EP2202846B1 - Planar radiating element with dual polarisation and network antenna comprising such a radiating element - Google Patents

Planar radiating element with dual polarisation and network antenna comprising such a radiating element Download PDF

Info

Publication number
EP2202846B1
EP2202846B1 EP09170166A EP09170166A EP2202846B1 EP 2202846 B1 EP2202846 B1 EP 2202846B1 EP 09170166 A EP09170166 A EP 09170166A EP 09170166 A EP09170166 A EP 09170166A EP 2202846 B1 EP2202846 B1 EP 2202846B1
Authority
EP
European Patent Office
Prior art keywords
patch
metal
external
radiating element
polarisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09170166A
Other languages
German (de)
French (fr)
Other versions
EP2202846A1 (en
Inventor
Hervé Legay
Danièle Bresciani
Renaud Chiniard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2202846A1 publication Critical patent/EP2202846A1/en
Application granted granted Critical
Publication of EP2202846B1 publication Critical patent/EP2202846B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0478Substantially flat resonant element parallel to ground plane, e.g. patch antenna with means for suppressing spurious modes, e.g. cross polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the present invention relates to a dual polarization planar radiating element in which the phenomenon of electrostatic discharges is minimized and to a network antenna comprising such a radiating element.
  • the invention applies to any type of antenna comprising at least one dual polarization planar radiating element, to the radiating networks equipping certain antennas and to the network antennas embedded on a spacecraft, for example on a satellite, such as network antennas. reflector or phased array antennas.
  • a network antenna such as for example a reflective array antenna (in English: reflectarray antenna) or a phased array antenna, comprises a set of elementary radiating elements assembled into a radiating array. one or two dimensions to increase the directivity and gain of the antenna.
  • the elementary radiating elements of the network often consist of an arrangement of patches and slots whose dimensions vary.
  • the shape of the radiating elements for example square, circular, hexagonal, is generally fixed and unique for the network.
  • the dimensions of the radiating elements are adjusted to obtain a radiation pattern chosen when illuminated by a primary source.
  • phased array antennas the distribution of the signal to the radiating elements of the network is done using a beamforming splitter.
  • the elementary radiating elements may be constituted by a cavity structure and radiating slots mounted on a metal plane or by a planar structure comprising a metallic radiating patch printed on the surface of a dielectric substrate mounted on a metal plane, the metal patch possibly comprising one or more slots as shown for example on the figure 1 .
  • Radiant slits may be made of a dielectric material or a composite material such as the superposition of a honeycomb of printed thin dielectric substrates used as skin of the composite material.
  • the antenna to be able to support a space environment, it must be ensured that the phenomena of electrostatic discharges between the radiating elements are minimized.
  • the object of the present invention is to overcome this problem by providing a dual polarization planar radiating element in which the phenomenon of electrostatic discharges is minimized without disturbing the response of the radiating element subjected to an orthogonally polarized wave.
  • the subject of the invention is a planar radiating element with dual polarization, characterized in that it comprises an external metal gate, at least one metal patch concentric with the metal gate. external and a cavity separating the metal grid and the metal patch, the grid and the patch having a polygonal shape delimited by at least four opposite sides in pairs, in that it comprises two orthogonal polarization directions associated with two orthogonal electric fields at least one of the polarization directions being parallel to two sides of the polygon and in that each side of the metal patch parallel to a polarization direction is electrically connected to an area of the outer gate where one of the electric fields is minimal.
  • the polygonal shape of the metal patch is chosen from a form of square, rectangle, cross, hexagon
  • the planar radiating element comprises four orthogonal sides in pairs and each side of the metal patch parallel to a polarization direction is respectively connected to one side of the external grid perpendicular to said polarization direction.
  • each side of the metal patch parallel to a polarization direction comprises a center connected to a center on one side of the outer gate perpendicular to said polarization direction.
  • the metal patch may comprise a plurality of orthogonal slots forming a cross.
  • the metal patch comprises an external annular patch, at least one internal patch concentric with the external annular patch and at least one annular gap separating the internal and external patches, the internal and external patches having the same polygonal shape, each side of the internal patch parallel to a polarization direction being connected to a side of the outer annular patch perpendicular to said polarization direction.
  • the internal patch may include a plurality of orthogonal slots forming a central cross.
  • each side of the internal patch parallel to a polarization direction has a center connected to a center on one side of the outer annular patch perpendicular to said polarization direction.
  • the polygonal shape of the metal patches is a cross and the outer grid has a square shape.
  • the metal patch comprises an external annular patch, at least one internal patch concentric with the external annular patch and at least one annular slot separating the internal and external patches, the internal and external patches having a shape of hexagon having two sides parallel to a polarization direction and four sides inclined obliquely to said polarization direction and connected two by two by a vertex, each side of the outer metal patch parallel to said polarization direction being electrically connected to an apex of the internal patch and each side of the inner patch parallel to said polarization direction being electrically connected to a top of the outer metal patch.
  • the invention also relates to a network antenna comprising at least one dual polarization planar radiating element, the external metal gate of each radiating element being connected to a metal ground plane of the network.
  • the figure 1 shows an example of a network antenna 10 comprising a reflector array 11 forming a reflective surface 14 and a primary source 13 for illuminating the reflector array 11 with an incident wave.
  • the reflector array has a plurality of elemental radiators arranged in a two-dimensional surface.
  • a first example of dual polarization elementary radiating element 12 comprising a metal patch 15 printed on an upper face of a substrate 16 provided with a metal ground plane 17 on its lower face, the substrate may be a dielectric material or a composite material consisting of a spacer material, for example honeycomb, and fine dielectric materials.
  • the metal patch 15 has two cross-shaped slots 18 made at its center.
  • the shape of the elementary radiating elements 12 may for example be square, rectangular, hexagonal, circular, cross-shaped or any other geometrical shape.
  • the slots can also be made in a different number of two and their arrangement can be different from a cross. On the figure 2 the slots have the same dimensions but they could be of different sizes.
  • the radiating element has a polygonal shape, for example square and comprises a first internal metal patch 30, a second external annular metal patch forming a metal ring 31, and an annular slot 32 separating the outer metal ring 31 and the inner metal patch 30
  • the inner patch, the crown and the slit are concentric.
  • the radiating element is orthogonally polarized by two exciter waves, the two electric fields Ev and Eh corresponding to the two directions of polarization are orthogonal to each other.
  • the Ev field is parallel to a first side 33 of the radiating element and the Eh field is parallel to a second side 34 of the radiating element, the first and second sides 33, 34 being orthogonal to each other.
  • the annular slot 32 is resonant when its circumference is equal to the period of the polarization mode that is established. So, as shown in figure 3a the electric field Ev is maximum in some regions of the slot where the electric field Eh is minimal and disappears in other regions 36 where the electric field Eh is maximal. The regions where one of the fields Ev, respectively Eh, gradually disappears are the regions where the outer ring is parallel to the corresponding polarization direction.
  • the annular slot 32 is equivalent to two half-slots having the form of two complementary half-rings arranged symmetrically with respect to the perpendicular bisector parallel to the corresponding polarization.
  • the annular slot 32 is equivalent to the two half-slots 1, 2 arranged symmetrically with respect to the mediator 5 on the side 33.
  • the annular slot 32 is equivalent to the two half-slots. slots 3, 4 arranged symmetrically with respect to the mediator 6 of the side 34.
  • the four half-slots consisting of four half-rings intertwined represented on the figure 3b have for each polarization Ev, Eh, a behavior equivalent to an annular slot as represented on the figure 3a .
  • each side of the inner metal patch 30 is electrically connected, for example by means of a wire 37, to one side of the outer ring 31 which is orthogonal thereto.
  • the wire 37 connects the middle of the side of the inner metal patch 30 in the middle of the side of the outer ring 31 which is orthogonal thereto. Apart from resonance, shorting the slots in any way does not significantly alter the properties of the radiating element.
  • each polarization direction is parallel to the one of the sides of the patch and the outer crown.
  • the electric field corresponding to each direction of polarization is maximum in the regions of the slots perpendicular to said polarization direction and is very low or zero in the regions of the slots parallel to said polarization direction.
  • an external metal grid may be added to drain the electrostatic charges to a metal ground plane of the network such as the ground plane 17 of the radiating elements.
  • the radiating element represented on the figure 5a comprises a metal patch 15, for example in the form of a square, in which are formed two orthogonal slots 18, 20 forming a cross.
  • the cross is usually positioned at the center of the metal patch and is such that each slot is parallel to two opposite sides of the square.
  • the cross may comprise additional orthogonal slots 21, 22, 23, 24 such as for example a cross, called the Jerusalem cross, represented on the figure 5b which has four additional slots respectively placed orthogonally at both ends of each central slot.
  • the radiating element 39 further comprises an external metal annular grid 38 delimiting a cavity 41 between the grid and the metal patch.
  • the outer annular grid and the metal patch are concentric and of the same geometric shape.
  • the cavity 41 behaves like a radiating slot and participates in the overall radiation.
  • each side 42, 43, 44, 45 of the internal metal patch is electrically connected, for example by means of a wire 46, to a side 47, 48, 49, 50 of the outer gate 38 which is orthogonal.
  • the wire connects the middle of the side of the inner metal patch in the middle of the side of the outer gate which is orthogonal thereto.
  • the figure 6 represents a third example of a radiating element according to the invention.
  • the geometric shape of the radiating element is hexagonal and has six opposite sides two by two.
  • This radiating element comprises two concentric ring-shaped metal rings 61, 62 spaced apart by an annular slot 63.
  • the field Ev is minimal in the regions of the external patch perpendicular to the field Ev, that is to say the regions of the vertices of the hexagon where the sides 66, 67, 68, 69 which are not parallel no direction of polarization meet.
  • each side 72, 73 of the internal patch 62 parallel to one of the directions of polarization Eh is electrically connected to a vertex 70, 71 of the external patch 61 where the sides 66, 67 and 68, 69 which are not parallel to any direction of polarization meet.
  • a top 74, 75 of the internal patch 62 where the sides 56, 57, 58, 59 which are parallel to no polarization direction meet is electrically connected to a side 65, 64 of the outer patch 61 parallel to a direction of polarization Eh.
  • an external metal grid is added to drain the electrostatic charges to a metal ground plane of the network such as the ground plane 17 of the radiating elements.
  • each side of a first internal metal patch 80 parallel to a polarization direction is electrically connected to an orthogonal side of a second annular metal patch 79 which surrounds it, and each side of the second parallel annular metal patch 79 A polarization direction is electrically connected to an orthogonal side of a third metal patch 78 surrounding it.
  • the radiating element may comprise an external annular metal grating 94 separated from the external annular patch 78 by a cavity 98.
  • each side of the third external metal patch 78 is electrically connected to one side of the outer gate 94 which is orthogonal thereto.
  • the radiating element comprises an outer grid 82 in the form of a square and a central cross, spaced from the outer gate by a cavity 88.
  • the central cross comprises two annular metal patches 83, 84 in the form of crosses separated by an annular slot 85 in cross shape, and two orthogonal slots 86, 87 forming a cross, positioned in the center of the radiating element.
  • the different crosses are such that each slot 85, 86, 87 has regions parallel to a first direction of polarization Ev and regions parallel to a second direction of polarization Eh.
  • each annular metal patch 83, 84 and the grid 82 has parallel sides and sides orthogonal to the first direction of polarization Ev as well as parallel sides and sides orthogonal to the second direction of polarization Eh.
  • each side of a first internal metal patch 84 parallel to a polarization direction is electrically connected to an orthogonal side of a second metal patch annular 83, or the outer metal grid 82 surrounding it.
  • This type of planar radiating element in the form of a cross has the advantage of leading to smaller dimensions than the annular slot patterns in elements of square or circular type, since the electrical path is elongated. They can therefore be inserted into smaller mesh networks, which is favorable for bandwidth performance, and which improves the response of the network to high-impact waves.
  • the Figures 9a , 9b , 9c represent three examples of radiating network, according to the invention.
  • the network of figure 9a comprises two dual polarization planar radiating elements, each radiating element 39, 40 having a metal patch 15, 19 and an outer gate spaced from the patch by a cavity.
  • the two radiating elements are adjacent and the two external grids 50, 51 have a side 49 in common.
  • Each side of the metal patch is electrically connected to an orthogonal side of the outer gate.
  • each radiating element 90, 91, 92, 93 comprises an internal metal patch 80, a first annular metal patch 79 spaced from the inner patch by a first annular slot 77, a second annular metal patch 78 spaced from the first annular patch 79 by a second annular slot 76, an annular metal grid 94, 95, 96, 97 spaced from the second annular metal patch 78 by a cavity 98.
  • the four radiating elements are adjacent to each other and the four grids have common sides 99, 101, 102, 103 two by two.
  • each radiating element 104, 105, 106, 107 comprises two central cross-shaped slits 86, 87, a first internal annular patch 84 surrounding the central cross, a second annular patch 83 external to the first annular patch 84 and spaced from it. ci by an annular slot 85 and an outer annular metal grid 82 of square shape and spaced from the second annular metal patch 83 by a cavity 88, as on the figure 8 .
  • the four radiating elements are adjacent to each other and the four grids have two-to-two common sides.
  • Each metal patch has sides parallel to a polarization direction connected to an orthogonal side of a surrounding metal patch or for the second annular patch, to an orthogonal side of the external metal grille. All the electrostatic charges are thus drained towards the external metal gate without disturbing the response of the radiating elements subjected to an orthogonally polarized wave. The electrostatic charges are then discharged to a metal ground plane of the network by connecting the outer gate to this metal ground plane.
  • a radiating array of different sizes and characteristics can thus be realized by combining a plurality of radiating elements to form a radiating surface of desired size in one or two dimensions.
  • the elements may all be identical or may be of different structures depending on the type of antenna desired.
  • the network can then be implanted in a chosen network antenna such as for example that represented on the figure 1 or any other type of network antenna.
  • a planar radiating element having a hexagonal or cross-shaped geometric shape may comprise an external grid of different shape, for example of square shape.
  • radiating elements of hexagonal shape may comprise an internal patch having orthogonal central slots forming a simple cross or a Jerusalem cross.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

The element (39) has a square shaped external metal annular grid (38) in which a metal patch (15) is concentric. A cavity (41) separates the grid and the patch, where the grid and the patch have a polygonal shape delimited by 4 pair wise opposite sides, and 2 orthogonal directions of polarization associated with 2 orthogonal electric fields (Eh, Ev). One of the directions of polarization is provided parallel to sides of the shape, where sides (42-45) of the patch parallel to the directions of polarization is electrically linked to a zone of the external grid when one of the fields is minimum. The polygonal shape of the metal patch is chosen a square, rectangle, cross or hexagon.

Description

La présente invention concerne un élément rayonnant planaire à polarisation duale dans lequel le phénomène de décharges électrostatiques est minimisé et à une antenne réseau comportant un tel élément rayonnant. L'invention s'applique à tout type d'antenne comportant au moins un élément rayonnant planaire à polarisation duale, aux réseaux rayonnants équipant certaines antennes et aux antennes réseau embarquées sur un engin spatial, par exemple sur un satellite, telles que les antennes réseau réflecteur ou les antennes réseau à commande de phase.The present invention relates to a dual polarization planar radiating element in which the phenomenon of electrostatic discharges is minimized and to a network antenna comprising such a radiating element. The invention applies to any type of antenna comprising at least one dual polarization planar radiating element, to the radiating networks equipping certain antennas and to the network antennas embedded on a spacecraft, for example on a satellite, such as network antennas. reflector or phased array antennas.

Le document US 6,061,025 décrit une antenne patch et des bandes conductrice parallèles aux côtés du patch sur un même plan afin d'ajuster la bande passante de manière dynamique à l'emploi.The document US 6,061,025 describes a patch antenna and parallel conductive strips alongside the patch on the same plane in order to dynamically adjust the bandwidth for use.

Une antenne réseau, telle que par exemple une antenne réseau réflecteur (en anglais : reflectarray antenna) ou une antenne réseau à commande de phase (en anglais : phased array antenna), comporte un ensemble d'éléments rayonnants élémentaires assemblés en un réseau rayonnant à une ou deux dimensions permettant d'augmenter la directivité et le gain de l'antenne. Dans les antennes réseau réflecteur, les éléments rayonnants élémentaires du réseau sont souvent constitués d'un agencement de patchs et de fentes dont les dimensions varient. La forme des éléments rayonnant, par exemple carrée, circulaire, hexagonale, est généralement figée et unique pour le réseau. Les dimensions des éléments rayonnants sont réglées de façon à obtenir un diagramme de rayonnement choisi lorsqu'ils sont illuminés par une source primaire. Dans les antennes réseau à commandes de phases, la répartition du signal vers les éléments rayonnants du réseau se fait à l'aide d'un répartiteur de formation de faisceau.A network antenna, such as for example a reflective array antenna (in English: reflectarray antenna) or a phased array antenna, comprises a set of elementary radiating elements assembled into a radiating array. one or two dimensions to increase the directivity and gain of the antenna. In the reflector array antennas, the elementary radiating elements of the network often consist of an arrangement of patches and slots whose dimensions vary. The shape of the radiating elements, for example square, circular, hexagonal, is generally fixed and unique for the network. The dimensions of the radiating elements are adjusted to obtain a radiation pattern chosen when illuminated by a primary source. In phased array antennas, the distribution of the signal to the radiating elements of the network is done using a beamforming splitter.

Les éléments rayonnants élémentaires peuvent être constitués par une structure à cavité et fentes rayonnantes montée sur un plan métallique ou par une structure planaire comportant un patch rayonnant métallique imprimé sur la surface d'un substrat diélectrique monté sur un plan métallique, le patch métallique pouvant comporter une ou plusieurs fentes comme représenté par exemple sur la figure 1. Les fentes rayonnantes peuvent être réalisées dans un matériau diélectrique ou un matériau composite tel que la superposition d'un nid d'abeille de substrats diélectriques fins imprimés utilisés comme peau du matériau composite. Cependant, pour que l'antenne soit capable de supporter un environnement spatial, il faut s'assurer que les phénomènes de décharges électrostatiques entre les éléments rayonnants soient minimisés.The elementary radiating elements may be constituted by a cavity structure and radiating slots mounted on a metal plane or by a planar structure comprising a metallic radiating patch printed on the surface of a dielectric substrate mounted on a metal plane, the metal patch possibly comprising one or more slots as shown for example on the figure 1 . Radiant slits may be made of a dielectric material or a composite material such as the superposition of a honeycomb of printed thin dielectric substrates used as skin of the composite material. However, for the antenna to be able to support a space environment, it must be ensured that the phenomena of electrostatic discharges between the radiating elements are minimized.

Il est connu de minimiser les décharges électrostatiques sur un engin spatial en reliant toutes les surfaces externes électriquement conductrices et tous les éléments métalliques internes de l'engin spatial à la structure métallique principale de l'engin. Pour des éléments rayonnants à polarisation linéaire, la mise à la masse peut être réalisée sans problème particulier en connectant les éléments rayonnants à une grille métallique externe par un fil métallique selon un axe de symétrie perpendiculaire à la direction de polarisation.It is known to minimize electrostatic discharges on a spacecraft by connecting all electrically conductive outer surfaces and all internal metallic elements of the spacecraft to the main metallic structure of the craft. For linearly polarized radiators, the grounding can be carried out without any particular problem by connecting the radiating elements to an external metal gate with a wire along an axis of symmetry perpendicular to the polarization direction.

Cependant, pour un réseau rayonnant constitué d'éléments rayonnants élémentaires de structure planaire à polarisation duale, il est nécessaire de tenir compte de la polarisation des différents éléments rayonnants. En effet, une connexion directe des éléments rayonnants entre eux, par exemple par l'intermédiaire d'un fil métallique, affecterait la polarisation et le fonctionnement de ces éléments et pourrait détruire les résonances et provoquer l'excitation d'autres modes supérieurs. En outre, dans le cas d'une antenne réseau, l'adaptation des éléments rayonnants pourrait être détruite.However, for a radiating network consisting of elementary radiating elements of dual polarization planar structure, it is necessary to take into account the polarization of the different radiating elements. Indeed, a direct connection of the radiating elements together, for example via a wire, affect the polarization and the operation of these elements and could destroy the resonances and cause the excitation of other higher modes. In addition, in the case of a network antenna, the adaptation of the radiating elements could be destroyed.

La présente invention a pour but de remédier à ce problème en proposant un élément rayonnant planaire à polarisation duale dans lequel le phénomène de décharges électrostatiques est minimisé sans perturber la réponse de l'élément rayonnant soumis à une onde polarisée orthogonalement.The object of the present invention is to overcome this problem by providing a dual polarization planar radiating element in which the phenomenon of electrostatic discharges is minimized without disturbing the response of the radiating element subjected to an orthogonally polarized wave.

A cet effet, l'invention a pour objet un élément rayonnant planaire à polarisation duale, caractérisé en ce qu'il comporte une grille métallique externe, au moins un patch métallique concentrique à la grille métallique externe et une cavité séparant la grille métallique et le patch métallique, la grille et le patch ayant une forme polygonale délimitée par au moins quatre côtés opposés deux à deux, en ce qu'il comporte deux directions de polarisation orthogonales associées à deux champs électriques orthogonaux, au moins l'une des directions de polarisation étant parallèle à deux côtés du polygone et en ce que chaque côté du patch métallique parallèle à une direction de polarisation est relié électriquement à une zone de la grille externe où l'un des champs électriques est minimal.For this purpose, the subject of the invention is a planar radiating element with dual polarization, characterized in that it comprises an external metal gate, at least one metal patch concentric with the metal gate. external and a cavity separating the metal grid and the metal patch, the grid and the patch having a polygonal shape delimited by at least four opposite sides in pairs, in that it comprises two orthogonal polarization directions associated with two orthogonal electric fields at least one of the polarization directions being parallel to two sides of the polygon and in that each side of the metal patch parallel to a polarization direction is electrically connected to an area of the outer gate where one of the electric fields is minimal.

Avantageusement, La forme polygonale du patch métallique est choisie parmi une forme de carré, de rectangle, de croix, d'hexagoneAdvantageously, the polygonal shape of the metal patch is chosen from a form of square, rectangle, cross, hexagon

Avantageusement, l'élément rayonnant planaire comporte quatre côtés orthogonaux deux à deux et chaque côté du patch métallique parallèle à une direction de polarisation est relié respectivement à un côté de la grille externe perpendiculaire à ladite direction de polarisation.Advantageously, the planar radiating element comprises four orthogonal sides in pairs and each side of the metal patch parallel to a polarization direction is respectively connected to one side of the external grid perpendicular to said polarization direction.

Préférentiellement, chaque côté du patch métallique parallèle à une direction de polarisation comporte un centre relié à un centre d'un côté de la grille externe perpendiculaire à ladite direction de polarisation.Preferably, each side of the metal patch parallel to a polarization direction comprises a center connected to a center on one side of the outer gate perpendicular to said polarization direction.

Selon un mode de réalisation particulier, le patch métallique peut comporter plusieurs fentes orthogonales formant une croix.According to a particular embodiment, the metal patch may comprise a plurality of orthogonal slots forming a cross.

Selon un autre mode de réalisation, le patch métallique comporte un patch annulaire externe, au moins un patch interne concentrique au patch annulaire externe et au moins une fente annulaire séparant les patchs interne et externe, les patchs interne et externe ayant la même forme polygonale, chaque côté du patch interne parallèle à une direction de polarisation étant relié à un côté du patch annulaire externe perpendiculaire à ladite direction de polarisation.According to another embodiment, the metal patch comprises an external annular patch, at least one internal patch concentric with the external annular patch and at least one annular gap separating the internal and external patches, the internal and external patches having the same polygonal shape, each side of the internal patch parallel to a polarization direction being connected to a side of the outer annular patch perpendicular to said polarization direction.

Optionnellement, le patch interne peut comporter plusieurs fentes orthogonales formant une croix centrale.Optionally, the internal patch may include a plurality of orthogonal slots forming a central cross.

Préférentiellement, chaque côté du patch interne parallèle à une direction de polarisation comporte un centre relié à un centre d'un côté du patch annulaire externe perpendiculaire à ladite direction de polarisation.Preferably, each side of the internal patch parallel to a polarization direction has a center connected to a center on one side of the outer annular patch perpendicular to said polarization direction.

Selon un mode de réalisation particulier, la forme polygonale des patchs métalliques est une croix et la grille externe a une forme de carré.According to a particular embodiment, the polygonal shape of the metal patches is a cross and the outer grid has a square shape.

Selon un autre mode de réalisation particulier, le patch métallique comporte un patch annulaire externe, au moins un patch interne concentrique au patch annulaire externe et au moins une fente annulaire séparant les patchs interne et externe, les patchs interne et externe ayant une forme d'hexagone comportant deux côtés parallèles à une direction de polarisation et quatre côtés inclinés obliquement par rapport à ladite direction de polarisation et reliés deux à deux par un sommet, chaque côté du patch métallique externe parallèle à ladite direction de polarisation étant relié électriquement à un sommet du patch interne et chaque côté du patch interne parallèle à ladite direction de polarisation étant relié électriquement à un sommet du patch métallique externe.According to another particular embodiment, the metal patch comprises an external annular patch, at least one internal patch concentric with the external annular patch and at least one annular slot separating the internal and external patches, the internal and external patches having a shape of hexagon having two sides parallel to a polarization direction and four sides inclined obliquely to said polarization direction and connected two by two by a vertex, each side of the outer metal patch parallel to said polarization direction being electrically connected to an apex of the internal patch and each side of the inner patch parallel to said polarization direction being electrically connected to a top of the outer metal patch.

L'invention concerne également une antenne réseau comportant au moins un élément rayonnant planaire à polarisation duale, la grille métallique externe de chaque élément rayonnant étant reliée à un plan de masse métallique du réseau.The invention also relates to a network antenna comprising at least one dual polarization planar radiating element, the external metal gate of each radiating element being connected to a metal ground plane of the network.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 : un schéma d'un exemple d'antenne réseau;
  • figure 2 : un schéma d'un premier exemple d'élément rayonnant élémentaire à polarisation duale réalisé en technologie planaire;
  • figures 3a et 3b : deux schémas, en vue de dessus, d'un deuxième et d'un troisième exemple d'élément rayonnant élémentaire à polarisation duale réalisé en technologie planaire ;
  • figures 4, 5a, 5b : trois vues schématiques de dessus de trois exemples d'élément rayonnant, selon l'invention ;
  • figure 6 : une vue schématique de dessus d'un quatrième exemple d'élément rayonnant, selon l'invention ;
  • figures 7 et 8 : deux vues schématiques de dessus d'un d'un cinquième et d'un sixième exemple d'élément rayonnant, selon l'invention ;
  • figures 9a, 9b, 9c : trois vues schématiques de dessus de trois exemples de réseau rayonnant, selon l'invention.
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 : a diagram of an example of a network antenna;
  • figure 2 : a diagram of a first example of dual polarization elemental radiating element made in planar technology;
  • Figures 3a and 3b : two diagrams, in plan view, of a second and a third example of dual polarization elementary radiating element made in planar technology;
  • Figures 4, 5a , 5b : three schematic top views of three examples of radiating element, according to the invention;
  • figure 6 : a schematic view from above of a fourth example of radiating element, according to the invention;
  • Figures 7 and 8 : two schematic top views of one of a fifth and a sixth example of radiating element, according to the invention;
  • Figures 9a , 9b , 9c : three schematic top views of three examples of radiating network, according to the invention.

La figure 1 montre un exemple d'antenne réseau 10 comportant un réseau réflecteur 11 formant une surface réfléchissante 14 et une source primaire 13 pour illuminer le réseau réflecteur 11 avec une onde incidente. Le réseau réflecteur comporte une pluralité d'éléments rayonnants élémentaires agencés en une surface à deux dimensions.The figure 1 shows an example of a network antenna 10 comprising a reflector array 11 forming a reflective surface 14 and a primary source 13 for illuminating the reflector array 11 with an incident wave. The reflector array has a plurality of elemental radiators arranged in a two-dimensional surface.

Sur la figure 2 est représenté un premier exemple d'élément rayonnant élémentaire 12 à polarisation duale comportant un patch métallique 15 imprimé sur une face supérieure d'un substrat 16 muni d'un plan de masse métallique 17 sur sa face inférieure, le substrat pouvant être un matériau diélectrique ou un matériau composite constitué d'un matériau espaceur, par exemple en nid d'abeille, et de matériaux diélectriques fins. Le patch métallique 15 comporte deux fentes 18 en forme de croix pratiquées en son centre. La forme des éléments rayonnants élémentaires 12 peut être par exemple carrée, rectangulaire, hexagonale, circulaire, en forme de croix ou toute autre forme géométrique. Les fentes peuvent également être réalisées en un nombre différent de deux et leur disposition peut être différente d'une croix. Sur la figure 2 les fentes ont les mêmes dimensions mais elles pourraient être de dimensions différentes.On the figure 2 is shown a first example of dual polarization elementary radiating element 12 comprising a metal patch 15 printed on an upper face of a substrate 16 provided with a metal ground plane 17 on its lower face, the substrate may be a dielectric material or a composite material consisting of a spacer material, for example honeycomb, and fine dielectric materials. The metal patch 15 has two cross-shaped slots 18 made at its center. The shape of the elementary radiating elements 12 may for example be square, rectangular, hexagonal, circular, cross-shaped or any other geometrical shape. The slots can also be made in a different number of two and their arrangement can be different from a cross. On the figure 2 the slots have the same dimensions but they could be of different sizes.

Sur la figure 3a est représenté un deuxième exemple d'élément rayonnant planaire à polarisation duale. L'élément rayonnant a une forme polygonale, par exemple carrée et comporte un premier patch métallique interne 30, un deuxième patch métallique annulaire externe formant une couronne métallique 31, et une fente annulaire 32 séparant la couronne métallique externe 31 et le patch métallique interne 30. Le patch interne, la couronne et la fente sont concentriques. Lorsque l'élément rayonnant est polarisé orthogonalement par deux ondes excitatrices, les deux champs électriques Ev et Eh correspondants aux deux directions de polarisation sont orthogonaux entre eux. Le champ Ev est parallèle à un premier côté 33 de l'élément rayonnant et le champ Eh est parallèle à un deuxième côté 34 de l'élément rayonnant, les premier et deuxième côtés 33, 34 étant orthogonaux entre eux. La fente annulaire 32 est résonante quand sa circonférence est égale à la période du mode de polarisation qui est établi. Ainsi, comme le montre la figure 3a, le champ électrique Ev est maximal dans certaines régions 35 de la fente où le champ électrique Eh est minimal et disparaît dans d'autres régions 36 où le champ électrique Eh est maximal. Les régions où l'un des champs Ev, respectivement Eh, disparaît progressivement sont les régions où la couronne externe est parallèle à la direction de polarisation correspondante. Aux endroits où le champ électrique Ev, respectivement Eh, disparaît, il est possible de placer un court-circuit entre le patch interne et la couronne externe car celui-ci n'aura aucun effet sur la réponse de l'élément rayonnant soumis à une onde polarisée selon ce mode. En effet, comme représenté sur la figure 3b, pour chaque polarisation, la fente annulaire 32 est équivalente à deux demi-fentes ayant la forme de deux demi-anneaux complémentaires disposés symétriquement par rapport à la médiatrice du côté parallèle à la polarisation correspondante. Ainsi, pour la polarisation Ev, la fente annulaire 32 est équivalente aux deux demi-fentes 1, 2 disposées symétriquement par rapport à la médiatrice 5 du côté 33. De même pour la polarisation Eh, la fente annulaire 32 est équivalente aux deux demi-fentes 3, 4 disposées symétriquement par rapport à la médiatrice 6 du côté 34. Les quatre demi-fentes constituées de quatre demi-anneaux entrelacés représentés sur la figure 3b ont donc pour chaque polarisation Ev, Eh, un comportement équivalent à une fente annulaire comme représenté sur la figure 3a.On the figure 3a there is shown a second example of dual polarization planar radiating element. The radiating element has a polygonal shape, for example square and comprises a first internal metal patch 30, a second external annular metal patch forming a metal ring 31, and an annular slot 32 separating the outer metal ring 31 and the inner metal patch 30 The inner patch, the crown and the slit are concentric. When the radiating element is orthogonally polarized by two exciter waves, the two electric fields Ev and Eh corresponding to the two directions of polarization are orthogonal to each other. The Ev field is parallel to a first side 33 of the radiating element and the Eh field is parallel to a second side 34 of the radiating element, the first and second sides 33, 34 being orthogonal to each other. The annular slot 32 is resonant when its circumference is equal to the period of the polarization mode that is established. So, as shown in figure 3a the electric field Ev is maximum in some regions of the slot where the electric field Eh is minimal and disappears in other regions 36 where the electric field Eh is maximal. The regions where one of the fields Ev, respectively Eh, gradually disappears are the regions where the outer ring is parallel to the corresponding polarization direction. In places where the electric field Ev, respectively Eh, disappears, it is possible to place a short circuit between the inner patch and the outer ring because it will have no effect on the response of the radiating element subjected to polarized wave in this mode. Indeed, as represented on the figure 3b for each polarization, the annular slot 32 is equivalent to two half-slots having the form of two complementary half-rings arranged symmetrically with respect to the perpendicular bisector parallel to the corresponding polarization. Thus, for the polarization Ev, the annular slot 32 is equivalent to the two half-slots 1, 2 arranged symmetrically with respect to the mediator 5 on the side 33. Similarly, for the polarization Eh, the annular slot 32 is equivalent to the two half-slots. slots 3, 4 arranged symmetrically with respect to the mediator 6 of the side 34. The four half-slots consisting of four half-rings intertwined represented on the figure 3b have for each polarization Ev, Eh, a behavior equivalent to an annular slot as represented on the figure 3a .

Les éléments rayonnants représentés sur les figures 3a et 3b ont également le même comportement qu'un élément rayonnant qui comporte des court-circuits entre le patch interne et la couronne externe aux endroits où le champ électrique Ev, respectivement Eh, disparaît, comme représenté sur la figure 4. Dans cet exemple, selon l'invention, chaque côté du patch métallique interne 30 est relié électriquement, par exemple au moyen d'un fil métallique 37, à un côté de la couronne externe 31 qui lui est orthogonal. Préférentiellement, le fil métallique 37 relie le milieu du côté du patch métallique interne 30 au milieu du côté de la couronne externe 31 qui lui est orthogonal. En dehors de la résonance, court-circuiter les fentes de n'importe quelle façon ne modifie pas significativement les propriétés de l'élément rayonnant. Lorsque les fentes sont proches de la résonance, cette connexion électrique n'a que peu d'effet sur la réponse de l'élément rayonnant lorsqu'il est excité par une onde à polarisation orthogonale tel que chaque direction de polarisation est parallèle à l'un des côtés du patch et de la couronne externe. En effet, le champ électrique correspondant à chaque direction de polarisation est maximal dans les régions des fentes perpendiculaires à ladite direction de polarisation et est très faible, voire nul dans les régions des fentes parallèles à ladite direction de polarisation.The radiating elements represented on the Figures 3a and 3b also have the same behavior as a radiating element which has short-circuits between the internal patch and the outer ring at the places where the electric field Ev, respectively Eh, disappears, as shown in FIG. figure 4 . In this example, according to the invention, each side of the inner metal patch 30 is electrically connected, for example by means of a wire 37, to one side of the outer ring 31 which is orthogonal thereto. Preferably, the wire 37 connects the middle of the side of the inner metal patch 30 in the middle of the side of the outer ring 31 which is orthogonal thereto. Apart from resonance, shorting the slots in any way does not significantly alter the properties of the radiating element. When the slots are close to resonance, this electrical connection has little effect on the response of the radiating element when it is excited by an orthogonal polarization wave such that each polarization direction is parallel to the one of the sides of the patch and the outer crown. Indeed, the electric field corresponding to each direction of polarization is maximum in the regions of the slots perpendicular to said polarization direction and is very low or zero in the regions of the slots parallel to said polarization direction.

Lorsque chaque côté du patch interne est relié à la couronne externe comme décrit ci-dessus, les charges électrostatiques parasites qui apparaissent sur le patch interne sont drainées vers la couronne externe. Il suffit alors de relier la couronne externe de l'élément rayonnant à la masse métallique de l'antenne ou du réseau rayonnant sur lequel il est monté pour évacuer les charges électrostatiques.When each side of the inner patch is connected to the outer ring as described above, the parasitic electrostatic charges that appear on the inner patch are drained to the outer ring. It is then sufficient to connect the outer ring of the radiating element to the metallic mass of the antenna or the radiating network on which it is mounted to evacuate the electrostatic charges.

Comme représenté sur la figure 5a, lors de l'intégration de l'élément rayonnant dans un réseau rayonnant, une grille métallique externe peut être ajoutée pour drainer les charges électrostatiques vers un plan de masse métallique du réseau tel que le plan de masse 17 des éléments rayonnants.As shown on the figure 5a when integrating the radiating element in a radiating network, an external metal grid may be added to drain the electrostatic charges to a metal ground plane of the network such as the ground plane 17 of the radiating elements.

L'élément rayonnant représenté sur la figure 5a comporte un patch métallique 15, par exemple en forme de carré, dans lequel sont pratiquées deux fentes orthogonales 18, 20 formant une croix. La croix est usuellement positionnée au centre du patch métallique et est telle que chaque fente est parallèle à deux côtés opposés du carré. Alternativement, la croix peut comporter des fentes orthogonales additionnelles 21, 22, 23, 24 comme par exemple une croix, appelée croix de Jérusalem, représentée sur la figure 5b qui comporte quatre fentes additionnelles respectivement placées orthogonalement aux deux extrémités de chaque fente centrale. L'élément rayonnant 39 comporte en outre une grille annulaire métallique externe 38 délimitant une cavité 41 entre la grille et le patch métallique. La grille annulaire externe et le patch métallique sont concentriques et de même forme géométrique. La cavité 41 se comporte comme une fente rayonnante et participe au rayonnement global. La forme géométrique du patch représenté sur les figures 5a et 5b est un carré mais l'invention n'est pas limitée à ce type de forme. Notamment, l'invention s'applique aussi à des patchs de forme rectangulaire ou de forme polygonale délimitée par au moins quatre côtés opposés deux à deux, tel qu'un hexagone, ou en forme de croix. Selon l'invention, chaque côté 42, 43, 44, 45 du patch métallique interne est relié électriquement, par exemple au moyen d'un fil métallique 46, à un côté 47, 48, 49, 50 de la grille externe 38 qui lui est orthogonal. Préférentiellement, le fil métallique relie le milieu du côté du patch métallique interne au milieu du côté de la grille externe qui lui est orthogonal. Le même raisonnement que celui appliqué avec l'exemple de la figure 4 reste valable en remplaçant la couronne métallique 31 par la grille métallique 38.The radiating element represented on the figure 5a comprises a metal patch 15, for example in the form of a square, in which are formed two orthogonal slots 18, 20 forming a cross. The cross is usually positioned at the center of the metal patch and is such that each slot is parallel to two opposite sides of the square. Alternatively, the cross may comprise additional orthogonal slots 21, 22, 23, 24 such as for example a cross, called the Jerusalem cross, represented on the figure 5b which has four additional slots respectively placed orthogonally at both ends of each central slot. The radiating element 39 further comprises an external metal annular grid 38 delimiting a cavity 41 between the grid and the metal patch. The outer annular grid and the metal patch are concentric and of the same geometric shape. The cavity 41 behaves like a radiating slot and participates in the overall radiation. The geometric shape of the patch represented on the figures 5a and 5b is a square but the invention is not limited to this type of form. In particular, the invention also applies to patches of rectangular shape or of polygonal shape delimited by at least four opposite sides in pairs, such as a hexagon, or in the form of a cross. According to the invention, each side 42, 43, 44, 45 of the internal metal patch is electrically connected, for example by means of a wire 46, to a side 47, 48, 49, 50 of the outer gate 38 which is orthogonal. Preferably, the wire connects the middle of the side of the inner metal patch in the middle of the side of the outer gate which is orthogonal thereto. The same reasoning as that applied with the example of the figure 4 remains valid by replacing the metal ring 31 by the metal grid 38.

Lorsque chaque côté du patch interne est relié à la grille externe comme décrit ci-dessus, les charges électrostatiques parasites qui apparaissent sur le patch sont drainées vers la grille externe. Il suffit alors de relier la grille externe de l'élément rayonnant à la masse métallique de l'antenne ou du réseau rayonnant sur lequel il est monté pour évacuer les charges électrostatiques.When each side of the internal patch is connected to the external gate as described above, the parasitic electrostatic charges that appear on the patch are drained to the external gate. It is then sufficient to connect the outer gate of the radiating element to the metal ground of the antenna or the radiating network on which it is mounted to evacuate the electrostatic charges.

La figure 6 représente un troisième exemple d'élément rayonnant selon l'invention. Dans cet exemple, la forme géométrique de l'élément rayonnant est hexagonale et comporte 6 côtés opposés deux à deux. Cet élément rayonnant comporte deux patchs métalliques annulaires 61, 62 concentriques espacés par une fente annulaire 63. Lorsque cet élément rayonnant est excité par une onde à polarisation orthogonale tel que l'une des directions de polarisation Eh est parallèle à deux côtés opposés 64, 65 de l'hexagone, le champ Ev est minimal dans les régions du patch externe perpendiculaires au champ Ev, c'est-à-dire les régions des sommets de l'hexagone où les côtés 66, 67, 68, 69 qui ne sont parallèles à aucune direction de polarisation se rejoignent. Ainsi, chaque côté 72, 73 du patch interne 62 parallèle à l'une des directions de polarisation Eh est relié électriquement à un sommet 70, 71 du patch externe 61 où les côtés 66, 67 et 68, 69 qui ne sont parallèles à aucune direction de polarisation se rejoignent. De même, un sommet 74, 75 du patch interne 62 où les côtés 56, 57, 58, 59 qui ne sont parallèles à aucune direction de polarisation se rejoignent est relié électriquement à un côté 65, 64 du patch externe 61 parallèle à une direction de polarisation Eh. Comme dans les exemples précédents, lors de l'intégration de l'élément rayonnant dans un réseau rayonnant, une grille métallique externe, non représentée, est ajoutée pour drainer les charges électrostatiques vers un plan de masse métallique du réseau tel que le plan de masse 17 des éléments rayonnants.The figure 6 represents a third example of a radiating element according to the invention. In this example, the geometric shape of the radiating element is hexagonal and has six opposite sides two by two. This radiating element comprises two concentric ring-shaped metal rings 61, 62 spaced apart by an annular slot 63. When this radiating element is excited by an orthogonal polarization wave such that one of the polarization directions Eh is parallel to two opposite sides 64, 65 of the hexagon, the field Ev is minimal in the regions of the external patch perpendicular to the field Ev, that is to say the regions of the vertices of the hexagon where the sides 66, 67, 68, 69 which are not parallel no direction of polarization meet. Thus, each side 72, 73 of the internal patch 62 parallel to one of the directions of polarization Eh is electrically connected to a vertex 70, 71 of the external patch 61 where the sides 66, 67 and 68, 69 which are not parallel to any direction of polarization meet. Similarly, a top 74, 75 of the internal patch 62 where the sides 56, 57, 58, 59 which are parallel to no polarization direction meet is electrically connected to a side 65, 64 of the outer patch 61 parallel to a direction of polarization Eh. As in the previous examples, when integrating the radiating element in a network radiating, an external metal grid, not shown, is added to drain the electrostatic charges to a metal ground plane of the network such as the ground plane 17 of the radiating elements.

Le même principe s'applique aussi pour des éléments rayonnants comportant plusieurs fentes annulaires 76, 77 et plusieurs patchs métalliques 78, 79, 80, concentriques, chaque fente annulaire séparant deux patchs adjacents tel que représenté sur les figures 7 et 8. Dans ce cas, chaque côté d'un premier patch métallique interne 80 parallèle à une direction de polarisation est relié électriquement à un côté orthogonal d'un deuxième patch métallique annulaire 79 qui l'entoure, et chaque côté du deuxième patch métallique annulaire 79 parallèle à une direction de polarisation est relié électriquement à un côté orthogonal d'un troisième patch métallique 78 qui l'entoure. Et ainsi de suite pour chacun des patchs métalliques de façon que tous les patchs métalliques internes à un patch métallique annulaire qui l'entoure aient chacun de leurs côtés parallèles à une direction de polarisation relié à un côté orthogonal du patch métallique annulaire qui l'entoure. En outre, l'élément rayonnant peut comporter une grille métallique annulaire externe 94 séparée du patch annulaire externe 78 par une cavité 98. Dans ce cas, comme décrit précédemment en liaison avec la figure 5, chaque côté du troisième patch métallique externe 78 est relié électriquement à un côté de la grille externe 94 qui lui est orthogonal.The same principle also applies to radiating elements comprising several annular slots 76, 77 and several metal patches 78, 79, 80, concentric, each annular gap separating two adjacent patches as shown in FIGS. Figures 7 and 8 . In this case, each side of a first internal metal patch 80 parallel to a polarization direction is electrically connected to an orthogonal side of a second annular metal patch 79 which surrounds it, and each side of the second parallel annular metal patch 79 A polarization direction is electrically connected to an orthogonal side of a third metal patch 78 surrounding it. And so on for each of the metal patches so that all the metal patches internal to an annular metal patch surrounding it have each of their sides parallel to a direction of polarization connected to an orthogonal side of the annular metal patch that surrounds it. . In addition, the radiating element may comprise an external annular metal grating 94 separated from the external annular patch 78 by a cavity 98. In this case, as described previously in connection with the figure 5 each side of the third external metal patch 78 is electrically connected to one side of the outer gate 94 which is orthogonal thereto.

Sur la figure 8 l'élément rayonnant comporte une grille externe 82 en forme de carré et une croix centrale, espacée de la grille externe par une cavité 88. La croix centrale comporte deux patchs métalliques annulaires 83, 84 en forme de croix séparés par une fente annulaire 85 en forme de croix, et deux fentes orthogonales 86, 87 formant une croix, positionnée au centre de l'élément rayonnant. Les différentes croix sont telles que chaque fente 85, 86, 87 comporte des régions parallèles à une première direction de polarisation Ev et des régions parallèles à une deuxième direction de polarisation Eh. De même, chaque patch métallique annulaire 83, 84 et la grille 82 comporte des côtés parallèles et des côtés orthogonaux à la première direction de polarisation Ev ainsi que des côtés parallèles et des côtés orthogonaux à la deuxième direction de polarisation Eh. Comme pour l'exemple représenté sur la figure 7, chaque côté d'un premier patch métallique interne 84 parallèle à une direction de polarisation est relié électriquement à un côté orthogonal d'un deuxième patch métallique annulaire 83, ou de la grille métallique externe 82 qui l'entoure. Ce type d'élément rayonnant planaire en forme de croix, présente l'avantage de conduire à des dimensions plus petites que les motifs à fentes annulaires dans des éléments de type carré ou circulaire, puisque le chemin électrique est allongé. Ils peuvent donc être insérés dans des réseaux de maille plus petite, ce qui est favorable pour les performances en bande passante, et ce qui améliore la réponse du réseau aux ondes à fortes incidencesOn the figure 8 the radiating element comprises an outer grid 82 in the form of a square and a central cross, spaced from the outer gate by a cavity 88. The central cross comprises two annular metal patches 83, 84 in the form of crosses separated by an annular slot 85 in cross shape, and two orthogonal slots 86, 87 forming a cross, positioned in the center of the radiating element. The different crosses are such that each slot 85, 86, 87 has regions parallel to a first direction of polarization Ev and regions parallel to a second direction of polarization Eh. Similarly, each annular metal patch 83, 84 and the grid 82 has parallel sides and sides orthogonal to the first direction of polarization Ev as well as parallel sides and sides orthogonal to the second direction of polarization Eh. As for the example shown on the figure 7 each side of a first internal metal patch 84 parallel to a polarization direction is electrically connected to an orthogonal side of a second metal patch annular 83, or the outer metal grid 82 surrounding it. This type of planar radiating element in the form of a cross has the advantage of leading to smaller dimensions than the annular slot patterns in elements of square or circular type, since the electrical path is elongated. They can therefore be inserted into smaller mesh networks, which is favorable for bandwidth performance, and which improves the response of the network to high-impact waves.

Les figures 9a, 9b, 9c représentent trois exemples de réseau rayonnant, selon l'invention. Le réseau de la figure 9a comporte deux éléments rayonnants planaire à polarisation duale, chaque élément rayonnant 39, 40 comportant un patch métallique 15, 19 et une grille externe espacée du patch par une cavité. Les deux éléments rayonnants sont adjacents et les deux grilles externes 50, 51 comportent un côté 49 en commun. Chaque côté du patch métallique est relié électriquement à un côté orthogonal de la grille externe.The Figures 9a , 9b , 9c represent three examples of radiating network, according to the invention. The network of figure 9a comprises two dual polarization planar radiating elements, each radiating element 39, 40 having a metal patch 15, 19 and an outer gate spaced from the patch by a cavity. The two radiating elements are adjacent and the two external grids 50, 51 have a side 49 in common. Each side of the metal patch is electrically connected to an orthogonal side of the outer gate.

Les réseaux des figures 9b et 9c comportent quatre éléments rayonnants planaire à polarisation duale. Sur la figure 9b, chaque élément rayonnant 90, 91, 92, 93 comporte un patch métallique interne 80, un premier patch métallique annulaire 79 espacé du patch interne par une première fente annulaire 77, un deuxième patch métallique annulaire 78 espacé du premier patch annulaire 79 par une deuxième fente annulaire 76, une grille métallique annulaire 94, 95, 96, 97 espacée du deuxième patch métallique annulaire 78 par une cavité 98. Les quatre éléments rayonnants sont adjacents entre eux et les quatre grilles comportent des côtés communs 99, 101, 102, 103 deux à deux.Networks of Figures 9b and 9c have four planar radiating elements with dual polarization. On the figure 9b each radiating element 90, 91, 92, 93 comprises an internal metal patch 80, a first annular metal patch 79 spaced from the inner patch by a first annular slot 77, a second annular metal patch 78 spaced from the first annular patch 79 by a second annular slot 76, an annular metal grid 94, 95, 96, 97 spaced from the second annular metal patch 78 by a cavity 98. The four radiating elements are adjacent to each other and the four grids have common sides 99, 101, 102, 103 two by two.

Sur la figure 9c, chaque élément rayonnant 104, 105, 106, 107 comporte deux fentes centrales 86, 87 en forme de croix, un premier patch annulaire interne 84 entourant la croix centrale, un deuxième patch annulaire 83 externe au premier patch annulaire 84 et espacé de celui-ci par une fente annulaire 85 et une grille métallique annulaire externe 82 de forme carrée et espacée du deuxième patch métallique annulaire 83 par une cavité 88, comme sur la figure 8. Les quatre éléments rayonnants sont adjacents entre eux et les quatre grilles comportent des côtés communs deux à deux.On the Figure 9c each radiating element 104, 105, 106, 107 comprises two central cross-shaped slits 86, 87, a first internal annular patch 84 surrounding the central cross, a second annular patch 83 external to the first annular patch 84 and spaced from it. ci by an annular slot 85 and an outer annular metal grid 82 of square shape and spaced from the second annular metal patch 83 by a cavity 88, as on the figure 8 . The four radiating elements are adjacent to each other and the four grids have two-to-two common sides.

Chaque patch métallique comporte des côtés parallèles à une direction de polarisation reliés à un côté orthogonal d'un patch métallique qui l'entoure ou pour le deuxième patch annulaire, à un côté orthogonal de la grille métallique externe. Toutes les charges électrostatiques sont ainsi drainées vers la grille métallique externe sans perturber la réponse des éléments rayonnants soumis à une onde polarisée orthogonalement. Les charges électrostatiques sont ensuite évacuées vers un plan de masse métallique du réseau en reliant la grille externe à ce plan de masse métallique.Each metal patch has sides parallel to a polarization direction connected to an orthogonal side of a surrounding metal patch or for the second annular patch, to an orthogonal side of the external metal grille. All the electrostatic charges are thus drained towards the external metal gate without disturbing the response of the radiating elements subjected to an orthogonally polarized wave. The electrostatic charges are then discharged to a metal ground plane of the network by connecting the outer gate to this metal ground plane.

Un réseau rayonnant de différentes tailles et de différentes caractéristiques peut ainsi être réalisé en combinant une pluralité d'éléments rayonnants pour constituer une surface rayonnante de taille souhaitée à une ou deux dimensions. Les éléments peuvent être tous identiques ou peuvent être de structures différentes selon le type d'antenne souhaitée. Le réseau peut être ensuite implanté dans une antenne réseau choisie telle que par exemple celle représentée sur la figure 1 ou tout autre type d'antenne réseau.A radiating array of different sizes and characteristics can thus be realized by combining a plurality of radiating elements to form a radiating surface of desired size in one or two dimensions. The elements may all be identical or may be of different structures depending on the type of antenna desired. The network can then be implanted in a chosen network antenna such as for example that represented on the figure 1 or any other type of network antenna.

Bien que l'invention ait été décrite en relation avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. En particulier, toutes les combinaisons de patchs pleins ou annulaires et de fentes centrales orthogonales en forme de croix peuvent être réalisées, la croix pouvant comporter un nombre de fentes orthogonales supérieur ou égal à deux, comme par exemple la croix simple ou la croix de Jérusalem. De même, un élément rayonnant planaire ayant une forme géométrique hexagonale ou en forme de croix peut comporter une grille externe de forme différente, par exemple de forme carrée. En outre, des éléments rayonnants de forme hexagonale peuvent comporter un patch interne ayant des fentes centrales orthogonales formant une croix simple ou une croix de Jérusalem.Although the invention has been described in relation to particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention. In particular, all the combinations of full or annular patches and cross-shaped orthogonal central slots can be made, the cross possibly having a number of orthogonal slots greater than or equal to two, such as for example the simple cross or the Jerusalem cross . Similarly, a planar radiating element having a hexagonal or cross-shaped geometric shape may comprise an external grid of different shape, for example of square shape. In addition, radiating elements of hexagonal shape may comprise an internal patch having orthogonal central slots forming a simple cross or a Jerusalem cross.

Claims (11)

  1. A dual polarisation planar radiating element, characterised in that it comprises an external metal grid (38, 82), at least one metal patch (15) concentric with the external metal grid (38, 82) and a cavity (41) separating the metal grid (38, 82) and the metal patch (15), the grid and the patch having a polygonal shape delimited by at least four sides (42, 43, 44, 45) opposed in pairs, in that it comprises two orthogonal directions of polarisation associated with two orthogonal electrical fields Ev and Eh, at least one of the directions of polarisation being parallel to two sides of the polygon, and in that each side (42, 43, 44, 45) of the metal patch (15) parallel to a direction of polarisation is electrically linked (46) to a zone (47, 48, 49, 50) of the external grid where one of the electrical fields Ev or Eh is minimal.
  2. The planar radiating element according to claim 1, characterised in that the polygonal shape of the metal patch is selected from a square, rectangle, cross or hexagon shape.
  3. The planar radiating element according to claim 2, characterised in that it comprises four orthogonal sides (42, 43, 44, 45) opposed in pairs and in that each side (42, 43, 44, 45) of the metal patch (15) parallel to a direction of polarisation is linked respectively to a side (47, 48, 49, 50) of the external grid (38) perpendicular to said direction of polarisation.
  4. The planar radiating element according to claim 3, characterised in that each side (42, 43, 44, 45) of the metal patch (15) parallel to a direction of polarisation comprises a centre linked to a centre of a side of the external grid (38) perpendicular to said direction of polarisation.
  5. The planar radiating element according to any one of claims 1 to 4, characterised in that the metal patch (15) further comprises at least two orthogonal slots (18) forming a central cross.
  6. The planar radiating element according to any one of claims 1 to 5, characterised in that the metal patch (15) comprises an external annular patch (31, 83), at least one internal patch (30, 84) concentric with the external annular patch (31) and at least one annular slot (32) separating the internal (30) and external (31) patches, the internal and external patches having the same polygonal shape, and in that each side of the internal patch (30) parallel to a direction of polarisation is linked (37) to a side of the external annular patch (31) perpendicular to said direction of polarisation.
  7. The planar radiating element according to claim 6, characterised in that each side of the internal patch (30) parallel to a direction of polarisation comprises a centre linked to a centre of a side of the external annular patch (31) perpendicular to said direction of polarisation.
  8. The planar radiating element according to any one of claims 6 to 7, characterised in that the internal patch (84) comprises at least two orthogonal slots (86, 87) forming a central cross.
  9. The planar radiating element according to any one of claims 6 to 8, characterised in that the polygonal shape of the metal patches (83, 84) is a cross and in that the external grid (82) is a square.
  10. The planar radiating element according to claim 2, characterised in that the metal patch (15) comprises an external annular patch (61), at least one internal patch (62) concentric with the external annular patch (61) and at least one annular slot (63) separating the internal (62) and external (61) patches, the internal and external patches having a hexagonal shape comprising two sides (73, 72, 64, 65) parallel to a direction of polarisation and four sides (56, 57, 58, 59, 66, 67, 68, 69) inclined obliquely relative to said direction of polarisation and linked pairwise by a vertex (74, 75, 70, 71), in that each side (64, 65) of the external metal patch parallel to said direction of polarisation is electrically linked to a vertex (74, 75) of the internal patch and in that each side (72, 73) of the internal patch (62) parallel to said direction of polarisation is electrically linked to a vertex (71, 70) of the external metal patch (61).
  11. An array antenna, characterised in that it comprises at least one dual polarisation planar radiating element according to any one of the preceding claims and in that the external metal grid of each radiating element is linked to a metal ground plane (17) of the array.
EP09170166A 2008-12-23 2009-09-14 Planar radiating element with dual polarisation and network antenna comprising such a radiating element Active EP2202846B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0807401A FR2940532B1 (en) 2008-12-23 2008-12-23 PLANAR RADIATION ELEMENT WITH DUAL POLARIZATION AND NETWORK ANTENNA COMPRISING SUCH A RADIANT ELEMENT

Publications (2)

Publication Number Publication Date
EP2202846A1 EP2202846A1 (en) 2010-06-30
EP2202846B1 true EP2202846B1 (en) 2011-12-28

Family

ID=40902678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09170166A Active EP2202846B1 (en) 2008-12-23 2009-09-14 Planar radiating element with dual polarisation and network antenna comprising such a radiating element

Country Status (10)

Country Link
US (1) US8248306B2 (en)
EP (1) EP2202846B1 (en)
JP (1) JP2010154530A (en)
KR (1) KR101640604B1 (en)
CN (1) CN101764283A (en)
AT (1) ATE539464T1 (en)
CA (1) CA2687161C (en)
ES (1) ES2377784T3 (en)
FR (1) FR2940532B1 (en)
RU (1) RU2490759C2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959611B1 (en) * 2010-04-30 2012-06-08 Thales Sa COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES.
US20120218167A1 (en) * 2010-12-22 2012-08-30 Ziming He Low cost patch antenna utilized in wireless lan applications
KR101401385B1 (en) * 2012-07-03 2014-05-30 한국과학기술원 Integration structure of slot antenna
CN102818943B (en) * 2012-07-27 2014-07-30 北京航空航天大学 Quick measuring probe of dual polarization electric field
US9477865B2 (en) 2013-12-13 2016-10-25 Symbol Technologies, Llc System for and method of accurately determining true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
US9755294B2 (en) 2014-07-07 2017-09-05 Symbol Technologies, Llc Accurately estimating true bearings of radio frequency identification (RFID) tags associated with items located in a controlled area
US9887455B2 (en) * 2015-03-05 2018-02-06 Kymeta Corporation Aperture segmentation of a cylindrical feed antenna
US9773136B2 (en) 2015-10-19 2017-09-26 Symbol Technologies, Llc System for, and method of, accurately and rapidly determining, in real-time, true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
CN106207419B (en) * 2016-09-08 2022-12-06 中国电子科技集团公司第五十四研究所 Double-circular-polarization antenna unit and large-space low-grating-lobe broadband flat plate array antenna
FR3062523B1 (en) * 2017-02-01 2019-03-29 Thales ELEMENTARY ANTENNA WITH A PLANAR RADIANT DEVICE
US10726218B2 (en) 2017-07-27 2020-07-28 Symbol Technologies, Llc Method and apparatus for radio frequency identification (RFID) tag bearing estimation
CN108346854B (en) * 2018-02-06 2020-09-08 中国电子科技集团公司第三十八研究所 Antenna with coupling feed structure
KR101900839B1 (en) * 2018-02-12 2018-09-20 주식회사 에이티코디 Array antenna
EP4287397A3 (en) * 2018-07-13 2024-03-06 Knowles Cazenovia, Inc. Millimeter wave filter array
WO2020251064A1 (en) * 2019-06-10 2020-12-17 주식회사 에이티코디 Patch antenna and array antenna comprising same
RU205718U1 (en) * 2020-12-25 2021-07-30 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Cell of modular loop-through antenna array
CN112952398B (en) * 2021-02-21 2022-08-02 中国电子科技集团公司第二十二研究所 Double-channel Ku waveband receiving antenna
WO2023223893A1 (en) * 2022-05-16 2023-11-23 Agc株式会社 Antenna device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061025A (en) * 1995-12-07 2000-05-09 Atlantic Aerospace Electronics Corporation Tunable microstrip patch antenna and control system therefor
RU2115201C1 (en) * 1997-04-24 1998-07-10 Московский государственный технический университет гражданской авиации Microstrip adaptive-polarization antenna array
CA2218269A1 (en) * 1997-10-15 1999-04-15 Cal Corporation Microstrip patch radiator with means for the suppression of cross-polarization
SE515453C2 (en) * 1999-10-29 2001-08-06 Ericsson Telefon Ab L M Double-polarized antenna element method for supplying power to two orthogonal polarizations in such an antenna element and method for obtaining said element
EP1315239A1 (en) * 2001-11-22 2003-05-28 Marconi Communications GmbH Parabolic reflector and antenna incorporating same
KR200366457Y1 (en) 2004-06-16 2004-11-09 (주) 다이시스 Satallite broadcasting antenna equipped plane-reflex-arrangement-plate
KR100734005B1 (en) 2006-01-18 2007-06-29 인천대학교 산학협력단 Single-feed dual-band circularly polarized single patch antenna
DE602007003322D1 (en) * 2007-04-16 2009-12-31 Research In Motion Ltd Dual polarized microstrip patch antenna arrangement and associated method for a radio
US7999745B2 (en) * 2007-08-15 2011-08-16 Powerwave Technologies, Inc. Dual polarization antenna element with dielectric bandwidth compensation and improved cross-coupling

Also Published As

Publication number Publication date
RU2490759C2 (en) 2013-08-20
ES2377784T3 (en) 2012-03-30
CN101764283A (en) 2010-06-30
CA2687161C (en) 2016-05-10
US8248306B2 (en) 2012-08-21
KR101640604B1 (en) 2016-07-18
JP2010154530A (en) 2010-07-08
RU2009134902A (en) 2011-03-27
FR2940532B1 (en) 2011-04-15
ATE539464T1 (en) 2012-01-15
US20100156725A1 (en) 2010-06-24
KR20100074053A (en) 2010-07-01
FR2940532A1 (en) 2010-06-25
CA2687161A1 (en) 2010-06-23
EP2202846A1 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
EP2202846B1 (en) Planar radiating element with dual polarisation and network antenna comprising such a radiating element
CA2681548C (en) Reflector network and antenna comprising such a reflector network
CA2793126C (en) Reflector array antenna with crossed polarization compensation and method for producing such an antenna
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP0899814B1 (en) Radiating structure
EP1038333B1 (en) Patch antenna
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP2795724B1 (en) Basic antenna, and corresponding one- or two-dimensional array antenna
EP1580844A1 (en) Phase shifter with linear polarization and a resonating length which can be varied using mem switches.
CA2640481C (en) Circularly or linearly polarized antenna
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
WO2004040696A1 (en) Multibeam antenna with photonic bandgap material
WO2017025675A1 (en) Surface-wave antenna, antenna array and use of an antenna or an antenna array
WO2016075387A1 (en) Reconfigurable compact antenna device
WO2010043652A1 (en) Deployable structure and antennal system with membranes comprising such a structure
FR2973587A1 (en) WIDEBAND DIRECTIONAL NETWORK ANTENNA, OF THE PRINTED CIRCUIT TYPE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101223

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 9/04 20060101AFI20110531BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 539464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009004341

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2377784

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120330

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 539464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

26N No opposition filed

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009004341

Country of ref document: DE

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

BERE Be: lapsed

Owner name: THALES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120914

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090914

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230817

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 15

Ref country code: DE

Payment date: 20230816

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231004

Year of fee payment: 15