EP2205325B1 - Dispositif d'ejection d'un fluide a etancheite renforcee - Google Patents

Dispositif d'ejection d'un fluide a etancheite renforcee Download PDF

Info

Publication number
EP2205325B1
EP2205325B1 EP20080845284 EP08845284A EP2205325B1 EP 2205325 B1 EP2205325 B1 EP 2205325B1 EP 20080845284 EP20080845284 EP 20080845284 EP 08845284 A EP08845284 A EP 08845284A EP 2205325 B1 EP2205325 B1 EP 2205325B1
Authority
EP
European Patent Office
Prior art keywords
fluid
chamber
reservoir
piston
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080845284
Other languages
German (de)
English (en)
Other versions
EP2205325A1 (fr
Inventor
Christian Fabre
Alain Bignolais
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Original Assignee
Airbus Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0758697A external-priority patent/FR2922972B1/fr
Priority claimed from FR0801687A external-priority patent/FR2929126B1/fr
Priority claimed from FR0805467A external-priority patent/FR2936715B1/fr
Application filed by Airbus Operations SAS filed Critical Airbus Operations SAS
Publication of EP2205325A1 publication Critical patent/EP2205325A1/fr
Application granted granted Critical
Publication of EP2205325B1 publication Critical patent/EP2205325B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/023Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being expelled by compressed gas, taken from storage tanks, or by generating a pressure gas
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/66Portable extinguishers which are permanently pressurised or pressurised immediately before use with extinguishing material and pressure gas being stored in separate containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/64Contents and propellant separated by piston
    • B65D83/643Contents and propellant separated by piston the propellant being generated by a chemical or electrochemical reaction
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/08Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/2937Gas pressure discharge of liquids feed traps [e.g., to boiler]

Definitions

  • the present invention relates to a fluid ejection device, in particular a fire extinguisher or an emergency hydraulic generator used in an aircraft.
  • fire extinguisher extinguishers are classified into two broad categories.
  • the first category concerns permanent pressure devices in which a gas ensures the permanent pressurization of the extinguishing agent within a single bottle serving as a reservoir; the extinguishing agent is released by a valve at the outlet of said bottle.
  • a propellant is released only when the extinguisher is put into service and releases the extinguishing agent, which is therefore not stored under pressure.
  • extinguisher of the first type it is possible to consider extinguishers currently used to extinguish an aircraft engine fire. These devices not only make it possible to extinguish the fire, but also prevent any extension of said fire.
  • the extinguishing agent is contained in a bottle, most of the time spherical, pressurized by an inert gas; one or more distribution lines, connected to said bottle, allow the distribution of the agent to the areas to be protected.
  • a calibrated seal closes off each distribution pipe.
  • a pressure sensor is also installed to continuously check the pressurization of the bottle. When a fire is detected, a pyrotechnic detonator is triggered. The resulting shock wave makes it possible to pierce the sealing cap, which causes the bottle to be emptied and the extinguishing agent to be evacuated under the effect of the pressure contained in the bottle towards the areas to be protected, via the pipes.
  • a major disadvantage of this type of pressurized extinguishers is their sensitivity to micro-leaks, which subjects them to severe conditions of monitoring, verification and maintenance.
  • the extinguishing agent does not completely fill the bottle since it must be able to contain the pressurizing gas.
  • second category extinguishers For second category extinguishers, they use a separate pressurizing device. These fire-fighting devices are generally equipped with a first compressed gas tank and a second tank for the extinguishing agent. When the apparatus is used, the compressed gas contained in the first tank is communicated through an orifice with the second tank of extinguishing agent for pressurizing the bottle containing the agent. extinguisher. When the extinguishing agent is pressurized, it is ejected to fight the fire, as for appliances of the first category of fire extinguisher.
  • the first compressed gas reservoir may be replaced by a gas generator, as described in the document EP1552859 .
  • This type of extinguisher may comprise a separation means, for example a membrane or a piston, placed in the reservoir so as to define a first chamber called a pressurization chamber, and a second chamber containing the extinguishing agent.
  • the purpose of this means of separation is to limit heat transfer between the gas generated and the extinguishing agent, as described in document EP1819403 filed in the name of the plaintiff. Indeed, in the absence of thermal insulation, the extinguishing agent can quickly absorb the calories of the gas generated and thus reduce the ejection efficiency of the extinguishing agent.
  • one solution may be to make the fire extinguisher particularly secure, for example with large wall thicknesses. This solution leads to an increase in the overall weight of the extinguisher, which is detrimental to the performance of the aircraft.
  • Another solution may be to move the fire extinguisher sufficiently away from the areas in question.
  • this distance requires the use of a greater length of distribution line between the fire extinguisher and said zones, which increases the linear pressure drop in the pipe and reduces the ejection efficiency.
  • the large amount of driving required is also penalizing.
  • a fluid ejection device for fire fighting usually includes, as shown in FIG. figure 1 , a pressure tank A1 connected to a distribution circuit A4 for the supply of the fluid to the extinction point A5.
  • the reservoir is connected to the distribution circuit A4 via a valve A2 remotely controlled by any suitable device A6.
  • the opening of the valve A2 causes the pressure tank A1 to be emptied into the distribution circuits A4 towards the extinction point A5.
  • it is desirable that the tanks are located as close as possible to the extinction point so as to reduce the length of the distribution circuit and thus accelerate the transfer of the fluid to the extinction point by limiting the losses of charges.
  • a first pressure vessel is emptied by opening its connection valve A2 and the valve is closed and the second pressure tank is emptied by opening its connection valve which is then closed at the end of draining and so on.
  • the closing of each valve at the end of emptying is necessary in order to prevent the fluid ejected from a tank whose valve has been subsequently opened from filling the previously emptied tank (s) instead of towards the point of extinction. .
  • This seal plays the role of the valve.
  • the differential pressure applied to the cap, the distribution circuit being empty and at atmospheric pressure while the pressure increases in the tank, causes the tearing thereof, thus allowing the discharge of the fluid in the distribution circuit A4 to the extinction point A5.
  • This device is more reliable because it does not include moving parts at the valve, which parts must be sealed and ensure operation, including the absence of seizure, over time. On the other hand, once the cap is pierced, it can no longer ensure the closure of the tank connection with the distribution circuit.
  • valves A3 allow the fluid to pass only in one direction of flow (direction of the arrow figure 1 ). They thus prevent, during successive trips valve openings for emptying other tanks connected to the same distribution circuit, the fluid to fill the previously emptied tanks.
  • at least (N-1) A3 flaps must be installed on the circuit.
  • valves create pressure losses on the circuit and must also be monitored regularly to ensure the ability to operate. Indeed, the dispensing circuit A4 being empty outside the operation of the device, that is to say for periods of up to years, such valves may be subject to seizures caused by condensation that may occur in such circuits, particularly when the device is installed in an aircraft in a non-pressurized zone and therefore undergoes variations in temperature and pressure over a wide range during each flight.
  • the device for ejecting a fluid comprises a reservoir containing the fluid intended to be ejected, an end of said reservoir comprising controllable shut-off means, such as a valve, capable of the fluid in communication with the outside of the tank so as to cause its flow.
  • controllable shut-off means such as a valve
  • the fluid is thus stored under pressure in the reservoir.
  • the reservoir is connected to a distribution circuit via the valve, the opening thereof causing the ejection of the fluid into the distribution circuit.
  • the fluid is not stored under pressure in the tank.
  • it is necessary to increase the pressure in the tank before opening the valve to put in communication with the distribution circuit.
  • This effect is obtained either by putting the inside of the tank directly in communication with a fluid under pressure, for example with compressed air, or by compressing the fluid intended to be ejected via a separating element located at inside the tank.
  • a separating element may be constituted by a membrane or a piston which separates the reservoir in a sealed manner into two chambers, one of them containing the fluid intended to be ejected.
  • the volume of the reservoir being fixed, the pressurization of the fluid to be ejected and its ejection out of the reservoir are done by increasing the volume of the chamber not containing the fluid.
  • Such volume variation is achieved by moving the separator element either by a purely mechanical device or by increasing the pressure in the chamber not containing the fluid to be ejected. This increase in pressure is obtained by injecting into said chamber, called a pressurization chamber, a fluid under pressure.
  • any type of fluid can be used without risk that it mixes with the fluid to be ejected.
  • it may be compressed air or nitrogen.
  • the fluid injected into the pressurization chamber is generated by a pyrotechnic gas generator, and, according to a particularly advantageous embodiment of the prior art, said pyrotechnic generator is located directly in the reservoir, inside the chamber. pressurization.
  • controllable closure means of the chamber containing the fluid to be ejected may take the form of a cap which breaks for a given pressure of said fluid.
  • a compact device is obtained, comprising all the means for triggering the ejection of the fluid.
  • the separator element thermally isolates the pressurizing chamber of the fluid to be ejected.
  • the fluid to be ejected is for example a liquid phase extinguishing agent.
  • This type of fluid can have a very high heat capacity and the separator element prevents the pyrotechnic reaction generating the pressurization gas is slowed down by the absorption of heat by the extinguishing agent.
  • the one using a substantially cylindrical reservoir separated into two chambers by a piston is the most efficient in terms of fluid ejection, that is to say that this mode embodiment maximizes the ratio between the volume of fluid actually discharged into the distribution circuit and the volume of fluid initially contained in the reservoir.
  • the pressure both in the pressurization chamber and in the chamber containing the fluid to be ejected, is high at the beginning of trigger and goes through a maximum at the time of rupture of the lid. It then decreases to reach a value close to the atmospheric pressure at the end of the discharge.
  • Such a device is for single use.
  • this fluid can evaporate.
  • the fluid thus evaporated is lost, thereby decreasing the amount of fluid that can be ejected.
  • the pressurizing chamber is leakproof vis-à-vis the outside, then the accumulation of this fluid in it reduces all the efficiency of the pyrotechnic reaction and therefore that of the ejection of the fluid.
  • the pressurizing chamber is in communication with the outside, condensation phenomena can occur there.
  • the water thus introduced into this room may, at the long, mix with the fluid to eject which it may degrade the characteristics of use.
  • the first phase of the ejection remains a critical phase because of the rapid pressure changes that occur during this phase.
  • the seal must be kept under these pressure conditions as well.
  • the invention proposes a device for ejecting a fluid according to the subject of claim 1.
  • the sock is able to seal between the pressurizing chamber and the walls of the cylinder in a constant manner between two longitudinal positions of the separating element. This makes it possible to maintain the seal during movements of the piston generated in particular by the thermal expansion of the fluid to be ejected, as well as during at least part of the first two phases of the discharge.
  • said sock is made of a flexible material expandable diametrically.
  • the increase in pressure in the pressurizing chamber causes the expansion of the sock, plating against the walls of the tank.
  • the sock therefore continues to seal between both chambers even in the presence of higher pressure. This effect makes it possible to secure the operation of the device even if the sealing means between the piston and the walls of the tank have slightly deteriorated in time and are no longer able to ensure a perfect seal under pressure, so particularly at the beginning of ejection just before and immediately after opening the lid.
  • the pressure of the fluid to be ejected is no longer a function of the characteristic and the pressure drops of the distribution circuit.
  • the efficiency of the device depends on the ability of the piston to slide quickly. It is therefore advantageous that during this phase the piston is not braked in its translation by the sock. Sealing of the sock is broken beyond a defined longitudinal position of the separator element. This also allows the distribution circuit to communicate with the pressurizing gases in order to purge it during the fifth phase of the discharge.
  • the continuity of the seal of the sock between the two defined longitudinal positions of the piston can be provided by the longitudinal elastic extension of said sock particularly if it is made of a flexible material.
  • this longitudinal extension is facilitated when the sock comprises at least one fold able to unfold under the effect the translation of the separator element.
  • This feature makes it possible to use for the formation of the sock a thicker material and therefore more resistant to pressure and, where appropriate, to temperature during the first two phases of the discharge.
  • This embodiment is therefore particularly advantageous when the device comprises a pyrotechnic gas generator in communication with the pressurization chamber, the triggering of which causes the discharge.
  • such a device comprises a device able to put the pressurization chamber in communication with the outside so as to maintain a constant pressure with respect to slow variations in volume and to close said chamber with respect to variations pressure and volume generated by the activation of the pyrotechnic gas generator.
  • This feature keeps the ejection device without internal overpressure outside the operating phases, which improves its safety and reduces the weight and bulk. Indeed, not being subjected permanently to an internal pressure, the device can be built with less thick walls without degrading its reliability vis-à-vis the risk of bursting.
  • the ejection device of a fluid comprises means able to put in communication the gases generated by the pyrotechnic reaction with the fluid distribution circuit at the end of ejection of the fluid.
  • This makes it possible on the one hand to purge the circuit and thus to take advantage of all the quantity of the extinguishing agent and also to obtain a two-phase discharge: the first consisting in discharging a large quantity of extinguishing agent on the fire, the second consisting in blowing on the fire zone an aerosol consisting of the gas generated by the pyrotechnic reaction and extinguishing agent.
  • the ejection of the aerosol constituted by the pressurizing gas makes it possible on the one hand to usefully participate in the extinction phase by the very nature of the (inert) gas, and on the other hand to distribute the agent wherever it is needed in the fire zone to be treated.
  • a device may comprise means able to prevent any return of gas or fluid from the distribution circuit in the tank after complete discharge thereof. This makes it possible to increase the efficiency of the device and in particular to maximize the ratio between the fluid effectively dumped and the fluid initially contained in the reservoir, it also allows to couple in parallel on the same distribution circuit several reservoirs of this type to have a greater amount of fluid to be ejected. In this case, the different tanks are triggered sequentially without risk that the discharge of one of the tanks will fill another, already emptied, instead of pouring to the point.
  • the fluid to be ejected is advantageously a quenching agent of the fluoroketone type.
  • such a device can also be used as a last-resort hydraulic generator, in this case the ejected fluid is a hydraulic oil that can thus ensure the pressurization as a last resort of any hydraulic circuit.
  • Such devices are more particularly adapted, because of their compactness, their reliability and their reduced weight and their low sensitivity to variations in pressure and temperature for use in aircraft.
  • the Figures 2 to 8 represent a fluid ejection device.
  • the fluid ejection device comprises as main element a reservoir 1 containing the fluid 14 to be ejected, consisting of a hollow cylindrical body 2 and sealingly closed at both ends by a first end portion 3 and a second portion of end 4.
  • the cylindrical body 2 may have a circular section, elliptical, oblong, or any other form of the same type.
  • the invention applies more particularly to a fluid 14 in the liquid phase. Nevertheless, the fluid 14 may also be in the form of powders, pasty fluids or suspensions.
  • the tank 1 comprises one or more ejection orifices 16A, which can be connected to dispensing means (not shown) to allow the ejection of the fluid 14 and its routing to a specific area.
  • the ejection orifices 16A are located in the second end portion 4 of the cylinder or near this end portion.
  • each ejection orifice 16A is sealingly closed by a dispensing cap 16 in order to keep the fluid in the tank 1 as long as its action is not solicited.
  • the dispensing cap 16 may for example be a tared operculum, that is to say a membrane which breaks or opens as soon as the pressure at tank 1 reaches a certain threshold.
  • the dispensing cap may also be a valve, advantageously controlled remotely.
  • Other closure devices are known for example from W0 93/25950 or US-A-4,877,051 , and commercially available.
  • the ejection device comprises means for generating a gas under pressure.
  • the means for generating a gas under pressure are connected to the tank 1 via communication means.
  • the communication means between the tank 1 and the means for generating a pressurized gas open into the tank 1 in a manner opposite to the ejection orifice 16A, that is to say in the first part of the tank. end 3 or near this end portion.
  • the means for generating a gas under pressure may consist of one or more pressurized gas tanks.
  • a valve in the communication means makes it possible, for example, to isolate the pressurized gas tank from the tank 1 as long as it is not used.
  • the generator 7 is located inside the tank 1. It consists of a combustion chamber 8 provided with an ignition device 9, and containing a suitable quantity of an energetic or pyrotechnic material. This material may be in the solid state, for example in the form of beads or pellets, or in block form of studied form.
  • the gases generated by the combustion of the energetic or pyrotechnic material are directed towards the tank 1 via outlet orifices of the enclosure 8.
  • a diffuser 11 placed around the combustion chamber 8 allows a better distribution of the gas generated by the gas generator 7 within the first chamber A, which minimizes the thermal impacts located on the surface of the first chamber A .
  • said fluid 14 can absorb a large amount of heat energy from the generated gas. This is particularly the case of NOVEC® 1230 marketed by the company 3M.
  • the heat absorbed by such a fluid 14 causes a drop in temperature of the generated gas, which produces a decrease in the pressure exerted by the gas generated in the reservoir 1 on the fluid 14 to be ejected.
  • This reduction in pressure applied to the fluid 14 to be ejected leads to a lower ejection rate of the fluid 14, which thus reduces the efficiency of the device according to the invention.
  • a separation means 5 is necessary.
  • the separating means 5 is located between the first end portion 3 and said fluid 14 so as to form in a sealed manner on the one hand a first chamber A located between the separating means 5 and the first end portion 3 called pressurizing chamber, and secondly a second chamber B containing said fluid 14 located between the separation means 5 and the second end portion 4.
  • the separating means 5 may comprise a central portion 5C extending substantially in the radial direction of the tank 1, and a lateral portion 5L extending substantially in the axial direction of the tank 1.
  • the lateral portion 5L is connected to the central portion 5C at the circumference of Part 5C.
  • Parts 5C and 5L are rigid.
  • the central portion 5C of the separation means 5 comprises a surface 5A located in the first enclosure A and a surface 5B located in the second enclosure B.
  • the separating means 5 is movable in the axial direction of the tank 1 so as to have a piston effect: in the ejection phase, the surface 5A undergoes the pressure of the generated gas, which pressure is communicated to the fluid 14 by the surface 5B of the central portion 5C so as to eject the fluid 14 from the tank 1.
  • the separating means 5 is of thermally insulating material, for example of plastic material, or of any rigid material, dressed with insulating material, such as an elastomer. So the Fluid 14 can not absorb the energy of the generated gas, which optimizes the ejection efficiency of the device according to the invention.
  • the separating means 5 may comprise seals or sealing segments 6, placed in circumferential recesses of the lateral part 5L facing the inner wall 2I of the cylindrical body 2.
  • the sealing segments 6, by rubbing on the wall inside 2I of the cylindrical body 2, allow to prohibit any mass transfer between the speakers A and B.
  • the separation means 5 also has the advantage of avoiding any mixing and dilution of the fluid 14 in the generated gas which would reduce the efficiency of the ejection device.
  • This undilution of the fluid 14 in the gas generated is particularly important for certain applications such as fire engine fire extinguishing in aeronautics where, for regulatory reasons, it is necessary to ensure a minimum concentration of extinguishing agent in a fire zone considered for a period of time. given, as described in the document EP1552859 filed in the name of the plaintiff. Indeed, these fire zones are most often ventilated by a significant flow of renewal air.
  • the separating means comprises a thermal insulation zone 5I extending substantially in the radial direction of the separation means 5.
  • This thermal insulation zone 5I may be a closed recess located inside the central portion 5C between the surfaces 5A and 5B of the separation means 5, as illustrated by FIG. figure 3 .
  • Other solutions are possible, such as the covering of a surface 5A or 5B, or both surfaces 5A and 5B, by a plate of thermally insulating material and of suitable thickness. The thermal insulation between the first enclosure A and the second enclosure B is thus improved.
  • the figure 4 shows a pressure control means 12 fitted to the fluid ejection device.
  • the ejection device may be equipped with a plurality of pressure control means 12.
  • the figure 4 shows a non-limiting example of pressure control means, here corresponding to a valve. However, other means may be suitable, such as a valve or a valve.
  • the pressure control means 12, hereinafter referred to as a valve is arranged in the first end portion 3 so as to ensure communication between the first enclosure A and the external environment of the reservoir.
  • the valve 12 is able to adopt an open configuration in the absence of gas generated in the tank 1 so as to vent these first enclosure A and a closed configuration in the presence of gas generated in the first chamber. tank 1 so as to seal said first chamber A, regardless of the axial position of the separation means 5.
  • the valve 12 is designed to close tightly under the pressure of the gas generated in the first enclosure A.
  • a slow variation in pressure between the first chamber A and the external environment of the tank 1 through the valve 12 is not able to operate the closing of the valve 12.
  • This type of slow variation is presented during the variation of the atmospheric pressure outside the ejection device according to the invention, for example because of the altitude variation of the aircraft. It can also occur during the displacement of the separation means 5 as a function of the volume variation of the fluid 14, and therefore of the pressure variation in the first enclosure A due to the displacement of the separation means 5.
  • the fluid 14 may have a volume variation with respect to a reference volume defined for a given temperature, for example + 20 ° C. In the case of high temperatures, the fluid 14 has a volume expansion and then exerts a pressure on the separation means 5 in the direction of the first end portion 3. The separation means 5 then moves in the direction of the first end part 3.
  • any displacement of the separation means 5 due to the volume variation of the fluid 14 changes the volume of the first chamber A and therefore the resident pressure inside the chamber A.
  • the venting through the valve 12 of the first chamber A ensures that none of the speakers A and B of the ejection device according to the invention is under pressure during the off-ejection phase.
  • the venting of the first chamber A provided by the valve 12 makes it possible to avoid having a pressurized gas in the ejection device during the off-ejection phase, irrespective of the axial position. separation means 5. Any unnecessary mechanical stress that would weaken the ejection device is thus avoided.
  • the fact that the internal pressure of the fluid ejection device is always balanced with the outside makes it possible to install it as close as possible to the areas to be supplied. fluid 14, facilitating the response to the constraints imposed by the aviation regulations. This also makes it possible to reduce the length of the distribution pipe connecting the ejection device to the zones in question.
  • the linear pressure drop in the distribution pipe is reduced, which allows to obtain a larger fluid flow 14 for a given ejection pressure.
  • the ejection efficiency of the device is thus improved.
  • reducing the length of the distribution pipe and optimizing the thickness of the walls of the ejection device can meet the requirements of mass savings in aeronautics.
  • the valve 12 comprises a valve body 32 preferably fixed to the first end portion 3 of the tank 1.
  • the valve body 32 is hollow and preferably substantially tubular in shape. It allows the communication of gas between the first chamber A and the external environment of the tank 1.
  • a plug 35 sealingly closes the portion of the valve body 32 communicating with the external environment.
  • Said valve body 32 comprises at least one communication conduit 34 connecting the interior of the body of the valve 32 to the external environment of the tank 1.
  • the inner face 32I has a valve seat 32S located substantially near the end of the valve body 32 communicating with the first chamber A.
  • a movable piece 31 is able to move in the axial direction of the valve body 32 and has a head 31T adapted to come into contact with said valve seat 32S thereby defining said position closed of the valve.
  • the valve 12 further comprises a separating means 33 movable in the axial direction of the valve body 32 and located radially between the valve body 32 and the movable part 31, said separating means 33 being adapted to come opposite said conduit. communication 34 of the valve body, so as to block any flow of gas generated through the communication conduit 34, forming in this a second security of closure.
  • the movable separating means 33 bears against an abutment portion 32B of the valve body 32, under the action of, for example, a spring 36 compressed between the movable separating means 33 and the plug 35, in such a way that the separating means 33 is not opposite said communication duct 34.
  • the moving part 31 bears on the movable separating means 33 by means of a stop member 38 integral with the moving part 31, under the action of a spring 37 compressed between the abutment piece 38 and the cap 35. It defines a first valve chamber 30A communicating with the first chamber A of the tank 1 and a second valve chamber 30B communicating with the external environment.
  • the two enclosures 30A and 30B communicate with each other via communication conduits 39 located inside the moving part, comprising an inlet 39A situated substantially in the first chamber 30A of the valve and an outlet 39B located in the second enclosure 30B of valve.
  • the precise positioning (by construction or adjustment) of the abutment piece 38 on the movable part 31 determines a slight clearance 40 between the movable part 31 and the valve body 32 thus allowing communication between the first chamber A of the tank 1 and the external environment, through the conduits 34 of the body 32 and the ducts 39 of the movable part 31.
  • the clearance 40 and the communication conduits 34 and 39 have a size that does not allow inertial flow.
  • a characteristic size of the clearance 40 and conduits 34 and 39 may be of the order of one millimeter.
  • the movable separating means 33 in its movement closes the conduits 34 of the body 32, which ensures a double seal (contact between the head 31T of the movable part 31 with the seat 32S of the body 32 on the one hand and closure of the ducts 34 of the body 32 by the separating means 33 on the other hand).
  • the inlet 39A of the duct 39 of the movable part 31 is closed off by an integral peg 35E of the plug 35.
  • a spring means 13 may be disposed in said first chamber A of said tank 1 and placed between the first end portion 3 and the separating means 5 so as to exert a compressive force in the axial direction of said tank 1 on said separation means 5, always oriented in the direction of the second end portion 4. This compression force always oriented in the same direction minimizes the volume of the second chamber B and keeps in permanent contact the separation means 5 with the fluid 14 to eject. The surface 5B of the separation means 5 is thus entirely in contact with the fluid 14 to be ejected.
  • the Figure 6A shows a spring means 13 in the form of helical spring, however other types of spring can be used.
  • the fluid 14 has a volume expansion and then exerts pressure on the separating means 5 in the direction of the first end portion 3.
  • the separating means 5 then moves in the direction of the first end portion 3
  • the spring means 13 is deformed and exerts a compression force, always oriented in the direction of the second end portion 4, on the separating means 5.
  • the intensity of the force exerted by the means of spring 13 depends on the intensity of the deformation of this latest.
  • the surface 5B of the separating means is kept completely and permanently in contact with the fluid 14 to be ejected, and the second enclosure B has a minimum volume.
  • the fluid 14 decreases in volume. Due to the pressure exerted by the spring means 13 on the separating means 5, the separating means 5 moves in the direction of the second end portion 4 so as to maintain full and permanent contact between the surface 5B the central portion 5C of the separating means 5 with the fluid 14 to be ejected.
  • the second speaker B always has a minimum volume.
  • the minimization of second chamber B by the separating means 5 on which exerts the spring effect makes it possible to overcome any constraint orientation of the ejection device. It is no longer necessary to orient the ejection device in the direction of gravity with the ejection port 16A at the bottom.
  • the ejection efficiency of the fluid 14 is improved since the face 5A of the separating means 5 undergoes both the compressive force of the spring means 13 and the pressure of the gas generated, which increases the flow rate. ejection of the fluid 14 through the ejection port 16A.
  • a monitoring device In the context of aeronautical applications, it is advantageous for a monitoring device to continuously check the integrity of a fluid ejection device, in particular for an extinguishing application but also for an application as a backup hydraulic generator.
  • the monitoring device consists of an electrical circuit such that the latter changes state, between the open state and the closed state, when the separation means 5 is in an axial position. determined between the first end 3 and the second end 4.
  • said electrical circuit is open when the separation means is between said determined position and the second end 4 and closed when it is between the first end portion 3 and said determined position.
  • This electrical circuit consists of two electrical conductors, for example electrical wires or tracks, arranged on the inner face 2I of the cylindrical body 2 and extending in the axial direction of the tank 1. One end of the son is connected to an electrical circuit via a sealed connector 21 located in the first end portion 3.
  • the other end of at least one electrical conductor is positioned at a determined distance from the second end portion 4, thereby defining an open position of the electrical circuit.
  • the two conductors are electrically connected by the separating means 5, for example by the locking means 19 also made of conductive material.
  • the separation means 5 closes the electrical circuit when it is located between the first end portion 3 and said open position, the circuit being open when it is located between said open position and the second end portion 4.
  • the opening of the circuit will be recognized by a monitoring system as a lack of integrity of the fluid ejection device.
  • the monitoring device 20 consists of at least one conductive wire 20, preferably two, fixed on the one hand to the separation means 5 and connected for example to a ground circuit via a sealed connector 21 located on the first end part 3, as illustrated by FIGS. 6A, 6B and 6C .
  • the length of the wire is adapted to the different positions that can take the separation means 5 in the tank 1 as a function of the extreme operating temperatures of the ejection device, as shown by the Figures 6A and 6B .
  • the wire undergoes no excessive mechanical stress in the off-ejection phase.
  • the separation means 5 will continue its movement towards the second end portion 4 of the tank 1 under the pressure exerted by the spring means 13. The stress on the son will therefore increase continuously. As shown in Figure 6C where we see the ejection device discharged, beyond a predetermined position of the separation means 5, the stress will cause the breaking or disconnection of at least one son.
  • the breaking or disconnection of at least one conductive wire leads to the opening of a ground circuit, an opening constituting a signal which will be recognized by a monitoring system as a fault of integrity of the fluid ejection device. and will cause a maintenance operation during which the problem will be quickly identified.
  • the figure 3 illustrates an embodiment in which the separation means 5 may have at least one communication conduit 15, preferably four distributed at 90 ° opening laterally and perpendicular to the inner wall 2I of the cylindrical body 2.
  • the cylindrical body 2 comprises substantially near the second end portion 4 a shoulder 17. This shoulder 17 allows the depressurization of the first chamber A and the complete ejection of the fluid 14 and as a result of the gas generated in the distribution means.
  • the separating means 5 when the separating means 5 is substantially in abutment at the end of travel near the second end portion 4, there is communication of the first enclosure A with the distribution means so that the generated gas flows through the orifice 15 placed vis-à-vis the shoulder 17 and then flows in at less a recess 18 located in the inner face 4I of the second end portion 4, to the ejection port 16A.
  • the recess 18 can also be made on the face 5B of the separation means 5 so as to allow the flow of the generated gas to the ejection port 16A.
  • the fluid 14 is ejected and the generated gas is discharged into the distribution means. This allows complete emptying of the fluid ejection device, both in fluid 14 to be ejected and in generated gas.
  • This also makes it possible to put the tank 1 in the open air and thus to avoid any mechanical stress related to a possible residual overpressure. This in particular ensures the safety of an operator, for example during a maintenance operation, since any risk of intervention on the device still having an internal overpressure is discarded.
  • the separating means 5 is provided with a locking means 19, as illustrated in FIG. figure 3 .
  • This locking means 19, for example an elastic segment or a metal rod and spring assembly, is placed between the sealing elements 6 and above the orifices 15 whose function is to lock the separation means 5 at the end of the journey. this is to avoid any return back of said separation means 5 by reaction to a possible water hammer or back pressure in the distribution means which would affect the efficiency of the discharge.
  • the lateral portion 5L of the separation means 5 is opposite the shoulder 17.
  • the segment moves in the radial direction of the tank 1 in this shoulder 17 and therefore constitutes a mechanical stop preventing any return back of the separation means 5.
  • the figure 7 illustrates an alternative embodiment in which the separation means 5 comprises a rupture zone 5R extending at the circumference of the central portion 5C and located between the central portion 5C and the lateral portion 5L of the separation means 5.
  • the second end portion 4 comprises an abutment portion 4B so that, under the pressure of the generated gas, said central portion 5C comes into contact with the abutment portion 4B thereby causing rupture of the rupture zone 5R of the separation 5, so as to allow communication between the first chamber A and the ejection port 16A.
  • the generated gas can be evacuated and then flow through the dispensing means. This allows complete emptying of the fluid ejection device, both in fluid to be ejected and in generated gas. This also makes it possible to put the tank 1 in the open air and thus to avoid any mechanical stress related to a possible residual overpressure.
  • the figure 8A shows the idle ejection device according to the embodiment presented in the figure 7 .
  • the spring means 13 is not shown for the sake of clarity of the figure.
  • the separating means 5 is positioned near the first end portion 3.
  • Figure 8B shows the initial phase of the ejection in which the gas generated is introduced into the first chamber A and exerts a pressure on the surface 5A of the separating means 5.
  • the separation means 5 then exerts a force on the fluid to be ejected 14 in the direction of the second end portion 4. Accordingly, the dispensing cap 16 opens and the fluid 14 is discharged through the ejection port 16A.
  • the separating means 5 has moved towards the second end portion 4 under the combined effect of the pressure exerted by the generated gas and the compressive force exerted by the spring means 13.
  • the part 5C central of the separation means has come into contact with the abutment portion 4B of the second end portion 4, while the side portion 5L of the separating means 5 is not in contact with any abutment portion.
  • the central portion 5C can not continue the movement in the direction of the second end portion 4 due to contact with the abutment portion 4B, while the side portion 5L can continue the displacement.
  • the lateral portion 5L disengages from the central portion 5C by breaking the rupture zone 5R.
  • the figure 8D shows the ejection device at the end of the ejection phase.
  • the lateral part 5L of the separating means 5 has become detached from the central part 5C and has abutted against the second end portion 4, thus creating a circumferentially extending opening situated between the lateral part 5L and the central part 5C of the means of 5.
  • ejection ducts 4E are provided in the second end portion 4 so as to allow the evacuation of the fluid 14 and the generated gas to the ejection port 16A.
  • the generated gas can be evacuated and then flow through the dispensing means.
  • This allows complete emptying of the fluid ejection device, both in fluid to be ejected and in generated gas. This also makes it possible to put the tank 1 in the open air and thus to avoid any mechanical stress related to a possible residual overpressure.
  • the device can advantageously be used as a hydraulic generation system called "last aid" for aircraft.
  • a hydraulic generation system called "last aid" for aircraft.
  • the expelled fluid is a hydraulic oil of suitable characteristics for the application in question.
  • the figure 9 represents the device for ejecting a fluid according to one embodiment of the invention.
  • This comprises a reservoir 1 whose body 2 is substantially cylindrical in shape, separated into two chambers A and B by a separator element 5 of the piston type, able to slide longitudinally in the reservoir.
  • One of the chambers B contains the fluid to be ejected and is closed by an end portion 4, or flange, comprising a cap 16, separating the chamber B containing the fluid distribution circuit.
  • the piston 5 comprises sealing means with the inner side wall of the reservoir, in the form of an elastic segment 19 and / or a lip seal 6, or sealing segment.
  • the pressurizing chamber A is also closed by another end portion 3, or flange, and contains a pyrotechnic gas generator 7.
  • the flange 3 closing the pressurization chamber is provided with valve means (not shown) and allowing it to communicate with the outside air vis-à-vis slow variations in pressure.
  • the piston is held in contact with the fluid to be ejected by spring means acting on the piston along the longitudinal axis of the cylinder.
  • spring means may consist of a helical spring of longitudinal axis (not shown) disposed between the upper flange 3 and the piston 5, or, if the device does not have means for venting the chamber pressurization, they can be formed by the gas initially contained therein.
  • the pressurizing chamber A is leakproof vis-à-vis the outside.
  • Said gas preferably an inert gas, is introduced therein when the device is mounted under a pressure slightly greater than atmospheric pressure by means of a valve (This is not shown) located, for example, on the upper flange 3.
  • This initial gas pressure in the pressurizing chamber is chosen so that the piston presses on the fluid to be ejected even when said fluid occupies a minimum volume under the effect of the thermal expansion and that the maximum pressure in the fluid, when it occupies a maximum volume under the effect of the thermal expansion is sufficiently far from the pressure causing the rupture of the lid, so that it can not there is no risk of rupture of the lid outside the case of tripping of the device.
  • the seal between the two chambers is improved by the presence of a sock 50 between the piston 5 and the upper flange 3 in the pressurizing chamber A.
  • this sock is made of a material diametrically expandable, so that it can perform its sealing role during the rise in pressure in the pressurizing chamber. So that the sock 50 does not prevent the piston from constantly pressing the fluid to be ejected, it is made of a longitudinally expandable material between the two extreme positions that can occupy the piston in contact with the fluid to be ejected under the effect of the thermal expansion of this fluid.
  • the sock 50 comprises at least one fold 51 which facilitates its extension.
  • the discharge of the tank is triggered by triggering the pyrotechnic gas generator 7.
  • the generation of a volume of gas in the pressurization chamber leads to the increase of the pressure in this chamber, which pressure is transmitted to the fluid at eject into the other chamber B via the piston.
  • the seal 16 breaks, causing the flow of fluid in the dispensing circuit and the translation of the piston, plated on the fluid by the pressure generated in the pressurizing chamber.
  • the pressure in the pressurizing chamber also causes the diametral expansion of the sock 50.
  • the expansion of the segment blocks any possibility of raising the piston and, consequently, any possibility of rising fluid in the reservoir.
  • the piston comprises a valve 60 capable of passing the gases of the pyrotechnic reaction to the distribution circuit, in order to purge it.
  • the Figures 11 to 19 represent a fluid ejection device.
  • the figure 11A represents a first embodiment of a fluid ejection device using a reservoir 1 of substantially spherical shape comprising an inner membrane 105 separating the reservoir into two chambers A, B.
  • the first chamber A can be placed in communication with a gas compressed by valve 700.
  • the second chamber B containing the fluid to be ejected, such as an extinguishing agent for fire fighting.
  • the membrane 105 deforms towards the chamber B containing the fluid, the increase in the pressure which results in said fluid causes the rupture of the tear-off lid 16 releasing the connection orifice of the reservoir with the fluid distribution circuit 25.
  • the reservoir is put in communication with the distribution circuit 25 and the fluid flows into it in the direction of the point of delivery. use.
  • the figure 11A represents such a device at the end of emptying.
  • Chamber B contains no more or very little fluid.
  • the membrane 105 is then press-fitted against the communication orifice between the reservoir and the distribution circuit and obstructs this orifice so that any reintroduction of fluid into the reservoir is impossible, and that several reservoirs of this type can be mounted. in parallel on the same distribution circuit and sequentially triggered without the fluid ejected from a tank comes to fill one of the tanks already emptied.
  • this embodiment makes it possible to eliminate the check valves on the circuit and thus to eliminate the losses of charges noted in their presence.
  • the membrane 105 must be sufficiently flexible to ensure complete emptying of the tank and effective sealing of the connection orifice, also called ejection orifice, and sufficiently resistant to not be pierced under the effect of pressure or the encounter with the orifice at the end of emptying.
  • the membrane 105 may consist of an unreinforced elastomer.
  • an embodiment of the device comprises ( Figure 2B ) a tank 1 whose body 2 is cylindrical inside which there is a piston 5 comprising sealing means 6 between said piston and the inner wall of the tank.
  • the piston is able to move axially in the reservoir so as to cause the ejection of the fluid out of the reservoir in the manner of a syringe.
  • the displacement of the piston is obtained by any means known to those skilled in the art, in particular by means of a jack or by the introduction into the tank of gas under pressure on the side of the face opposite to the face of the piston in contact. with the fluid.
  • the piston 5 By causing the piston 5 to move axially (the Figure 11B shows two stages of displacement of said piston 5), the pressure in the fluid increases to cause rupture of the tear-off lid 16 closing the orifice of the connection 16A of the tank with the distribution circuit 25.
  • the fluid is ejected from the reservoir by the movement of the piston 5 in the direction of the arrow and then flows into the distribution circuit 25 towards the point of use.
  • the piston 5 closes the connection orifice with the circuit, either by direct contact or by means of sealing means 6 which can be placed on the piston (case of the Figure 2B ) or alternatively connected to the reservoir near the connection 16A with the distribution circuit.
  • an advantageous embodiment ( figure 12 ) comprises locking means of the piston 5 at the end of the race.
  • These locking means can be obtained by the cooperation of an elastic ring 19, or elastic segment, installed in a groove of the piston 5 and a shoulder 17 formed in the tank body at the end comprising the connection with the circuit distribution 25.
  • the segment or elastic ring 19 placed in the groove of the piston tends to expand, that is to say to increase in diameter.
  • the elastic ring 19 deviates until it reaches the diameter of the shoulder 17. the piston can not go back even in the absence of the application of a mechanical action on it.
  • the pressurized gas necessary for the ejection of the fluid can be generated by the triggering of a pyrotechnic cartridge 70 placed directly in the tank or in the vicinity.
  • the piston then defines two chambers A, B separated in a sealed manner, the first A being intended to receive the gas under pressure necessary to cause axial displacement of the piston.
  • the second chamber B contains the fluid.
  • the ignition of the pyrotechnic cartridge 70 causes the generation of gas under pressure which has the effect of propelling the piston towards the other end, thus compressing the fluid in the chamber B.
  • the fluid reaches a given pressure, it tears operculum and flows into the distribution circuit.
  • the piston is locked by the combined action of the elastic ring 19 and the shoulder 17, thus forming a non-return in the tank.
  • the tank may be equipped with a pressure equalizing valve 12, for example as described above.
  • This particular valve balances the pressure between the inside of the chamber A and the outside of the tank in the event of a slow variation of said pressure and closes in the event of a peak pressure.
  • the resulting sudden change in pressure in the chamber A closes the valve 12, and propels the piston 5 towards the other end of the reservoir, ejecting the fluid after rupture of the seal 16.
  • the elastic ring 19 deviates in the shoulder 17 preventing any return of the piston and thus forming a non-return system vis-à-vis -vis fluid in the distribution circuit.
  • the pressure then stabilizes in the chamber A to a value greater than the pressure outside the body.
  • the balancing valve 12 then allows the leakage of the gas out of chamber A and the pressure drop in it.
  • the balancing valve 12 can be normally closed and controlled at the opening by a system connecting it to the position of the piston 5 locked at the end of stroke, allowing the depressurization of the chamber A.
  • the figure 14 shows a partial sectional view of the piston 5 incorporating valve means adapted to put in communication the chamber A containing the gas under pressure and the chamber B containing the fluid.
  • valve means comprise a bore 110 in the piston 5. Said bore is closed by a valve 111 carrying two seats 212, 213, the seat 213 located on the side of the chamber A receiving the pressurized gas being produced directly by the boring, the seat 212 located on the fluid side being constituted in an insert ring 214.
  • the valve 111 is ideally pressed against each of the seats 212, 213 by spring means 112.
  • the axial position of the ring 214 is adjustable in order to ensure a perfect range of the two ends of the valve 111 on the two seats 212, 213.
  • the spring means 112 and the outer diameters of the two ends of the valve 111 are chosen so that during the emptying the axial force applied to the valve resulting from the pressure of the gas and which tends to open said valve, equilibrates with the sum of the force applied on the other end of the valve by the fluid and the force of the spring 112, the last two forces tending to close the valve.
  • the valve is closed and sealed.
  • the pressure applied by the gas on the valve 111 is no longer balanced by the pressure of the fluid and the valve opens, allowing the pressurized gas which enters the distribution circuit 25 to pass through and promotes ejection of the fluid.
  • valve means 140 can be arranged radially.
  • the piston 5 comprises a skirt 113 extending axially, said skirt having an annular groove comprised in sealing means 121, 122 arranged axially on either side of the groove.
  • the sealing means 121, 122 and the groove form a sealed annular chamber 80.
  • Valve means 140 are mounted radially and are capable of communicating the annular chamber 80 with the chamber A containing the gas under pressure.
  • the two sealing means 121, 122 disposed on either side of the annular groove of the piston are in contact with the inner wall of the cylinder.
  • the pressurized gas tends to open the valve 140, and enters the sealed annular chamber until the pressures are balanced and the valve closes under the action of the valve spring.
  • the elastic ring 19 expands in the shoulder 17 preventing the return of the piston 5. Due to the presence of the shoulder 17, the sealing means 122 located near the face before the piston 5 is no longer in contact with the tank wall and no longer fulfills its sealing function. Under the effect of the pressure of the gas, the valve 140 opens and communicates the gas under pressure with the distribution circuit 25.
  • valve means in the skirt 113 of the piston are replaced by simple slots 115 formed in said skirt and opening into the sealed annular chamber 80. Said openings are closed by a circular elastic ring 116 placed in the groove of the piston and tending , by elasticity, to be pressed into the bottom of this groove, so that the lights of the skirt 115 are closed by the ring 116.
  • the pressure causes the expansion of the ring 116 which is no longer plated at the bottom of the groove communicates the chamber A containing the gas under pressure with the sealed annular chamber 80.
  • the bottom of the tank comprises stops 101 able to receive the piston 5 at the end of the stroke.
  • the piston comes into contact with said stops 101 at the same time that the elastic ring 19 blocks the return of the piston by engaging in the shoulder 17.
  • the chamber 80 is no longer tight end of stroke.
  • the gas pressure continues to expand the ring 116, the gas can flow through the lumens 115 to the distribution circuit.
  • the ring 116 shrinks on the lights ensuring the sealing of the piston and its role as a non-return system vis-à-vis the fluid contained in the distribution circuit.
  • the elastic ring 116 capable of sealing the lights 115 is advantageously a split ring ( Figures 18 and 19 ).
  • this slot can advantageously be used to angularly orient the ring 116 and ensure that said slot is not positioned facing a light 115.
  • the groove of the piston receiving the ring 116 is advantageously provided with a protuberance 215 at the bottom of the groove.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Catching Or Destruction (AREA)
  • Actuator (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    DOMAINE TECHNIQUE
  • La présente invention concerne un dispositif d'éjection de fluide, en particulier un extincteur ou un générateur hydraulique de secours utilisé dans un aéronef.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • En ce qui concerne l'utilisation des dispositifs d'éjection de fluide comme extincteur, on sait que les extincteurs à réservoir d'agent extincteur sont classés en deux grandes catégories. La première catégorie concerne des appareils à pression permanente dans lesquels un gaz assure la pressurisation permanente de l'agent extincteur au sein d'une bouteille unique lui servant de réservoir ; l'agent extincteur est libéré par une vanne à la sortie de ladite bouteille. Dans la deuxième catégorie, un gaz propulseur n'est libéré qu'à la mise en service de l'extincteur et libère l'agent extincteur, qui n'est donc pas stocké sous pression.
  • A titre d'illustration comme extincteur du premier type, on peut considérer les extincteurs actuellement utilisés pour éteindre un feu de moteur d'aéronef. Ces dispositifs, non seulement permettent d'éteindre le feu, mais préviennent également toute extension dudit feu. L'agent extincteur est contenu dans une bouteille, la plupart du temps de forme sphérique, pressurisée par un gaz inerte ; une ou plusieurs canalisations de distribution, connectées à ladite bouteille, permettent la distribution de l'agent vers les zones à protéger. A l'extrémité inférieure de la bouteille, un opercule calibré permet d'obturer chaque canalisation de distribution. Un capteur de pression est également installé afin de vérifier, de façon continue, la pressurisation de la bouteille. Lorsqu'un feu est détecté, un détonateur pyrotechnique est déclenché. L'onde de choc qui en résulte permet de percer l'opercule obturateur, ce qui entraîne la vidange de la bouteille et l'évacuation de l'agent extincteur sous l'effet de la pression contenue dans la bouteille vers les zones à protéger, via les canalisations.
  • Un inconvénient important de ce type d'extincteurs pressurisés est leur sensibilité aux micro-fuites, ce qui les soumet à des conditions sévères de surveillance, de vérification et d'entretien. Par ailleurs, l'agent extincteur ne remplit pas complètement la bouteille puisque celle-ci doit pouvoir contenir le gaz de pressurisation.
  • En ce qui concerne les extincteurs de la deuxième catégorie, ils utilisent un dispositif séparé de mise sous pression. Ces appareils de lutte contre l'incendie sont généralement équipés d'un premier réservoir de gaz comprimé et d'un second réservoir pour l'agent extincteur. Lorsque l'appareil est utilisé, le gaz comprimé contenu dans le premier réservoir est mis en communication par l'intermédiaire d'un orifice avec le second réservoir d'agent extincteur pour la pressurisation de la bouteille contenant l'agent extincteur. Lorsque l'agent extincteur est pressurisé, il est éjecté pour lutter contre l'incendie, comme pour les appareils de la première catégorie d'extincteur.
  • Dans certains cas, pour des extincteurs de deuxième catégorie, le premier réservoir de gaz comprimé peut être remplacé par un générateur de gaz, comme décrit dans le document EP1552859 .
  • Ce type d'extincteur peut comprendre un moyen de séparation, par exemple une membrane ou un piston, placé dans le réservoir de manière à définir une première enceinte appelée chambre de pressurisation, et une deuxième enceinte contenant l'agent extincteur. Le but de ce moyen de séparation est de limiter les transferts thermiques entre le gaz généré et l'agent extincteur, comme décrit dans le document EP1819403 déposé au nom de la demanderesse. En effet, en l'absence d'isolation thermique, l'agent extincteur peut absorber rapidement les calories du gaz généré et diminuer ainsi l'efficacité d'éjection de l'agent extincteur.
  • Cependant, les performances de tels extincteurs peuvent encore être optimisées. En effet, un extincteur utilisé sur un aéronef doit rester opérationnel dans une large gamme de température, notamment de -55°C environ du fait de la haute altitude à laquelle vole l'avion, à +95°C environ. En fonction de la température, l'agent extincteur peut subir de fortes variations volumiques. Ces variations volumiques peuvent induire une surpression dans la chambre de pressurisation, ce qui présente plusieurs inconvénients majeurs.
  • En effet, les contraintes en matière de sécurité imposées par la réglementation internationale dans le domaine aéronautique rendent délicate et complexe l'implémentation de dispositifs soumis à une surpression interne à proximité de zones susceptibles d'être approvisionnées en agent extincteur, en particulier à proximité des moteurs. En effet, ces dispositifs sont susceptibles d'être endommagés lors d'incidents extérieurs, par exemple par l'éjection de pièces du moteur, par de la chaleur ou des flammes. De la même manière, l'explosion de ces dispositifs peut endommager les zones en question.
  • Pour répondre à cette exigence réglementaire, une solution peut consister à réaliser l'extincteur de manière particulièrement sécurisée, par exemple avec des épaisseurs de paroi importantes. Cette solution conduit à une augmentation de la masse globale de l'extincteur, ce qui est pénalisant pour les performances de l'aéronef.
  • Une autre solution peut consister à éloigner suffisamment l'extincteur des zones en question. Cependant, cet éloignement nécessite d'utiliser une plus grande longueur de conduite de distribution entre l'extincteur et lesdites zones, ce qui augmente la perte de charge linéaire dans la conduite et diminue l'efficacité d'éjection. De plus, la masse importante de conduite nécessaire est également pénalisante.
  • Bien entendu, le problème reste identique dans le cas d'une utilisation du dispositif d'éjection de fluide comme générateur hydraulique de secours pour aéronef, où toute surpression dans le dispositif d'éjection doit être évitée en phase de repos, tout en assurant une efficacité d'éjection optimale.
  • Un dispositif d'éjection de fluide pour la lutte contre l'incendie comprend habituellement, comme le montre la figure 1, un réservoir sous pression A1 connecté à un circuit de distribution A4 pour l'adduction du fluide vers le point d'extinction A5. Le réservoir est connecté au circuit de distribution A4 par l'intermédiaire d'une vanne A2 pilotée à distance par tout dispositif adapté A6. L'ouverture de la vanne A2 provoque la vidange du réservoir sous pression A1 dans les circuits de distribution A4 vers le point d'extinction A5. Pour une efficacité maximale d'un tel dispositif, il est souhaitable que les réservoirs soient situés le plus près possible du point d'extinction de manière à réduire la longueur du circuit de distribution et accélérer ainsi le transfert du fluide vers le point d'extinction en limitant les pertes de charges.
  • Si une quantité importante de fluide est nécessaire et qu'il n'est pas possible, compte tenu du confinement de l'espace, d'installer un réservoir de volume important à proximité du point d'extinction, ou, si pour des raisons réglementaires, il est imposé d'avoir plusieurs systèmes indépendants ou une redondance, il peut être nécessaire de coupler plusieurs réservoirs en parallèle sur le même circuit. Dans ce cas, selon un premier mode de réalisation, un premier réservoir sous pression est vidé par ouverture de sa vanne de connexion A2 puis la vanne est fermée et le second réservoir sous pression est vidé en ouvrant sa vanne de connexion laquelle est ensuite fermée en fin de vidange et ainsi de suite. La fermeture de chaque vanne en fin de vidange est nécessaire afin d'éviter que le fluide éjecté d'un réservoir dont la vanne a été subséquemment ouverte ne vienne remplir le ou les réservoirs précédemment vidés au lieu de se diriger vers le point d'extinction.
  • Ceci nécessite un système de commande complexe et des vannes en mesure d'être pilotées dans les deux sens, ouverture et fermeture, c'est-à-dire contenant des pièces mobiles et sujettes à des défauts d'étanchéité. La complexité d'un tel dispositif rend sa maintenance coûteuse et diminue sa fiabilité lorsqu'il est utilisé pour des dispositifs de sécurité où ledit dispositif peut rester passif pendant des années et doit fonctionner parfaitement le moment venu.
  • Ainsi, il est connu, par exemple, du brevet EP1502859B1 , ou de EP1819403 , d'utiliser un réservoir contenant l'agent d'extinction à la pression atmosphérique. Celui-ci est mis sous pression soit en le mettant en communication avec une bouteille d'air ou d'azote comprimé ou par l'intermédiaire d'un générateur de gaz pyrotechnique placé directement à l'intérieur du réservoir ou à proximité et relié à celui-ci. Dans ce dernier cas de pressurisation du réservoir, la membrane séparant le fluide des gaz générés par réaction pyrotechnique du dispositif selon EP1819403 permet d'éviter que le fluide n'absorbe les calories de cette réaction et diminue son efficacité. Un tel réservoir de fluide est mis en communication directe avec le circuit de distribution, la connexion étant fermée par un opercule déchirable pour une pression donnée. Cet opercule joue le rôle de la vanne. Ainsi pour déclencher la vidange du dispositif, il suffit d'introduire le gaz sous pression de la bouteille dans le réservoir ou de déclencher le générateur pyrotechnique. La pression différentielle appliquée sur l'opercule, le circuit de distribution étant vide et à la pression atmosphérique alors que la pression augmente dans le réservoir, entraîne la déchirure de celui-ci, autorisant ainsi le déversement du fluide dans le circuit de distribution A4 vers le point d'extinction A5.
  • Ce dispositif est plus fiable car il ne comprend pas de pièces en mouvement au niveau de la vanne, pièces dont il faut assurer l'étanchéité et garantir le fonctionnement, notamment l'absence de grippage, dans le temps. En revanche, une fois l'opercule percé, celui-ci ne peut plus assurer la fermeture de la connexion du réservoir avec le circuit de distribution.
  • Dans de telles situations et partout où il est prévu d'utiliser des vannes pilotables uniquement en ouverture, il est possible d'insérer dans le circuit de distribution des clapets anti-retour A3. De tels clapets ne laissent passer le fluide que dans un sens d'écoulement (sens de la flèche figure 1). Ils empêchent ainsi, lors des déclenchements successifs des ouvertures de vannes pour la vidange d'autres réservoirs connectés sur le même circuit de distribution, que le fluide aille remplir les réservoirs précédemment vidés. En cas de l'installation d'une pluralité de N réservoirs, au moins (N-1) clapets A3 doivent être installés sur le circuit.
  • Autant de clapets créent des pertes de charges sur le circuit et doivent également faire l'objet d'une surveillance régulière pour en assurer l'aptitude de fonctionnement. En effet, le circuit de distribution A4 étant vide en dehors du fonctionnement du dispositif, c'est-à-dire pendant des temps pouvant atteindre des années, de tels clapets peuvent être sujets à des grippages causés par la condensation qui peut intervenir dans de tels circuits, particulièrement lorsque le dispositif est installé dans un aéronef en zone non pressurisée et subit donc des variations de température et de pression sur une large amplitude lors de chaque vol.
  • Ainsi il existe un besoin pour un dispositif permettant d'assembler en parallèle une pluralité de réservoirs de fluide en vue de leur déclenchement séquentiel sans engendrer de pertes de charges excessives dans le circuit et tout en préservant une fiabilité de fonctionnement comparable à celle qui serait obtenue par un réservoir unique.
  • Comme décrit précédemment, le dispositif d'éjection d'un fluide selon l'art antérieur comprend un réservoir contenant le fluide destiné à être éjecté, une extrémité dudit réservoir comportant des moyens d'obturation pilotables, tels qu'une vanne, aptes à mettre le fluide en communication avec l'extérieur du réservoir de sorte à provoquer son écoulement.
  • Selon un mode de réalisation, le fluide est ainsi stocké sous pression dans le réservoir. Le réservoir est connecté à un circuit de distribution par l'intermédiaire de la vanne, l'ouverture de celle-ci provoquant l'éjection du fluide dans le circuit de distribution.
  • Selon un autre mode de réalisation de l'art antérieur, le fluide n'est pas stocké sous pression dans le réservoir. Pour provoquer l'éjection du fluide, il faut augmenter la pression dans le réservoir avant d'ouvrir la vanne de mise en communication avec le circuit de distribution. Cet effet est obtenu soit en mettant l'intérieur du réservoir directement en communication avec un fluide sous pression, par exemple avec de l'air comprimé, soit en comprimant le fluide destiné à être éjecté par l'intermédiaire d'un élément séparateur situé à l'intérieur du réservoir. Un tel élément séparateur peut être constitué par une membrane ou par un piston qui sépare de manière étanche le réservoir en deux chambres l'une des deux contenant le fluide destiné à être éjecté. Le volume du réservoir étant fixe, la mise sous pression du fluide à éjecter et son éjection hors du réservoir se font en augmentant le volume de la chambre ne contenant pas le fluide. Une telle variation de volume est obtenue en déplaçant l'élément séparateur soit par un dispositif purement mécanique, soit en augmentant la pression dans la chambre ne contenant pas le fluide destiné à être éjecté. Cette augmentation de pression est obtenue en injectant dans ladite chambre, nommée chambre de pressurisation, un fluide sous pression.
  • Les deux chambres du réservoir étant séparées de manière étanche par l'élément séparateur, tout type de fluide peut être utilisé sans risque qu'il ne se mélange avec le fluide destiné à être éjecté. A titre d'exemple, il peut s'agir d'air comprimé ou d'azote. Avantageusement le fluide injecté dans la chambre de pressurisation est généré par un générateur de gaz pyrotechnique, et, selon un mode de réalisation particulièrement avantageux de l'art antérieur, ledit générateur pyrotechnique est situé directement dans le réservoir, à l'intérieur de la chambre de pressurisation.
  • Finalement, les moyens d'obturation pilotables de la chambre contenant le fluide destiné à être éjecté peuvent prendre la forme d'un opercule qui se rompt pour une pression donnée dudit fluide. On obtient dans ces conditions un dispositif compact, comportant tous les moyens de déclenchement de l'éjection du fluide. Un tel dispositif est décrit dans la demande de brevet européen EP1819403 déposée au nom de la demanderesse.
  • En outre, l'élément séparateur isole thermiquement la chambre de pressurisation du fluide destiné à être éjecté. Ainsi, lors de l'utilisation de ce dispositif en tant que dispositif de lutte contre l'incendie, le fluide à éjecter est par exemple un agent d'extinction en phase liquide. Ce type de fluide peut présenter une capacité calorifique très élevée et l'élément séparateur évite que la réaction pyrotechnique générant le gaz de pressurisation ne soit ralentie par l'absorption de la chaleur par l'agent d'extinction.
  • De tous ces modes de réalisation de l'art antérieur, celui qui utilise un réservoir de forme sensiblement cylindrique séparé en deux chambres par un piston est le plus efficace en termes d'éjection du fluide, c'est-à-dire que ce mode de réalisation maximise le ratio entre le volume de fluide effectivement déversé dans le circuit de distribution et le volume de fluide initialement contenu dans le réservoir.
  • Dans ce type de dispositif, la séquence d'éjection se réalise en cinq phases essentielles :
    1. 1. Le déclenchement du générateur de gaz provoque l'augmentation de la pression dans la chambre de pressurisation et corrélativement, par l'intermédiaire du piston, dans la chambre contenant le fluide ;
    2. 2. Au-delà d'un seuil défini de pression, l'opercule de la chambre contenant le fluide à éjecter se rompt, mettant en communication ledit fluide avec le circuit de distribution
    3. 3. L'élément séparateur peut alors se déplacer et pousser le fluide dans le circuit de distribution
    4. 4. Lorsque le piston arrive en fin de course des moyens verrouillent le piston dans cette position de sorte à éviter tout retour du fluide vers le réservoir
    5. 5. Des moyens spécifiques formant clapet permettent alors l'écoulement des gaz de la chambre de pressurisation vers le circuit de distribution de sorte à purger ledit circuit.
  • La pression, tant dans la chambre de pressurisation que dans la chambre contenant le fluide à éjecter, est élevée en début de déclenchement et passe par un maximum au moment de la rupture de l'opercule. Elle diminue ensuite pour atteindre une valeur proche de la pression atmosphérique en fin de décharge.
  • Un tel dispositif est à usage unique.
  • Lorsqu'il est utilisé en tant que dispositif de lutte contre l'incendie ou comme dispositif de secours, il peut rester inactif pendant des temps très longs, pouvant atteindre plusieurs années et devra malgré tout fonctionner de manière parfaite le moment venu. Or, le piston étant amené à coulisser à l'intérieur du réservoir, il est difficile d'assurer une étanchéité parfaite entre les deux chambres tout en conservant une facilité de coulissement du piston et ceci pendant des temps pouvant atteindre plusieurs années.
  • Ainsi selon ces réalisations de l'art antérieur de petites quantités du fluide à éjecter finissent par s'infiltrer dans la chambre de pressurisation.
  • Si ladite chambre de pressurisation est en communication avec l'air extérieur, ce fluide peut s'évaporer. Le fluide ainsi évaporé est perdu, diminuant d'autant la quantité de fluide apte à être éjecté. Si la chambre de pressurisation est étanche vis-à-vis de l'extérieur, alors l'accumulation de ce fluide dans celle-ci réduit d'autant l'efficacité de la réaction pyrotechnique et par suite celle de l'éjection du fluide.
  • Par ailleurs, particulièrement si la chambre de pressurisation est en communication avec l'extérieur, des phénomènes de condensation peuvent s'y produire. L'eau ainsi introduite dans cette chambre peut, à la longue, se mêler au fluide à éjecter dont elle risque de dégrader les caractéristiques d'usage.
  • Finalement même s'il reste possible de garantir l'étanchéité du piston lorsque le dispositif est au repos, la première phase de l'éjection reste une phase critique du fait des variations rapides de pression qui se produisent durant cette phase. L'étanchéité doit être conservée également sous ces conditions de pression.
  • Il existe donc un besoin pour un dispositif compact d'éjection d'un fluide comportant deux chambres séparées par un élément séparateur de type piston, dont l'étanchéité entre les deux chambres soit parfaite et durable sans pour autant dégrader la faculté de coulissement du piston. Un tel dispositif est connu de WO 03/037441 A1 .
  • EXPOSÉ DE L'INVENTION
  • Afin de résoudre au moins en partie les insuffisances de l'art antérieur, l'invention propose un dispositif d'éjection d'un fluide selon l'objet de la revendication 1.
  • Ainsi les fuites éventuelles de fluide à éjecter qui peuvent se produire entre l'élément séparateur et la paroi du réservoir restent confinées entre la paroi et la chaussette. Il n'y a donc pas de risque de perte de fluide à éjecter notamment par évaporation de celui-ci dans la chambre de pressurisation, ni de risque de mélange avec le fluide d'éjection de produits de condensation de la chambre de pressurisation.
  • Avantageusement, la chaussette est apte à assurer l'étanchéité entre la chambre de pressurisation et les parois du cylindre de manière constante entre deux positions longitudinales de l'élément séparateur. Ceci permet de conserver l'étanchéité lors des mouvements du piston engendrés notamment par la dilatation thermique du fluide à éjecter, ainsi que pendant une partie au moins des deux premières phases de la décharge.
  • Avantageusement, ladite chaussette est constituée d'un matériau souple expansible diamétralement. Ainsi, en plus de provoquer la translation du piston, l'augmentation de pression dans la chambre de pressurisation provoque l'expansion de la chaussette, la plaquant contre les parois du réservoir. La chaussette continue donc à assurer l'étanchéité entre les deux chambres même en présence d'une pression plus élevée. Cet effet permet de sécuriser le fonctionnement du dispositif même si les moyens d'étanchéité entre le piston et les parois du réservoir se sont légèrement dégradés dans le temps et ne sont plus aptes à assurer une étanchéité parfaite sous pression, donc particulièrement en début d'éjection juste avant et immédiatement après l'ouverture de l'opercule.
  • Dès lors que l'opercule est rompu et que l'écoulement a commencé, la pression du fluide à éjecter n'est plus fonction que de la caractéristique et des pertes de charges du circuit de distribution. Durant la seconde phase de l'éjection, l'efficacité du dispositif dépend de la capacité du piston à coulisser rapidement. Il est donc avantageux qu'au cours de cette phase le piston ne soit pas freiné dans sa translation par la chaussette. L'étanchéité de la chaussette est rompue au-delà d'une position longitudinale définie de l'élément séparateur. Cela permet également de mettre le circuit de distribution en communication avec les gaz de pressurisation afin de le purger lors de la cinquième phase de la décharge.
  • La continuité de l'étanchéité de la chaussette entre les deux positions longitudinales définies du piston peut être assurée par l'extension élastique longitudinale de ladite chaussette particulièrement si celle-ci est constituée d'un matériau souple. Avantageusement cependant, cette extension longitudinale est facilitée lorsque la chaussette comporte au moins un pli apte à se déplier sous l'effet de la translation de l'élément séparateur. Cette caractéristique permet d'utiliser pour la constitution de la chaussette un matériau plus épais donc plus résistant à la pression et, le cas échéant, à la température au cours des deux premières phases de la décharge. Ce mode de réalisation est donc particulièrement avantageux lorsque le dispositif comporte un générateur de gaz pyrotechnique en communication avec la chambre de pressurisation, dont le déclenchement permet de provoquer la décharge.
  • La combinaison de ces caractéristiques permet de constituer un dispositif d'éjection compact dont l'étanchéité entre les chambres est renforcée. Avantageusement, un tel dispositif comporte un dispositif apte à mettre la chambre de pressurisation en communication avec l'extérieur de sorte à y conserver une pression constante vis-à-vis des variations lentes de volume et fermer ladite chambre vis-à-vis des variations de pression et de volume engendrées par l'activation du générateur de gaz pyrotechnique. Cette caractéristique permet de conserver le dispositif d'éjection sans sur-pression interne en dehors des phases de fonctionnement, ce qui améliore sa sécurité et permet d'en réduire le poids et l'encombrement. En effet, n'étant pas soumis en permanence à une pression interne, le dispositif peut être construit avec des parois moins épaisses sans dégrader sa fiabilité vis-à-vis des risques d'éclatement.
  • Selon un mode de réalisation particulièrement adapté à l'utilisation du dispositif d'éjection d'un fluide en tant que dispositif de lutte contre l'incendie, celui-ci comporte des moyens aptes à mettre en communication les gaz générés par la réaction pyrotechnique avec le circuit de distribution de fluide en fin d'éjection du fluide. Ceci permet d'une part de purger le circuit et ainsi de profiter de toute la quantité de l'agent d'extinction et également d'obtenir une décharge en deux phases : la première consistant à déverser une grande quantité d'agent d'extinction sur l'incendie, la seconde consistant dans le soufflage sur la zone d'incendie d'un aérosol constitué du gaz généré par la réaction pyrotechnique et d'agent d'extinction.
  • Le fait d'injecter un agent pur dans cette première phase de décharge permet ainsi d'obtenir une concentration maximale en agent d'extinction ce qui constitue le critère le plus souvent recherché dans le cadre de la certification d'un système d'extinction en particulier pour les applications extinction feu moteur dans le domaine aéronautique.
  • Dans la deuxième phase, l'éjection de l'aérosol constitué par le gaz de pressurisation, permet d'une part de participer utilement à la phase d'extinction par la nature même du gaz (inerte), et d'autre part de bien distribuer l'agent partout où c'est utile dans la zone feu à traiter.
  • Un dispositif selon l'invention peut comporter des moyens aptes en empêcher tout retour de gaz ou de fluide depuis le circuit de distribution dans le réservoir après décharge complète de celui-ci. Ceci permet d'augmenter l'efficacité du dispositif et notamment de maximiser le ratio entre le fluide effectivement déversé et le fluide initialement contenu dans le réservoir, cela permet également de coupler en parallèle sur le même circuit de distribution plusieurs réservoirs de ce type afin de disposer d'une plus grande quantité de fluide à éjecter. Dans ce cas, les différents réservoirs sont déclenchés séquentiellement sans risque que la décharge de l'un des réservoirs n'en remplisse un autre, déjà vidé, au lieu de se déverser au point visé.
  • Pour l'utilisation du dispositif selon l'invention pour la lutte contre l'incendie, le fluide à éjecter est avantageusement un agent d'extinction de type fluorocétone.
  • Alternativement, un tel dispositif peut également être utilisé comme générateur hydraulique de dernier secours, dans ce cas le fluide éjecté est une huile hydraulique qui peut assurer ainsi la pressurisation en dernier secours d'un circuit hydraulique quelconque.
  • De tels dispositifs sont plus particulièrement adaptés, du fait de leur compacité, de leur fiabilité et de leur poids réduit et de leur faible sensibilité aux variations de pression et de température pour l'utilisation dans des aéronefs.
  • BRÈVE DESCRIPTION DES DESSINS
  • On décrira à présent, à titre d'exemples non limitatifs, des modes de réalisation, en se référant aux dessins annexés, dans lesquels :
    • La figure 1, déjà décrite, est une vue schématique d'un dispositif selon l'art antérieur couplant plusieurs réservoirs et mettant en oeuvre des vannes pilotées et des clapets anti-retour sur le circuit de distribution ;
    • Les figures 2A et 2B sont des vues en perspective d'une coupe longitudinale d'un dispositif d'éjection de fluide;
    • La figure 3 est une vue en coupe d'un moyen de séparation ;
    • La figure 4 montre une coupe longitudinale d'un moyen de contrôle de pression ;
    • Les figures 5A, 5B et 5C sont trois vues en coupe longitudinale du moyen de contrôle de pression en fonctionnement ;
    • Les figures 6A, 6B et 6C sont des vues de dessus d'une coupe longitudinale d'un dispositif d'éjection de fluide pour trois exemples de position du moyen de séparation ;
    • La figure 7 est une vue en perspective d'une coupe longitudinale d'un dispositif d'éjection dans lequel le moyen de séparation comprend une zone de rupture et la deuxième partie d'extrémité comprend une portion formant butée ;
    • Les figures 8A, 8B, 8C et 8D sont des vues en coupe longitudinale d'un dispositif d'éjection selon le mode de réalisation présenté dans la figure 6 pour quatre instants de la phase d'éjection ;
    • La figure 9 est une vue d'ensemble en coupe du dispositif selon l'un des modes de réalisation de l'invention avant son déclenchement, comprenant une chaussette ;
    • La figure 10 est une vue de détail du dispositif en fin de décharge lorsque la chaussette est rompue et le piston verrouillé en position ;
    • La figure 11A est une vue en coupe d'un dispositif utilisant un réservoir sphérique comprenant une membrane séparant le fluide des gaz sous pression injectés dans le réservoir afin de le vidanger. Ledit réservoir est représenté en fin de vidange, la membrane venant obturer l'orifice de connexion au circuit de distribution ;
    • La figure 11B est une vue en coupe d'un dispositif utilisant un réservoir cylindrique et l'éjection du fluide par un piston se déplaçant axialement dans le réservoir ;
    • La figure 12 représente une vue partielle en coupe du côté de l'orifice de connexion au circuit de distribution présentant un dispositif de verrouillage en position du piston en fin de course ;
    • La figure 13 représente une vue en coupe d'un dispositif dans lequel le déclenchement du dispositif est obtenu par l'activation d'une cartouche pyrotechnique placée dans le réservoir ;
    • La figure 14 est une vue de détail en coupe partiel d'un piston d'un dispositif incorporant des moyens permettant de mettre en communication les gaz générés par le dispositif pyrotechnique avec le circuit de distribution en fin de vidange ;
    • La figure 15 présente une vue en coupe d'un mode de réalisation particulier du piston du dispositif dans lequel ledit piston présente une jupe et une zone annulaire délimitée par des moyens d'étanchéité, laquelle zone comprend des moyens permettant de mettre en communication les gaz générés lors de l'activation du dispositif pyrotechnique avec le circuit de distribution en fin de vidange ;
    • La figure 16 présente une vue d'ensemble en coupe d'un dispositif équipé d'un piston à jupe avec des orifices et des moyens aptes à obturer ces orifices sous forme d'une bague expansible ;
    • La figure 17 est une vue de détail en coupe du dispositif selon la figure 16 lorsque le piston arrive en fin de course et que la bague est expansée de manière à laisser passer les gaz sous pression vers le circuit de distribution ;
    • La figure 18 est une vue du piston seul muni de la bague élastique d'obturation en position serrée telle que celle-ci obstrue les lumières pratiquées dans la jupe du piston ;
    • La figure 19 représente le piston seul, la bague élastique d'obturation étant en position expansée, autorisant ainsi le passage vers la chambre annulaire du gaz de pressurisation.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Les figures 2 à 8 représentent un dispositif d'éjection de fluide.
  • Comme l'illustre schématiquement les figures 2A et 2B, le dispositif d'éjection de fluide comprend comme élément principal un réservoir 1 contenant le fluide 14 à éjecter, constitué par un corps cylindrique 2 creux et fermé de manière étanche aux deux extrémités par une première partie d'extrémité 3 et une deuxième partie d'extrémité 4. Le corps cylindrique 2 peut présenter une section circulaire, elliptique, oblongue, ou toute autre forme du même type. L'invention s'applique plus particulièrement à un fluide 14 en phase liquide. Néanmoins, le fluide 14 peut également se présenter sous forme de poudres, de fluides pâteux ou de suspensions.
  • Le réservoir 1 comporte un ou plusieurs orifices d'éjection 16A, qui peuvent être reliés à des moyens de distribution (non représentés) afin de permettre l'éjection du fluide 14 et son acheminement jusqu'à une zone déterminée. Les orifices d'éjection 16A sont situés dans la deuxième partie d'extrémité 4 du cylindre ou à proximité de cette partie d'extrémité. Avantageusement, chaque orifice d'éjection 16A est fermé de manière étanche par un opercule de distribution 16 afin de garder le fluide dans le réservoir 1 tant que son action n'est pas sollicitée. En particulier, si l'orifice d'éjection 16A est unique, l'opercule de distribution 16 peut par exemple être un opercule taré, c'est-à-dire une membrane qui se rompt ou s'ouvre dès que la pression à l'intérieur du réservoir 1 atteint un certain seuil. L'opercule de distribution peut également être une vanne, avantageusement contrôlée à distance. D'autres dispositifs de fermeture sont connus par exemple de W0 93/25950 ou US-A-4 877 051 , et disponibles dans le commerce.
  • Le dispositif d'éjection comporte des moyens pour générer un gaz sous pression. Les moyens pour générer un gaz sous pression sont connectés au réservoir 1 par l'intermédiaire de moyens de communication. Avantageusement, les moyens de communication entre le réservoir 1 et les moyens de génération d'un gaz sous pression débouchent dans le réservoir 1 de façon opposée à l'orifice d'éjection 16A, c'est-à-dire dans la première partie d'extrémité 3 ou à proximité de cette partie d'extrémité. Les moyens pour générer un gaz sous pression peuvent consister en un ou plusieurs réservoirs de gaz sous pression. Dans ce cas, une vanne dans les moyens de communication permet par exemple d'isoler le réservoir de gaz sous pression du réservoir 1 tant que celui-ci n'est pas utilisé.
  • Un autre mode de réalisation concerne un générateur de gaz 7. De façon avantageuse pour des raisons d'encombrement, et tel qu'illustré sur les figures 2A et 2B, le générateur 7 est situé à l'intérieur du réservoir 1. Il est constitué d'une enceinte de combustion 8 munie d'un dispositif d'allumage 9, et contenant une quantité appropriée d'un matériau énergétique ou pyrotechnique. Ce matériau peut être à l'état solide, par exemple sous forme de billes ou de pastilles, ou encore sous forme de bloc de forme étudiée. Les gaz engendrés par la combustion du matériau énergétique ou pyrotechnique sont dirigés vers le réservoir 1 par l'intermédiaire d'orifices de sortie de l'enceinte 8. De tels générateurs 7 sont connus de l'homme du métier. Avantageusement, un diffuseur 11 placé autour de l'enceinte de combustion 8 permet une meilleure répartition du gaz généré par le générateur de gaz 7 au sein de la première enceinte A, ce qui minimise les impacts thermiques localisés à la surface de la première enceinte A.
  • En phase d'éjection, ledit fluide 14 peut absorber une quantité importante d'énergie thermique du gaz généré. C'est le cas notamment du NOVEC® 1230 commercialisé par la société 3M. La chaleur absorbée par un tel fluide 14 entraîne une baisse de température du gaz généré, ce qui produit une diminution de la pression exercée par le gaz généré dans le réservoir 1 sur le fluide 14 à éjecter. Cette réduction de pression appliquée au fluide 14 à éjecter conduit à un débit d'éjection du fluide 14 plus faible, ce qui diminue ainsi l'efficacité du dispositif selon l'invention. Pour limiter les échanges thermiques entre les deux phases, un moyen de séparation 5 est nécessaire.
  • Le moyen de séparation 5 est localisé entre la première partie d'extrémité 3 et ledit fluide 14 de manière à former de manière étanche d'une part une première enceinte A située entre le moyen de séparation 5 et la première partie d'extrémité 3 appelée chambre de pressurisation, et d'autre part une deuxième enceinte B contenant ledit fluide 14 située entre le moyen de séparation 5 et la deuxième partie d'extrémité 4.
  • Le moyen de séparation 5 peut comprendre une partie centrale 5C s'étendant sensiblement suivant la direction radiale du réservoir 1, et une partie latérale 5L s'étendant sensiblement suivant la direction axiale du réservoir 1. La partie latérale 5L est reliée à la partie centrale 5C au niveau de la circonférence de la partie 5C. Les parties 5C et 5L sont rigides. La partie centrale 5C du moyen de séparation 5 comprend une surface 5A située dans la première enceinte A et une surface 5B située dans la deuxième enceinte B.
  • Le moyen de séparation 5 est mobile suivant la direction axiale du réservoir 1 de façon à présenter un effet de piston : en phase d'éjection, la surface 5A subit la pression du gaz généré, pression qui est communiquée au fluide 14 par la surface 5B de la partie centrale 5C de façon à éjecter le fluide 14 du réservoir 1.
  • De préférence, le moyen de séparation 5 est en matériau isolant thermiquement, par exemple en matière plastique, ou en un matériau quelconque rigide, habillé de matériau isolant, comme un élastomère. Ainsi le fluide 14 ne peut absorber l'énergie du gaz généré, ce qui optimise l'efficacité d'éjection du dispositif selon l'invention.
  • Le moyen de séparation 5 peut comporter des joints ou segments d'étanchéité 6, placés dans des évidements circonférentiels de la partie latérale 5L en regard de la paroi intérieure 2I du corps cylindrique 2. Les segments d'étanchéité 6, en frottant sur la paroi intérieure 2I du corps cylindrique 2, permettent d'interdire tout transfert massique entre les enceintes A et B.
  • Outre l'avantage d'éviter tout transfert thermique, le moyen de séparation 5 présente également l'avantage d'éviter tout mélange et toute dilution du fluide 14 dans le gaz généré qui viendrait diminuer l'efficacité du dispositif d'éjection. Cette non dilution du fluide 14 dans le gaz généré est particulièrement importante pour certaines applications comme l'extinction feu moteur en aéronautique où, pour des raisons réglementaires, il convient d'assurer une concentration minimale en agent extincteur dans une zone feu considérée pendant une durée donnée, comme le décrit le document EP1552859 déposé au nom de la demanderesse. En effet, ces zones feu sont le plus souvent ventilées par un débit important d'air de renouvellement. Aussi, il est essentiel d'injecter très rapidement l'agent extincteur aussi pur que possible dans ladite zone, afin d'obtenir le critère de certification en utilisant une quantité minimale d'agent extincteur, toujours dans le but de minimiser le poids de l'extincteur.
  • Dans un mode de réalisation représenté dans la figure 3, le moyen de séparation comprend une zone d'isolation thermique 5I s'étendant sensiblement suivant la direction radiale du moyen de séparation 5. Cette zone d'isolation thermique 5I peut être un évidement fermé situé à l'intérieur de la partie centrale 5C entre les surfaces 5A et 5B du moyen de séparation 5, comme l'illustre la figure 3. D'autres solutions sont possibles, comme le recouvrement d'une surface 5A ou 5B, ou des deux surfaces 5A et 5B, par une plaque en matériau isolant thermiquement et d'épaisseur appropriée. L'isolation thermique entre la première enceinte A et la deuxième enceinte B est ainsi améliorée.
  • La figure 4 montre un moyen de contrôle de pression 12 équipant le dispositif d'éjection de fluide. Le dispositif d'éjection peut être équipé de plusieurs moyens de contrôle de pression 12. La figure 4 montre un exemple non limitatif de moyen de contrôle de pression, ici correspondant à une soupape. Cependant, d'autres moyens peuvent convenir, comme par exemple un clapet ou une vanne. Le moyen de contrôle de pression 12, désigné par la suite soupape, est disposé dans la première partie d'extrémité 3 de manière à assurer la communication entre la première enceinte A et l'environnement extérieur du réservoir. La soupape 12 est apte à adopter une configuration ouverte en absence de gaz généré dans le réservoir 1 de manière à assurer la mise à l'air libre de ladite première enceinte A et une configuration fermée en présence de gaz généré dans le réservoir 1 de manière à assurer l'étanchéité de ladite première enceinte A, et ce quelle que soit la position axiale du moyen de séparation 5. La soupape 12 est conçue de manière à se fermer de manière étanche sous la pression du gaz généré dans la première enceinte A. Ainsi une variation lente de pression entre la première enceinte A et l'environnement extérieur du réservoir 1 au travers de la soupape 12 n'est pas apte à opérer la fermeture de la soupape 12. Ce type de variation lente se présente lors de la variation de la pression atmosphérique extérieure au dispositif d'éjection selon l'invention, par exemple du fait de la variation d'altitude de l'aéronef. Il peut se présenter également lors du déplacement du moyen de séparation 5 en fonction de la variation volumique du fluide 14, et donc de la variation de pression dans la première enceinte A du fait du déplacement du moyen de séparation 5. En effet, en fonction de la température de l'air environnant, le fluide 14 peut présenter une variation volumique par rapport à un volume de référence défini pour une température donnée, par exemple +20°C. Dans le cas de températures élevées, le fluide 14 présente une dilatation volumique et exerce alors une pression sur le moyen de séparation 5 dans la direction de la première partie d'extrémité 3. Le moyen de séparation 5 se déplace alors dans la direction de la première partie d'extrémité 3.
  • Ainsi, tout déplacement du moyen de séparation 5 du fait de la variation volumique du fluide 14 vient modifier le volume de la première enceinte A et donc la pression résidente à l'intérieur de cette enceinte A. Ainsi, la mise à l'air libre par la soupape 12 de la première enceinte A assure qu'aucune des enceintes A et B du dispositif d'éjection selon l'invention n'est sous pression pendant la phase hors éjection.
  • En revanche, une variation rapide et importante de pression dans la première enceinte A du fait de la génération du gaz sous pression est apte à provoquer la fermeture de la soupape 12.
  • Ainsi, la mise à l'air libre de la première enceinte A assurée par la soupape 12 permet d'éviter d'avoir dans le dispositif d'éjection un gaz sous pression pendant la phase hors éjection, et ce quelle que soit la position axiale du moyen de séparation 5. Toute contrainte mécanique inutile qui viendrait fragiliser le dispositif d'éjection est ainsi évitée. De plus, dans le cas d'une utilisation de l'invention sur un aéronef, le fait que la pression interne du dispositif d'éjection du fluide soit toujours équilibrée avec l'extérieur permet de l'installer au plus près des zones à approvisionner en fluide 14, en facilitant la réponse aux contraintes imposées par la réglementation aéronautique. Cela permet également de diminuer la longueur de la conduite de distribution reliant le dispositif d'éjection aux zones en question. La perte de charge linéaire dans la conduite de distribution est donc diminuée, ce qui permet d'obtenir un débit de fluide 14 plus important pour une pression d'éjection donnée. L'efficacité d'éjection du dispositif est ainsi améliorée. Enfin, la diminution de la longueur de la conduite de distribution et l'optimisation de l'épaisseur des parois du dispositif d'éjection permettent de répondre aux exigences d'économie de masse en aéronautique.
  • En référence à la figure 4 montrant un mode de réalisation, la soupape 12 comprend un corps de soupape 32 fixé de préférence à la première partie d'extrémité 3 du réservoir 1. Le corps de soupape 32 est creux et de préférence de forme sensiblement tubulaire. Il permet la communication de gaz entre la première enceinte A et l'environnement extérieur du réservoir 1. Un bouchon 35 vient fermer de manière étanche la partie du corps de soupape 32 communiquant avec l'environnement extérieur. Ledit corps de soupape 32 comprend au moins un conduit de communication 34 reliant l'intérieur du corps de la soupape 32 à l'environnement extérieur du réservoir 1. La face intérieure 32I comporte un siège de soupape 32S situé sensiblement à proximité de l'extrémité du corps de soupape 32 communiquant avec la première enceinte A. Une pièce mobile 31 est apte à se déplacer suivant la direction axiale du corps de soupape 32 et comporte une tête 31T adaptée à venir en contact avec ledit siège de soupape 32S définissant ainsi ladite position fermée de la soupape.
  • La soupape 12 comprend en outre un moyen de séparation 33 mobile suivant la direction axiale du corps de soupape 32 et situé radialement entre le corps de soupape 32 et la pièce mobile 31, ledit moyen de séparation 33 étant adapté à venir en regard dudit conduit de communication 34 du corps de soupape, de manière à venir bloquer tout écoulement de gaz généré au travers du conduit de communication 34, formant en cela une deuxième sécurité de fermeture. Au repos, le moyen de séparation mobile 33 est en appui contre une partie formant butée 32B du corps de soupape 32, sous l'action par exemple d'un ressort 36, comprimé entre le moyen de séparation mobile 33 et le bouchon 35, de manière à ce que le moyen de séparation 33 ne soit pas en regard dudit conduit de communication 34.
  • La pièce mobile 31 est en appui sur le moyen de séparation mobile 33 par l'intermédiaire d'une pièce formant butée 38 solidaire de la pièce mobile 31, sous l'action d'un ressort 37 comprimé entre la pièce formant butée 38 et le bouchon 35. Elle définit une première enceinte de soupape 30A communiquant avec la première enceinte A du réservoir 1 et une deuxième enceinte de soupape 30B communiquant avec l'environnement extérieur. Les deux enceintes 30A et 30B communiquent entre elles par l'intermédiaire de conduits de communication 39 situés à l'intérieur de la pièce mobile, comprenant une entrée 39A située sensiblement dans la première enceinte 30A de soupape et une sortie 39B située dans la deuxième enceinte 30B de soupape.
  • Comme illustré dans la figure 5A, le positionnement précis (par construction ou par réglage) de la pièce formant butée 38 sur la pièce mobile 31 détermine un léger jeu 40 entre la pièce mobile 31 et le corps de soupape 32 permettant ainsi la communication entre la première enceinte A du réservoir 1 et l'environnement extérieur, par l'intermédiaire des conduits 34 du corps 32 et des conduits 39 de la pièce mobile 31.
  • De manière à ce que la soupape 12 se ferme sous la pression du gaz généré dans la première enceinte A, le jeu 40 et les conduits de communication 34 et 39 ont une taille ne permettant pas un écoulement inertiel. Dans ce but, une taille caractéristique du jeu 40 et des conduits 34 et 39 peut être de l'ordre du millimètre.
  • Lors de l'éjection du fluide sous l'action du gaz généré, comme illustré dans les figures 5B et 5C, dès le début de la pressurisation de la première enceinte A du réservoir 1, la tête 31T de la pièce mobile 31 vient au contact du siège 32S du corps de soupape 32 par l'action conjuguée de la pression sur ladite pièce mobile 31 ainsi que sur le moyen de séparation mobile 33 qui recule jusqu'à entrer en contact avec la pièce formant butée 38 solidaire de la pièce mobile 31. Comme le montre la figure 5B, le moyen de séparation mobile 33 dans son mouvement obture les conduits 34 du corps 32, ce qui assure une double étanchéité (contact entre la tête 31T de la pièce mobile 31 avec le siège 32S du corps 32 d'une part et fermeture des conduits 34 du corps 32 par le moyen de séparation 33 d'autre part). En outre quand la pièce mobile 31 est fermée, l'entrée 39A du conduit 39 de la pièce mobile 31 est obturée par un ergot solidaire 35E du bouchon 35.
  • Si une légère fuite apparaît entre le moyen de séparation 33 et le corps 32 puis vers le conduit 34 du corps 32, comme illustré dans la figure 5C, cela conduit à une baisse de pression sur le moyen de séparation 33. Ledit moyen de séparation 33 poussé par le ressort 36 va se déplacer jusqu'à revenir en appui sur le corps 32 ce qui a pour effet d'obturer les conduits 39 de la pièce mobile 31, rétablissant ainsi une double étanchéité.
  • En référence aux figures 2A et 2B, un moyen de ressort 13 peut être disposé dans ladite première enceinte A dudit réservoir 1 et placé entre la première partie d'extrémité 3 et le moyen de séparation 5 de manière à exercer un effort de compression suivant la direction axiale dudit réservoir 1 sur ledit moyen de séparation 5, toujours orientée dans la direction de la deuxième partie d'extrémité 4. Cet effort de compression toujours orienté dans la même direction minimise le volume de la deuxième enceinte B et maintient en contact permanent le moyen de séparation 5 avec le fluide 14 à éjecter. La surface 5B du moyen de séparation 5 est ainsi entièrement en contact avec le fluide 14 à éjecter. La figure 6A montre un moyen de ressort 13 sous forme de ressort hélicoïdal, toutefois d'autres types de ressort peuvent être utilisés.
  • Dans le cas de températures élevées, comme illustré dans la figure 6B, le fluide 14 présente une dilatation volumique et exerce alors une pression sur le moyen de séparation 5 dans la direction de la première partie d'extrémité 3. Le moyen de séparation 5 se déplace alors dans la direction de la première partie d'extrémité 3. Le moyen de ressort 13 se déforme et exerce en retour un effort de compression, toujours orienté dans la direction de la deuxième partie d'extrémité 4, sur le moyen de séparation 5. L'intensité de l'effort exercé par le moyen de ressort 13 dépend de l'intensité de la déformation de ce dernier. Ainsi, la surface 5B du moyen de séparation est maintenue entièrement et de manière permanente en contact avec le fluide 14 à éjecter, et la deuxième enceinte B présente un volume minimal.
  • Dans le cas de faibles températures, le fluide 14 diminue de volume. Du fait de la pression exercée par le moyen de ressort 13 sur le moyen de séparation 5, le moyen de séparation 5 se déplace dans la direction de la deuxième partie d'extrémité 4 de manière à maintenir un contact entier et permanent entre la surface 5B de la partie centrale 5C du moyen de séparation 5 avec le fluide 14 à éjecter. La deuxième enceinte B présente toujours un volume minimal.
  • Ainsi, du fait qu'il y ait un contact permanent entre le moyen de séparation étanche 5 et le fluide à éjecter 14, aucun mélange ne se produit entre le gaz généré et le fluide 14 à l'intérieur du réservoir 1 durant toute la phase d'éjection du fluide 14. Ainsi le fluide éjecté 14 arrive dans la zone à approvisionner en fluide 14 avec une concentration maximale, ce qui augmente l'efficacité du dispositif d'éjection selon l'invention. De plus, en l'absence de moyen de ressort 13, un temps de retard est présent qui correspond au temps pendant lequel le moyen de séparation 5, lorsqu'il n'est plus en contact avec le fluide 14, va au contact du fluide 14. Grâce au moyen de ressort 13, il n'y a pas de temps de retard lors de l'éjection du fluide 14 puisque la pression exercée par le gaz généré sur le moyen de séparation 5 est immédiatement transmise par le moyen de séparation 5 au fluide 14 à éjecter. Notons également que la minimisation de la deuxième enceinte B par le moyen de séparation 5 sur lequel s'exerce l'effet ressort permet de s'affranchir de toute contrainte d'orientation du dispositif d'éjection. Il n'est plus nécessaire d'orienter le dispositif d'éjection dans le sens de la gravité avec l'orifice d'éjection 16A en bas. De plus, l'efficacité d'éjection du fluide 14 est améliorée puisque la face 5A du moyen de séparation 5 subit à la fois l'effort de compression du moyen de ressort 13 et la pression du gaz généré, ce qui augmente le débit d'éjection du fluide 14 au travers de l'orifice d'éjection 16A.
  • Dans le cadre des applications aéronautiques, il est avantageux qu'un dispositif de surveillance vérifie en continu l'intégrité d'un dispositif d'éjection de fluide, notamment pour une application d'extinction mais aussi pour une application comme générateur hydraulique de secours.
  • Dans un mode de réalisation, le dispositif de surveillance est constitué d'un circuit électrique tel que celui-ci change d'état, entre l'état ouvert et l'état fermé, lorsque le moyen de séparation 5 se trouve dans une position axiale déterminée entre la première extrémité 3 et la deuxième extrémité 4. Avantageusement, ledit circuit électrique est ouvert lorsque le moyen de séparation se trouve entre ladite position déterminée et la deuxième extrémité 4 et fermé lorsqu'il se trouve entre la première partie d'extrémité 3 et ladite position déterminée. Ce circuit électrique est constitué de deux conducteurs électriques, par exemple des fils électriques ou des pistes, disposés sur la face intérieure 2I du corps cylindrique 2 et s'étendant suivant la direction axiale du réservoir 1. L'une des extrémités des fils est reliée à un circuit électrique par l'intermédiaire d'un connecteur étanche 21 situé dans la première partie d'extrémité 3. L'autre extrémité d'au moins un conducteur électrique est positionnée à une distance déterminée de la deuxième partie d'extrémité 4, définissant ainsi une position d'ouverture du circuit électrique. Les deux conducteurs sont reliés électriquement par le moyen de séparation 5, par exemple par le moyen de blocage 19 également réalisé en matériau conducteur. Ainsi, le moyen de séparation 5 assure la fermeture du circuit électrique lorsqu'il est situé entre la première partie d'extrémité 3 et ladite position d'ouverture, le circuit étant ouvert lorsqu'il est situé entre ladite position d'ouverture et la deuxième partie d'extrémité 4. L'ouverture du circuit sera reconnue par un système de surveillance comme un défaut d'intégrité du dispositif d'éjection de fluide.
  • Dans un autre mode de réalisation, le dispositif de surveillance 20 est constitué par au moins un fil conducteur 20, de préférence deux, fixé d'une part au moyen de séparation 5 et connecté par exemple à un circuit de masse via un connecteur étanche 21 situé sur la première partie d'extrémité 3, comme l'illustrent les figures 6A, 6B et 6C. La longueur du fil est adaptée aux différentes positions que peut prendre le moyen de séparation 5 dans le réservoir 1 en fonction des températures extrêmes de fonctionnement du dispositif d'éjection, comme le montrent les figures 6A et 6B. Ainsi, le fil ne subit aucune contrainte mécanique excessive en phase hors éjection. Si la quantité de fluide 14 diminue à cause d'une évaporation liée par exemple à une micro-fuite, susceptible de survenir plus particulièrement avec des fluides qui s'évaporent facilement comme le NOVEC® 1230 de la société 3M, le moyen de séparation 5 va poursuivre son déplacement vers la deuxième partie d'extrémité 4 du réservoir 1 sous la pression exercée par le moyen de ressort 13. La contrainte sur les fils va donc augmenter de façon continue. Comme le montre la figure 6C où l'on voit le dispositif d'éjection déchargé, au-delà d'une position déterminée du moyen de séparation 5, la contrainte va provoquer la rupture ou la déconnexion d'au moins un des fils.
  • La rupture ou la déconnexion d'au moins un fil 20 conducteur entraîne l'ouverture d'un circuit de masse, ouverture constituant un signal qui sera reconnu par un système de surveillance comme un défaut d'intégrité du dispositif d'éjection de fluide 14 et provoquera une opération de maintenance au cours de laquelle sera identifié rapidement le problème. Il est possible de s'affranchir d'un des deux fils 20, par exemple dans la mesure où le retour de masse se fait par le corps cylindrique 2 du réservoir 1, en assurant une continuité électrique entre le moyen de séparation 5 et le corps cylindrique 2 par exemple en utilisant le moyen de blocage 19 du moyen de séparation 5 qui sera décrit en détail plus loin. Celui-ci étant en contact avec la paroi intérieure 2I du corps cylindrique 2 pendant le déplacement du moyen de séparation 5, la continuité de masse peut être assurée.
  • De la même façon que précédemment, lors de la décharge du dispositif d'éjection, le moyen de séparation 5, en se déplaçant, va également provoquer rapidement la rupture ou la déconnexion de ces fils, et donc l'ouverture du circuit de masse comme illustrée dans la figure 6C. L'évènement faisant cette fois suite à une commande volontaire de la séquence d'éjection sera interprété par le système de surveillance comme la preuve de la décharge du dispositif d'éjection, preuve qui est également une exigence réglementaire dans les applications aéronautiques.
  • La figure 3 illustre un mode de réalisation dans lequel le moyen de séparation 5 peut posséder au moins un conduit de communication 15, de préférence quatre repartis à 90° débouchant latéralement et perpendiculairement à la paroi intérieure 2I du corps cylindrique 2. Le corps cylindrique 2 comporte sensiblement à proximité de la deuxième partie d'extrémité 4 un épaulement 17. Cet épaulement 17 autorise la dépressurisation de la première enceinte A et l'éjection complète du fluide 14 et par suite du gaz généré dans les moyens de distribution. En effet, lorsque le moyen de séparation 5 est sensiblement en butée en fin de course à proximité de la deuxième partie d'extrémité 4, il y a mise en communication de la première enceinte A avec les moyens de distribution de manière à ce que le gaz généré s'écoule au travers de l'orifice 15 placé en vis-à-vis de l'épaulement 17 puis s'écoule dans au moins un évidement 18 situé dans la face intérieure 4I de la deuxième partie d'extrémité 4, jusqu'à l'orifice d'éjection 16A. L'évidement 18 peut également être réalisé sur la face 5B du moyen de séparation 5 de manière à permettre l'écoulement du gaz généré jusqu'à l'orifice d'éjection 16A. Ainsi, le fluide 14 est éjecté et le gaz généré est évacué dans les moyens de distribution. Cela permet une vidange totale du dispositif d'éjection du fluide, à la fois en fluide 14 à éjecter et en gaz généré. Cela permet également de mettre le réservoir 1 à l'air libre et d'éviter ainsi toute contrainte mécanique liée à une éventuelle surpression résiduelle. Cela permet notamment de garantir la sécurité d'un opérateur, par exemple lors d'une opération d'entretien, puisque tout risque d'intervention sur le dispositif présentant encore une surpression interne est écarté.
  • Dans un mode de réalisation, le moyen de séparation 5 est pourvu d'un moyen de blocage 19, comme illustré dans la figure 3. Ce moyen de blocage 19, par exemple un segment élastique ou un ensemble tige métallique et ressort, est placé entre les éléments d'étanchéité 6 et au-dessus des orifices 15 dont la fonction est de verrouiller le moyen de séparation 5 en fin de parcours, ceci afin d'éviter tout retour en arrière dudit moyen de séparation 5 par réaction à un éventuel coup de bélier ou par contre-pression dans les moyens de distribution qui nuirait à l'efficacité de la décharge. En fin d'éjection du fluide 14, la partie latérale 5L du moyen de séparation 5 est en regard de l'épaulement 17. Par effet ressort, le segment se déplace suivant la direction radiale du réservoir 1 dans cet épaulement 17 et constitue de ce fait une butée mécanique interdisant tout retour en arrière du moyen de séparation 5.
  • La figure 7 illustre un mode de réalisation alternatif dans lequel le moyen de séparation 5 comprend une zone de rupture 5R s'étendant à la circonférence de la partie centrale 5C et située entre la partie centrale 5C et la partie latérale 5L du moyen de séparation 5. La deuxième partie d'extrémité 4 comprend une portion formant butée 4B de manière à ce que, sous la pression du gaz généré, ladite partie centrale 5C vient en contact avec la portion formant butée 4B provoquant ainsi la rupture de la zone de rupture 5R du moyen de séparation 5, de sorte à permettre la communication entre la première enceinte A et l'orifice d'éjection 16A. Ainsi le gaz généré peut être évacué et s'écouler ensuite par les moyens de distribution. Cela permet une vidange totale du dispositif d'éjection du fluide, à la fois en fluide à éjecter et en gaz généré. Cela permet également de mettre le réservoir 1 à l'air libre et d'éviter ainsi toute contrainte mécanique liée à une éventuelle surpression résiduelle.
  • La figure 8A montre le dispositif d'éjection au repos selon le mode de réalisation présenté dans la figure 7. Le moyen de ressort 13 n'est pas représenté pour souci de clarté de la figure. Le moyen de séparation 5 est positionné à proximité de la première partie d'extrémité 3. La figure 8B montre la phase initiale de l'éjection dans laquelle le gaz généré est introduit dans la première enceinte A et exerce une pression sur la surface 5A du moyen de séparation 5. Le moyen de séparation 5 exerce alors un effort sur le fluide à éjecter 14 dans la direction de la deuxième partie d'extrémité 4. En conséquence, l'opercule de distribution 16 s'ouvre et le fluide 14 est évacué au travers de l'orifice d'éjection 16A. Dans la figure 8C, le moyen de séparation 5 s'est déplacé en direction de la deuxième partie d'extrémité 4 sous l'effet conjoint de la pression exercée par le gaz généré et de l'effort de compression exercé par le moyen de ressort 13. La partie centrale 5C du moyen de séparation est venue au contact de la portion formant butée 4B de la deuxième partie d'extrémité 4, alors que la partie latérale 5L du moyen de séparation 5 n'est pas au contact avec une quelconque partie formant butée. Aussi la partie centrale 5C ne peut poursuivre le déplacement dans la direction de la deuxième partie d'extrémité 4 du fait du contact avec la portion formant butée 4B, alors que la partie latérale 5L peut poursuivre le déplacement. Ainsi, du fait de l'énergie cinétique acquise lors du déplacement par le moyen de séparation 5, la partie latérale 5L se désolidarise de la partie centrale 5C par rupture de la zone de rupture 5R. La figure 8D montre le dispositif d'éjection en fin de phase d'éjection. La partie latérale 5L du moyen de séparation 5 s'est désolidarisée de la partie centrale 5C et est venue en butée contre la deuxième partie d'extrémité 4, créant ainsi une ouverture s'étendant de manière circonférentielle et située entre la partie latérale 5L et la partie centrale 5C du moyen de séparation 5. Dans le mode de réalisation représenté dans la figure 8D, des conduits d'éjection 4E sont prévus dans la deuxième partie d'extrémité 4 de manière à permettre l'évacuation du fluide 14 et du gaz généré jusqu'à l'orifice d'éjection 16A. Ainsi le gaz généré peut être évacué et s'écouler ensuite par les moyens de distribution. Cela permet une vidange totale du dispositif d'éjection du fluide, à la fois en fluide à éjecter et en gaz généré. Cela permet également de mettre le réservoir 1 à l'air libre et d'éviter ainsi toute contrainte mécanique liée à une éventuelle surpression résiduelle.
  • Le dispositif peut avantageusement être utilisé comme un système de génération hydraulique dit de "dernier secours" pour aéronef. Dans ce cas, lorsque l'aéronef, suite à un incident, a perdu toutes ses générations électriques et hydrauliques, un tel dispositif permet de fournir l'énergie hydraulique nécessaire pour opérer une commande mécanique, par exemple pour des applications de type freinage et direction au sol, voire ouverture et verrouillage de train d'atterrissage lorsque les caractéristiques du train ne permettent pas de réaliser ces opérations par simple gravité. Pour ce type d'utilisation, le fluide expulsé est une huile hydraulique de caractéristiques adéquates pour l'application considérée.
  • Les figures 9 et 10 représentent un aspect de l'invention.
  • Les références numériques identiques à celles des figures 2 et 3 désignent des éléments identiques ou similaires.
  • La figure 9 représente le dispositif d'éjection d'un fluide selon un mode de réalisation de l'invention. Celui-ci comprend un réservoir 1 dont le corps 2 est de forme sensiblement cylindrique, séparé en deux chambres A et B par un élément séparateur 5 de type piston, apte à coulisser longitudinalement dans le réservoir. L'une des chambres B contient le fluide à éjecter et est fermée par une partie d'extrémité 4, ou flasque, comprenant un opercule 16, séparant la chambre B contenant le fluide du circuit de distribution.
  • Le piston 5 comprend des moyens d'étanchéité avec la paroi latérale intérieure du réservoir, sous la forme d'un segment élastique 19 et/ou d'un joint à lèvre 6, ou segment d'étanchéité. La chambre de pressurisation A est également fermée par une autre partie d'extrémité 3, ou flasque, et contient un générateur de gaz pyrotechnique 7. Avantageusement, le flasque 3 fermant la chambre de pressurisation est pourvu de moyens formant soupape (non représentés) et permettant de mettre celle-ci en communication avec l'air extérieur vis-à-vis à des variations lentes de pression.
  • Avantageusement, le dispositif comporte un système de contrôle de son intégrité, par exemple, sous la forme d'un circuit de masse fermé par un fil 20 de longueur déterminée, tel que décrit précédemment. La longueur de ce fil lui permet de suivre les variations de position du piston sur une plage donnée. De telles variations de position sont par exemple liées à la dilatation thermique du fluide à éjecter. Lorsque le dispositif a été déclenché ou lorsque le niveau de fluide à éjecter atteint un minimum défini, du fait d'un phénomène d'évaporation dû à une légère fuite vers l'extérieur par exemple, le fil 20 se rompt, ouvrant le circuit de masse. Il est donc possible de contrôler par une simple mesure électrique, prise au contact 21 situé sur le flasque supérieur 3, de vérifier l'intégrité du système, c'est-à-dire :
    • que le dispositif d'éjection n'a pas été déclenché ;
    • que le volume de fluide à éjecter n'est pas passé en dessous d'un seuil critique qui ne permettrait plus au dispositif d'assurer pleinement son rôle d'extincteur ou de secours hydraulique.
  • Comme décrit précédemment, le piston est maintenu en contact avec le fluide à éjecter par des moyens formant ressort agissant sur le piston selon l'axe longitudinal du cylindre. Ces moyens formant ressort peuvent être constitués par un ressort hélicoïdal d'axe longitudinal (non représenté) disposé entre le flasque supérieur 3 et le piston 5, ou, si le dispositif ne dispose pas de moyens de mise à l'air libre de la chambre de pressurisation, ils peuvent être formés par le gaz initialement contenu dans celle-ci. Selon ce mode de réalisation, la chambre de pressurisation A est étanche vis-à-vis de l'extérieur. Ledit gaz, de préférence un gaz inerte, y est introduit au montage du dispositif sous une pression légèrement supérieure à la pression atmosphérique par l'intermédiaire d'une valve (non représentée) située, par exemple, sur le flasque supérieur 3. Cette pression de gaz initiale dans la chambre de pressurisation est choisie de sorte que le piston appuie sur le fluide à éjecter même lorsque ledit fluide occupe un volume minimum sous l'effet de la dilatation thermique et que la pression maximale dans le fluide, lorsque celui-ci occupe un volume maximal sous l'effet de la dilatation thermique soit suffisamment éloignée de la pression entraînant la rupture de l'opercule, de sorte qu'il ne puisse pas y avoir de risque de rupture de l'opercule en dehors du cas de déclenchement du dispositif.
  • Selon l'invention, l'étanchéité entre les deux chambres est améliorée par la présence d'une chaussette 50 comprise entre le piston 5 et le flasque supérieur 3 dans la chambre de pressurisation A. Avantageusement, cette chaussette est constituée d'un matériau diamétralement expansible, de sorte qu'elle puisse assurer son rôle d'étanchéité lors de la montée en pression dans la chambre de pressurisation. Afin que la chaussette 50 n'empêche pas le piston d'appuyer constamment sur le fluide à éjecter, celle-ci est constituée d'un matériau extensible longitudinalement entre les deux positions extrêmes que peut occuper le piston au contact avec le fluide à éjecter sous l'effet de la dilatation thermique de ce fluide. Selon un mode de réalisation avantageux, la chaussette 50 comporte au moins un pli 51 qui en facilite l'extension.
  • Si une quantité d'agent d'éjection se trouve emprisonnée sous la chaussette 50 au cours du temps du fait d'une dégradation lente de l'étanchéité du joint 6, ce reliquat sera repoussé à travers le joint d'étanchéité qui est de type adapté au cours de la phase de vidange. Un joint à lèvre est parfaitement adapté à ce fonctionnement.
  • Les effets conjugués de la montée en pression dans la chambre de pressurisation A, et de l'extension jusqu'à sa rupture de la chaussette 50 plaquent la chaussette contre la paroi de la chambre de pressurisation éjectant ainsi le reliquat de fluide à travers le joint 6. Dans le cas où tout le reliquat d'agent venait à ne pas être totalement repoussé à travers le joint 6, celui-ci serait tout de même éjecté dans la cinquième phase de la vidange.
  • Le déclenchement de la décharge du réservoir s'opère en déclenchant le générateur de gaz pyrotechnique 7. La génération d'un volume de gaz dans la chambre pressurisation conduit à l'augmentation de la pression dans cette chambre, pression qui est transmise au fluide à éjecter dans l'autre chambre B par l'intermédiaire du piston. Sous l'effet de cette pression, l'opercule 16 se rompt provoquant l'écoulement du fluide dans le circuit de distribution et la translation du piston, plaqué sur le fluide par la pression générée dans la chambre de pressurisation.
  • La pression dans la chambre de pressurisation provoque également l'expansion diamétrale de la chaussette 50.
  • La translation du piston au-delà d'une position définie provoque la rupture du fil 20 puis la rupture de la chaussette.
  • En fin de course, un épaulement 17 pratiqué sur la paroi de la chambre B contenant le fluide au voisinage de l'extrémité, permet l'expansion du segment élastique 19 du piston. L'expansion du segment bloque toute possibilité de remontée du piston et, par conséquent, toute possibilité de remontée de fluide dans le réservoir.
  • Avantageusement le piston comprend une soupape 60 apte à laisser passer les gaz de la réaction pyrotechnique vers le circuit de distribution, afin de le purger.
  • Les figures 11 à 19 représentent un dispositif d'éjection de fluide.
  • Les références numériques identiques à celles des figures 2 et 3 désignent des éléments identiques ou similaires.
  • La figure 11A représente un premier mode de réalisation d'un dispositif d'éjection de fluide utilisant un réservoir 1 de forme sensiblement sphérique comprenant une membrane intérieure 105 séparant le réservoir en deux chambres A, B. La première chambre A peut être mise en communication avec un gaz comprimé par l'intermédiaire de la vanne 700. La seconde chambre B contenant le fluide devant être éjecté, tel qu'un agent d'extinction pour la lutte contre l'incendie.
  • Lorsque le gaz sous pression remplit la chambre A, la membrane 105 se déforme en direction de la chambre B contenant le fluide, l'accroissement de la pression qui en résulte dans ledit fluide provoque la rupture de l'opercule déchirable 16 libérant l'orifice de connexion du réservoir avec le circuit de distribution de fluide 25. Ainsi le réservoir est mis en communication avec le circuit de distribution 25 et le fluide se déverse dans celui-ci en direction du point d'utilisation.
  • La figure 11A représente un tel dispositif en fin de vidange. La chambre B ne contient plus ou très peu de fluide. La membrane 105 est alors plaquée par la pression contre l'orifice de communication entre le réservoir et le circuit de distribution et obstrue cet orifice de sorte que toute réintroduction de fluide dans le réservoir est impossible, et que plusieurs réservoirs de ce type peuvent être montés en parallèle sur le même circuit de distribution et déclenchés séquentiellement sans que le fluide éjecté d'un réservoir ne vienne remplir un des réservoirs déjà vidés. A fonctionnalités égales avec l'art antérieur (figure 1), ce mode de réalisation permet de supprimer les clapets anti-retour sur le circuit et ainsi de supprimer les pertes de charges constatées en leur présence. Néanmoins, un tel dispositif présente des difficultés quant au choix de la membrane et à la prévision de son comportement et, par suite, de la fiabilité du dispositif. En effet la membrane 105 doit être suffisamment souple pour assurer une vidange complète du réservoir et une obturation efficace de l'orifice de connexion, appelé également orifice d'éjection, et suffisamment résistante pour ne pas se percer sous l'effet de la pression ou de la rencontre avec l'orifice en fin de vidange. A titre d'exemple, la membrane 105 peut être constituée d'un élastomère non armé.
  • Afin d'améliorer le dispositif en regard de ces inconvénients, un mode de réalisation du dispositif comprend (figure 2B) un réservoir 1 dont le corps 2 est cylindrique à l'intérieur duquel se trouve un piston 5 comprenant des moyens d'étanchéité 6 entre ledit piston et la paroi intérieure du réservoir. Le piston est apte à se déplacer axialement dans le réservoir de manière à provoquer l'éjection du fluide hors du réservoir à la manière d'une seringue. Le déplacement du piston est obtenu par tout moyen connu de l'homme du métier notamment par l'intermédiaire d'un vérin ou par l'introduction dans le réservoir de gaz sous pression du côté de la face opposée à la face du piston en contact avec le fluide.
  • En provoquant le déplacement axial du piston 5 (la figure 11B montre deux étapes de déplacement dudit piston 5), la pression dans le fluide augmente jusqu'à provoquer la rupture de l'opercule déchirable 16 obturant l'orifice de la connexion 16A du réservoir avec le circuit de distribution 25. Le fluide est éjecté du réservoir par le déplacement du piston 5 dans le sens de la flèche et s'écoule alors dans le circuit de distribution 25 en direction du point d'utilisation. En fin de course, le piston 5 vient obturer l'orifice de connexion avec le circuit, soit par contact direct, soit par l'intermédiaire de moyens d'étanchéité 6 qui peuvent être placés sur le piston (cas de la figure 2B) ou alternativement liés au réservoir à proximité de la connexion 16A avec le circuit de distribution.
  • L'orifice 16A de la connexion avec le circuit de distribution étant obturé par le piston, il ne peut y avoir de retour du fluide dans le réservoir déjà vidé lors de la vidange subséquente d'un autre réservoir monté en parallèle sur le même circuit de distribution 25. Toutefois, cette solution comme la précédente (figure 2A) impose que la force d'application du piston 5, ou de la membrane 105 dans le cas du mode de réalisation selon la figure 2A, sur la périphérie de l'orifice de connexion, soit conservée, au moins pendant le temps de la vidange de l'ensemble des réservoirs. Dans le cas où cette force d'application est obtenue par l'injection, dans le réservoir, d'un gaz sous pression, cela implique que le réservoir soit conservé sous pression, ce qui entraîne des risques d'explosion ou de dépressurisation subite de ces réservoirs après son fonctionnement, notamment lors de la reconfiguration de ceux-ci suite à des opérations de maintenance. De telles explosions ou dépressurisations subites peuvent être très préjudiciables aux composants situés à proximité de ces réservoirs.
  • Afin de remédier à ces inconvénients, un mode de réalisation avantageux (figure 12) comporte des moyens de verrouillage du piston 5 en fin de course. Ces moyens de verrouillage peuvent être obtenus par la coopération d'un anneau élastique 19, ou segment élastique, installé dans une gorge du piston 5 et d'un épaulement 17 pratiqué dans le corps de réservoir à l'extrémité comportant la connexion avec le circuit de distribution 25.
  • Par réaction élastique, le segment ou anneau élastique 19 placé dans la gorge du piston tend à s'expanser, c'est-à-dire à augmenter de diamètre. Lorsque, lors de son déplacement axial dans le réservoir afin d'éjecter le fluide, le piston 5 arrive dans la zone de fin de course, l'anneau élastique 19 s'écarte jusqu'à atteindre le diamètre de l'épaulement 17. Ainsi le piston ne peut plus revenir en arrière même en l'absence de l'application d'une action mécanique sur celui-ci.
  • Dans ces conditions, même s'il n'y a pas obturation parfaite de la connexion avec le circuit seul, une faible quantité de fluide émanant de la vidange d'un autre réservoir peut pénétrer dans le réservoir vidé, le piston 5, verrouillé en position par les moyens de verrouillage 17, 19, empêche tout remplissage du réservoir, par l'intermédiaire de ses moyens d'étanchéité avec la paroi intérieure du réservoir 21. Ainsi, après verrouillage du piston, le volume du réservoir placé derrière le piston peut être purgé afin qu'il ne contienne plus de gaz sous pression et ainsi éviter tout risque inhérent à la présence d'un élément sous pression.
  • Selon un mode de réalisation avantageux (figure 13), le gaz sous pression nécessaire à l'éjection du fluide peut être généré par le déclenchement d'une cartouche pyrotechnique 70 placée directement dans le réservoir ou à proximité. Le piston définit alors deux chambres A, B séparées de manière étanche, la première A étant destinée à recevoir le gaz sous pression nécessaire pour provoquer le déplacement axial du piston. La seconde chambre B contient le fluide.
  • L'allumage de la cartouche pyrotechnique 70 provoque la génération de gaz sous pression ce qui a pour effet de propulser le piston vers l'autre extrémité, comprimant ainsi le fluide dans la chambre B. Lorsque le fluide atteint une pression donnée, il déchire l'opercule et se déverse dans le circuit de distribution. En fin de vidange, le piston se verrouille par l'action combinée de l'anneau élastique 19 et de l'épaulement 17, formant ainsi un anti-retour dans le réservoir.
  • Le réservoir peut être équipé d'une soupape d'équilibrage des pressions 12, par exemple comme décrite précédemment. Cette soupape particulière équilibre la pression entre l'intérieur de la chambre A et l'extérieur du réservoir en cas de variation lente de ladite pression et se ferme en cas de pic de pression. Au moment de l'allumage du générateur de gaz pyrotechnique 70 ou de l'introduction d'un gaz sous pression, la variation brusque de pression qui en résulte dans la chambre A ferme la soupape 12, et propulse le piston 5 vers l'autre extrémité du réservoir, éjectant ainsi le fluide après rupture de l'opercule 16. En fin de vidange, l'anneau élastique 19 s'écarte dans l'épaulement 17 empêchant tout retour du piston et formant ainsi un système anti-retour vis-à-vis du fluide dans le circuit de distribution. La pression se stabilise alors dans la chambre A à une valeur supérieure à la pression à l'extérieur du corps. La soupape d'équilibrage 12, permet alors la fuite du gaz hors de la chambre A et la baisse de la pression dans celle-ci. Alternativement, la soupape d'équilibrage 12 peut être normalement fermée et pilotée à l'ouverture par un système la reliant à la position du piston 5 verrouillé en fin de course, autorisant la dépressurisation de la chambre A.
  • Selon ce mode de réalisation, on dispose d'un dispositif d'éjection autonome qui ne reste pas sous pression après fonctionnement.
  • Toutefois, il est avantageux en fin de vidange du réservoir de diriger les gaz sous pression dans la chambre A vers le circuit de distribution de manière à assurer la vidange totale du réseau de distribution.
  • La figure 14 présente une vue partielle en coupe du piston 5 intégrant des moyens formant soupape aptes à mettre en communication la chambre A contenant le gaz sous pression et la chambre B contenant le fluide. De tels moyens formant soupape comprennent un alésage 110 dans le piston 5. Ledit alésage est obturé par une soupape 111 portant sur deux sièges 212, 213, le siège 213 situé du côté de la chambre A recevant le gaz sous pression étant réalisé directement par l'alésage, le siège 212 situé côté fluide étant constitué dans une bague rapportée 214. La soupape 111 est idéalement plaquée contre chacun des sièges 212, 213 par des moyens formant ressort 112.
  • Selon un mode de réalisation avantageux, la position axiale de la bague 214 est réglable afin d'assurer une portée parfaite des deux extrémités de la soupape 111 sur les deux sièges 212, 213. Les moyens formant ressort 112 et les diamètres extérieurs des deux extrémités de la soupape 111 sont choisis de telle sorte qu'au cours de la vidange la force axiale appliquée sur la soupape résultant de la pression du gaz et qui tend à ouvrir ladite soupape, s'équilibre avec la somme de la force appliquée sur l'autre extrémité de la soupape par le fluide et la force du ressort 112, des deux dernières forces tendant à refermer à la soupape. Ainsi, tant qu'il y a du fluide dans la chambre B contenant le fluide, la soupape est fermée et étanche. Lorsque le réservoir est vide, la pression appliquée par le gaz sur la soupape 111 n'est plus équilibrée par la pression du fluide et la soupape s'ouvre, laissant passer le gaz sous pression qui pénètre dans le circuit de distribution 25 et favorise l'éjection du fluide.
  • Lorsque la pression dans la chambre A contenant le gaz chute, la soupape 111 se referme sous l'effet du ressort 112. La soupape étant fermée, le piston 5 est à nouveau étanche et joue son rôle anti-retour vis-à-vis du fluide contenu dans le circuit de distribution 25.
  • Avantageusement les moyens formant soupape 140 (figure 14) peuvent être disposés radialement. Selon ce mode de réalisation (figure 15), le piston 5 comprend une jupe 113 s'étendant axialement, ladite jupe comportant une gorge annulaire comprise en des moyens d'étanchéité 121, 122 disposés axialement de part et d'autre de la gorge. Lorsque le piston 5 muni d'une jupe 113 est présent dans le réservoir, les moyens d'étanchéité 121, 122 et la gorge, forment une chambre annulaire étanche 80.
  • Des moyens formant soupape 140 sont montés radialement et sont aptes à mettre en communication la chambre annulaire 80 avec la chambre A contenant le gaz sous pression.
  • Lors de la vidange, les deux moyens d'étanchéité 121, 122 disposés de part et d'autre de la gorge annulaire du piston sont en contact avec la paroi intérieure du cylindre. Le gaz sous pression tend à ouvrir la soupape 140, et entre dans la chambre annulaire étanche jusqu'à ce que les pressions s'équilibrent et que la soupape se referme sous l'action du ressort de la soupape.
  • En fin de course du piston, l'anneau élastique 19 s'expanse dans l'épaulement 17 empêchant le retour du piston 5. Du fait de la présence de l'épaulement 17, le moyen d'étanchéité 122 situé à proximité de la face avant du piston 5 n'est plus en contact avec la paroi du réservoir et n'assure plus sa fonction d'étanchéité. Sous l'effet de la pression du gaz, la soupape 140 s'ouvre et met en communication le gaz sous pression avec le circuit de distribution 25.
  • Selon un mode de réalisation alternatif (figures 16 et 17), les moyens formant soupape dans la jupe 113 du piston sont remplacés par de simples lumières 115 pratiquées dans ladite jupe et débouchant dans la chambre annulaire étanche 80. Lesdites lumières sont obturées par une bague élastique circulaire 116 placée dans la gorge du piston et tendant, par élasticité, à se plaquer dans le fond de cette gorge, de sorte que les lumières de la jupe 115 soient obturées par la bague 116. Lorsque le gaz sous pression est introduit dans la chambre A prévue à cet effet, la pression entraîne l'expansion de la bague 116 qui n'étant plus plaquée en fond de gorge met en communication la chambre A contenant le gaz sous pression avec la chambre annulaire étanche 80.
  • Avantageusement le fond du réservoir comprend des butées 101 aptes à recevoir le piston 5 en fin de course. En fin de vidange, le piston vient en contact avec lesdites butées 101 en même temps que l'anneau élastique 19 vient bloquer le retour du piston en s'engageant dans l'épaulement 17. Une partie des moyens d'étanchéité 122 n'étant plus en contact avec la paroi intérieure du réservoir au niveau de l'épaulement, la chambre 80 n'est plus étanche en fin de course. La pression de gaz continuant d'expanser la bague 116, le gaz peut s'écouler au travers des lumières 115 vers le circuit de distribution. Lorsque la pression de gaz chute, la bague 116 se rétreint sur les lumières assurant à nouveau l'étanchéité du piston et son rôle de système anti-retour vis-à-vis du fluide contenu dans le circuit de distribution.
  • La bague élastique 116 apte à obturer les lumières 115 se présente avantageusement comme une bague fendue (figures 18 et 19). Outre le fait de procurer une capacité d'expansion élastique supplémentaire cette fente peut avantageusement être utilisée pour orienter angulairement la bague 116 et faire en sorte que la dite fente ne soit pas positionnée face à une lumière 115. A cette fin, la gorge du piston recevant la bague 116 est avantageusement munie d'une protubérance 215 en fond de gorge. Lorsque la bague élastique fendue d'obturation 116 est montée dans la gorge, les deux bords de la fente se positionnent de part et d'autre de ladite protubérance 215. La coopération entre la fente et la protubérance 215 permet ainsi d'arrêter la rotation de la bague 116 dans la gorge de la jupe du piston.

Claims (9)

  1. Dispositif d'éjection d'un fluide comprenant un réservoir (1) de forme sensiblement cylindrique, un élément séparateur (5) le divisant en deux chambres (A,B), des moyens d'étanchéité (6,19) entre l'élément séparateur et les parois latérales du réservoir, ledit élément séparateur (5) étant apte à coulisser dans le réservoir selon l'axe longitudinal de celui-ci de sorte à modifier le volume relatif des chambres, une première chambre (B) étant remplie par un fluide et étant pourvue d'un orifice fermé par un opercule de sorte que ledit fluide puisse être éjecté du réservoir par ledit orifice sous l'effet de la translation de l'élément séparateur et l'ouverture de l'opercule, un circuit de distribution de fluide relié audit orifice, des moyens (7) aptes à modifier la pression dans l'autre chambre dite chambre de pressurisation, de sorte à provoquer la translation de l'élément séparateur, ladite chambre de pressurisation (A) comprenant une chaussette (50) apte à séparer de manière étanche l'intérieur de la chambre de pressurisation des parois latérales du réservoir,
    caractérisé en ce que les moyens (7) comportent un générateur de gaz pyrotechnique en communication avec la chambre de pressurisation (A), en ce que l'étanchéité de la chaussette est rompue au-delà d'une position longitudinale définie de l'élément séparateur, et en ce que dispositif d'éjection comporte des moyens (60) aptes à mettre en communication les gaz générés par la réaction pyrotechnique avec le circuit de distribution de fluide en fin d'éjection du fluide.
  2. Dispositif d'éjection d'un fluide selon la revendication 1, caractérisé en ce que la chaussette (50) est apte à assurer l'étanchéité entre la chambre de pressurisation (A) et les parois du cylindre de manière constante entre deux positions longitudinales de l'élément séparateur (5).
  3. Dispositif selon la revendication 2, caractérisé en ce que la chaussette (50) est constituée d'un matériau souple diamétralement expansible.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la chaussette comporte au moins un pli (51) apte à se déplier sous l'effet de la translation de l'élément séparateur (5).
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte, disposé au niveau de la chambre de pressurisation (A), un dispositif de contrôle de pression (12) apte à adopter une configuration ouverte en absence dudit gaz généré sous pression dans le réservoir (1) de manière à assurer la mise à l'air libre de ladite chambre de pressurisation (A) avec l'environnement extérieur quelle que soit la position axiale de l'élément séparateur (5) et une configuration fermée en présence dudit gaz généré sous pression dans le réservoir (1) de manière à assurer l'étanchéité de ladite chambre de pressurisation (A),
    ledit dispositif de contrôle de pression (12) comprenant un conduit de mise à l'air libre (32) traversant une paroi dudit réservoir (1) et une pièce mobile (31) de fermeture dudit conduit (32), ladite pièce mobile de fermeture (31) étant apte à être commandée :
    - d'une position d'ouverture dudit conduit (32) correspondant à ladite configuration ouverte du dispositif (12) de contrôle de pression,
    - à une position de fermeture du conduit (32) correspondant à ladite configuration fermée dudit, dispositif (12) de contrôle de pression.
  6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens (6, 19, 17) aptes à empêcher tout retour de gaz ou de fluide du circuit de distribution dans le réservoir après décharge complète de celui-ci.
  7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide à éjecter est un agent d'extinction de type flurocétone.
  8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide éjecté est une huile hydraulique.
  9. Aéronef comprenant un dispositif selon les revendications 6 ou 7.
EP20080845284 2007-10-30 2008-10-29 Dispositif d'ejection d'un fluide a etancheite renforcee Active EP2205325B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0758697A FR2922972B1 (fr) 2007-10-30 2007-10-30 Dispositif d'ejection de fluide et utilisation d'un tel dispositif.
FR0801687A FR2929126B1 (fr) 2008-03-28 2008-03-28 Dispositif d'ejection d'un fluide muni d'un dispositif anti-retour
FR0805467A FR2936715B1 (fr) 2008-10-03 2008-10-03 Dispositif d'ejection d'un fluide a etancheite renforcee
PCT/EP2008/064689 WO2009056574A1 (fr) 2007-10-30 2008-10-29 Dispositif d'ejection d'un fluide a etancheite renforcee

Publications (2)

Publication Number Publication Date
EP2205325A1 EP2205325A1 (fr) 2010-07-14
EP2205325B1 true EP2205325B1 (fr) 2012-02-22

Family

ID=40229813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080845284 Active EP2205325B1 (fr) 2007-10-30 2008-10-29 Dispositif d'ejection d'un fluide a etancheite renforcee

Country Status (9)

Country Link
US (1) US8783372B2 (fr)
EP (1) EP2205325B1 (fr)
JP (1) JP2011500242A (fr)
CN (1) CN101909699B (fr)
AT (1) ATE546199T1 (fr)
BR (1) BRPI0818830B1 (fr)
CA (1) CA2703853C (fr)
RU (1) RU2493892C2 (fr)
WO (1) WO2009056574A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452540C2 (ru) * 2009-05-12 2012-06-10 Владимир Александрович Парамошко Способ тушения пожара и устройство для его реализации
FR2953418B1 (fr) 2009-12-04 2011-12-09 Airbus Operations Sas Dispositif d'ejection d'un fluide
US8333246B2 (en) * 2010-05-25 2012-12-18 Hanratty Associates Hydro-pneumatic extinguisher
FR3007659B1 (fr) 2013-06-28 2017-03-24 Herakles Procede de delivrance d'un liquide pressurise par les gaz de combustion d'au moins un chargement pyrotechnique
CN104721993B (zh) * 2015-02-11 2018-03-30 中汽客汽车零部件(厦门)有限公司 一种能对灭火剂的运动进行导向的灭火装置
CN104722001B (zh) * 2015-02-11 2018-05-22 中汽客汽车零部件(厦门)有限公司 一种灭火装置
US10238902B2 (en) * 2016-09-07 2019-03-26 The Boeing Company Expulsion of a fire suppressant from a container
FR3056416B1 (fr) * 2016-09-28 2018-11-23 Airbus Safran Launchers Sas Dispositif de distribution d'un materiau pressurise
FR3056417B1 (fr) * 2016-09-28 2021-05-14 Airbus Safran Launchers Sas Dispositif de delivrance d'un materiau pressurise
FR3077989B1 (fr) 2018-02-20 2021-11-19 Arianegroup Sas Extincteur d'incendie
US11118705B2 (en) 2018-08-07 2021-09-14 General Electric Company Quick connect firewall seal for firewall
CN109513138A (zh) * 2018-12-26 2019-03-26 吉林省福瑞达水电设备工程有限公司 一种电力设备自动灭火装置
DE212019000255U1 (de) * 2019-02-21 2021-01-13 Celanova Ltd. Feuerlöschvorrichtung für Hybrid-Feuerlöschsysteme
NO346843B1 (en) * 2019-04-24 2023-01-30 Interwell P&A As Housing with piston for pressure compensation when the well tool is run in a well and method for using same
CN110270038A (zh) * 2019-07-18 2019-09-24 安徽安瑞德自动化科技有限公司 一种非储压式灭火装置及其控制系统
CN110478836A (zh) * 2019-09-11 2019-11-22 安徽天辰云泽安全科技有限公司 一种小空间非贮压式灭火装置
CN111692141B (zh) * 2020-04-30 2022-08-23 武汉船用机械有限责任公司 用于油缸控制的液压系统
KR102243460B1 (ko) * 2020-06-03 2021-04-21 이영숙 화재 진압 시스템
CN114432627B (zh) * 2020-10-30 2022-11-29 安徽工业大学 一种增压灭火装置
CN112587843A (zh) * 2020-12-16 2021-04-02 安徽中科中涣防务装备技术有限公司 一种可实现二次灭火的外置式灭火装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557957A (en) * 1946-04-23 1951-06-26 Vernon E Ferguson Fire extinguisher
US3947006A (en) * 1974-12-20 1976-03-30 Bauer Hans Peter Gas spring, piston locking
CH616269A5 (fr) * 1975-07-18 1980-03-14 Hug Interlizenz Ag
US4889189A (en) * 1983-10-28 1989-12-26 Rozniecki Edward J Fire suppressant mechanism and method for sizing same
CN2038013U (zh) * 1988-07-31 1989-05-24 王一忠 手提式二氟一氯一溴甲烷灭火棒
WO1993025950A1 (fr) 1992-06-12 1993-12-23 Unit Instruments, Inc. Regulateur de flux massique
US5660236A (en) 1994-07-21 1997-08-26 Kidde Technologies, Inc. Discharging fire and explosion suppressants
AU1004997A (en) * 1996-01-17 1997-07-24 Morton International, Inc. Water mist fire suppression device
RU2118553C1 (ru) * 1997-01-20 1998-09-10 Сергей Васильевич Балашов Огнетушитель
JP3812621B2 (ja) * 1998-10-15 2006-08-23 Nok株式会社 端面シール
US6478979B1 (en) * 1999-07-20 2002-11-12 3M Innovative Properties Company Use of fluorinated ketones in fire extinguishing compositions
US6371213B1 (en) * 2000-02-15 2002-04-16 Autoliv Asp, Inc. Liquid or foam fire retardant delivery device with pyrotechnic actuation and aeration
JP2002013501A (ja) * 2000-06-30 2002-01-18 Nok Corp アキュムレータ
US20020112863A1 (en) 2000-08-08 2002-08-22 Randall Padgett Automatic fire extinguisher system having an enhanced head dispersing device
SE519852C2 (sv) 2002-02-14 2003-04-15 Dafo Brand Ab Släckmedelsbehållare och system med behållare
DE10224675B4 (de) * 2002-06-03 2021-05-12 Carl Freudenberg Kg Hydropneumatischer Druckspeicher
ES2312697T3 (es) 2003-07-31 2009-03-01 DEUTSCHE SISI-WERKE GMBH & CO. BETRIEBS KG Dispositivo y procedimiento para verificar que un objeto esta adherido.
FR2864905B1 (fr) * 2004-01-09 2006-07-14 Airbus France Dispositif d'extinction de feu
FR2870459B1 (fr) * 2004-05-19 2006-08-25 Airbus France Sas Dispositif d'extinction de feu par injection d'un gaz genere par la combustion d'un bloc pyrotechnique
RU2271305C1 (ru) * 2004-11-05 2006-03-10 ОАО "ОКБ им. А.С. Яковлева" Легкий сверхзвуковой многоцелевой самолет
FR2879107B1 (fr) * 2004-12-09 2007-04-06 Airbus France Sas Dispositif pour augmenter l'efficacite du gaz de pressurisation dans une bouteille d'extincteur

Also Published As

Publication number Publication date
EP2205325A1 (fr) 2010-07-14
ATE546199T1 (de) 2012-03-15
RU2010121896A (ru) 2011-12-10
CA2703853C (fr) 2015-11-24
US20100230118A1 (en) 2010-09-16
CN101909699A (zh) 2010-12-08
WO2009056574A1 (fr) 2009-05-07
CA2703853A1 (fr) 2009-05-07
JP2011500242A (ja) 2011-01-06
RU2493892C2 (ru) 2013-09-27
BRPI0818830A2 (pt) 2015-04-22
US8783372B2 (en) 2014-07-22
CN101909699B (zh) 2012-12-26
BRPI0818830B1 (pt) 2018-08-07

Similar Documents

Publication Publication Date Title
EP2205325B1 (fr) Dispositif d'ejection d'un fluide a etancheite renforcee
CA2589873C (fr) Dispositif pour augmenter l'efficacite du gaz de pressurisation dans une bouteille d'extincteur
EP1138957B1 (fr) Ecrou de séparation réarmable à faible niveau de choc induit
EP2057436B1 (fr) Dispositif de propulsion de liquide incorporant dans sa structure un generateur de gaz pyrotechnique
EP2506938B1 (fr) Dispositif d'éjection d'un fluide
EP2683449A1 (fr) Dispositif d'extinction d'incendie declenche
EP1902757B1 (fr) Dispositif de propulsion d'un agent contenu dans une cavité
EP1496268B1 (fr) Actionneur pyrotechnique à effet de poussée variable
FR2964439A1 (fr) Dispositif de purge automatique d'un reservoir et reservoir comprenant un tel dispositif
FR2936715A1 (fr) Dispositif d'ejection d'un fluide a etancheite renforcee
FR2922972A1 (fr) Dispositif d'ejection de fluide et utilisation d'un tel dispositif.
EP3313536B1 (fr) Extincteur d'incendie
FR2929126A1 (fr) Dispositif d'ejection d'un fluide muni d'un dispositif anti-retour
EP0211703B1 (fr) Dispositif de fermeture temporaire d'un orifice interne d'un propulseur
FR2945453A1 (fr) Dispositif d'ejection d'un fluide.
WO2023166389A1 (fr) Dispositif de lancement pneumatique d'un drone
FR2975165A1 (fr) Dispositif de purge d'un reservoir d'un systeme spatial
FR2880659A1 (fr) Ensemble d'entrainement de porte passagers d'un avion
WO2017009567A1 (fr) Dispositif de distribution d'un materiau
FR2594932A2 (fr) Perfectionnements aux soupapes a boulet
FR3092765A1 (fr) Extincteur d’incendie ou douche portative de sécurité toutes positions
BE540656A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 546199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008013658

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120222

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 546199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121023

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008013658

Country of ref document: DE

Effective date: 20121123

BERE Be: lapsed

Owner name: AIRBUS OPERATIONS

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16