EP2208023A1 - Verifikation von digitalen karten - Google Patents

Verifikation von digitalen karten

Info

Publication number
EP2208023A1
EP2208023A1 EP08846020A EP08846020A EP2208023A1 EP 2208023 A1 EP2208023 A1 EP 2208023A1 EP 08846020 A EP08846020 A EP 08846020A EP 08846020 A EP08846020 A EP 08846020A EP 2208023 A1 EP2208023 A1 EP 2208023A1
Authority
EP
European Patent Office
Prior art keywords
data
vehicle
evaluation
digital map
evaluation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08846020A
Other languages
English (en)
French (fr)
Inventor
Ulrich STÄHLIN
Otmar Schreiner
Andreas Kircher
Enno Kelling
Matthias Schorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Continental Engineering Services GmbH
Original Assignee
Continental Teves AG and Co OHG
Continental Engineering Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG, Continental Engineering Services GmbH filed Critical Continental Teves AG and Co OHG
Publication of EP2208023A1 publication Critical patent/EP2208023A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar

Definitions

  • the invention relates to the use of digital maps in vehicles. More particularly, the invention relates to an evaluation module for evaluating data of a digital map, a driver assistance system for a vehicle having such an evaluation module, a security system for a vehicle having such an evaluation module, a vehicle having an evaluation module, a method for evaluating data of a digital map for a vehicle, a program element and a computer readable medium.
  • the navigation devices use digital maps.
  • the navigation devices are permanently installed in the vehicle or can be mounted as mobile units in the vehicle.
  • the described embodiments equally relate to the evaluation module, the driver assistance system, the security system, the vehicle, the method, the program element and the computer-readable medium.
  • the features mentioned below for example with regard to the assessment module, the driver assistance system, the safety system or the vehicle, can also be implemented in the method, the program element or the computer-readable medium, and vice versa.
  • an evaluation module for evaluating data of a digital map for a vehicle which has a computing unit and an interface.
  • the arithmetic unit is used to receive data from the digital map and to carry out the evaluation of the data on the basis of a card's own quality information and / or on the basis of measurement data of an environment sensor system of the vehicle.
  • the interface is to pass the rating to Driver assistance system and / or run on a security system of the vehicle, wherein the driver assistance system and / or the security system uses data of the digital map based on the evaluation.
  • the arithmetic unit can perform a verification or validation of the digital map data or the entire digital map in the vehicle. This evaluation can be done either on the basis of card-specific quality characteristics or on the basis of sensor data or on the basis of a combination of quality characteristics and sensor data.
  • the result of the evaluation is then transferred via the interface to the driver assistance system and / or a safety system of the vehicle.
  • the system can then decide based on the rating to what extent it wants to use the digital map data. For example, if the evaluation result has been very positive, the driver assistance system and / or the security system can rely relatively heavily on the corresponding data of the digital map. If, on the other hand, the evaluation result has been relatively poor (for example, because the digital map is out of date or inaccurate at this particular location), the information from the digital map will flow only to a limited extent into driver assistance or safety control.
  • digital maps should also be understood to mean maps for Advanced Driver Assistance Systems (ADAS) without navigation.
  • ADAS Advanced Driver Assistance Systems
  • the vehicle is, for example, a motor vehicle, such as a car, bus or truck, or else a rail vehicle, a ship, an aircraft, - A -
  • GPS is representative of all
  • GNSS Global Navigation Satellite Systems
  • GPS Global Navigation Satellite Systems
  • Galileo GPS
  • GLONASS Russian
  • Compass China
  • IRNSS India
  • GNSS Global Navigation Satellite Systems
  • the position determination of the vehicle can also take place via a cell positioning. This is particularly useful when using GSM or UMTS networks.
  • the evaluation of the data of the digital map comprises the determination of a quality and / or a validity of the data.
  • map data for driver assistance systems is currently specified and defined by the ADASIS forum or in the MAPS & ADAS project.
  • An evaluation of the quality of the data makes it possible to use them to a greater extent than hitherto for driver assistance systems or safety systems. So far, such systems must always assume that the quality of the data is low.
  • the evaluation module is designed to determine the validity of the data on the basis of the measurement data of the environmental sensor system.
  • the measurement data which are measured by the environment sensors of the environmental sensor system, are therefore used to validate the data.
  • This validation may be upstream or downstream of further evaluation steps.
  • the validation can for example, take place in a fusion module, which is connected downstream of the arithmetic unit for evaluating the digital map. Also, this fusion module can be housed in the same processing unit (processor). It is also possible that a validation takes place first, followed by an evaluation of the data.
  • the card's own quality information comprises information selected from the group consisting of time stamp information, information regarding a measurement accuracy with which the corresponding data was recorded, information regarding a deviation between a measured position of the vehicle and a map. Matching position, information regarding a density of the data and information regarding a type of data on.
  • the evaluation of the data comprises an authentication of the data.
  • an authentication can be done, for example, by reading out a corresponding certificate with which the digital card is provided.
  • the evaluation of the data comprises a determination of an actuality of the data Data, wherein the evaluation module is designed to determine the timeliness of the data via a return channel to a central office.
  • the central office is a service provider.
  • the environmental sensor measurement data used to evaluate the data are selected from the group consisting of information regarding a traffic lane, a road sign, a structure and a vegetation.
  • the environment sensor or environment sensors thus observe the surroundings of the vehicle. With the acquired measurement data can then be determined whether the digital map or the digital map used matches the environment, that is valid.
  • the evaluation module is designed to evaluate data of a digital map of a mobile device.
  • the evaluation and the evaluated digital map data are then transferred to the driver assistance system and / or the security system of the vehicle. This system can then use the data of the digital map of the mobile device based on the rating.
  • the data transmitted to the driver assistance system and / or the safety system via the interface also have, in addition to the evaluation, the corresponding measured position data of the vehicle including corresponding attributes.
  • a driver assistance system for a vehicle which has an evaluation module described above.
  • a safety system for a vehicle is provided with an evaluation module described above.
  • a vehicle is specified with an evaluation module described above.
  • a method for evaluating data of a digital map for a vehicle in which data of the digital map are received by a computing unit. This is followed by carrying out an evaluation of the data on the basis of a card-specific quality information and / or on the basis of measurement data of an environment sensor of the vehicle. Furthermore, the evaluation, if necessary together with the evaluated digital map data, is transmitted to a driver assistance system and / or a security system of the vehicle, which uses the data of the digital map on the basis of the evaluation.
  • Driver assistance system or the security system is designed such that it can determine on the basis of the evaluation, to which extent the digital map data for the execution of the corresponding assistance functions or safety functions of the vehicle to be used.
  • a program element is specified which, when on a processor executes the processor to perform the steps described above.
  • the program element z. B be part of a software that is stored on a processor of the vehicle management.
  • the processor can also be the subject of the invention.
  • this embodiment of the invention comprises a computer program element, which already uses the invention from the beginning, as well as a computer program element, which by updating
  • a computer-readable medium having stored thereon a program element which, when executed on a processor, instructs the processor to perform the steps described above.
  • FIG. 1 shows an evaluation module and a driver assistance system or safety system according to an embodiment of the invention.
  • Fig. 2 shows a vehicle with a center according to an embodiment of the invention.
  • FIG. 3 shows a flowchart of a method according to an embodiment of the invention.
  • 4 shows an exemplary embodiment for different information levels of a digital map.
  • FIG. 1 shows an evaluation module for evaluating data of a digital map for a vehicle and a driver assistance system or safety system 104, 105 connected thereto and corresponding environment sensor system 103.
  • the evaluation module has two sub-modules 100, 101.
  • the first sub-module 100 is provided with digital map data from z. B. a head unit 102 of a so-called infotainment system or a PND 102, so a primary navigation system
  • the first subunit 106 compares timestamp data of the digital map data with the current time.
  • the second subunit 107 performs an evaluation of the measurement accuracy of the digital map data.
  • the third subunit 108 detects a deviation between a measured GPS position of the vehicle and a map matching position of the vehicle.
  • the fourth subunit 109 measures the frequency and density of the digital map data and the fifth subunit 110 determines the type of description of the data.
  • the results from the calculations of the subunits are fed to a first arithmetic unit 111, which then makes a comprehensive evaluation of the digital map data, in particular of the digital map data, which correspond to the current position of the vehicle on the basis of this data.
  • the corresponding evaluation result is then transferred via the data line 117 to the second sub-module 101, which is, for example, a fusion module which carries out a validation of the digital map data by measuring data of the surroundings sensor system 103.
  • the second sub-module 101 which is, for example, a fusion module which carries out a validation of the digital map data by measuring data of the surroundings sensor system 103.
  • the environment sensor system 103 has, for example, a camera 114, a radar sensor 115 and / or a lidar sensor 116. Also, ESP sensors can be consulted, which can help to determine the current position of the vehicle (for example, by detecting peculiarities of the roadway, such as crossing a railway sleeper or a sharp bend).
  • the measured environment data are likewise transferred to the arithmetic unit 112 of the fusion module 101.
  • the arithmetic unit 112 may be combined with the arithmetic unit 111, whereby the data exchange via the data line 117 can be avoided.
  • an interface 113 is provided, via which the evaluation in the form of a final result, if appropriate together with the corresponding digital map data, can be transferred to a driver assistance system or a security system 104, 105.
  • map data are used for driver assistance systems or safety systems, these systems can so far say nothing about the quality (quality) or the validity (validity) of the map information. However, this is necessary for the purposes of functional safety to support decisions or actions of the systems, such as an autonomous braking or steering intervention, with the map information.
  • the evaluation module (which may be composed of two sub-modules 100, 101 or even of a combined overall module), the digital map data are evaluated for quality before being passed on to the driver assistance systems or security systems.
  • the evaluation module can also be referred to as a "safety map module”.
  • each piece of information in the card receives a timestamp indicating when this information was taken.
  • Each position in the map still contains information about the measurement accuracy with which this data was recorded (eg the measurement accuracy of the used (D) GPS hardware). The better this measurement accuracy, the higher the quality of the data is rated.
  • certificates or confirmed with other methods of authentication In order to ensure the authenticity of the information in the card, they must be provided with certificates or confirmed with other methods of authentication.
  • the type of certificate or the authentication can also be used to evaluate the quality or reliability of the card data. For example, certificates or authentication methods from official bodies (and therefore from third parties) receive a higher quality rating than certificates from manufacturers or individuals.
  • the actuality of the data can also be evaluated in real time via a return channel to a service provider. there the actuality of the data can be checked. This way, even data with an old timestamp can still be up to date if no changes have yet been made.
  • Authentication can also be used to verify that a card is up-to-date with the manufacturer. This may be significant when a mobile navigation terminal passes the map data to a driver assistance system.
  • the authentication certificates can be present in the vehicle as well as obtained from a vehicle external body, eg. B. via a service provider.
  • the method described can also be used to provide dynamic information, such as. Congestion information.
  • the lanes Via a camera, the lanes can be detected and their course and number are compared with the map data.
  • Traffic signs, traffic lights or other traffic signs can be recognized via a camera and compared with the entries in the map.
  • Information about bridges, buildings on the roadside, other structures, vegetation can be detected via a camera. This information can be compared with the additional information in the map to evaluate their timeliness.
  • Guard rails and other objects can be detected by a radar or lidar sensor. This information can also be compared with the map data.
  • the driver assistance system and / or the security system can then make more or less use of the map data.
  • an ACC system Adaptive Cruise Control System
  • the ACC relies almost exclusively on the environment sensor (eg radar).
  • Fig. 1 serves as a basis for the following embodiment.
  • the map data are stored in a database.
  • the time stamp and the measuring accuracy are linked to the respective data via links and thus represent a kind of "attribute” or "meta-attribute” for this data.
  • the current position belongs to the current position Record loaded from the database and the module 100 with the computing unit 111 via z. B. provided a CAN bus.
  • This module is referred to below as the "Safety Map Module” (SMM).
  • the SMM now evaluates this data and uses the quantities listed above (such as timestamps,
  • Measurement accuracy 10.1.10
  • an overall assessment is determined from the individual quality assessments.
  • the data set now consists of the actual position data including the attributes, the quality ratings and the overall rating.
  • a fusion module 101 via CAN bus 117.
  • the map data is compared with information from environment sensors 114, 115, 116, as stated above. With these validated data, the so-called e-horizon is now created, which is then made available to the individual driver assistance and system modules 104, 105 via the CAN bus 113 via the interface 113.
  • SMM and fusion module can also be integrated on a computing unit, whereby the CAN bus connection 117 is saved.
  • the quality of map data can be evaluated using in-card quality information. Further, authentication of the map data, the
  • Quality information and up-to-dateness by means of certificates or other authentication mechanisms can be assessed by the type of authentication method and a Validation of the map data by environment sensors done.
  • map data from mobile devices can also be used by means of this quality assessment.
  • FIG. 2 shows a vehicle 200 according to an exemplary embodiment of the invention and a control center 202 communicating therewith, for example in the form of a service provider.
  • the vehicle 200 has the evaluation modules 100, 101, which are combined to form an overall module. Furthermore, a communication device 201 is provided, which is provided for data exchange with the center 202. Furthermore, the vehicle 200 has a camera 114 or one or more other environment sensors, with which the environment can be observed.
  • the module 100, 101 makes an evaluation of the digital map data from the memory 102 and forwards the evaluation to the driver assistance system 104 and the security system 105.
  • step 301 data of a digital map is accepted by a computing unit.
  • this arithmetic unit performs an evaluation of the data based on the card's own quality information.
  • step 303 a further evaluation of the data is based on
  • Digital maps are often stored in different "layers" in a database, which correspond to these layers different resolutions or different details (roads, signs, ).
  • GeoHorizon or eHorizon is used. This gives the systems information about how the road or track looks in front of the vehicle.
  • map data For safety applications (driver assistance systems or other safety systems) up-to-date and reliable map data is necessary. However, not all data elements must meet the same requirements. Therefore, the requirements for the different levels of the map data are different.
  • MMU memory management unit
  • the different levels can be divided according to the quality levels of the respective data to be fulfilled.
  • the data are summarized, to which the same quality requirements are put by the applications. This quality level then determines how often the data has to be updated.
  • the accuracy of the linking of the various levels can be made dependent on the security requirements.
  • a strong link between the levels is realized, e.g. per element, and at less safety-critical levels only per area.
  • GeoHorizon or eHorizon only data can be used that corresponds to a certain quality level and / or for which a certain degree of up-to-dateness is ensured or / and which come from a control unit which has a certain security level. It can also be a separation between consumer data (only interesting for navigation and additional services) and security data (important for ADAS and / or
  • ADAS or / and security systems have all the necessary data via the GeoHorizon or eHorizon, without insecure user data (consumer data) resulting in quality losses.
  • a high-quality, secured data level can be used to validate the data of a data level with lower quality. Only the validated data will be used for ADAS and / or security applications.
  • ADAS Advanced Driver Assistance Systems
  • a high-quality data plane (for example, certified by a government agency) contains data on road signs.
  • a lower quality data level contains data on schools, playgrounds, etc.
  • the processing can also be split up and thus used e.g. to create a redundancy.
  • FIG. 4 shows an exemplary embodiment for various information levels of a digital map and, based on this, various quality levels, memory locations and update paths.
  • a safety-related memory 402 of a central control unit 401 On a safety-related memory 402 of a central control unit 401, all the geometry data of a digital map are stored, such as e.g. Road courses, etc. On a less secure memory 403 of the HeadUnit 102 are then additionally the street names, points of interest, etc. stored.
  • the eHorizon (represented by box 405) is provided by the central control unit and only the
  • an evaluation module which has a first memory area for storing first data of the digital map, wherein the first memory area satisfies first security requirements. Furthermore, the evaluation module has a second storage area for storing second data of the digital map, wherein the second storage area satisfies second security requirements that differ from the first security requirements.
  • the two memory areas may be arranged on different storage media, or on the same storage medium, in which case they are separated from one another, for example by an MMU. It should be noted at this point that the principle of separate memory areas for digital cards can generally be used. An evaluation of the map data is not required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Abstract

Gemäß einem Ausführungsbeispiel der Erfindung ist ein Bewertungsmodul zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug angegeben. Die Bewertung erfolgt auf Basis einer karteneigenen Qualitätsinformation und von Messdaten einer Umfeldsensorik des Fahrzeugs. Die angeschlossenen Fahrerassistenzsysteme und Sicherheitssysteme des Fahrzeugs verwenden die digitalen Kartendaten auf Basis der Bewertung.

Description

Verifikation von digitalen Karten
Gebiet der Erfindung
Die Erfindung betrifft die Verwendung digitaler Karten in Fahrzeugen. Insbesondere betrifft die Erfindung ein Bewertungsmodul zur Bewertung von Daten einer digitalen Karte, ein Fahrerassistenzsystem für ein Fahrzeug mit einem solchen Bewertungsmodul, ein Sicherheitssystem für ein Fahrzeug mit einem solchen Bewertungsmodul, ein Fahrzeug mit einem Bewertungsmodul, ein Verfahren zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug, ein Programmelement und ein computerlesbares Medium.
Technologischer Hintergrund
In heutigen Navigationsgeräten werden digitale Karten verwendet. Die Navigationsgeräte sind fest im Fahrzeug eingebaut oder können als mobile Einheiten im Fahrzeug angebracht werden.
Werden digitale Kartendaten für Fahrerassistenzsysteme oder Sicherheitssysteme verwendet, gehen diese Systeme aus Sicherheitsgründen davon aus, dass die Qualität der digitalen Kartendaten gering ist. Das volle Potenzial der digitalen Kartendaten wird in vielen Fällen nicht vollständig ausgeschöpft. Zusammenfassung der Erfindung
Es ist eine Aufgabe der Erfindung, die Verwendung digitaler Kartendaten in Fahrzeugen und insbesondere für
Fahrerassistenzsysteme und Sicherheitssysteme zu verbessern.
Es sind ein Bewertungsmodul zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug, ein Fahrerassistenzsystem, ein Sicherheitssystem, ein Fahrzeug, ein Verfahren, ein
Programmelement und ein computerlesbares Medium gemäß den Merkmalen der unabhängigen Ansprüche angegeben. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen .
Die beschriebenen Ausführungsbeispiele betreffen gleichermaßen das Bewertungsmodul, das Fahrerassistenzsystem, das Sicherheitssystem, das Fahrzeug, das Verfahren, das Programmelement und das computerlesbare Medium. In anderen Worten lassen sich die im Folgenden zum Beispiel im Hinblick auf das Bewertungsmodul, das Fahrerassistenzsystem, das Sicherheitssystem oder das Fahrzeug genannten Merkmale auch in dem Verfahren, dem Programmelement oder dem computerlesbaren Medium implementieren, und umgekehrt.
Gemäß einem Ausführungsbeispiel der Erfindung ist ein Bewertungsmodul zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug angegeben, welches eine Recheneinheit und eine Schnittstelle aufweist. Die Recheneinheit dient zur Entgegennahme von Daten der digitalen Karte und zur Durchführung der Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von Messdaten einer Umfeldsensorik des Fahrzeugs. Die Schnittstelle ist zur Übergabe der Bewertung an ein Fahrerassistenzsystem und/oder an ein Sicherheitssystem des Fahrzeugs ausgeführt, wobei das Fahrerassistenzsystem und/oder das Sicherheitssystem Daten der digitalen Karte auf Basis der Bewertung verwendet.
In anderen Worten kann die Recheneinheit eine Verifikation oder Validierung der digitalen Kartendaten oder der gesamten digitalen Karte im Fahrzeug durchführen. Diese Bewertung kann entweder auf Basis von karteneigenen Qualitätsmerkmalen oder auf Basis von Sensordaten oder auf Basis einer Kombination von Qualitätsmerkmalen und Sensordaten erfolgen.
Das Ergebnis der Bewertung wird dann über die Schnittstelle an das Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs übergeben. Das System kann dann anhand der Bewertung entscheiden, in welchem Umfang es die digitalen Kartendaten nutzen möchte. Ist das Bewertungsergebnis beispielsweise sehr positiv ausgefallen, kann sich das Fahrerassistenzsystem und/oder das Sicherheitssystem verhältnismäßig stark auf die entsprechenden Daten der digitalen Karte verlassen. Ist das Bewertungsergebnis hingegen verhältnismäßig schlecht ausgefallen (weil die digitale Karte beispielsweise veraltet ist oder an diesem speziellen Ort ungenau ist) , fließen die Informationen aus der digitalen Karte nur in geringem Umfang in die Fahrerassistenz oder die Sicherheitssteuerung ein.
Unter dem Begriff „digitale Karten" sind auch Karten für fortschrittliche Fahrerassistenzsysteme (ADAS, Advanced Driver Assistance Systems) zu verstehen, ohne dass eine Navigation stattfindet.
Bei dem Fahrzeug handelt es sich beispielsweise um ein Kraftfahrzeug, wie Auto, Bus oder Lastkraftwagen, oder aber auch um ein Schienenfahrzeug, ein Schiff, ein Luftfahrzeug, - A -
wie Helikopter oder Flugzeug, oder beispielsweise um ein Fahrrad.
Weiterhin sei darauf hingewiesen, dass im Kontext der vorliegenden Erfindung GPS stellvertretend für sämtliche
Globale Navigationssatellitensysteme (GNSS) steht, wie z.B. GPS, Galileo, GLONASS (Russland), Compass (China), IRNSS (Indien) , ...
An dieser Stelle sei weiterhin darauf hingewiesen, dass die Positionsbestimmung des Fahrzeugs auch über eine Zellpositionierung erfolgen kann. Dies bietet sich insbesondere bei der Verwendung von GSM- oder UMTS-Netzen an.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung umfasst die Bewertung der Daten der digitalen Karte die Bestimmung einer Qualität und/oder einer Gültigkeit der Daten.
Die Verwendung von Kartendaten für Fahrerassistenzsysteme wird gegenwärtig durch das ADASIS-Forum bzw. im Projekt MAPS & ADAS spezifiziert und definiert. Über eine Bewertung der Qualität der Daten ist es möglich, diese im größeren Umfang als bisher für Fahrerassistenzsysteme bzw. Sicherheitssysteme zu verwenden. Bisher muss bei solchen Systemen immer davon ausgegangen werden, dass die Qualität der Daten gering ist.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist das Bewertungsmodul zur Bestimmung der Gültigkeit der Daten auf Basis der Messdaten der Umfeldsensorik ausgeführt.
Die Messdaten, die von den Umfeldsensoren der Umfeldsensorik gemessen werden, werden also zur Validierung der Daten verwendet. Diese Validierung kann weiteren Bewertungsschritten vor- oder nachgeschaltet sein. Die Validierung kann beispielsweise in einem Fusionsmodul erfolgen, welches der Recheneinheit zur Bewertung der digitalen Karte nachgeschaltet ist. Auch kann dieses Fusionsmodul in derselben Recheneinheit (Prozessor) untergebracht sein. Auch ist es möglich, dass zuerst eine Validierung stattfindet, der dann eine Bewertung der Daten folgt.
Unter Validierung ist hierbei zu verstehen, dass festgestellt wird, ob die Kartendaten mit der aktuellen Position und Umgebung des Fahrzeugs übereinstimmen. In anderen Worten bedeutet dies, dass festgestellt wird, ob sich das Fahrzeug zum Beispiel tatsächlich auf der Straße befindet, die die digitale Karte angibt. Bei der Bewertung hingegen wird festgestellt, wie genau die Karteninformation tatsächlich ist.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weisen die karteneigenen Qualitätsinformationen eine Information ausgewählt aus der Gruppe bestehend aus einer Zeitstempelinformation, einer Information hinsichtlich einer Messgenauigkeit, mit der die entsprechenden Daten aufgenommen wurden, einer Information hinsichtlich einer Abweichung zwischen einer gemessenen Position des Fahrzeugs und einer Map-Matching Position, einer Information hinsichtlich einer Dichte der Daten und einer Information hinsichtlich einer Art der Daten auf.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung umfasst die Bewertung der Daten eine Authentifizierung der Daten. Eine solche Authentifizierung kann beispielsweise über das Auslesen eines entsprechenden Zertifikats erfolgen, mit welchem die digitale Karte versehen ist.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung umfasst die Bewertung der Daten eine Bestimmung einer Aktualität der Daten, wobei das Bewertungsmodul zur Bestimmung der Aktualität der Daten über einen Rückkanal zu einer Zentrale ausgeführt ist. Bei der Zentrale handelt es sich beispielsweise um einen Service Provider.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Messdaten der Umfeldsensorik, die zur Bewertung der Daten herangezogen werden, aus der Gruppe bestehend aus Informationen hinsichtlich einer Fahrspur, eines Verkehrszeichens, eines Bauwerks und einer Vegetation ausgewählt .
Der Umfeldsensor bzw. die Umfeldsensoren beobachten also die Umgebung des Fahrzeugs. Mit den erfassten Messdaten kann dann festgestellt werden, ob die digitale Karte bzw. der verwendete digitale Kartenausschnitt mit der Umgebung übereinstimmt, also Gültigkeit besitzt.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist das Bewertungsmodul zur Bewertung von Daten einer digitalen Karte eines mobilen Geräts ausgeführt. Die Bewertung und die bewerteten digitalen Kartendaten werden dann an das Fahrerassistenzsystem und/oder das Sicherheitssystem des Fahrzeugs übergeben. Dieses System kann dann die Daten der digitalen Karte des mobilen Geräts auf Basis der Bewertung verwenden .
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weisen die über die Schnittstelle an das Fahrerassistenzsystem und/oder das Sicherheitssystem übergebenen Daten neben der Bewertung auch die entsprechenden gemessenen Positionsdaten des Fahrzeugs inklusive entsprechender Attribute auf. Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein Fahrerassistenzsystem für ein Fahrzeug angegeben, welches ein oben beschriebenes Bewertungsmodul aufweist.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein Sicherheitssystem für ein Fahrzeug mit einem oben beschriebenen Bewertungsmodul angegeben.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein Fahrzeug mit einem oben beschriebenen Bewertungsmodul angegeben .
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein Verfahren zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug angegeben, bei dem Daten der digitalen Karte durch eine Recheneinheit entgegengenommen werden. Daraufhin erfolgt die Durchführung einer Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von Messdaten einer Umfeldsensorik des Fahrzeugs. Weiterhin wird die Bewertung ggf. zusammen mit den bewerteten digitalen Kartendaten an ein Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs übergeben, welches die Daten der digitalen Karte auf Basis der Bewertung verwendet.
An dieser Stelle sei angemerkt, dass also das
Fahrerassistenzsystem bzw. das Sicherheitssystem derart ausgeführt ist, dass es auf Basis der Bewertung bestimmen kann, in welchem Umfang die digitalen Kartendaten für die Ausführung der entsprechenden Assistenzfunktionen bzw. Sicherheitsfunktionen des Fahrzeugs verwendet werden sollen.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein Programmelement angegeben, das, wenn es auf einem Prozessor ausgeführt wird, den Prozessor anleitet, die oben beschriebenen Schritte durchzuführen.
Dabei kann das Programmelement z. B. Teil einer Software sein, die auf einem Prozessor des Fahrzeugmanagements gespeichert ist. Der Prozessor kann dabei ebenso Gegenstand der Erfindung sein. Weiterhin umfasst dieses Ausführungsbeispiel der Erfindung ein Computerprogrammelement, welches schon von Anfang an die Erfindung verwendet, sowie auch ein Computerprogrammelement, welches durch eine Aktualisierung
(Update) ein bestehendes Programm zur Verwendung der Erfindung veranlasst .
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist ein computerlesbares Medium angegeben, auf dem ein Programmelement gespeichert ist, das, wenn es auf einem Prozessor ausgeführt wird, den Prozessor anleitet, die oben beschriebenen Schritte durchzuführen .
Im Folgenden werden mit Verweis auf die Figuren Ausführungsbeispiele der Erfindung beschrieben.
Kurze Beschreibung der Figuren
Fig. 1 zeigt ein Bewertungsmodul und ein Fahrerassistenzsystem oder Sicherheitssystem gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 2 zeigt ein Fahrzeug mit einer Zentrale gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 3 zeigt ein Flussdiagramm eines Verfahrens gemäß einem Ausführungsbeispiel der Erfindung. Fig. 4 zeigt ein Ausführungsbeispiel für verschiedene Informationsebenen einer digitalen Karte.
Detaillierte Beschreibung von Ausführungsbeispielen
Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.
In der folgenden Figurenbeschreibung werden für die gleichen oder ähnlichen Elemente die gleichen Bezugsziffern verwendet.
Fig. 1 zeigt ein Bewertungsmodul zur Bewertung von Daten einer digitalen Karte für ein Fahrzeug sowie ein daran angeschlossenes Fahrerassistenzsystem oder Sicherheitssystem 104, 105 und entsprechende Umfeldsensorik 103.
Das Bewertungsmodul weist zwei Teilmodule 100, 101 auf. Das erste Teilmodul 100 wird mit digitalen Kartendaten aus z. B. einer Head Unit 102 eines sogenannten Infotainmentsystems oder eines PND 102, also einem primären Navigationssystem mit
Bildschirm, versorgt. Diese digitalen Kartendaten gehen dann jeder der Untereinheiten 106 bis 110 zu. Es können auch weitere Untereinheiten vorgesehen sein oder eine oder mehrere der Untereinheiten entfallen.
Die erste Untereinheit 106 stellt einen Vergleich von Zeitstempeldaten der digitalen Kartendaten mit der aktuellen Zeit auf. Die zweite Untereinheit 107 führt eine Bewertung der Messgenauigkeit der digitalen Kartendaten durch. Die dritte Untereinheit 108 stellt eine Abweichung zwischen einer gemessenen GPS-Position des Fahrzeugs zu einer Map-Matching Position des Fahrzeugs fest. Die vierte Untereinheit 109 misst die Häufigkeit bzw. Dichte der digitalen Kartendaten und die fünfte Untereinheit 110 stellt die Art der Beschreibung der Daten fest.
Die Ergebnisse aus den Berechnungen der Untereinheiten werden einer ersten Recheneinheit 111 zugeführt, die dann aufgrund dieser Daten eine umfassende Bewertung der digitalen Kartendaten, insbesondere der digitalen Kartendaten, die mit der aktuellen Position des Fahrzeugs korrespondieren, vornimmt .
Das entsprechende Bewertungsergebnis wird dann über die Datenleitung 117 dem zweiten Teilmodul 101 übergeben, bei dem es sich beispielsweise um ein Fusionsmodul handelt, welches eine Validierung der digitalen Kartendaten durch Messdaten der Umfeldsensorik 103 vornimmt.
An dieser Stelle sei angemerkt, dass die Datenübertragung zwischen den einzelnen Komponenten sowohl kabelgebunden als auch kabellos erfolgen kann.
Die Umfeldsensorik 103 weist beispielsweise eine Kamera 114, einen Radarsensor 115 und/oder einen Lidarsensor 116 auf. Auch können ESP-Sensoren hinzugezogen werden, welche helfen können, die aktuelle Position des Fahrzeugs zu bestimmen (indem beispielsweise Besonderheiten der Fahrbahn detektiert werden, beispielsweise das Überfahren einer Eisenbahnschwelle oder eine scharfe Kurve) .
Die gemessenen Umfelddaten werden ebenfalls an die Recheneinheit 112 des Fusionsmoduls 101 übergeben. Auch kann die Recheneinheit 112 mit der Recheneinheit 111 zusammengefasst sein, wodurch der Datenaustausch über die Datenleitung 117 vermieden werden kann. Weiterhin ist eine Schnittstelle 113 vorgesehen, über welche die Bewertung in Form eines Endergebnisses ggf. zusammen mit den entsprechenden digitalen Kartendaten an ein Fahrerassistenzsystem oder ein Sicherheitssystem 104, 105 übergeben werden kann.
Werden digitale Kartendaten für Fahrerassistenzsysteme oder Sicherheitssysteme verwendet, so können diese Systeme bisher keine Aussage über die Qualität (Güte) bzw. die Gültigkeit (Validität) der Karteninformationen treffen. Dies ist jedoch notwendig, um im Sinne der funktionellen Sicherheit (Functional Safety) Entscheidungen bzw. Aktionen der Systeme, wie beispielsweise einen autonomen Brems- oder Lenkeingriff, mit den Karteninformationen zu stützen.
Hier setzt die Erfindung an. In dem Bewertungsmodul (das aus zwei Teilmodulen 100, 101 oder auch aus einem zusammengefassten Gesamtmodul aufgebaut sein kann) , werden die digitalen Kartendaten bezüglich ihrer Qualität bewertet, bevor sie an die Fahrerassistenzsysteme oder Sicherheitssysteme weitergereicht werden. Ein solches Bewertungsmodul kann auch als „Safety Map Modul" bezeichnet werden.
Die folgenden Qualitätsmerkmale können hierbei herangezogen werden:
Die Aktualität der Karteninformation. Hierzu erhält jede Information in der Karte einen Zeitstempel, der besagt, wann diese Information aufgenommen wurde. Je älter die Daten sind, desto geringer ist die Qualität der Daten.
Jede Position in der Karte enthält noch eine Information über die Messgenauigkeit, mit der diese Daten aufgenommen wurden (z. B. die Messgenauigkeit der verwendeten (D) GPS-Hardware) . Je besser diese Messgenauigkeit ist, desto höher wird die Qualität der Daten bewertet.
Über die Abweichung zwischen der GPS-Position des Fahrzeugs und der vom Navigationssystem bestimmten Map- Matching Position. Je größer dieser Abstand ist, desto geringer wird die Qualität der Daten bewertet.
Über die Häufigkeit der Daten. Werden viele Punkte und Liniensegmente oder andere Elemente im geringen Abstand zur Beschreibung einer Strecke verwendet, so ist die Qualität höher zu bewerten als für den Fall, bei dem weniger Punkte und Liniensegmente bzw. weitere Elemente zur Beschreibung der Strecke verwendet werden. Dies gilt auch für die mit diesen Punkten, Strecken, anderen Elementen assoziierten Attribute.
Über die Art der Beschreibung. Wird z. B. eine Strecke als gerade beschrieben, so ist die Qualität als niedriger anzusehen, als wenn Polynome, Splines, etc. verwendet werden .
Um die Authentizität der Informationen in der Karte sicherzustellen, sind diese mit Zertifikaten zu versehen oder mit anderen Methoden der Authentifizierung zu bestätigen. Über die Art des Zertifikats bzw. der Authentifizierung kann auch eine Bewertung der Qualität bzw. der Verlässlichkeit der Kartendaten erfolgen. So bekommen Zertifikate bzw. Authentifizierungsmethoden von offizieller Stelle (und damit von Dritten) eine höhere Qualitätsbewertung als Zertifikate von Herstellern oder von Einzelpersonen.
Die Bewertung der Aktualität der Daten kann auch in Echtzeit über einen Rückkanal zu einem Service Provider erfolgen. Dabei kann die Aktualität der Daten überprüft werden. So können selbst Daten mit einem alten Zeitstempel noch aktuell sein, wenn sich noch keine Änderungen ergeben haben.
Über die Authentifizierung kann auch überprüft werden, ob sich eine Karte auf dem neuesten Stand des Herstellers befindet. Dies kann von Bedeutung sein, wenn ein mobiles Navigationsendgerät die Kartendaten an ein Fahrerassistenzsystem weitergibt. Die Authentifizierungszertifikate können sowohl im Fahrzeug vorliegen als auch von einer fahrzeugexternen Stelle bezogen werden, z. B. über einen Service Provider.
Das beschriebene Verfahren kann auch verwendet werden, um dynamische Informationen, wie z. B. Stauinformationen, zu bewerten .
Die bisher beschriebene Qualitätsbewertung beruht rein auf Daten aus der Karte selbst. Anschließend an diese oder vor dieser Bewertung kann noch eine Validierung mittels
Umfeldsensoren erfolgen. Im Folgenden seien hierzu einige Beispiele genannt:
Über eine Kamera können die Fahrspuren erkannt werden und deren Verlauf und Anzahl mit den Kartendaten verglichen werden .
Über eine Kamera können Verkehrsschilder, Ampeln oder andere Verkehrszeichen erkannt werden und mit den Eintragungen in der Karte verglichen werden.
Über eine Kamera können Informationen über Brücken, Gebäude am Straßenrand, andere Bauwerke, Vegetation (Bäume, Wald, ...) detektiert werden. Diese Informationen können mit den Zusatzinformationen in der Karte verglichen werden, um deren Aktualität zu bewerten.
Über einen Radar- oder Lidarsensor können Leitplanken und andere Gegenstände erkannt werden. Diese Information kann ebenfalls mit den Kartendaten verglichen werden.
Über die hier beschriebenen Verfahren ist es auch möglich, Kartendaten aus mobilen Geräten zu bewerten und damit ggf. diese Daten für Fahrerassistenzsysteme oder Sicherheitssysteme zu verwenden.
Je nach Qualitätsbewertung kann anschließend im Fahrerassistenzsystem und/oder im Sicherheitssystem mehr oder weniger stark auf die Kartendaten zurückgegriffen werden. So kann ein ACC-System (Adaptive Cruise Control System) bei guter Qualitätsbewertung der Kartendaten die Regelstrategie sehr stark auf diese Daten stützen. Bei einer schlechten Qualitätsbewertung verlässt sich das ACC hingegen fast ausschließlich auf den Umfeldsensor (z. B. Radar) .
Die beiden beschriebenen Verfahren (Qualitätsbewertung über karteneigene Daten und mittels Umfeldsensoren) können dabei auch einzeln verwendet werden und setzen das jeweils andere Verfahren nicht zwingend voraus. Der Ablauf, der in Fig. 1 dargestellt ist, dient als Basis für das folgende Ausführungsbeispiel .
In der Head Unit 102 mit Navigationssystem werden die Kartendaten in einer Datenbank gespeichert. Der Zeitstempel und die Messgenauigkeit sind dabei über Verweise mit den jeweiligen Daten verbunden und stellen damit eine Art „Attribut" bzw. „Meta-Attribut" für diese Daten dar. Aufgrund von GPS-Daten wird der zur aktuellen Position gehörende Datensatz aus der Datenbank geladen und dem Modul 100 mit der Recheneinheit 111 über z. B. einen CAN-Bus bereitgestellt. Dieses Modul wird im Folgenden „Safety Map Modul" (SMM) genannt .
Im SMM werden nun diese Daten bewertet und anhand der weiter oben angegebenen Größen (wie z. B. Zeitstempel,
Messgenauigkeit, ...) und anhand von Zertifikaten die Echtheit der Kartendaten überprüft. Anschließend wird aus den einzelnen Qualitätsbewertungen eine Gesamtbewertung ermittelt. Der Datensatz besteht nun aus den eigentlichen Positionsdaten inklusive den Attributen, den Qualitätsbewertungen und der Gesamtbewertung .
Diese Daten werden anschließend an ein Fusionsmodul 101 per CAN-Bus 117 übergeben. In diesem Fusionsmodul werden die Kartendaten mit Informationen aus Umfeldsensoren 114, 115, 116 verglichen, wie oben bereits ausgeführt. Mit diesen validierten Daten wird nun der sog. e-Horizon erstellt, der dann per CAN-Bus über die Schnittstelle 113 den einzelnen Fahrerassistenz- und Systemmodulen 104, 105 zur Verfügung gestellt wird.
SMM und Fusionsmodul können dabei auch auf einer Recheneinheit integriert sein, wodurch die CAN-Busverbindung 117 eingespart wird.
Es kann also die Qualität von Kartendaten mittels karteneigener Qualitätsinformationen bewertet werden. Weiter kann eine Authentifizierung der Kartendaten, der
Qualitätsinformationen und der Aktualität mittels Zertifikaten oder anderen Authentifizierungsmechanismen erfolgen. Im Weiteren kann die Verlässlichkeit der Daten anhand des Typs der Authentifizierungsmethode bewertet werden sowie eine Validierung der Kartendaten mittels Umfeldsensorik erfolgen. Weiterhin können auch Kartendaten aus mobilen Geräten mittels dieser Qualitätsbewertung verwendet werden.
Fig. 2 zeigt ein Fahrzeug 200 gemäß einem Ausführungsbeispiel der Erfindung sowie eine damit kommunizierende Zentrale 202, beispielsweise in Form eines Service Providers.
Das Fahrzeug 200 weist die Bewertungsmodule 100, 101 auf, die zu einem Gesamtmodul zusammengefasst sind. Weiterhin ist eine Kommunikationsvorrichtung 201 vorgesehen, die zum Datenaustausch mit der Zentrale 202 vorgesehen ist. Weiterhin weist das Fahrzeug 200 eine Kamera 114 oder einen oder mehrere andere Umfeldsensoren auf, mit welchen die Umgebung beobachtet werden kann. Das Modul 100, 101 nimmt eine Bewertung der digitalen Kartendaten aus dem Speicher 102 vor und gibt die Bewertung an das Fahrerassistenzsystem 104 und das Sicherheitssystem 105 weiter.
Fig. 3 zeigt ein Flussdiagramm eines Verfahrens, bei dem in Schritt 301 Daten einer digitalen Karte durch eine Recheneinheit entgegengenommen werden. In Schritt 302 führt diese Recheneinheit eine Bewertung der Daten auf Basis von karteneigenen Qualitätsinformationen durch. In Schritt 303 erfolgt eine weitere Bewertung der Daten auf Basis von
Messdaten von Umfeldsensoren und in Schritt 304 wird das Endergebnis der Bewertung an ein Sicherheitssystem und/oder ein Fahrerassistenzsystem übergeben.
Die folgenden Aspekte werden insbesondere in Fig. 4 verdeutlicht .
Digitale Karten werden oft in verschiedenen „Ebenen" in einer Datenbank hinterlegt. Diese Ebenen entsprechen unterschiedlichen Auflösungen oder unterschiedlichen Details (Straßen, Schilder, ...) . Um diese Daten in einem Steuergerät und damit z.B. in einem Fahrerassistenzsystem oder der Motorsteuerung verwenden zu können, wird der sogenannte GeoHorizon oder eHorizon verwendet. Dieser vermittelt den Systemen Informationen darüber, wie die Straße bzw. die Strecke vor dem Fahrzeug aussieht.
Für Sicherheitsanwendungen (Fahrerassistenzsysteme oder andere Sicherheitssysteme) sind aktuelle und zuverlässige Kartendaten notwendig. Jedoch nicht alle Datenelemente müssen dabei die gleichen Anforderungen erfüllen. Daher sind auch die Anforderungen an die verschiedenen Ebenen der Kartendaten unterschiedlich .
Bisher werden alle Daten in einer Datenbank hinterlegt. Da die Anforderungen jedoch unterschiedlich sind, bietet es sich an, die unterschiedlichen Ebenen auch teilweise in unterschiedlichen Datenbanken und damit auch in unterschiedlichen Steuergeräten zu hinterlegen. Diese verschiedenen Datenbanken bzw. verschiedenen Steuergeräte erfüllen dann auch unterschiedliche Sicherheitslevel. So könnten z.B. Daten für Sicherheitsanwendungen, wie z.B. Kurvenradien, in einem Steuergerät mit einem hohen Sicherheitslevel, beispielsweise SIL3 oder SIL 4, und navigationsrelevante Daten, wie z.B. Straßennamen, in einem weniger sicheren Steuergerät, das beispielsweise einem Sicherheitslevel SILO oder SILl genügt, gespeichert sein.
Auch ist es möglich, dass alle Daten im selben Speicher hinterlegt sind, wobei der Speicher allerdings über eine Speicherverwaltungseinheit (MMU) in einen sicherheitsrelevanten Bereich und einen nicht- sicherheitrelevanten Bereich getrennt ist. Die unterschiedlichen Ebenen bzw. Speicher oder Speicherbereiche können dann auch auf unterschiedliche Weise aktualisiert werden. So können z.B. dynamische Daten über TMC aktualisiert werden, wobei Daten, die sich so gut wie nie ändern (die geologische Topologie) über DVDs eingelesen werden und wieder andere Daten über Funkverbindungen übermittelt werden .
Die unterschiedlichen Ebenen können nach den zu erfüllenden Qualitätsebenen der jeweiligen Daten aufgeteilt werden. So werden in einer Ebene die Daten zusammengefasst, an die die gleichen Qualitätsanforderungen von Seiten der Anwendungen gestellt werden. Dieser Qualitätslevel legt dann auch fest, wie oft die Daten aktualisiert werden müssen.
Die Genauigkeit der Verlinkung der verschiedenen Ebenen kann abhängig gemach werden von den Sicherheitsanforderungen. So wird bei sicherheitskritischen Ebenen eine starke Verlinkung zwischen den Ebenen realisiert, z.B. je Element, und bei weniger Sicherheitskritischen Ebenen nur je Gebiet.
Für die Erstellung des GeoHorizon oder eHorizon können entsprechend nur Daten verwendet werden, die einer gewissen Qualitätsstufe entsprechen oder/und bei denen eine gewisse Aktualität sichergestellt ist oder/und die aus einem Steuergerät kommen, das eine gewisse Sicherheitsstufe hat. Dabei kann auch eine Trennung zwischen Consumer-Daten (nur interessant für Navigation und zusätzliche Dienste) und Sicherheitsdaten (wichtig für ADAS oder/und
Sicherheitssysteme) sichergestellt werden, also eine Art „Firewall" zwischen diesen Daten realisiert werden. Somit haben die ADAS oder/und Sicherheitssysteme über den GeoHorizon oder eHorizon alle notwendigen Daten, ohne dass unsichere Nutzerdaten (Consumer-Daten) zu Qualitätseinbußen führen können.
Über eine hochqualitative, abgesicherte Datenebene können die Daten einer Datenebene mit geringerer Qualität validiert werden. Nur die validierten Daten werden für ADAS und/oder Sicherheitsanwendungen verwendet. Hierzu ein Beispiel:
- Eine hochqualitative Datenebene (z.B. zertifiziert durch eine Regierungsstelle) enthält Daten zu Straßenschildern.
- Eine Datenebene mit niedrigerer Qualität enthält Daten zu Schulen, Spielplätzen, etc.
Über die Schilderinformationen (Geschwindigkeitsbeschränkungen, Warnungen vor spielenden Kindern, etc.) werden nun die Daten zu Schulen und Spielplätzen validiert. Treten hier größere Abweichungen bzw. Inkonsistenzen auf, so werden die Daten der Datenebene mit niedrigerer Qualität nicht für ADAS oder/und Sicherheitsanwendungen verwendet.
Durch die Speicherung der Daten in unterschiedlichen Steuergeräten kann auch die Verarbeitung aufgeteilt werden und damit z.B. eine Redundanz geschaffen werden.
Durch die Aufteilung der Kartendaten nach
Sicherheitsanforderungen ist es möglich, auch dann noch die Funktion der Karte zur Verfügung zu stellen, wenn nicht alle Daten zur Verfügung stehen. Es wird also ein sehr hoher Gesamtsicherheitslevel erreicht, ohne dass alle Daten auf einem hohen Sicherheitslevel gespeichert und verarbeitet werden müssen. Dadurch können Kosten gespart werden. Fig. 4 zeigt ein Ausführungsbeispiel für verschiedene Informationsebenen einer digitalen Karte und darauf aufbauend verschiedene Qualitätslevel, Speicherorte und Aktualisierungswege.
Auf einem sicherheitsrelevanten Speicher 402 eines Zentralsteuergeräts 401 werden sämtliche Geometriedaten einer digitalen Karte hinterlegt, wie z.B. Straßenverläufe, etc. Auf einem weniger stark gesicherten Speicher 403 der HeadUnit 102 sind dann noch zusätzlich die Straßennamen, Points-of- Interest, etc. abgespeichert.
Der eHorizon (dargestellt durch Box 405) wird durch das Zentralsteuergerät bereitgestellt und dabei werden nur die
Daten aus dem Zentralsteuergerät verwendet. Für die Navigation 404 hingegen werden die Daten aus dem Zentralsteuergerät 401 und der HeadUnit 102 verwendet.
Gemäß einem Ausführungsbeispiel der Erfindung ist ein Bewertungsmodul angegeben, welches einen ersten Speicherbereich zum Speichern von ersten Daten der digitalen Karte aufweist, wobei der erste Speicherbereich ersten Sicherheitsanforderungen genügt. Weiterhin weist das Bewertungsmodul einen zweiten Speicherbereich zum Speichern von zweiten Daten der digitalen Karte auf, wobei der zweite Speicherbereich zweiten Sicherheitsanforderungen genügt, die sich von den ersten Sicherheitsanforderungen unterscheiden.
Die beiden Speicherbereiche können auf unterschiedlichen Speichermedien angeordnet sein, oder auch auf dem selben Speichermedium, wobei sie in diesem Falle zum Beispiel durch eine MMU voneinander getrennt werden. An dieser Stelle ist zu beachten, dass das Prinzip der getrennten Speicherbereiche für digitale Karten im Allgemeinen verwendet werden kann. Eine Bewertung der Kartendaten ist nicht erforderlich.
Ergänzend sei darauf hingewiesen, dass „umfassend" und „aufweisend" keine anderen Elemente oder Schritte ausschließt und „eine" oder „ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkungen anzusehen.

Claims

Patentansprüche :
1. Bewertungsmodul zur Bewertung von Daten einer digitale Karte für ein Fahrzeug, das Bewertungsmodul (100, 101) aufweisend: eine Recheneinheit (111, 112) zur Entgegennahme von Daten der digitalen Karte und zur Durchführung der Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von Messdaten einer Umfeldsensorik (103) des Fahrzeugs (200); und eine Schnittstelle (113) zur Übergabe der Bewertung an ein Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs, welches die Daten der digitalen Karte auf Basis der Bewertung verwendet.
2. Bewertungsmodul nach Anspruch 1, wobei die Bewertung die Bestimmung einer Qualität und einer Gültigkeit der Daten umfasst.
3. Bewertungsmodul nach Anspruch 1 oder 2, wobei das Bewertungsmodul zur Bestimmung der Gültigkeit der Daten auf Basis der Messdaten der Umfeldsensorik (103) ausgeführt ist.
4. Bewertungsmodul nach einem der vorhergehenden Ansprüche, wobei die karteneigene Qualitätsinformation zumindest eine Information ausgewählt aus der Gruppe bestehend aus einer Zeitstempelinformation, einer Information hinsichtlich einer Messgenauigkeit, mit der die entsprechenden Daten aufgenommen wurden, einer Information hinsichtlich einer Abweichung zwischen einer gemessenen Position des Fahrzeugs und einer Map-Matching Position, einer Information hinsichtlich einer Dichte der Daten, und einer Information hinsichtlich einer Art der Daten aufweist.
5. Bewertungsmodul nach einem der vorhergehenden Ansprüche, wobei die Bewertung eine Authentifizierung der Daten umfasst .
6. Bewertungsmodul nach einem der vorhergehenden Ansprüche, wobei die Bewertung der Daten eine Bestimmung einer Aktualität der Daten umfasst; wobei das Bewertungsmodul zur Bestimmung der Aktualität der Daten über einen Rückkanal zu einer Zentrale (202) ausgeführt ist.
7. Bewertungsmodul nach einem der vorhergehenden Ansprüche, wobei die Messdaten der Umfeldsensorik (103), die zur Bewertung der Daten herangezogen werden, ausgewählt sind aus der Gruppe bestehend aus Informationen hinsichtlich einer Fahrspur, eines Verkehrszeichens, eines Bauwerks und einer Vegetation .
8. Bewertungsmodul nach einem der vorhergehenden Ansprüche, ausgeführt zur Bewertung von Daten einer digitalen Karte eines mobilen Geräts, die dann an das Fahrerassistenzsystem und/oder das Sicherheitssystem des Fahrzeugs übergeben wird, welches dann die Daten der digitalen Karte des mobilen Geräts auf Basis der Bewertung verwendet.
9. Bewertungsmodul nach einem der vorhergehenden Ansprüche, wobei die über die Schnittstelle (113) an das Fahrerassistenzsystem und/oder das Sicherheitssystem übergebenen Daten neben der Bewertung auch die entsprechenden gemessenen Positionsdaten des Fahrzeugs inklusive entsprechender Attribute aufweisen.
10. Bewertungsmodul nach einem der vorhergehenden Ansprüche, weiterhin aufweisend: einen ersten Speicherbereich zum Speichern von ersten Daten der digitalen Karte, wobei der erste Speicherbereich ersten Sicherheitsanforderungen genügt; einen zweiten Speicherbereich zum Speichern von zweiten Daten der digitalen Karte, wobei der zweite Speicherbereich zweiten Sicherheitsanforderungen genügt, die sich von den ersten Sicherheitsanforderungen unterscheiden.
11. Fahrerassistenzsystem (104) für ein Fahrzeug mit einem Bewertungsmodul (100, 101) nach einem der Ansprüche 1 bis 10.
12. Sicherheitssystem (105) für ein Fahrzeug mit einem Bewertungsmodul (100, 101) nach einem der Ansprüche 1 bis 10.
13. Fahrzeug mit einem Bewertungsmodul (100, 101) nach einem der Ansprüche 1 bis 10.
14. Verfahren zur Bewertung von Daten einer digitale Karte für ein Fahrzeug, das Verfahren aufweisend die Schritte:
Entgegennahme von Daten der digitalen Karte durch eine Recheneinheit;
Durchführung der Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von
Messdaten einer Umfeldsensorik (103) des Fahrzeugs (200); und
Übergabe der Bewertung an ein Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs, welches die Daten der digitalen Karte auf Basis der Bewertung verwendet.
15. Programmelement, das, wenn es auf einem Prozessor ausgeführt wird, den Prozessor anleitet, die folgenden Schritte durchzuführen: Entgegennahme von Daten der digitalen Karte durch den Prozessor;
Durchführung der Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von Messdaten einer Umfeldsensorik (103) des Fahrzeugs (200); und
Übergabe der Bewertung an ein Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs, welches die Daten der digitalen Karte auf Basis der Bewertung verwendet.
16. Computerlesbares Medium, auf dem ein Programmelement gespeichert ist, das, wenn es auf einem Prozessor ausgeführt wird, den Prozessor anleitet, die folgenden Schritte durchzuführen :
Entgegennahme von Daten der digitalen Karte durch den Prozessor;
Durchführung der Bewertung der Daten auf Basis einer karteneigenen Qualitätsinformation und/oder auf Basis von Messdaten einer Umfeldsensorik (103) des Fahrzeugs (200); und
Übergabe der Bewertung an ein Fahrerassistenzsystem und/oder ein Sicherheitssystem des Fahrzeugs, welches die
Daten der digitalen Karte auf Basis der Bewertung verwendet.
EP08846020A 2007-11-02 2008-10-28 Verifikation von digitalen karten Withdrawn EP2208023A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007052892 2007-11-02
DE102008043061 2008-10-22
PCT/EP2008/064578 WO2009056533A1 (de) 2007-11-02 2008-10-28 Verifikation von digitalen karten
DE102008053531A DE102008053531A1 (de) 2007-11-02 2008-10-28 Verifikation von digitalen Karten

Publications (1)

Publication Number Publication Date
EP2208023A1 true EP2208023A1 (de) 2010-07-21

Family

ID=40342803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08846020A Withdrawn EP2208023A1 (de) 2007-11-02 2008-10-28 Verifikation von digitalen karten

Country Status (8)

Country Link
US (1) US9310210B2 (de)
EP (1) EP2208023A1 (de)
JP (1) JP2011503563A (de)
KR (1) KR20100100842A (de)
CN (1) CN101842662A (de)
DE (1) DE102008053531A1 (de)
RU (1) RU2010121523A (de)
WO (1) WO2009056533A1 (de)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2433096A1 (de) 2009-05-20 2012-03-28 Continental Teves AG & Co. oHG Einrichtung und verfahren zur zuordnung von neuen daten zu einer digitalen karte
DE102010012877A1 (de) * 2010-03-26 2011-09-29 Continental Automotive Gmbh Bewertung von Karteninformationen
DE102010028090A1 (de) * 2010-04-22 2011-12-01 Robert Bosch Gmbh Navigationssystem und Navigationsverfahren für Fahrzeuge
EP2585794A1 (de) * 2010-06-23 2013-05-01 TomTom International B.V. Verfahren zur erzeugung von elektronischen karten
DE102010038640A1 (de) 2010-07-29 2012-02-02 Continental Teves Ag & Co. Ohg Vorrichtung und Verfahren zur C2X-Kommunikation
DE102010033729B4 (de) 2010-08-07 2014-05-08 Audi Ag Verfahren und Vorrichtung zum Bestimmen der Position eines Fahrzeugs auf einer Fahrbahn sowie Kraftwagen mit einer solchen Vorrichtung
DE102010050075A1 (de) 2010-10-29 2012-05-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Navigationseinrichtung und Navigationseinrichtung
DE102011018571A1 (de) * 2011-04-26 2012-10-31 Continental Automotive Gmbh Verfahren zur Überprüfung von Kommunikationsbotschaften in der Fahrzeug-zu-Umgebung-Kommunikation und geeigneter Empfänger
GB2493127C (en) * 2011-07-04 2020-08-05 Knorr-Bremse Rail Systems (Uk) Ltd Braking system
SE1100538A1 (sv) * 2011-07-15 2013-01-16 Scania Cv Ab Grafiskt användargränssnitt
DE102011083039B4 (de) * 2011-09-20 2021-11-04 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben eines Fahrzeugs
DE102011118708B4 (de) * 2011-11-16 2015-03-12 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs und ein damit ausgerüstetes Kraftfahrzeug
CN102568201A (zh) * 2011-12-22 2012-07-11 北京世纪高通科技有限公司 静态位置参考数据的获取方法及装置
DE102012004625A1 (de) 2012-03-06 2013-09-12 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Aktualisierung und Anpassung von Karteninformationen in einem Navigationssystem
EP2653833B1 (de) * 2012-04-19 2018-07-25 Elektrobit Automotive GmbH Technik zur Erzeugung von Punktdaten-Geometriedaten, die kontinuierlich den Verlauf eines geographischen Objektes beschreiben
DE102012212740A1 (de) * 2012-07-19 2014-05-22 Continental Automotive Gmbh System und Verfahren zum Aktualisieren einer digitalen Karte eines Fahrerassistenzsystems
US8880340B2 (en) * 2013-01-04 2014-11-04 The Boeing Company Augmented mobile platform localization
US9423261B2 (en) * 2013-02-19 2016-08-23 Here Global B.V. Path curve confidence factors
DE102013015145B4 (de) 2013-09-13 2015-06-11 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Testen und Bewerten der Qualität digitaler Karten
US9384394B2 (en) 2013-10-31 2016-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Method for generating accurate lane level maps
KR102058897B1 (ko) * 2013-11-12 2019-12-24 현대모비스 주식회사 차량 자동 주행 제어 장치 및 방법
KR102286673B1 (ko) 2014-04-09 2021-08-05 콘티넨탈 테베스 아게 운트 코. 오하게 주변 오브젝트 참조에 의한 차량 위치 보정
DE102014006444A1 (de) 2014-05-02 2014-10-23 Daimler Ag Verfahren zur Bestimmung einer Position eines Kraftfahrzeugs
CN105205196B (zh) 2014-06-27 2018-08-03 国际商业机器公司 用于生成路网的方法和系统
CN105225510B (zh) 2014-06-27 2018-04-17 国际商业机器公司 用于验证地图的路网的方法和系统
DE102014217847A1 (de) * 2014-09-08 2016-03-10 Conti Temic Microelectronic Gmbh Fahrerassistenzsystem, Verkehrstelematiksystem und Verfahren zum Aktualisieren einer digitalen Karte
US10013508B2 (en) 2014-10-07 2018-07-03 Toyota Motor Engineering & Manufacturing North America, Inc. Joint probabilistic modeling and inference of intersection structure
EP3073224B1 (de) 2015-03-27 2019-05-08 Panasonic Automotive & Industrial Systems Europe GmbH Sensordatenfusion basierend auf digitalen kartendaten
US20170046581A1 (en) * 2015-08-11 2017-02-16 Here Global B.V. Sending Navigational Feature Information
DE102015217371A1 (de) * 2015-09-11 2017-03-16 Continental Automotive Gmbh Verfahren zum automatisierten Fahren mit Nutzung von Kartendaten
US10082797B2 (en) * 2015-09-16 2018-09-25 Ford Global Technologies, Llc Vehicle radar perception and localization
DE102015220695A1 (de) * 2015-10-22 2017-04-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bewerten des Inhalts einer Karte
DE102016205543A1 (de) * 2015-11-05 2017-05-11 Continental Teves Ag & Co. Ohg Verfahren und System zum Austauschen von Kartendaten in Abhängigkeit eines Gütemaßes
CN107082071A (zh) * 2016-02-15 2017-08-22 宝马股份公司 用于防止意外离开行车道的方法和辅助装置
DE102016204805A1 (de) * 2016-03-23 2017-09-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtungen zum Bereitstellen von Daten für ein Fahrerassistenzsystem eines Kraftfahrzeugs
CN105953805B (zh) * 2016-04-29 2019-10-15 百度在线网络技术(北京)有限公司 地图验证方法和装置
DE102016218934A1 (de) 2016-09-29 2018-03-29 Continental Teves Ag & Co. Ohg Verfahren zum Datenaustausch und Datenfusionierung von Umfelddaten
KR101886518B1 (ko) * 2016-10-27 2018-08-07 현대자동차주식회사 고정밀 지도 검증 시스템 및 방법
DE102016015514A1 (de) * 2016-12-23 2018-06-28 Lucas Automotive Gmbh Fahrassistenz für ein Kraftfahrzeug
DE102017200072A1 (de) * 2017-01-04 2018-07-05 Robert Bosch Gmbh Verfahren zum Validieren einer digitalen Karte für ein Fahrzeug
DE102017201669A1 (de) 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Aktualisierung einer digitalen Karte
CN106828506A (zh) * 2017-02-22 2017-06-13 张军 一种基于上下文感知的自动辅助驾驶系统
DE102017204839A1 (de) 2017-03-22 2018-09-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
CN107084728B (zh) * 2017-04-21 2020-06-23 百度在线网络技术(北京)有限公司 用于检测数字地图的方法和装置
DE102017207441A1 (de) * 2017-05-03 2018-11-08 Audi Ag Verfahren zum Überprüfen einer digitalen Umgebungskarte für ein Fahrerassistenzsystem eines Kraftfahrzeugs, Rechenvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017207544A1 (de) * 2017-05-04 2018-11-08 Volkswagen Aktiengesellschaft Verfahren, vorrichtungen und computerlesbares speichermedium mit instruktionen zur ortsbestimmung eines durch ein kraftfahrzeug erfassten datums
EP3764060A1 (de) * 2017-06-14 2021-01-13 Mobileye Vision Technologies Ltd. Fusionsrahmen von navigationsinformationen für autonome navigation
DE102017211613A1 (de) 2017-07-07 2019-01-10 Robert Bosch Gmbh Verfahren zur Verifizierung einer digitalen Karte eines höher automatisierten Fahrzeugs (HAF), insbesondere eines hochautomatisierten Fahrzeugs
DE102017211626A1 (de) * 2017-07-07 2019-01-10 Robert Bosch Gmbh Verfahren zum Betreiben eines höher automatisierten Fahrzeugs (HAF), insbe-sondere eines hochautomatisierten Fahrzeugs
DE102017214823B4 (de) * 2017-08-24 2019-10-10 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erstellen und Bereitstellen einer Karte zum Betreiben eines automatisierten Fahrzeugs
DE102017216263A1 (de) * 2017-09-14 2019-03-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
US10802485B2 (en) 2017-10-09 2020-10-13 Here Global B.V. Apparatus, method and computer program product for facilitating navigation of a vehicle based upon a quality index of the map data
KR102323394B1 (ko) 2018-01-22 2021-11-08 삼성전자주식회사 차량의 주행을 보조하는 장치 및 방법
FR3080177A1 (fr) * 2018-04-17 2019-10-18 Psa Automobiles Sa Securisation d’une cartographie de conduite autonome
DE102018208182A1 (de) * 2018-05-24 2019-11-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausführen wenigstens einer sicherheitssteigernden Maßnahme für ein Fahrzeug
KR20210027480A (ko) * 2018-07-11 2021-03-10 르노 에스.아.에스. 주행 환경 정보의 생성 방법, 운전 제어 방법, 주행 환경 정보 생성 장치
DE102018006231A1 (de) * 2018-08-07 2020-02-13 Psa Automobiles Sa Validieren einer Spurführungsinformation einer digitalen Karte
US11227409B1 (en) 2018-08-20 2022-01-18 Waymo Llc Camera assessment techniques for autonomous vehicles
US11699207B2 (en) 2018-08-20 2023-07-11 Waymo Llc Camera assessment techniques for autonomous vehicles
JP7147442B2 (ja) 2018-10-02 2022-10-05 トヨタ自動車株式会社 地図情報システム
JP7059888B2 (ja) 2018-10-12 2022-04-26 トヨタ自動車株式会社 支援制御システム
DE102019207218A1 (de) * 2019-05-17 2020-11-19 Robert Bosch Gmbh Verfahren zum Validieren einer Kartenaktualität
DE102019207215A1 (de) * 2019-05-17 2020-11-19 Robert Bosch Gmbh Verfahren zum Verwenden einer merkmalbasierten Lokalisierungskarte für ein Fahrzeug
DE102019209117A1 (de) * 2019-06-25 2020-12-31 Continental Automotive Gmbh Verfahren zur Lokalisierung eines Fahrzeugs
KR102286178B1 (ko) * 2019-10-08 2021-08-09 주식회사 엠큐닉 정밀도로지도 품질평가 점수 생성 및 배포 시스템
DE102019216732A1 (de) * 2019-10-30 2021-05-06 Zf Friedrichshafen Ag Verfahren sowie System zum Plausibilisieren von Kartendaten
DE102020107899A1 (de) 2020-03-23 2021-09-23 Technische Universität Darmstadt Körperschaft des öffentlichen Rechts Vorrichtung zur Korrektur von Abweichungen in Lokalisierungsinformationen einer Planungsebene und einer Ausführungsebene
US11238607B2 (en) 2020-03-31 2022-02-01 Denso International America, Inc. System and method for measuring the accuracy of an electronic map or a localization of a vehicle
DE102020118619A1 (de) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Steuern eines Kraftfahrzeugs
CN113758492A (zh) * 2020-09-16 2021-12-07 北京京东叁佰陆拾度电子商务有限公司 地图检测方法和装置
DE102020213831B4 (de) * 2020-11-03 2023-02-02 Volkswagen Aktiengesellschaft Verfahren zum Ermitteln einer Existenzwahrscheinlichkeit eines möglichen Elements in einer Umgebung eines Kraftfahrzeugs, Fahrerassistenzsystem und Kraftfahrzeug
FR3120694B1 (fr) * 2021-03-15 2024-03-22 Psa Automobiles Sa Procédé et dispositif de détermination d’une fiabilité d’une cartographie base définition.
DE102021128116A1 (de) 2021-10-28 2023-05-04 Cariad Se System und Verfahren zum Plausibilisieren einer Fahrzeugumgebungshypothese für ein Kraftfahrzeug
DE102021130803A1 (de) 2021-11-24 2023-05-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum verarbeiten von während eines betriebes eines kraftfahrzeuges erfassten daten über den betrieb des kraftfahrzeuges
DE102022206280B4 (de) 2022-06-23 2024-01-18 Zf Friedrichshafen Ag Computer-implementiertes Verfahren und Vorrichtung zum Bestimmen eines Steuerbefehls zum Steuern eines Fahrzeugs
DE102022003088A1 (de) 2022-08-23 2024-02-29 Mercedes-Benz Group AG Verfahren zur Speicherung und zur Qualitätsbewertung von Kartendaten eines Fahrzeugs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883586A (en) * 1996-07-25 1999-03-16 Honeywell Inc. Embedded mission avionics data link system
US6047234A (en) * 1997-10-16 2000-04-04 Navigation Technologies Corporation System and method for updating, enhancing or refining a geographic database using feedback
DE19934837A1 (de) 1999-07-24 2001-01-25 Bosch Gmbh Robert Adapterkarte, Naviagtionsgerät und Funkgerät
KR100749016B1 (ko) * 1999-10-19 2007-08-14 아메리칸 캘카어 인코포레이티드 사용자 선호도에 기초한 효과적인 내비게이션 기술
DE10101982A1 (de) 2001-01-18 2002-07-25 Bayerische Motoren Werke Ag Verfahren zur Fahrdynamikregelung
EP1331600B1 (de) * 2002-01-24 2006-06-07 Matsushita Electric Industrial Co., Ltd. SpeicherKarte
US20030154355A1 (en) * 2002-01-24 2003-08-14 Xtec, Incorporated Methods and apparatus for providing a memory challenge and response
DE10337631B4 (de) 2003-08-16 2017-11-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung von Fahrzeugsystemen
DE10337634B4 (de) 2003-08-16 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung von Fahrzeugsystemen
DE102004010197B4 (de) 2004-03-02 2015-04-16 Sick Ag Verfahren zur Funktionskontrolle einer Positionsermittlungs- oder Umgebungserfassungseinrichtung eines Fahrzeugs oder zur Kontrolle einer digitalen Karte
US7409293B2 (en) * 2004-06-03 2008-08-05 Honeywell International Inc. Methods and systems for enhancing accuracy of terrain aided navigation systems
JP4682870B2 (ja) * 2006-02-24 2011-05-11 株式会社デンソー 運転支援装置
JP5028851B2 (ja) * 2006-04-24 2012-09-19 株式会社デンソー 道路情報検出装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009056533A1 *

Also Published As

Publication number Publication date
KR20100100842A (ko) 2010-09-15
US20100241354A1 (en) 2010-09-23
JP2011503563A (ja) 2011-01-27
RU2010121523A (ru) 2011-12-10
DE102008053531A1 (de) 2009-05-14
CN101842662A (zh) 2010-09-22
US9310210B2 (en) 2016-04-12
WO2009056533A1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
EP2208023A1 (de) Verifikation von digitalen karten
DE102011116245B4 (de) Verfahren zur Ermittlung aktueller Streckeninformationen einer digitalen Karte
DE102009017731A1 (de) Selbstlernende Karte auf Basis von Umfeldsensoren
DE102008012661A1 (de) Aktualisierungseinheit und Verfahren zur Aktualisierung einer digitalen Karte
DE102008012654A1 (de) Onlineerstellung einer digitalen Karte
WO2017055151A1 (de) Verfahren für ein kraftfahrzeug, zum erkennen schlechter fahrbahnverhältnisse und ein diesbezügliches system und kraftfahrzeug
DE102009008959A1 (de) Fahrzeugsystem zur Navigation und/oder Fahrerassistenz
WO2009000572A1 (de) Serverbasierte warnung vor gefahren
EP2347279A1 (de) Verbesserung und validierung der positionsbestimmung
DE102012212740A1 (de) System und Verfahren zum Aktualisieren einer digitalen Karte eines Fahrerassistenzsystems
DE102012219721A1 (de) Fahrassistenzverfahren und Fahrassistenzsystem zur Erhöhung des Fahrkomforts
DE102007046765A1 (de) Steuerverfahren und System
WO2019121510A1 (de) System zur berechnung einer fehlerwahrscheinlichkeit von fahrzeugsensordaten
DE102005029662A1 (de) Umgebungserfassung bei Landfahrzeugen
EP2186074A1 (de) Personalisierte aktualisierung von digitalen navigationskarten
WO2009027123A1 (de) Aktualisierung von digitalen karten und ortsbestimmung
DE102015213538A1 (de) Verfahren und System zum Warnen vor einer Falschfahrt eines Fahrzeugs
DE102020210515A1 (de) Verfahren zur Überprüfung von detektierten Veränderungen für ein Umfeldmodell einer digitalen Umgebungskarte
DE102008020447A1 (de) Dynamische Aktualisierung von digitalen Karten
DE102017203662A1 (de) Verfahren zum Ermitteln von Umgebungsdaten, die eine vorbestimmte Messgröße in einer Umgebung eines Kraftfahrzeugs beschreiben, sowie Steuervorrichtung für ein Kraftfahrzeug und Kraftfahrzeug
DE102016219124A1 (de) Verfahren und Vorrichtung zum Erstellen einer dynamischen Gefährdungskarte
DE102013107960A1 (de) Verfahren zur Aktualisierung einer Datenbasis sowie Einrichtung und Computerprogramm
DE102012210454A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Daten für einen elektronischen Horizont für ein Fahrerassistenzsystem eines Fahrzeugs
DE102009045817A1 (de) Zeitbeschränkte Zertifikate für digitale Karten
DE102019216747A1 (de) Verfahren zum Bereitstellen eines Überlagerungskartenabschnitts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110812

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120217