EP2195876A1 - Temperierte batterieeinrichtung und verfahren hierzu - Google Patents

Temperierte batterieeinrichtung und verfahren hierzu

Info

Publication number
EP2195876A1
EP2195876A1 EP08804182A EP08804182A EP2195876A1 EP 2195876 A1 EP2195876 A1 EP 2195876A1 EP 08804182 A EP08804182 A EP 08804182A EP 08804182 A EP08804182 A EP 08804182A EP 2195876 A1 EP2195876 A1 EP 2195876A1
Authority
EP
European Patent Office
Prior art keywords
heating
battery
cooling medium
battery device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804182A
Other languages
English (en)
French (fr)
Inventor
Martin Holger Koenigsmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2195876A1 publication Critical patent/EP2195876A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a Batterieeinhchtung with at least one battery and at least one tempering the battery heating and / or cooling device.
  • the invention further relates to a corresponding method.
  • JP 2006-100123 provides a battery device in which air guide channels are arranged between individual cells, through which cooling air is blown by means of a fan.
  • a similar arrangement provides the JP 2006-185788 before, for the purpose of cooling of individual cells of a battery module Windleitkanäle with adjustable flaps for targeted wind guidance on an underside of the module, namely between the battery module and this underside comprehensive housing shell, are used.
  • From US 2005/0210662 A1 it is known to arrange individual lithium cells in a housing, which provides a wind guiding system for cooling the cells.
  • Temperature range of the battery device is only slightly widened upwards. As before, however, a careful selection of the type of battery to be used with regard to the intended use, in particular with regard to the temperature range in which the battery device is to be used, must be made, and is expected to be limited in the cooling mode.
  • the object of the invention is to provide high-performance electrical energy storage, which avoid the disadvantages mentioned, and in this case can be used in particular in a very wide temperature range.
  • a battery device with at least one battery and at least one, the battery tempering heating and / or cooling device is proposed, it being provided that the battery, immersed in a heating and / or cooling medium, in a heating and / or Coolant receiving housing is arranged.
  • the battery device accordingly has an enclosure, as it may be embodied, for example, in the form of a trough (ie, open at the top) or as a housing closed on all sides.
  • the battery (which, of course, does not have to be a battery in the true sense of the word, but rather is designed as a rechargeable battery; the term battery is used here only for the terminology used in motor vehicle technology in particular) is surrounded by a heating and / or cooling medium Preferably, such that the battery is surrounded on all sides by the heating and / or cooling medium, so that an all-round heat transfer from the battery into the heating and / or cooling medium or vice versa can take place.
  • a heating and / or cooling medium Preferably, such that the battery is surrounded on all sides by the heating and / or cooling medium, so that an all-round heat transfer from the battery into the heating and / or cooling medium or vice versa can take place.
  • the temperature range which is predominantly encountered in the intended field of application, in which the battery is to be used, is practically completely irrelevant as a result of the immersion of the battery in the heating and / or cooling medium.
  • the battery is therefore not adjusted to the intended temperature range, but the temperature of the immediate vicinity of the battery is rather adapted to the specifications of the battery used. It is particularly possible in this case to operate the battery in its preferred temperature range, ie in the temperature range in which it develops its highest electrical performance.
  • the enclosure ensures that a complete immersion of the battery in the heating and / or cooling medium is always guaranteed.
  • the heating and / or cooling medium is circulated, with a heating and / or cooling device for the heating and / or cooling medium in the circuit. Accordingly, it is possible to actively temper the heating and / or cooling medium, ie to supply thermal energy or to extract thermal energy from the heating and / or cooling medium, the circuit essentially being made up of heating and / or cooling circuits as in the prior art known, can be executed.
  • a heat-emitting device for the heating and / or cooling medium is provided, for example, a heat exchanger, as is well known as a cooler, and a heat supply device, as it is known in a virtually arbitrary embodiment as a heating element, in particular as a heat exchanger with a medium , which has on average a higher temperature than the heating and / or cooling medium, for example, heated cooling water of an internal combustion engine.
  • the battery is surrounded by a hermetically sealed enclosure on all sides. This means that the battery is hermetically sealed relative to the heating and / or cooling means, so that contact between the heating and / or coolant does not occur with the battery due to the enclosure.
  • enclosures come here all materials into consideration, which ensure the required tightness in the intended application and in particular temperature range in the long term.
  • the enclosure is a film. Due to their low material thickness, foils permit rapid heat transfer in both directions, while at the same time they can be adapted extremely well to the shape of the battery without undesirable cavities or, for example, air pockets between the foil and the battery, which could make the heat transfer more difficult.
  • the interior of the enclosure is evacuated.
  • evacuating the interior of the enclosure ie the space in which the battery is installed, a complete, full-surface concern of the enclosure is achieved without air pockets, so that the temperature transfer occurs over the entire surface and unhindered.
  • undesirable influences, for example of air inclusions, on the battery are avoided.
  • the battery has potted or bonded contact and / or connection points for insulation from the heating and / or cooling medium. Another possibility is therefore, the individual cells / batteries only at their contact points or
  • This insulation of the contact and / or connection points can be realized for example by bonding with an insoluble in the heating and / or cooling medium adhesive, for example by means of an epoxy resin.
  • the heating and / or cooling medium is an incombustible medium.
  • the risk potential of the battery device can be greatly reduced, even at relatively high temperatures, since ignition of the heating and / or cooling medium and / or the battery device can not occur due to high local temperatures. Unlike in the prior art unwanted failure and / or fire risks are avoided so safe especially in case of malfunction.
  • the heating and / or cooling medium is an electrically nonconductive medium. Even with defects in the enclosures of batteries thereby a contact individual battery terminals with each other with the result of short circuits, unwanted failures or even threats to the battery device or the environment by electrical phenomena, such as electrical fires excluded.
  • the heating and / or cooling medium is a fire retardant or contains such.
  • Fire retardants are any means of suppressing existing or emerging fires or preventing their spread.
  • batteries are assembled into a battery device, leaving a space between each battery. This can be done for example by the arrangement of the individual batteries with spacers introduced between them.
  • the batteries are provided as single cells with an enclosure, and the latter evacuated, so that it rests without air bubbles on the entire surface of the battery.
  • the batteries are introduced into an above-described bath of heating and / or cooling medium, for example, suspended in this and fixed to brackets or wires or inserted into delimited by wire networks departments or constructed with the aforementioned spacers over / on each other, about after Principle of a densest spherical packing in cylindrical cells.
  • the heating and / or cooling medium is then circulated, for example via a circulation pump in the circuit, wherein the temperature level of the heating and / or cooling medium is adapted to the sensible for the battery temperature level, ie the temperature level at which the batteries develop their maximum performance.
  • the adaptation of the temperature level of the heating and / or cooling medium takes place here by already known from the prior art heat exchangers, which serve to withdraw or for supplying heat energy, so for example plate heat exchanger and / or heating elements.
  • the desired temperature level is in this case by means of a monitored thermostatic device which is arranged in the circuit or preferably in the battery device receiving housing is arranged. As batteries cylindrical, planar or prismatic cells are used for these cell types, the described arrangement is equally well suited.
  • FIG. 1 is a schematic representation of a battery device with thermostatically controlled circuit
  • Figure 2 shows the structure of a battery device of cylindrical single cells as closest ball packing in front view.
  • FIG. 1 shows a schematic representation of a battery device 1, consisting of several batteries 2, which are designed as planar single cells 3. These are each spaced from each other, placed in a housing 4, wherein the individual batteries 2 to side walls 5 and the bottom 6 and the lid 7 of the housing 4 each have a distance.
  • the housing 4 is completely filled with a heating and / or cooling medium 8.
  • the batteries 2 are isolated and protected for heating and / or cooling medium 8 by a respective each enclosing single cell 3 individually enclosing enclosure 9.
  • the heating and / or cooling medium 8 is in this case an incombustible medium 10, which also contains a fire protection agent 11.
  • the housing 4 has an interface 12 which serves to connect the housing 4 to a circuit 13 for the heating and / or cooling medium.
  • the interface 12 in this case preferably has a thermostat control 14 which monitors the temperature of the battery device 1, in particular the heating and / or cooling medium 8 in the housing 4, and controls the circuit 13 and / or the interface 12 according to this temperature, for example via a circulating pump 25 arranged in the circuit 13 and / or by controlling a heating and / or cooling device 15 arranged in the circuit 13.
  • the heating and / or cooling device 15 in this case has a heat exchanger 16, which serves the heating and / or or cooling device 15 supplied, heated heating and / or cooling medium 8 to extract excess heat; This may be, for example, an air heat exchanger 17 or a liquid heat exchanger 18 connected to or communicating with other circuits (not shown here), in particular cooling circuits.
  • the heating and / or cooling device 15 also has a heating element 19, with which a heat from the housing 4 supplied heating and / or cooling medium 8, which has a too low temperature, heat energy can be supplied.
  • the heating element 19 may in this case be designed as an electrical heating element 20 or as a liquid heat exchanger 18, depending on the
  • the battery device 1 also has a heating element 19 for the operation of the battery device 1 to be cooled heating and / or cooling medium heat energy in an amount sufficient so that the battery device 1 reaches the desired temperature level.
  • the battery device 1 also has a
  • Terminal block 21 for making electrical contact with the battery device 1 with lying outside of their devices, in particular for contacting with electrical loads or with an on-board electrical system of a vehicle.
  • the heat exchanger 16 and the heating element 19 can also be designed as a combination element that fulfills both functions.
  • Figure 2 shows a detail of the structure of a battery device 1 of cylindrical single cells 22 according to the principle of densest ball packing in a front view.
  • the cylindrical individual cells 22 are in this case arranged in layers one above the other, that in each case between two cylindrical single cells and about this centrally more cylindrical single cell is arranged, so that a complete and comprehensive utilization of available space on the principle of densest ball packing can be achieved , Between the cylindrical single cells 22 in each case spacers 23 are arranged, which allow a full-surface and all-round flow around the cylindrical single cells 22 with the heating and / or cooling medium 8. It is essential here that the heating and / or cooling medium acts on the largest possible surfaces or outer circumferential surfaces 24 of the cylindrical single cells 22, so that the best possible and rapid heat transfer between the cylindrical single cells 22 and the heating and / or cooling medium 8 is possible.

Abstract

Die Erfindung betrifft eine Batterieeinrichtung (1) mit mindestens einer Batterie (2) und mit mindestens einer, die Batterie(2)temperierenden Heiz-und/oder Kühleinrichtung(15). Es ist vorgesehen, dass die Batterie (2), eingetaucht in ein Heiz-und/oder Kühlmedium (8), in einer das Heiz-und/oder Kühlmedium (8) aufnehmenden Einhausung (4) angeordnet ist. Ferner betrifft die Erfindung ein entsprechendes Verfahren.

Description

Beschreibung
Titel Temperierte Batterieeinrichtung und Verfahren hierzu
Die Erfindung betrifft eine Batterieeinhchtung mit mindestens einer Batterie und mit mindestens einer, die Batterie temperierenden Heiz- und/oder Kühleinrichtung. Die Erfindung betrifft ferner ein entsprechendes Verfahren.
Stand der Technik
In vielen Bereichen der Technik werden hochleistungsfähige elektrische Energiespeicher benötigt, beispielsweise in Hybridfahrzeugen und Elektrofahrzeugen. Aber auch in anderen industriellen Anwendungen, beispielsweise bei Pitch-Systemen für Windräder und bei Solaranlagen sind leistungsfähige elektrische Energiespeicher erforderlich. Je nach Anwendungsund Einsatzbereich werden aus der Vielzahl der zur Verfügung stehenden Speichersysteme, insbesondere hinsichtlich ihrer physikalisch-chemischen Zusammensetzung, die für den jeweiligen Einsatzbereich in Frage kommenden Systeme ausgewählt und für den Einsatzzweck konfiguriert. Insbesondere in Hinblick auf die in praktischen Anwendungen vorkommenden Temperaturbereiche muss eine sorgfältige Auswahl getroffen werden, da beispielsweise hochleistungsfähige Litium-Ionen-Akkumulatorsysteme lediglich in einem relativ engen Temperaturbereich von beispielsweise - 100C bis + 500C zuverlässig arbeiten. Außerhalb dieses Temperaturintervalls ist die elektrische Leistung ungenügend oder der Akkumulator fällt sogar aus. Der Auswahl eines bestimmten Batterie- oder Akkumulatortyps für einen bestimmten Einsatzbereich wird demzufolge im Stand der Technik außerordentlich hohe Aufmerksamkeit geschenkt. Hierbei ist weiter zu berücksichtigen, dass hochleistungsfähige elektrische Energiespeicher im Regelfall aus Modulen zusammengestellt werden, in denen mehrere Einzelzellen miteinander kombiniert werden. Gerade hierbei ist die Temperaturentwicklung während des Betriebs ein besonderes Problem, da sich Einzelzellen gegenseitig erwärmen und die Wärmeableitung aus dem Inneren des Moduls schwierig ist. Derart erhöhte lokale Temperaturen sorgen für eine Verringerung der Lebensdauer der Batterie und gefährden die
Einsatzfähigkeit des gesamten Moduls. Im Stand der Technik ist es daher bekannt, Batteriemodule, die entsprechend ihres Temperaturbereiches ausgewählt wurden, zu kühlen. Die JP 2006-100123 sieht beispielsweise eine Batterieeinrichtung vor, bei der zwischen Einzelzellen Luftleitkanäle angeordnet sind, durch die mittels eines Ventilators Kühlluft geblasen wird. Eine ähnliche Anordnung sieht die JP 2006-185788 vor, wobei zum Zwecke der Kühlung von Einzelzellen eines Batteriemoduls Windleitkanäle mit verstellbaren Klappen zur gezielten Windführung auf einer Unterseite des Moduls, nämlich zwischen dem Batteriemodul und einer dieses unterseitig umfassenden Gehäuseschale, eingesetzt werden. Aus der US 2005/0210662 A1 ist bekannt, einzelne Lithiumzellen in einem Gehäuse anzuordnen, das ein Windleitsystem zur Kühlung der Zellen vorsieht. An diesen Einrichtungen ist nachteilig, dass zwar eine Ableitung von im Betrieb der Batterieeinrichtung entstehender Abwärme erreicht werden kann, wobei einzelne Zellen im Wesentlichen eine gleichmäßige Kühlung erfahren, also nicht eine Zelle stärker oder weniger stark als eine beispielsweise benachbarte Zelle gekühlt wird. Gleichwohl kommt es innerhalb solcher Zellenanordnungen aufgrund der Anordnung der Windleitkanäle zu lokalen Temperaturüberhöhungen, beispielsweise an Seitenwänden der Einzelzellen, die nicht unmittelbar an einen Luftleitkanal angrenzen. Überdies ist nachteilig, dass lediglich Abwärme abgeführt werden kann, also der
Temperaturbereich der Batterieeinrichtung lediglich nach oben geringfügig erweitert wird. Nach wie vor muss aber eine sorgfältige Auswahl des einzusetzenden Batterietyps in Hinblick auf den vorgesehenen Einsatzbereich, insbesondere hinsichtlich des Temperaturbereichs, in dem die Batterieeinrichtung verwendet werden soll, vorgenommen werden, und ist mit Einschränkungen im Kältebetrieb zu rechnen.
Offenbarung der Erfindung Aufgabe der Erfindung ist es, hochleistungsfähige elektrische Energiespeicher bereitzustellen, die die genannten Nachteile vermeiden, und hierbei insbesondere in einem sehr weiten Temperaturbereich eingesetzt werden können.
Hierzu wird eine Batterieeinrichtung mit mindestens einer Batterie und mit mindestens einer, die Batterie temperierenden Heiz- und/oder Kühleinrichtung vorgeschlagen, wobei vorgesehen ist, dass die Batterie, eingetaucht in ein Heiz- und/oder Kühlmedium, in einer das Heiz- und/oder Kühlmedium aufnehmenden Einhausung angeordnet ist. Die Batterieeinrichtung weist demzufolge eine Einhausung auf, wie sie beispielsweise in Form einer Wanne (also nach oben offen) oder als allseitig geschlossenes Gehäuse ausgeführt sein kann. Hierbei ist die Batterie (die selbstverständlich nicht im eigentlichen Sinne eine Batterie sein muss, sondern eher als Akkumulator ausgeführt ist; lediglich der insbesondere in der Kfz-Technik üblichen Terminologie wegen wird hier der Begriff Batterie verwendet) von einem Heiz- und/oder Kühlmedium umgeben, bevorzugt dergestalt, dass die Batterie allseitig von dem Heiz- und/oder Kühlmedium umgeben ist, sodass ein allseitiger Wärmeübertritt von der Batterie in das Heiz- und/oder Kühlmedium oder umgekehrt erfolgen kann. Dies erlaubt es, völlig anders als im Stand der Technik üblich, nicht nach dem vorgesehenen
Anwendungsbereich bestimmte Batterietypen auswählen zu müssen, sondern umgekehrt nach der gewünschten Energiedichte einer Batterie auswählen zu können, fast völlig unabhängig von dem vorgesehenen Anwendungsbereich. Der im vorgesehenen Anwendungsbereich nämlich überwiegend anzutreffende Temperaturbereich, in dem die Batterie eingesetzt werden soll, wird durch das Eintauchen der Batterie in das Heiz- und/oder Kühlmedium praktisch vollständig unerheblich. Die Batterie wird demzufolge nicht dem vorgesehenen Temperaturbereich angepasst, sondern die Temperatur der unmittelbaren Umgebung der Batterie wird vielmehr den Spezifikationen der verwendeten Batterie angepasst. Es ist hierbei insbesondere möglich, die Batterie in ihrem bevorzugten Temperaturbereich zu betreiben, also in dem Temperaturbereich, in dem sie ihre höchste elektrische Leistungsfähigkeit entfaltet. Auf diese Weise müssen keine Einbußen in Hinblick auf die elektrische Leistungsfähigkeit mehr in Randbereichen des bevorzugten Temperaturbereichs/Arbeitsbereichs der Batterie mehr hingenommen werden, sondern die Batterie kann auf ihrem bevorzugten Temperaturniveau gehalten werden. Durch die Einhausung ist hierbei gewährleistet, dass stets eine vollständige Eintauchung der Batterie in das Heiz- und/oder Kühlmedium gewährleistet ist.
In einer bevorzugten Ausführungsform wird das Heiz- und/oder Kühlmedium im Kreislauf geführt, wobei sich im Kreislauf eine Heiz- und/oder Kühleinrichtung für das Heiz- und/oder Kühlmedium befindet. Es ist hierbei demzufolge möglich, das Heiz- und/oder Kühlmedium aktiv zu temperieren, also Wärmeenergie zuzuführen oder dem Heiz- und/oder Kühlmedium Wärmeenergie zu entziehen, wobei der Kreislauf im Wesentlichen, wie im Stand der Technik aus Heiz- und/oder Kühlkreisläufen bekannt, ausgeführt sein kann. Insbesondere ist hierbei eine Wärmeabgabeeinrichtung für das Heiz- und/oder Kühlmedium vorgesehen, beispielsweise ein Wärmetauscher, wie er als Kühler allgemein bekannt ist, und eine Wärmezuführeinrichtung, wie sie in einer praktisch beliebigen Ausführungsform als Heizelement bekannt ist, insbesondere auch als Wärmetauscher mit einem Medium, das im Mittel eine höhere Temperatur als das Heiz- und/oder Kühlmedium aufweist, beispielsweise erwärmtes Kühlwasser einer Brennkraftmaschine.
In einer weiteren Ausführungsform ist die Batterie von einer hermetisch dichten Umschließung allseitig umhüllt. Damit ist gemeint, dass die Batterie gegenüber dem Heiz- und/oder Kühlmittel hermetisch dicht abgeschlossen ist, also ein Kontakt zwischen dem Heiz- und/oder Kühlmittel mit der Batterie aufgrund der Umschließung nicht vorkommt. Als Umschließungen kommen hierbei sämtliche Materialien in Betracht, die in dem vorgesehenen Anwendungs- und insbesondere Temperaturbereich die geforderte Dichtheit auf Dauer gewährleisten.
In einer bevorzugten Ausführungsform ist die Umschließung eine Folie. Folien lassen aufgrund ihrer geringen Materialstärke einen schnellen Wärmedurchtritt in beide Richtungen zu, gleichzeitig lassen sie sich außerordentlich gut der Form der Batterie anpassen, ohne dass unerwünschte Hohlräume oder beispielsweise Lufteinschlüsse zwischen Folie und Batterie entstehen, die den Wärmeübertritt erschweren könnten. Dadurch, dass die Batterien einzeln von Folie umhüllt sind und vollständig vom Heiz- und/oder Kühlmedium umgeben sind, werden lokale Überhitzungserscheinungen, wie sie aus dem Stand der Technik mit den bekannten Luftführungen in einem Gehäuse bekannt sind, wirksam vermieden.
In einer besonders bevorzugten Ausführungsform ist das Innere der Umschließung evakuiert. Durch die Evakuierung des Inneren der Umschließung, also des Raumes, in dem die Batterie eingebracht ist, wird ein vollständiges, vollflächiges Anliegen der Umschließung ohne Lufteinschlüsse erreicht, so dass der Temperaturübertritt vollflächig und ungehindert erfolgt. Gleichzeitig werden unerwünschte Einflüsse beispielsweise von Lufteinschlüssen, auf die Batterie vermieden.
In einer weiteren bevorzugten Ausführungsform weist die Batterie zur Isolierung gegenüber dem Heiz- und/oder Kühlmedium vergossene oder verklebte Kontakt- und/oder Anschlussstellen auf. Eine weitere Möglichkeit ist es demzufolge, die Einzelzellen/Batterien nur an ihren Kontaktstellen beziehungsweise
Anschlussstellen zu isolieren und dann, so isoliert, direkt in das Heiz- und/oder Kühlmedium einzuhängen, um einen nochmals verbesserten Wärmeübergang durch Wegfall der Umschließung zu erreichen. Diese Isolierung der Kontakt- und/oder Anschlussstellen kann beispielsweise durch Verklebung mit einem in dem Heiz- und/oder Kühlmedium unlöslichen Klebstoff realisiert werden, beispielsweise mittels eines Epoxidharzes. Gleichermaßen ist es möglich, die Kontakt- und/oder Anschlussstellen mittels eines solchen Isolierstoffes zu verkleben, beispielsweise wiederum mit einem Epoxidharz. Hierbei wird vorausgesetzt, dass die Batterien, also die Einzelzellen als solche, aufgrund ihrer Beschaffenheit durch das Heiz- und/oder Kühlmedium selbst nicht angegriffen, beispielsweise angelöst werden.
In einer weiteren bevorzugten Ausführungsform ist das Heiz- und/oder Kühlmedium ein unbrennbares Medium. Hierdurch lässt sich auch bei relativ hohen Temperaturen das Gefährdungspotential der Batterieeinrichtung stark reduzieren, da eine Entzündung des Heiz- und/oder Kühlmediums und/oder der Batterieeinrichtung aufgrund von hohen lokalen Temperaturen nicht erfolgen kann. Anders als im Stand der Technik werden unerwünschte Ausfall- und/oder Brandrisiken insbesondere bei Fehlfunktion so sicher vermieden. In einer weiteren bevorzugten Ausführungsform ist das Heiz- und/oder Kühlmedium ein elektrisch nicht leitfähiges Medium. Selbst bei Defekten der Umschließungen von Batterien ist hierdurch eine Kontaktgabe einzelner Batteriepole untereinander mit der Folge von Kurzschlüssen, unerwünschter Ausfälle oder gar von Gefährdungen der Batterieeinrichtung oder der Umgebung durch elektrische Erscheinungen, beispielsweise elektrische Brände, ausgeschlossen.
In einer besonders bevorzugten Ausführungsform ist das Heiz- und/oder Kühlmedium ein Brandschutzmittel oder enthält ein solches. Brandschutzmittel ist hierbei jedes Mittel, das bestehende oder im Entstehen begriffene Brände unterdrückt oder ihre Ausbreitung zu verhindern geeignet ist.
Weiter wird ein Verfahren zum Temperieren einer Batterieeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche vorgeschlagen. Nach diesem Verfahren werden Batterien zu einer Batterieeinrichtung zusammengestellt, wobei zwischen den einzelnen Batterien ein Raum verbleibt. Dies kann beispielsweise durch die Anordnung der einzelnen Batterien mit zwischen ihnen eingebrachten Abstandshaltern erfolgen. Die Batterien werden als Einzelzellen mit einer Umschließung versehen, und letztere evakuiert, so dass sie ohne Lufteinschlüsse vollflächig an der Batterie anliegt. Sodann werden die Batterien in ein vorstehend beschriebenes Bad aus Heiz- und/oder Kühlmedium eingebracht, beispielsweise in dieses eingehängt und an Klammern oder Drähten fixiert oder in durch Drahtnetze abgegrenzte Abteilungen eingelegt oder mit den bereits erwähnten Abstandshaltern über-/aufeinander aufgebaut, etwa nach dem Prinzip einer dichtesten Kugelpackung bei zylindrischen Zellen. Das Heiz- und/oder Kühlmedium wird sodann beispielsweise über eine Umwälzpumpe im Kreislauf umgewälzt, wobei das Temperaturniveau des Heiz- und/oder Kühlmediums an das für die Batterien sinnvollste Temperaturniveau angepasst wird, also das Temperaturniveau, auf dem die Batterien ihre maximale Leistung entfalten. Die Anpassung des Temperaturniveaus des Heiz- und/oder Kühlmediums erfolgt hierbei durch aus dem Stand der Technik bereits bekannte Wärmetauscher, die zum Entziehen oder zum Zuführen von Wärmeenergie dienen, also beispielsweise Plattenwärmetauscher und/oder Heizelemente. Das gewünschte Temperaturniveau wird hierbei mittels einer thermostatischen Einrichtung überwacht, die im Kreislauf angeordnet ist oder bevorzugt in der die Batterieeinrichtung aufnehmenden Einhausung angeordnet wird. Als Batterien werden zylindrische, planare oder auch prismatische Zellen eingesetzt, für diese Zelltypen ist die beschriebene Anordnung gleichermaßen gut geeignet.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen und aus Kombinationen derselben.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert, wobei sich die Erfindung nicht auf die beschriebenen Ausführungsbeispiele beschränkt.
Es zeigen
Figur 1 eine schematische Darstellung einer Batterieeinrichtung mit thermostatisch gesteuertem Kreislauf und
Figur 2 den Aufbau einer Batterieeinrichtung aus zylindrischen Einzelzellen als dichteste Kugelpackung in Frontansicht.
Ausführungsform(en) der Erfindung
Figur 1 zeigt eine schematische Darstellung einer Batterieeinrichtung 1 , bestehend aus mehreren Batterien 2, die als planare Einzelzellen 3 ausgebildet sind. Diese sind, jeweils zueinander beabstandet, in einer Einhausung 4 eingebracht, wobei die einzelnen Batterien 2 zu Seitenwänden 5 sowie zum Boden 6 und zum Deckel 7 der Einhausung 4 jeweils einen Abstand aufweisen. Die Einhausung 4 ist vollständig mit einem Heiz- und/oder Kühlmedium 8 gefüllt. Die Batterien 2 werden zum Heiz- und/oder Kühlmedium 8 durch eine jeweils jede planare Einzelzelle 3 einzeln umhüllende Umschließung 9 isoliert und geschützt. Das Heiz- und/oder Kühlmedium 8 ist hierbei ein unbrennbares Medium 10, das überdies ein Brandschutzmittel 11 enthält. Die Einhausung 4 weist eine Schnittstelle 12 auf, die zum Anschluss der Einhausung 4 an einen Kreislauf 13 für das Heiz- und/oder Kühlmedium dient. Die Schnittstelle 12 weist hierbei bevorzugt eine Thermostatsteuerung 14 auf, die die Temperatur der Batterieeinrichtung 1 , insbesondere des Heiz- und/oder Kühlmediums 8 in der Einhausung 4, überwacht und entsprechend dieser Temperatur den Kreislauf 13 und/oder die Schnittstelle 12 steuert, beispielsweise über eine im Kreislauf 13 angeordnete Umwälzpumpe 25 und/oder durch Steuerung einer im Kreislauf 13 angeordneten Heiz- und/oder Kühleinrichtung 15. Die Heiz- und/oder Kühleinrichtung 15 weist hierbei einen Wärmetauscher 16 auf, der dazu dient, dem der Heiz- und/oder Kühleinrichtung 15 zugeführten, erwärmten Heiz- und/oder Kühlmedium 8 überschüssige Wärme zu entziehen; es kann sich hierbei beispielsweise um einen Luftwärmetauscher 17 oder um einen an andere, hier nicht dargestellte Kreisläufe, insbesondere Kühlkreisläufe, angeschlossenen oder mit diesen kommunizierenden Flüssigkeitswärmetauscher 18 handeln. Wichtig ist hierbei allein, dass der Wärmetauscher 16 geeignet ist, in dem erforderlichen Umfang dem erwärmten, aus der Einhausung 4 zugeführten Heiz- und/oder Kühlmedium 8 überschüssige Wärmeenergie zu entziehen und das Heiz- und/oder Kühlmedium 8 auf eine in der Batterieeinrichtung 1 gewünschte Temperatur zu bringen. Die nähere technische Ausführung bleibt der jeweiligen Ausführungsform und dem jeweiligen Einsatzzweck überlassen. Die Heiz- und/oder Kühleinrichtung 15 weist ferner ein Heizelement 19 auf, mit dem einem aus der Einhausung 4 zugeführten Heiz- und/oder Kühlmedium 8, das eine zu niedrige Temperatur aufweist, Wärmeenergie zugeführt werden kann. Das Heizelement 19 kann hierbei als elektrisches Heizelement 20 oder als Flüssigkeitswärmetauscher 18 ausgebildet sein, abhängig von den
Gegebenheiten und den jeweiligen Anforderungen. Wesentlich ist hierbei allein, dass über das Heizelement 19 dem für den Betrieb der Batterieeinrichtung 1 zu kühlenden Heiz- und/oder Kühlmedium Wärmeenergie in einer so ausreichenden Menge zugeführt werden kann, dass die Batterieeinrichtung 1 das gewünschte Temperaturniveau erreicht. Die Batterieeinrichtung 1 weist ferner einen
Anschlussblock 21 zur elektrischen Kontaktierung der Batterieeinrichtung 1 mit außerhalb ihrer liegenden Einrichtungen auf, insbesondere zur Kontaktierung mit elektrischen Verbrauchern oder mit einem elektrischen Bordsystem eines Fahrzeugs. Der Wärmetauscher 16 und das Heizelement 19 können auch als Kombinationselement ausgeführt sein, das beide Funktionen erfüllt. Figur 2 zeigt ausschnittsweise den Aufbau einer Batterieeinrichtung 1 aus zylindrischen Einzelzellen 22 nach dem Prinzip der dichtesten Kugelpackung in einer Frontansicht. Die zylindrischen Einzelzellen 22 werden hierbei lagenweise derart übereinander angeordnet, dass jeweils zwischen zwei zylindrischen Einzelzellen und oberhalb diesen etwa mittig eine weitere zylindrische Einzelzelle angeordnet ist, sodass sich eine möglichst vollständige und umfassende Ausnutzung von zu Verfügung stehenden Bauraum nach dem Prinzip der dichtesten Kugelpackung erreichen lässt. Zwischen den zylindrischen Einzelzellen 22 sind hierbei jeweils Abstandshalter 23 angeordnet, die eine vollflächige und allseitige Umströmung der zylindrischen Einzelzellen 22 mit dem Heiz- und/oder Kühlmedium 8 zulassen. Wesentlich ist hierbei, dass das Heiz- und/oder Kühlmedium möglichst große Flächen beziehungsweise Außenmantelflächen 24 der zylindrischen Einzelzellen 22 beaufschlagt, sodass ein möglichst guter und zügiger Wärmeübertritt zwischen den zylindrischen Einzelzellen 22 und dem Heiz- und/oder Kühlmedium 8 möglich ist.

Claims

Ansprüche
1. Batterieeinrichtung mit mindestens einer Batterie und mit mindestens einer, die Batterie temperierenden Heiz- und/oder Kühleinrichtung, dadurch gekennzeichnet, dass die Batterie (2), eingetaucht in ein Heiz- und/oder Kühlmedium (8), in einer das Heiz- und/oder Kühlmedium
(8) aufnehmenden Einhausung (4) angeordnet ist.
2. Batterieeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Heiz- und/oder Kühlmedium (8) im Kreislauf (13) geführt wird, wobei sich im Kreislauf (13) eine Heiz- und/oder Kühleinrichtung (15) für das
Heiz- und/oder Kühlmedium (8) befindet.
3. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Batterie (2) von einer hermetisch dichten Umschließung (9) allseitig umhüllt ist.
4. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umschließung (9) eine Folie ist.
5. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Innere der Umschließung (9) evakuiert ist.
6. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Batterie (2) zur Isolierung gegenüber dem Heiz- und/oder Kühlmedium (8) vergossene und/oder verklebte Kontakt- und/oder Anschlussstellen aufweist.
7. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Heiz- und/oder Kühlmedium (8) ein unbrennbares Medium (10) ist.
8. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Heiz- und/oder Kühlmedium (8) ein elektrisch nicht leitfähiges Medium ist.
9. Batterieeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Heiz- und/oder Kühlmedium (8) ein Brandschutzmittel (11 ) ist oder ein Brandschutzmittel (11 ) enthält.
10.Verfahren zum Temperieren einer Batterieeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche.
EP08804182A 2007-09-21 2008-09-15 Temperierte batterieeinrichtung und verfahren hierzu Withdrawn EP2195876A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710045183 DE102007045183A1 (de) 2007-09-21 2007-09-21 Temperierte Batterieeinrichtung und Verfahren hierzu
PCT/EP2008/062221 WO2009040264A1 (de) 2007-09-21 2008-09-15 Temperierte batterieeinrichtung und verfahren hierzu

Publications (1)

Publication Number Publication Date
EP2195876A1 true EP2195876A1 (de) 2010-06-16

Family

ID=40091449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804182A Withdrawn EP2195876A1 (de) 2007-09-21 2008-09-15 Temperierte batterieeinrichtung und verfahren hierzu

Country Status (6)

Country Link
US (1) US20110027631A1 (de)
EP (1) EP2195876A1 (de)
JP (1) JP2010539667A (de)
KR (1) KR20100057691A (de)
DE (1) DE102007045183A1 (de)
WO (1) WO2009040264A1 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140501B2 (en) 2008-06-30 2015-09-22 Lg Chem, Ltd. Battery module having a rubber cooling manifold
DE102009038065A1 (de) * 2009-08-19 2011-02-24 Li-Tec Battery Gmbh Verfahren und Vorrichtung zum Kühlen eines elektrochemischen Energiespeichers
FR2962074B1 (fr) * 2010-07-02 2013-04-12 Renault Sa Refroidissement d'un bac de batterie d'alimentation d'un moteur d'entrainement d'un vehicule automobile.
DE102011107075B4 (de) 2010-08-30 2019-11-28 Samsung Sdi Co., Ltd. Batteriemodul
NZ627858A (en) * 2012-01-09 2016-02-26 Mymedicalrecords Inc Method and system for managing personal health records with telemedicine and health monitoring device features
DE102012003017A1 (de) * 2012-02-15 2013-08-22 Key Safety Systems, Inc. Brandvorbeugung oder Brandbeseitigung in einem elektrochemischen Energiespeicher
US9105950B2 (en) * 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US20170043194A1 (en) * 2012-04-10 2017-02-16 Greg Ling Integrated thermal event suppression system
EP2693522A1 (de) 2012-08-03 2014-02-05 Magna E-Car Systems GmbH & Co OG Batteriemodul
US9306199B2 (en) 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
JP2014060088A (ja) * 2012-09-19 2014-04-03 Toshiba Corp 二次電池装置および二次電池システム
US9083066B2 (en) 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
KR20150006103A (ko) * 2013-07-05 2015-01-16 현대모비스 주식회사 직접 수냉 방식을 활용한 이차전지 모듈 및 이의 냉각방법
US9184424B2 (en) 2013-07-08 2015-11-10 Lg Chem, Ltd. Battery assembly
AT514746B1 (de) * 2013-08-29 2015-09-15 Avl List Gmbh Anschlusseinheit für ein Kühlmedium
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
DE102014106648A1 (de) 2014-05-12 2015-11-12 Linde Material Handling Gmbh Batterieblock mit Kühlelement
DE102014106647A1 (de) 2014-05-12 2015-11-12 Linde Material Handling Gmbh Batterieblock mit Kühlluftführung
DE102014106794A1 (de) 2014-05-14 2015-11-19 Linde Material Handling Gmbh Flurförderzeug mit Batterie und Sensiereinrichtung zur Überwachung der Temperatur der Batterie
US9484559B2 (en) 2014-10-10 2016-11-01 Lg Chem, Ltd. Battery cell assembly
US9412980B2 (en) 2014-10-17 2016-08-09 Lg Chem, Ltd. Battery cell assembly
US9786894B2 (en) 2014-11-03 2017-10-10 Lg Chem, Ltd. Battery pack
US9627724B2 (en) 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
CN104466300A (zh) * 2014-12-08 2015-03-25 江苏港星方能超声洗净科技有限公司 一种电池冷却装置
EP3306737B1 (de) * 2015-07-20 2019-05-15 Microvast Power Systems Co., Ltd. Batteriepack und batteriepacksystem
US10784545B2 (en) * 2016-03-25 2020-09-22 Xing Power Inc. Submerged cell modular battery system
JP6607137B2 (ja) 2016-04-21 2019-11-20 株式会社デンソー 蓄電装置
AT519672B1 (de) * 2017-05-18 2018-09-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug
DE102017211922A1 (de) * 2017-07-12 2019-01-17 Volkswagen Aktiengesellschaft Anordnung zur Temperierung eines Zellmoduls, Batterie mit einer derartigen Anordnung sowie Fahrzeug
DE102018107913A1 (de) 2018-04-04 2019-10-10 Nidec Gpm Gmbh Temperierungsvorrichtung und Vorrichtungsanordnung in einem Temperierungssystem
JP7085396B2 (ja) * 2018-04-18 2022-06-16 ヤンマーパワーテクノロジー株式会社 電池パック及び推進装置
KR20200040025A (ko) 2018-10-08 2020-04-17 삼성에스디아이 주식회사 배터리 팩
KR102617730B1 (ko) 2018-10-08 2023-12-26 삼성에스디아이 주식회사 배터리 팩
KR20200040024A (ko) 2018-10-08 2020-04-17 삼성에스디아이 주식회사 배터리 팩
KR102220898B1 (ko) 2018-10-17 2021-02-26 삼성에스디아이 주식회사 배터리 팩
US10497996B1 (en) * 2018-12-12 2019-12-03 Cora Aero Llc Battery with liquid temperature controlling system
CN110137407A (zh) * 2019-06-13 2019-08-16 赵耀华 一种高防护等级的空冷式锂电池包热管理系统及方法
US10916818B2 (en) * 2019-06-21 2021-02-09 Baidu Usa Llc Self-activating thermal management system for battery pack
US10727553B1 (en) * 2019-07-01 2020-07-28 Baidu Usa Llc Thermal management system design for battery pack
FR3106438B1 (fr) * 2020-01-21 2022-01-28 Valeo Systemes Thermiques Dispositif de refroidissement d’un composant électrique et/ou électronique susceptible de dégager de la chaleur en fonctionnement
KR102404099B1 (ko) 2020-04-22 2022-06-02 주식회사 스탠더드시험연구소 전기소자용 다중채널 낙수냉각방식의 열제어장치
CN111755777A (zh) * 2020-06-24 2020-10-09 蜂巢能源科技有限公司 浸没式冷却模组及其低温加热控制方法与设备
KR102225889B1 (ko) * 2020-07-15 2021-03-11 한국에너지기술연구원 배터리의 온도를 관리하는 배터리 장치 및 시스템
WO2022099661A1 (zh) * 2020-11-13 2022-05-19 江苏时代新能源科技有限公司 箱体、电池、用电设备及电池的制造方法
KR102375766B1 (ko) * 2021-03-09 2022-03-18 울산과학기술원 배터리팩을 수용하는 배터리랙 및 배터리랙 모듈
DE102021117747B3 (de) 2021-07-09 2022-05-05 Bayerische Motoren Werke Aktiengesellschaft Batterieeinrichtung mit Immersionstemperierung und Kraftfahrzeug
KR102427869B1 (ko) * 2021-07-23 2022-08-01 울산과학기술원 침지배터리를 내장하는 배터리하우징 및 이를 포함하는 배터리 모듈

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140211A (ja) * 1997-07-17 1999-02-12 Denso Corp 電池冷却装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4441162A1 (de) * 1994-11-18 1996-06-05 Daimler Benz Ag Kühleinrichtung für eine aus mehreren Zellen aufgebaute Batterie
JPH09266016A (ja) * 1996-03-27 1997-10-07 Toyota Autom Loom Works Ltd 円筒型電池の冷却方法
JP4123541B2 (ja) * 1997-07-02 2008-07-23 株式会社デンソー 電池冷却装置
JP3858689B2 (ja) * 2001-12-21 2006-12-20 日本電気株式会社 ラミネート外装体を用いた電池とその製造方法
TW531063U (en) * 2002-03-27 2003-05-01 Csb Battery Co Ltd Electrode post head for delaying acidification
JP2003346924A (ja) * 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd 組電池の冷却システムおよび組電池の冷却方法
US20050210662A1 (en) 2004-03-24 2005-09-29 Wenman Li Method of constructing large capacity lithium-polymer power battery and associated cooling system
JP2006100123A (ja) 2004-09-29 2006-04-13 Toyota Motor Corp 組電池、組電池冷却システム、及び、組電池の冷却方法
JP2006185788A (ja) 2004-12-28 2006-07-13 Toyota Motor Corp バッテリ冷却装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140211A (ja) * 1997-07-17 1999-02-12 Denso Corp 電池冷却装置

Also Published As

Publication number Publication date
WO2009040264A1 (de) 2009-04-02
US20110027631A1 (en) 2011-02-03
DE102007045183A1 (de) 2009-04-02
KR20100057691A (ko) 2010-05-31
JP2010539667A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2195876A1 (de) Temperierte batterieeinrichtung und verfahren hierzu
DE102008056859B4 (de) Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit einer Kühleinrichtung
DE10202807B4 (de) Vorrichtung zur Temperierung von Hochleistungs-Sekundärbatterien für Fahrzeuganwendungen
DE102011118383B4 (de) Fahrzeugbatterieanordnung
DE102012215056B4 (de) Batteriesystem und Kraftfahrzeug
EP2329548B1 (de) Batteriemodul
EP2985804A1 (de) Batteriegehäuse
DE102013218674A1 (de) Batteriezelle, Batterie und Fahrzeug
EP1835251A1 (de) Vorrichtung zur Kühlung elektrischer Elemente
DE102007010738A1 (de) Leiterplattenschutz für eine Batterie
DE112008000855T5 (de) Energieversorgungsvorrichtung
DE102010013033A1 (de) Vorrichtung zur Kühlung einer Energiespeichereinrichtung
WO2017060152A1 (de) Antriebsbatteriebaugruppe
WO2011042122A1 (de) Energiespeichereinheit mit verlängerter lebensdauer
WO2011009619A1 (de) Elektrochemischer energiespeicher und verfahren zum kühlen oder erwärmen eines elektrochemischen energiespeichers
EP3709381A1 (de) Intelligentes thermomanagement im bereich elektromobilität
DE102011082562A1 (de) Batteriemodul mit zumindest einer Batteriezelle und direkter Kühlmittelkühlung sowie Kraftfahrzeug
WO2017067797A1 (de) Temperiereinrichtung einer elektrischen energiespeichereinheit
DE102017217024A1 (de) Batteriemodul mit einer Mehrzahl an Batteriezellen
DE102018000278B4 (de) Batterieanordnung
DE102011007606A1 (de) Verfahren und Vorrichtung zur Homogenisierung der Temperaturverteilung fluidtemperierter Körper
WO2014114544A1 (de) Batteriemodul mit einem thermischen element
DE102019007812B4 (de) Batteriezelle für einen elektrischen Energiespeicher und elektrischer Energiespeicher
DE102014215677A1 (de) Batteriesystem für ein Kraftfahrzeug und Verfahren zur Kühlung des Batteriesystems
DE102013018474A1 (de) Batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110712