Fehlerfall F7 betrachtet werden, dass entweder die Relaisspule 11 einen Leitungsbruch aufweist oder die erste Schalteinrichtung 12a dauerhaft sperrt. In diesem Fall startet die Messspannung
- Dies geschieht jedoch wieder entsprechend langsam, so dass das binäre Antwortsignal BSF7 zunächst auf niedrigem Pegel verharrt. Die Überwachungseinrichtung 16 erkennt somit eine Abweichung des binären Antwortsignals BSF7 vom erwarteten Verlauf. Bei diskontinuierlicher Betrachtungsweise erkennt die Überwachungseinrichtung 16 zum Zeitpunkt t4 einen niedrigen Pegel anstelle eines erwarteten hohen Pegels des binären Antwortsignals und kann ein Fehlersignal abgeben.
- In
Figur 7 ist schließlich der Ablauf des Prüfdurchgangs bei stromdurchflossener Relaisspule 11 für den Fall einer diskontinuierlichen Überwachung des binären Antwortsignals zu den Zeitpunkten t3 und t4 gezeigt. Nach einer Initiierung des Prüfdurchgangs ("TEST Start") wird in einem ersten Schritt 71 das Prüfsignal P_B eingeschaltet. Nach Abwarten einer kurzen Zeitdauer im Schritt 72 findet im Schritt 73 eine Überprüfung statt, ob das binäre Antwortsignal BS einen niedrigen Pegel ("0") eingenommen hat. - Die im Schritt 72 geforderte Zeitdauer muss lediglich so lang bemessen sein, dass die Reaktion des binären Antwortsignals BS auf die durch das Prüfsignal P_B eingeschaltete zweite Schalteinrichtung 12b korrekt erfasst werden kann.
- Wird im Schritt 73 zum Zeitpunkt t3 eine Abweichung des binären Antwortsignals BS vom erwarteten niedrigen Pegel festgestellt, so wird eine Fehlermeldung ausgegeben. Entspricht im Schritt 73 das binäre Antwortsignal BS jedoch dem erwarteten Verlauf, so wird nach Ablauf einer für die Erzeugung des notwendigen Haltestroms ausreichenden Zeitdauer in Schritt 74 das Prüfsignal P_B in Schritt 75 wieder ausgeschaltet, und es wird in Schritt 76 eine weitere kurze Zeitdauer gewartet, die so bemessen ist, dass eine Reaktion des binären Antwortsignals erfassbar ist. In Schritt 77 wird überprüft, ob das binäre Antwortsignal BS auf dem erwarteten hohen Pegel liegt. Ist dies nicht der Fall, wird wiederum ein Fehler ausgegeben. Liegt das binäre Antwortsignal jedoch auf dem erwarteten hohen Pegel, so wird der Testdurchlauf erfolgreich beendet und kann nach Ablauf einer vorbestimmten Zeitdauer erneut gestartet werden.
- Durch den ermöglichten Informationsaustausch zwischen der Ansteuereinrichtung 13 und der Überwachungseinrichtung 16 ist es für die Überwachungseinrichtung 16 möglich, den zu dem jeweiligen Sollzustand der Relaisspule 11 (entweder stromlos oder stromdurchflossen) passenden erwarteten Verlauf des binären Antwortsignals in seine Überprüfung einzubeziehen.
- Schließlich sei noch erwähnt, dass bei der diskontinuierlichen Überprüfung zu jeweils zwei charakteristischen Messzeitpunkten eine genaue Fehlerdifferenzierung nach der Art des aufgetretenen Fehlers nicht durchgängig möglich ist, da meist mehrere Fehlerarten zu den charakteristischen Zeitpunkten einander entsprechende Abweichungen vom gewünschten Verlauf des binären Antwortsignals aufzeigen. Eine genaue Differenzierung der Fehlerart ist jedoch häufig auch nicht notwendig, da dem Betreiber eines elektrischen Gerätes, in dem das elektromagnetische Relais eingesetzt wird, lediglich interessiert, ob die Relaisansteuerung in Ordnung oder fehlerbehaftet ist. Tritt einer der möglichen Fehler auf, so wird unabhängig von der Fehlerart der Betreiber die entsprechende Schaltgruppe mit der Relaisansteuerung und dem elektromagnetischen Relais austauschen, um eine korrekte Funktionsweise seines elektrischen Gerätes zu gewährleisten.
- Sollte dennoch eine genaue Fehlerdifferenzierung gewünscht sein, so muss entweder eine kontinuierliche Überwachung des binären Antwortsignals mittels der Überwachungseinrichtung durchgeführt werden oder es muss die Anzahl der Messzeitpunkte entsprechend um weitere charakteristische Zeitpunkte erhöht werden, da hierdurch weitere aussagekräftige Abweichungen des binären Antwortsignals angegeben werden können. In diesem Fall ist es möglich, dass die Überwachungseinrichtung mit ihrer Fehlermeldung gleichzeitig auch die Fehlerart ausgibt.
- Allerdings ist es auch bei der beschriebenen diskontinuierlichen Betrachtungsweise mit lediglich zwei Messzeitpunkten denkbar, zumindest die Auswahl der möglichen Fehlerarten entsprechend einzugrenzen. So kann beispielsweise bei der Überprüfung im eingeschalteten Zustand der Relaisspule 11 bei der Überprüfung des Pegels gemäß Schritt 77 (vergleiche
Figur 7 ) bei einer festgestellten Abweichung eine spezifischere Fehlermeldung ausgegeben werden, die angibt, dass entweder die zweite Schalteinrichtung 12b dauerhaft kurzgeschlossen ist oder die erste Schalteinrichtung 12a dauerhaft sperrt oder die Relaisspule 11 einen Leiterbruch aufweist. Bei der Überprüfung des Pegels der binären Antwortsignals im Schritt 73 gemäßFigur 7 ist bereits eine Eingrenzung auf eine dauerhaft gesperrte zweite Schalteinrichtung 12b möglich. Solche Fehlermeldungen können beispielsweise bei der Reparatur einer defekten Relaisbaugruppe oder der Suche nach einer systematischen Fehlerursache hilfreich sein.
Claims (13)
- Schaltanordnung zum Ansteuern eines eine Relaisspule (11) und Relaiskontakte aufweisenden elektromagnetischen Relais, bei der- in einem Strompfad (10) mit der Relaisspule zwei Schalteinrichtungen (12a, 12b) derart angeordnet sind, dass eine erste Schalteinrichtung (12a) mit einem ersten Anschluss der Relaisspule (11) und eine zweite Schalteinrichtung (12b) mit einem zweiten Anschluss der Relaisspule (11) in Verbindung steht; und- eine Ansteuereinrichtung (13) vorgesehen ist, die dazu eingerichtet ist, zum Herstellen eines Stromflusses durch die Relaisspule (11) beide Schalteinrichtungen (12a, 12b) zu schließen und zum Unterbrechen eines Stromflusses durch die Relaisspule (11) beide Schalteinrichtungen (12a, 12b) zu öffnen;dadurch gekennzeichnet, dass- die Ansteuereinrichtung (13) zum Aussenden von Prüfsignalen (P_A, P_B) an die erste und die zweite Schalteinrichtung (12a, 12b) eingerichtet ist, wobei die Prüfsignale (P_A, P_B) derart beschaffen sind, dass sie den momentanen Zustand der Relaiskontakte nicht beeinflussen;- ein Eingang einer Umsetzeinrichtung (15) mit einer Messspannung (Umess ) beaufschlagt ist, die zwischen einem Anschluss der Relaisspule (11) und einer der Schalteinrichtungen (12a, 12b) abgegriffen wird, wobei die Umsetzeinrichtung (15) zum Umsetzten der Messspannung (Umess ) in ein binäres Antwortsignal (BS) eingerichtet ist; und- mit einem Ausgang der Umsetzeinrichtung (15) eine Überwachungseinrichtung (16) verbunden ist, die während des Aussendens der Prüfsignale (P_A, P_B) durch die Ansteuereinrichtung (13) den Verlauf des binären Antwortsignals (BS) auswertet und einen Fehler in der Relaisspule (11) oder einer der Schalteinrichtungen (12a, 12b) anzeigt, wenn der Verlauf des binären Antwortsignals (BS) von einem erwarteten Verlauf abweicht.
- Schaltanordnung nach Anspruch 1,
dadurch gekennzeichnet, dass- die beiden Schalteinrichtungen (12a, 12b) Halbleiterschalter, insbesondere Transistoren, sind. - Schaltungsanordnung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass- im Strompfad (10) der Relaisspule (11) jeweils zwischen einem Anschluss der Relaisspule (11) und einer Schalteinrichtung (12a oder 12b) ein Anschluss jeweils eines Dämpfungskondensators (27a, 27b) angeordnet ist. - Schaltungsanordnung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass- die Umsetzeinrichtung (15) einen parallel zu dem Strompfad (10) der Relaisspule (11) angeordneten Spannungsteiler (22) aufweist, dessen Spannungsteilerabgriff (23) einerseits mit der Messspannung (Umess ) beaufschlagt ist und andererseits zur Gewinnung des binären Signals (BS) einem Ansteuereingang einer weiteren Schalteinrichtung (24) zugeführt wird. - Schaltungsanordnung nach Anspruch 4,
dadurch gekennzeichnet, dass- die weitere Schalteinrichtung (24) ein Halbleiterschalter, insbesondere ein MOSFET, ist. - Verfahren zum Ansteuern eines eine Relaisspule (11) und Relaiskontakte aufweisenden elektromagnetischen Relais, bei dem zum Herstellen eines Stromflusses durch die Relaisspule (11) zwei Schalteinrichtungen (12a, 12b) geschlossen werden und zum Unterbrechen eines Stromflusses durch die Relaisspule (11) beide Schalteinrichtungen (12a, 12b) geöffnet werden, wobei die Schalteinrichtungen (12a, 12b) in einem Strompfad mit der Relaisspule (11) derart angeordnet sind, dass die erste Schalteinrichtung (12a) mit einem ersten Anschluss der Relaisspule (11) und die zweite Schalteinrichtung (12b) mit einem zweiten Anschluss der Relaisspule (11) in Verbindung steht;
dadurch gekennzeichnet, dass- eine Ansteuereinrichtung (13) Prüfsignale (P_A, P_B) an die beiden Schalteinrichtungen (12a, 12b) abgibt, die den momentanen Zustand der Relaiskontakte nicht beeinflussen;- zwischen einem Anschluss der Relaisspule (11) und einer der Schalteinrichtungen (12a, 12b) eine Messspannung (Umess ) abgegriffen wird;- die Messspannung (Umess ) in ein binäres Antwortsignal (BS) umgesetzt wird; und- ein Fehler in der Relaisspule (11) oder einer der beiden Schalteinrichtungen (12a, 12b) angezeigt wird, wenn der Verlauf des binären Antwortsignals (BS) von einem erwarteten Verlauf abweicht. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass- im stromlosen Zustand der Relaisspule (11) zeitversetzt Prüfsignale (P_A, P_B) an die beiden Schalteinrichtungen (12a, 12b) abgegeben werden, die kürzer sind als eine Ansprechzeit des Relais. - Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dass- beim Abgriff der Messspannung (Umes ) zwischen dem zweiten Anschluss der Relaisspule (11) und der zweiten Schalteinrichtung (12b) die Prüfsignale (P_A, P_B) in folgender Abfolge abgegeben werden:a) ein Prüfsignal (P_B) wird an die zweite Schalteinrichtung (12b) abgegeben;b) während einer Signalpause wird kein Prüfsignal abgegeben;c) ein Prüfsignal (P_A) wird an die erste Schalteinrichtung (12a) abgegeben. - Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dass- beim Abgriff der Messspannung (Umess ) zwischen dem ersten Anschluss der Relaisspule (11) und der ersten Schalteinrichtung (12b) die Prüfsignale (P_A, P_B) in folgender Abfolge abgegeben werden:a) ein Prüfsignal (P_A) wird an die erste Schalteinrichtung (12a) abgegeben;b) während einer Signalpause wird kein Prüfsignal abgegeben;c) ein Prüfsignal (P_B) wird an die zweite Schalteinrichtung (12b) abgegeben. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass- im stromdurchflossenen Zustand der Relaisspule (11) die erste Schalteinrichtung (12a) dauerhaft angesteuert wird, während die zweite Schalteinrichtung (12b) über ein gepulstes Prüfsignal (P_B) angesteuert wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass- zur Bestimmung, ob ein Fehler in der Relaisspule (11) oder einer der Schalteinrichtungen (12a, 12b) vorliegt, das binäre Antwortsignal (BS) zu zumindest zwei charakteristischen Zeitpunkten (z.B. t1 und t2) mit dem erwarteten Verlauf verglichen wird, wobei zwischen den charakteristischen Zeitpunkten (z.B. t1 und t2) zumindest eine Änderung hinsichtlich des Zustandes mindestens eines Prüfsignal (P_A, P_B) stattgefunden hat. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass- es in regelmäßigen Zeitabständen wiederholt wird. - Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass von der Ansteuereinrichtung (13) je nach Zustand der Relaisspule unterschiedliche Prüfsignale (P_A, P_B) abgegeben werden.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2007/009999 WO2009062536A1 (de) | 2007-11-15 | 2007-11-15 | Schaltanordnung und verfahren zum ansteuern eines elektromagnetischen relais |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2208215A1 EP2208215A1 (de) | 2010-07-21 |
EP2208215B1 true EP2208215B1 (de) | 2016-01-13 |
Family
ID=39560885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07846672.9A Active EP2208215B1 (de) | 2007-11-15 | 2007-11-15 | Schaltanordnung und verfahren zum ansteuern eines elektromagnetischen relais |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2208215B1 (de) |
CN (1) | CN101889323B (de) |
WO (1) | WO2009062536A1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8988844B2 (en) | 2010-12-20 | 2015-03-24 | Siemens Aktiengesellschaft | Drive circuit for an electromagnetic relay |
WO2013189527A1 (de) | 2012-06-20 | 2013-12-27 | Siemens Aktiengesellschaft | Überwachung eines elektromagnetischen relais |
DE102013110993A1 (de) * | 2013-10-02 | 2015-04-02 | Knorr-Bremse Gmbh | Verfahren und Vorrichtung zum Überwachen zumindest eines elektronischen Schaltkontakts für ein Fahrzeug |
JP5660236B1 (ja) * | 2014-02-27 | 2015-01-28 | オムロン株式会社 | 電磁継電器の異常検出方法、電磁継電器の異常検出回路、及び、異常検出システム |
CN104022763A (zh) * | 2014-06-06 | 2014-09-03 | 北京国网富达科技发展有限责任公司 | 一种便携式升降设备 |
JP2016011201A (ja) * | 2014-06-30 | 2016-01-21 | 東芝エレベータ株式会社 | 乗客コンベア |
CN104483883B (zh) * | 2014-12-25 | 2017-04-05 | 南京因泰莱电器股份有限公司 | 一种继电器控制单元 |
EP3837707B1 (de) * | 2018-08-15 | 2023-08-23 | tiko Energy Solutions AG | System und verfahren zur schnellen und geräuscharmen relaisschaltung |
DE102019209811A1 (de) * | 2019-07-04 | 2021-01-07 | Robert Bosch Gmbh | Schaltelement, Schaltvorrichtung und Verfahren zum Betrieb der Schaltvorrichtung |
CN113053696A (zh) * | 2019-12-26 | 2021-06-29 | 施耐德电气工业公司 | 用于接触器的控制电路及其控制方法 |
JP7283415B2 (ja) * | 2020-02-19 | 2023-05-30 | トヨタ自動車株式会社 | 電源回路の制御装置 |
CN113285424A (zh) * | 2021-05-27 | 2021-08-20 | 广东美的厨房电器制造有限公司 | 供电电路、供电电路的控制方法、烹饪设备和存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4409287C1 (de) * | 1994-03-18 | 1995-10-19 | Square D Deutschland | Schaltung zur fehlersicheren Relaisansteuerung für elektronische Schaltungen |
DE19632347A1 (de) * | 1996-08-10 | 1998-02-12 | Kaco Elektrotechnik Gmbh | Schalter, insbesondere Relais |
US5748427A (en) * | 1996-12-19 | 1998-05-05 | Physio-Control Corporation | Method and system for detecting relay failure |
JP3244064B2 (ja) * | 1998-10-13 | 2002-01-07 | 日本電気株式会社 | リレー故障検出装置 |
DE19944461C1 (de) * | 1999-09-16 | 2001-01-11 | Siemens Ag | Überwachungsverfahren für ein elektromagnetisches Schaltgerät und hiermit korrespondierendes elektromagnetisches Schaltgerät |
-
2007
- 2007-11-15 CN CN200780101582.0A patent/CN101889323B/zh active Active
- 2007-11-15 WO PCT/EP2007/009999 patent/WO2009062536A1/de active Application Filing
- 2007-11-15 EP EP07846672.9A patent/EP2208215B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
CN101889323A (zh) | 2010-11-17 |
CN101889323B (zh) | 2013-06-19 |
WO2009062536A1 (de) | 2009-05-22 |
EP2208215A1 (de) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2208215B1 (de) | Schaltanordnung und verfahren zum ansteuern eines elektromagnetischen relais | |
EP1228519B1 (de) | Sicherheitsschaltgerät zum ein- und sicheren ausschalten eines elektrischen verbrauchers, insbesondere einer elektrisch angetriebenen maschine | |
EP1269274B2 (de) | Sicherheitsschaltgerät und verfahren zur einstellung eines betriebsmodus eines sicherheitsschaltgeräts | |
EP3414778B1 (de) | Schutzschaltung für ein photovoltaik (pv)-modul, verfahren zum betrieb der schutzschaltung und photovoltaik (pv)-anlage mit einer derartigen schutzschaltung | |
EP3043220B1 (de) | Vorrichtung und verfahren zur funktionsüberwachung eines sicherheitsschaltmittels | |
WO2004105067A1 (de) | Sicherheitsschaltgerät zum fehlersicheren abschalten eines elektrischen verbrauchers sowie entsprechendes verfahren | |
EP2826052A1 (de) | Sicherheitsrelaisschaltung | |
EP0052759B1 (de) | Einrichtung bei einem elektronischen Stellwerk zum Speisen und Fernüberwachen von Weichenantrieben | |
EP2845211B1 (de) | Überwachung eines elektromagnetischen relais | |
EP2656365B1 (de) | Ansteuerschaltung für ein elektromagnetisches relais | |
EP1726085B1 (de) | Verfahren zum betreiben einer versorgungseinheit für eine treiberschaltung sowie versorgungseinheit für eine treiberschaltung | |
EP0505774B1 (de) | Sicherheitsschaltgerät | |
EP2127992B1 (de) | Schaltung zur Überwachung von Endlagenschaltern eines 4-Draht-Drehstrom-Antriebs einer Weiche | |
EP2215533B1 (de) | Steuereinrichtung für eine sicherheitsschaltvorrichtung mit integrierter überwachung der versorgungsspannung | |
EP3742466B1 (de) | Schaltanordnung zum gemäss einer sicherheitsvorschrift sicheren schalten eines elektrischen verbrauchers | |
DE10261454A1 (de) | Motorsteuerung mit sicherem Halt | |
DE202016103031U1 (de) | Ansteuerbare Bypass-Diode | |
DE102009026948B4 (de) | Diodentreiber | |
DE102010055479A1 (de) | Schaltung zur Ansteuerung eines Schalters | |
EP3254364A1 (de) | Einschaltstrombegrenzung | |
WO2023011768A1 (de) | Trennschaltereinheit | |
EP1333346B1 (de) | Verfahren und Einrichtung zur Fehlerdiagnose an gesteuerten elektrischen Antrieben | |
DE102022122527A1 (de) | Relaisvorrichtung und Sicherheitsschaltgerät mit mindestens einer Relaisvorrichtung | |
WO2015180806A1 (de) | Elektronisches relais | |
WO2023144002A1 (de) | ÜBERWACHTES LADEVERFAHREN UNTER BERÜCKSICHTIGUNG VON LADESTATIONSSEITIGEN ÜBERSPANNUNGSSCHUTZMAßNAHMEN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100416 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150722 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 771002 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007014503 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160414 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007014503 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
26N | No opposition filed |
Effective date: 20161014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161115 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 771002 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161115 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20071115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231204 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231122 Year of fee payment: 17 Ref country code: FR Payment date: 20231114 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 17 |