KR102220898B1 - 배터리 팩 - Google Patents

배터리 팩 Download PDF

Info

Publication number
KR102220898B1
KR102220898B1 KR1020180123928A KR20180123928A KR102220898B1 KR 102220898 B1 KR102220898 B1 KR 102220898B1 KR 1020180123928 A KR1020180123928 A KR 1020180123928A KR 20180123928 A KR20180123928 A KR 20180123928A KR 102220898 B1 KR102220898 B1 KR 102220898B1
Authority
KR
South Korea
Prior art keywords
battery cell
cover
leads
case
covers
Prior art date
Application number
KR1020180123928A
Other languages
English (en)
Other versions
KR20200043170A (ko
Inventor
이주열
곽노현
김승일
박강야
이정진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020180123928A priority Critical patent/KR102220898B1/ko
Priority to CN201910949820.8A priority patent/CN111063836B/zh
Priority to CN202310879676.1A priority patent/CN116885368A/zh
Priority to US16/595,900 priority patent/US11742537B2/en
Priority to EP19202014.7A priority patent/EP3651233A3/en
Priority to CN201921681935.5U priority patent/CN210897381U/zh
Publication of KR20200043170A publication Critical patent/KR20200043170A/ko
Priority to KR1020200099831A priority patent/KR102332333B1/ko
Application granted granted Critical
Publication of KR102220898B1 publication Critical patent/KR102220898B1/ko
Priority to US18/179,268 priority patent/US20230207925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • H01M50/287Fixing of circuit boards to lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명에서는 배터리 팩이 개시된다. 상기 배터리 팩은, 각각 길이 방향을 따라 서로 반대되는 제1, 제2 단부를 포함하는 배터리 셀과, 배터리 셀과 함께, 배터리 셀의 냉각을 위한 냉각 유체를 수용하는 수용 공간을 제공하는 것으로, 상기 배터리 셀의 제1, 제2 단부를 각각 덮도록 형성된 제1, 제2 커버를 포함하는 케이스와, 제1, 제2 커버 상에 배치되어 상기 배터리 셀의 제1, 제2 단부와 전기적으로 연결되는 제1, 제2 탭 플레이트와, 제1 탭 플레이트 상에 배치된 회로기판과, 제1, 제2 탭 플레이트와 회로기판 사이의 전기적인 연결을 매개하는 제1, 제2 리드를 포함하되, 제1, 제2 리드는 회로기판의 제1 변부에 함께 접속된다.
본 발명에 의하면, 배터리 셀의 전극과 전기적으로 연결되는 리드의 배치 구조가 개선되며, 배터리 셀의 수용 공간 내에 함께 수용된 냉각 유체의 흐름을 이용하여 스위치 소자의 방열 성능이 개선되는 배터리 팩이 제공된다.

Description

배터리 팩{Battery pack}
본 발명은 배터리 팩에 관한 것이다.
통상적으로 이차 전지는 충전이 불가능한 일차 전지와는 달리, 충전 및 방전이 가능한 전지이다. 이차 전지는 모바일 기기, 전기 자동차, 하이브리드 자동차, 전기 자전거, 무정전 전원공급장치(uninterruptible power supply) 등의 에너지원으로 사용되며, 적용되는 외부기기의 종류에 따라 단일 전지의 형태로 사용되기도 하고, 다수의 전지들을 연결하여 하나의 단위로 묶은 팩 형태로 사용되기도 한다.
휴대폰과 같은 소형 모바일 기기는 단일 전지의 출력과 용량으로 소정시간 동안 작동이 가능하지만, 전력소모가 많은 전기 자동차, 하이브리드 자동차와 같이 장시간 구동, 고전력 구동이 필요한 경우에는 출력 및 용량의 문제로 다수의 전지를 포함하는 팩 형태가 선호되며, 내장된 전지의 개수에 따라 출력전압이나 출력전류를 높일 수 있다.
본 발명의 일 실시형태는, 배터리 셀의 전극과 전기적으로 연결되는 리드의 배치 구조가 개선되는 배터리 팩을 포함한다.
본 발명의 일 실시형태는, 배터리 셀의 수용 공간 내에 함께 수용된 냉각 유체의 흐름을 이용하여 스위치 소자의 방열 성능이 개선되는 배터리 팩을 포함한다.
상기와 같은 과제 및 그 밖의 과제를 해결하기 위하여, 본 발명의 배터리 팩은,
각각 길이 방향을 따라 서로 반대되는 제1, 제2 단부를 포함하는 배터리 셀;
상기 배터리 셀과 함께, 배터리 셀의 냉각을 위한 냉각 유체를 수용하는 수용 공간을 제공하는 것으로, 상기 배터리 셀의 제1, 제2 단부를 각각 덮도록 형성된 제1, 제2 커버를 포함하는 케이스;
상기 제1, 제2 커버 상에 배치되어 상기 배터리 셀의 제1, 제2 단부와 전기적으로 연결되는 제1, 제2 탭 플레이트;
상기 제1 탭 플레이트 상에 배치된 회로기판; 및
상기 제1, 제2 탭 플레이트와 회로기판 사이의 전기적인 연결을 매개하는 제1, 제2 리드를 포함하되, 상기 제1, 제2 리드는 상기 회로기판의 제1 변부에 함께 접속된다.
예를 들어, 상기 회로기판의 제1 변부는, 일 방향을 따라 직선적으로 연장되며, 연속적으로 연장되는 회로기판의 테두리 부분에 해당될 수 있다.
예를 들어, 상기 제1, 제2 리드는, 상기 회로기판의 제1 변부와 반대되는 제2 변부에는 접속되지 않을 수 있다.
예를 들어, 상기 제1, 제2 리드는, 다수의 제1, 제2 탭 플레이트로부터 연장되는 다수의 제1, 제2 리드를 포함할 수 있다.
예를 들어, 상기 제1, 제2 리드는, 상기 회로기판의 제1 변부를 따라 열을 이루어 접속될 수 있다.
예를 들어, 상기 제1, 제2 리드가 서로 교번되는 패턴으로 배열되도록, 제1 리드는 서로 이웃한 제2 리드 사이에 개재되며, 제2 리드는 서로 이웃한 제1 리드 사이에 개재될 수 있다.
예를 들어, 상기 제1 리드 보다 제2 리드가 더 길게 연장될 수 있다.
예를 들어, 상기 제2 리드는, 제2 커버 측으로부터 제1 커버 측을 향하여 케이스의 측면을 가로질러 연장될 수 있다.
예를 들어, 상기 제2 리드는 케이스의 측면에 돌출 형성된 용접부를 우회하도록 절곡부를 포함할 수 있다.
예를 들어, 상기 제1, 제2 리드는, 제1, 제2 커버의 장변부 방향을 따라 교번되게 배열될 수 있다.
예를 들어, 상기 제1, 제2 탭 플레이트는, 제1, 제2 커버 상에서 서로 다른 쌍의 배터리 셀을 연결하도록 제1, 제2 커버의 장변부 방향을 따라 서로 교번되는 패턴으로 배열되며,
상기 제1, 제2 리드는, 각각의 제1, 제2 탭 플레이트로부터 연장되어 제1, 제2 커버의 장변부 방향을 따라 교번되는 패턴으로 배열될 수 있다.
예를 들어, 상기 제1, 제2 리드는, 제1, 제2 커버의 제1 장변부 측에 집중적으로 배열되고, 제1, 제2 커버의 제1 장변부와 반대되는 제2 장변부 측에는 배치되지 않을 수 있다.
예를 들어, 상기 제1 커버의 제2 장변부와 제2 커버의 제2 장변부 사이에는 스위치 소자가 배치될 수 있다.
예를 들어, 상기 케이스는, 제1, 제2 커버 사이에 개재되는 미들 케이스를 더 포함하며,
상기 제1, 제2 커버의 제2 장변부와 가까운 미들 케이스 상에는 스위치 소자가 배치될 수 있다.
한편, 본 발명의 다른 측면에 따른 배터리 팩은,
다수의 배터리 셀;
상기 배터리 셀과 함께, 배터리 셀의 냉각을 위한 냉각 유체를 수용하는 수용 공간을 제공하는 케이스;
상기 수용 공간을 가로질러 연장되면서 상기 수용 공간을, 냉각 유체의 인렛과 연결된 상류부 및 냉각 유체의 아웃렛과 연결된 하류부로 구획하는 격벽; 및
상기 격벽과 마주하는 케이스의 일 측에 배치된 스위치 소자;를 포함한다.
예를 들어, 상기 격벽은, 상기 상류부와 하류부를 서로 연결하는 연통부를 더 포함할 수 있다.
예를 들어, 상기 인렛 및 아웃렛은, 상기 격벽의 연장 방향을 따라 케이스의 일단 측에 형성되며,
상기 연통부는, 상기 케이스의 일단 측과 반대되는 케이스의 타단 측에 형성될 수 있다.
예를 들어, 상기 스위치 소자는 상기 격벽의 연장 방향을 따라 형성되는 케이스의 장변부 측에 배치될 수 있다.
예를 들어, 상기 케이스는,
상기 배터리 셀의 길이 방향을 따라 서로 반대되는 제1, 제2 단부를 각각 덮도록 형성되는 제1, 제2 커버; 및
상기 제1, 제2 커버 사이에 개재되는 미들 케이스를 포함할 수 있다.
예를 들어, 상기 미들 케이스의 단변부에는 상기 인렛 및 아웃렛과, 상기 격벽의 결합 위치가 형성되며,
상기 스위치 소자는 상기 미들 케이스의 장변부 측에 배치될 수 있다.
본 발명에 의하면, 배터리 셀의 전극과 전기적으로 연결되는 리드의 배치 구조가 개선됨으로써, 리드의 연결을 위한 용접 작업성이 개선될 수 있고, 회로 구조가 단순화될 수 있는 배터리 팩이 제공될 수 있다.
본 발명에 의하면, 배터리 셀의 수용 공간 내에 함께 수용된 냉각 유체의 흐름을 이용하여 대전류 패스 상에서 충방전 전류의 흐름을 단속할 수 있는 스위치 소자의 방열 성능이 개선되는 배터리 팩이 제공될 수 있다.
도 1에는, 본 발명의 일 실시형태에 따른 배터리 팩의 분해 사시도가 도시되어 있다.
도 2a 및 도 2b에는 도 1에 도시된 배터리 셀의 전기적인 연결을 보여주는 도면들이 도시되어 있다.
도 3a 및 도 3b에는 본 발명의 다른 실시형태에 따른 스위치 소자의 냉각 구조를 보여주는 도면이 도시되어 있다.
도 4에는, 본 발명의 다른 실시형태에 관한 것으로, 도 2b에 도시된 코어팩을 수용하는 하우징의 분해 사시도가 도시되어 있다.
도 5에는, 도 1에 도시된 케이스의 분해 사시도가 도시되어 있다.
도 6에는, 도 5에 도시된 케이스 내부에 형성되는 냉각 유체의 흐름을 보여주는 도면이 도시되어 있다.
도 7a 및 도 7b에는, 도 1에 도시된 제1 커버의 분해 사시도 및 평면도가 도시되어 있다.
도 8에는 도 1의 VIII-VIII 선을 따라 절개한 사시도가 도시되어 있다.
도 9a 및 도 9b에는 도 8에 도시된 제1 실링부재의 변형된 실시형태를 보여주는 단면도들이 도시되어 있다.
도 10에는, 도 1에 도시된 배터리 셀의 배열을 보여주는 도면이 도시되어 있다.
도 11에는, 도 1에 도시된 배터리 팩의 단차 공간을 보여주는 사시도가 도시되어 있다.
도 12에는, 도 11의 XII-XII 선을 따라 절개한 사시도로서, 단차 공간을 이용한 배터리 셀의 가스 배출을 설명하기 위한 도면이 도시되어 있다.
도 13에는, 도 11에 도시된 제1 탭 플레이트의 사시도가 도시되어 있다.
이하, 첨부된 도면을 참조하여, 본 발명의 바람직한 실시형태에 관한 배터리 팩에 대해 설명하기로 한다.
도 1에는, 본 발명의 일 실시형태에 따른 배터리 팩의 분해 사시도가 도시되어 있다.
도면을 참조하면, 본 발명의 배터리 팩은, 다수의 배터리 셀(10)과, 상기 배터리 셀(10)과 함께, 배터리 셀(10)의 냉각을 위한 냉각 유체를 수용하는 수용 공간(A)을 제공하는 케이스(100)를 포함할 수 있다.
상기 케이스(100)는, 미들 케이스(100c)와, 상기 미들 케이스(100c)를 개재하여 서로 마주하게 결합되는 제1, 제2 커버(100a,100b)를 포함할 수 있다. 상기 제1, 제2 커버(100a,100b)는, 배터리 셀(10)의 길이 방향을 따라 배터리 셀(10)의 양단에 해당되는 제1, 제2 단부(11,12)를 각각 커버할 수 있다.
상기 제1, 제2 커버(100a,100b)에는 배터리 셀(10)의 제1, 제2 단부(11,12)를 노출시키기 위한 제1, 제2 단자 홀(101`,102`)이 형성될 수 있고, 제1, 제2 단자 홀(101`,102`)로부터 노출된 배터리 셀(10)의 제1, 제2 단부(11,12)를 통하여 배터리 셀(10)의 전기적인 연결이 이루어질 수 있다.
도 2a 및 도 2b에는 도 1에 도시된 배터리 셀의 전기적인 연결을 보여주는 도면들이 도시되어 있다.
도 2a를 참조하면, 제1 커버(100a) 상에는 배터리 셀(10)의 제1 단부(11)와의 전기적인 연결을 위한 제1 탭 플레이트(110a)가 배치될 수 있고, 제2 커버(100b) 상에는 배터리 셀(10)의 제2 단부(12)와의 전기적인 연결을 위한 제2 탭 플레이트(110b)가 배치될 수 있다. 상기 제1 탭 플레이트(110a) 상에는 회로기판(180)이 배치될 수 있으며, 상기 회로기판(180)에는 제1, 제2 탭 플레이트(110a,110b)가 연결될 수 있다.
도 2b를 참조하면, 상기 회로기판(180)과 제1 탭 플레이트(110a) 사이에는 이들 사이의 전기적인 연결을 매개하기 위한 제1 리드(120a)가 개재될 수 있고, 상기 회로기판(180)과 제2 탭 플레이트(110b) 사이에는 이들 사이의 전기적인 연결을 매개하기 위한 제2 리드(120b)가 개재될 수 있다. 상기 제1, 제2 리드(120a,120b)는, 제1, 제2 탭 플레이트(110a,110b)를 통하여 전달되는 배터리 셀(10)의 상태 정보, 예를 들어, 전압 정보를 회로기판(180)으로 전달함으로써, 배터리 셀(10)의 충, 방전 동작을 제어하기 위한 기초 정보를 제공할 수 있다.
상기 회로기판(180)은, 제1 탭 플레이트(110a) 상에 배치되어 제1 탭 플레이트(110a)와는 상대적으로 가까운 위치에 배치되는 반면에, 제2 탭 플레이트(110b)로부터는 상대적으로 먼 거리에 배치되므로, 제1 리드(120a) 보다 제2 리드(120b)는 상대적으로 긴 거리로 연장될 필요가 있다. 즉, 상기 제2 리드(120b)는 제2 커버(100b) 측의 제2 탭 플레이트(110b)로부터 제1 커버(100a) 측의 회로기판(180)으로 연장되므로, 제1 리드(120a) 보다 상대적으로 길게 연장될 수 있다. 이때, 상기 제2 리드(120b)는, 케이스(100)의 측면을 가로질러 연장되면서 케이스(100)의 측면에 돌출 형성된 레이저 용접부(L1,L2)를 우회할 수 있도록 절곡부(125)를 포함할 수 있다. 상기 절곡부(125)는, 케이스(100)의 측면으로부터 돌출된 레이저 용접부(L1,L2)와의 물리적인 간섭을 피하면서도, 제2 리드(120b)가 케이스(100)의 측면에 대해 밀착 지지된 상태로 연장됨으로써, 제2 리드(120b)가 안정적으로 지지될 수 있고, 제2 리드(120b)의 불안정한 부유로 인하여 제1 리드(120a) 등과의 전기적인 간섭을 피하기 위한 것이다. 여기서, 상기 케이스(100)는, 배터리 셀(10)의 제1, 제2 단부(11,12)를 덮는 제1, 제2 커버(100a,100b)와, 상기 제1, 제2 커버(100a,100b) 사이에 개재되는 미들 케이스(100c)를 포함할 수 있고, 각각 서로 다른 부재로 형성된 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)의 결합에 의해 밀폐된 수용 공간(A)이 제공될 수 있다. 이때, 상기 레이저 용접부(L1,L2)란 제1, 제2 커버(100a,100b)와 미들 케이스(100c) 사이를 기밀하게 결합시키는 제1, 제2 레이저 용접부(L1,L2)를 의미할 수 있다.
상기 제1, 제2 리드(120a,120b)는, 제1, 제2 탭 플레이트(110a,110b)와 별개의 부재로 형성된 후, 제1, 제2 탭 플레이트(110a,110b)에 용접 결합될 수 있다. 예를 들어, 상기 제1, 제2 리드(120a,120b)의 일 단부에는 제1, 제2 탭 플레이트(110a,110b)와의 결합부(121a,121b)가 형성될 수 있고, 상기 제1, 제2 리드(120a,120b)의 타 단부에는 회로기판(180)과의 접속부(122a,122b)가 형성될 수 있다. 본 발명의 일 실시형태에서, 제1, 제2 리드(120a,120b)의 일 단부에 형성된 결합부(121a,121b)와, 제1, 제2 리드(120a,120b)의 타 단부에 형성된 접속부(122a,122b)는 모두 용접부로 형성될 수 있다.
만일 제1, 제2 리드(120a,120b)를 제1, 제2 탭 플레이트(110a,110b)와 별개의 부재로 형성하지 않고, 제1, 제2 탭 플레이트(110a,110b)와 일체로 형성하기 위해서는, 원소재 금속판의 절단시에 낭비되는 금속 스크랩으로 인하여 재료 비용이 상승하며, 특히 상대적으로 긴 거리의 제2 리드(120b)를 제2 탭 플레이트(110b)와 일체로 형성하기 위해서는, 낭비되는 금속 스크랩의 양이 과다하여 재료 비용에 부담을 주는 문제가 있다. 또한, 제2 탭 플레이트(110b)와 별개의 제2 리드(120b)에 대해 절곡 가공을 수행하는 것이 절곡 작업의 편이성이 향상될 수 있기 때문에, 적어도 상기 제2 리드(120b)는 제2 탭 플레이트(110b)와는 별개의 부재로 형성될 수 있다.
본 발명의 다른 실시형태에서, 상대적으로 짧은 거리의 제1 리드(120a)는, 제1 탭 플레이트(110a)로부터 일체적으로 절곡된 형태로 연장될 수 있고, 상대적으로 긴 거리의 제2 리드(120b)는 제2 탭 플레이트(110b)와 별개의 부재로 형성된 후, 제2 탭 플레이트(110b)에 용접 결합될 수 있다.
상기 제1 리드(120a)는, 다수의 제1 탭 플레이트(110a)로부터 연장되는 다수의 제1 리드(120a)를 포함할 수 있다. 유사하게, 상기 제2 리드(120b)는, 다수의 제2 탭 플레이트(110b)로부터 연장되는 다수의 제2 리드(120b)를 포함할 수 있다. 상기 제1, 제2 리드(120a,120b)는 서로 교번되는 패턴으로 배열되도록, 상기 제1 리드(120a)는 서로 이웃한 제2 리드(120b) 사이에 개재될 수 있고, 상기 제2 리드(120b)는 서로 이웃한 제1 리드(120a) 사이에 개재될 수 있다. 이와 같이, 제1, 제2 리드(120a,120b)가 서로 교번되는 패턴으로 열을 이루어 배열됨으로써, 제1, 제2 리드(120a,120b) 사이의 전기적인 간섭을 피할 수 있고, 이들 사이의 전기적인 절연을 확보할 수 있다.
상기 제1, 제2 리드(120a,120b)는, 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 측에 집중적으로 배치될 수 있다. 예를 들어, 상기 제1, 제2 커버(100a,100b)가 서로 반대측에 위치하는 제1, 제2 장변부(100L1,100L2)를 포함한다고 할 때, 상기 제1, 제2 리드(120a,120b)는, 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 측에 집중적으로 배열될 수 있고, 제1 장변부(100L1)와 반대측에 위치하는 제2 장변부(100L2) 측에는 배치되지 않을 수 있다. 이때, 상기 제1, 제2 커버(100a,100b)의 제1 장변부(100L1)는, 케이스(100)의 같은 측면, 예를 들어, 미들 케이스(100c)의 같은 측면과 접할 수 있다.
본 발명의 일 실시형태에서, 제1, 제2 리드(120a,120b)의 일 단부에 형성된 결합부(121a,121b)와, 제1, 제2 리드(120a,120b)의 타 단부에 형성된 접속부(122a,122b)는 모두 용접부로 형성될 수 있고, 보다 구체적으로 레이저 용접부로 형성될 수 있다. 이때, 상기 제1, 제2 리드(120a,120b)가, 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 측에 집중적으로 배치됨으로써, 레이저 용접의 작업성을 개선할 수 있고, 레이저 용접시 제1 장변부(100L1)에서 제2 장변부(100L2)로 레이저 조사 위치를 변경하거나 또는 제1, 제2 커버(100a,100b)의 위치를 변경할 필요가 없다.
도 2b에 도시된 실시형태에서, 충방전 전류의 흐름을 단속하기 위한 스위치 소자(185)는 제1 커버(100a) 측에 배치된 회로기판(180) 상에 탑재될 수 있다. 본 발명에서 상기 스위치 소자(185)는 다양한 개소에 배치될 수 있는데, 도 3a에 도시된 실시형태에서는, 제1, 제2 커버(100a,100b)의 제2 장변부(100L2) 측에 스위치 소자(185)를 배치할 수 있다. 이러한 실시형태에서는, 상기 제1, 제2 리드(120a,120b)를 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 측에 집중적으로 배치함으로써, 제1, 제2 커버(100a,100b)의 제2 장변부(100L2) 측에 스위치 소자(185)를 배치할 수 있는 장착 공간을 마련할 수 있고, 예를 들어, 제1 커버(100a)의 제2 장변부(100L2)와, 제2 커버(100b)의 제2 장변부(100L2) 사이에 스위치 소자(185)를 배치할 수 있다. 보다 구체적으로, 상기 스위치 소자(185)는 제2 장변부(100L2) 측의 미들 케이스(100c) 상에 배치됨으로써, 스위치 소자(185)와 같은 발열 부품의 냉각 성능을 향상시킬 수 있다. 이에 대해서는 후에 보다 구체적으로 설명하기로 한다.
본 발명의 일 실시형태에서, 상기 제1 탭 플레이트(110a)는 서로 반대 극성을 갖는 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)를 직렬로 연결할 수 있고, 상기 제2 탭 플레이트(110b)는 서로 반대 극성을 갖는 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)를 직렬로 연결할 수 있다. 이때, 상기 제1, 제2 탭 플레이트(110a,110b)는, 제1, 제2 커버(100a,100b) 상에서 서로 다른 쌍의 제1, 제2 배터리 셀(10a,10b)을 연결하도록 지그 재그 패턴으로 서로 엇갈리게 배치될 수 있고, 이에 따라, 제1, 제2 탭 플레이트(110a,110b)로부터 연장되는 제1, 제2 리드(120a,120b)도 서로 교번되는 패턴으로 배열될 수 있다. 예를 들어, 상기 제1, 제2 탭 플레이트(110a,110b)는, 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 방향을 따라 서로 교번되게 배열될 수 있고, 상기 제1, 제2 탭 플레이트(110a,110b)로부터 연장되는 제1, 제2 리드(120a,120b)도, 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 방향을 따라 서로 교번되게 배열될 수 있다.
상기 제1, 제2 리드(120a,120b)가 제1, 제2 커버(100a,100b)의 제1 장변부(100L1) 측에 배치됨으로써, 제1, 제2 리드(120a,120b)의 한쪽 단부를 형성하는 제1, 제2 리드(120a,120b)의 접속부(122a,122b)는 회로기판(180)의 제1 변부(181)에 연결될 수 있다. 즉, 상기 회로기판(180)의 제1 변부(181)에는, 다수의 제1, 제2 리드(120a,120b)의 접속부(122a,122b)가 일 열로 배열될 수 있다. 제1, 제2 리드(120a,120b)의 접속부(122a,122b)가 일 열로 배열된다는 것은, 제1, 제2 리드(120a,120b)의 접속부(122a,122b)가 서로 겹쳐지지 않고 회로기판(180)의 제1 변부(181)를 따라 일 방향을 따라 배열된다는 것을 의미할 수 있다. 여기서, 회로기판(180)의 제1 변부(181)란, 일 방향을 따라 직선적으로 연장되면서 연속적으로 연장되는 회로기판(180)의 테두리 부분에 해당될 수 있고, 서로 다른 방향으로 연장되는 테두리 부분은 포함하지 않을 수 있다. 본 발명의 일 실시형태에서, 상기 제1, 제2 리드(120a,120b)는, 회로기판(180)의 제1 변부(181)에 집중적으로 연결될 수 있으며, 회로기판(180)의 제1 변부(181)와 반대되는 제2 변부(182)에는 연결되지 않을 수 있다.
이와 같이, 제1, 제2 리드(120a,120b)의 접속부(122a,122b)가 회로기판(180)의 같은 제1 변부(181)에 집중적으로 연결됨으로써, 제1, 제2 리드(120a,120b)와 연결되는 회로기판(180)의 도전 경로가 단축될 수 있다. 예를 들어, 제1, 제2 리드(120a,120b)를 통하여 전달되는 데이터의 처리를 위한 처리 회로의 위치를 회로기판(180)의 제1 변부(181) 측에 가깝게 형성함으로써, 도전 경로의 길이를 단축시킬 수 있다.
상기 제1, 제2 리드(120a,120b)의 접속부(122a,122b)는 회로기판(180)의 제1 변부(181)를 따라 교번되는 패턴으로 배열될 수 있다. 제1, 제2 리드(120a,120b)의 접속부(122a,122b)는 제1, 제2 리드(120a,120b)의 단부를 형성하는 것으로, 제1, 제2 리드(120a,120b)가 교번되는 패턴으로 배열됨으로써, 제1, 제2 리드(120a,120b)의 접속부(122a,122b)는 회로기판(180)의 제1 변부(181)를 따라 교번되는 패턴으로 배열될 수 있다.
상기 회로기판(180)은, 제1, 제2 리드(120a,120b)로부터 전달되는 배터리 셀(10)의 상태 정보를 수신하고, 수신된 상태 정보에 근거하여 배터리 셀(10)의 충, 방전 동작을 제어할 수 있다. 상기 회로기판(180)은, 제1 탭 플레이트(110a) 상에 형성될 수 있으며, 제1 커버(100a) 측에 배치될 수 있다. 즉, 상기 회로기판(180)은, 미들 케이스(100c) 측에 배치되지 않고, 제1 커버(100a) 측에 배치될 수 있다. 도면에 도시되어 있지는 않지만, 본 발명의 일 실시형태에서, 상기 제1 탭 플레이트(110a)와 회로기판(180) 사이에는 전기적인 절연을 확보하기 위한 절연부재가 개재될 수 있다.
상기 제1 탭 플레이트(110a)는, 냉각 유체와 접촉되는 배터리 셀(10)의 제1 단부(11)와 직접 연결될 수 있고, 제1 커버(100a)에 밀착되어 제1 커버(100a)를 통하여 냉각 유체와 열적으로 접촉할 수 있으므로, 상기 제1 탭 플레이트(110a)를 통하여 제1 탭 플레이트(110a) 상에 배치된 회로기판(180)이 냉각될 수 있다. 상기 제1 탭 플레이트(110a)와 유사하게, 제2 탭 플레이트(110b)는, 냉각 유체와 접촉되는 배터리 셀(10)의 제2 단부(12)와 직접 연결될 수 있고, 제2 커버(100b)에 밀착되어 제2 커버(100b)를 통하여 냉각 유체와 열적으로 접촉할 수 있다.
본 발명에 의하면, 충, 방전 전류가 집중되어 발열이 집중될 수 있는 제1, 제2 탭 플레이트(110a,110b)에 대해, 케이스(100) 내부의 냉각 유체를 통하여 방열을 제공함으로써, 제1, 제2 탭 플레이트(110a,110b)의 온도를 낮추고 충, 방전 패스 상의 전기 저항을 낮출 수 있으며, 제1 탭 플레이트(110a)를 통하여 회로기판(180) 상에 탑재된 회로부품에 대한 방열을 제공할 수 있다. 예를 들어, 상기 회로기판(180) 상에는 충, 방전 패스 상에서 충전 전류 및/또는 방전 전류의 흐름을 단속할 수 있는 하나 이상 다수의 스위치 소자(185)가 배치될 수 있으며, 스위치 소자(185)의 온/오프 동작에 따라 다량의 발열이 발생될 수 있다. 본 발명의 일 실시형태에서, 상기 케이스(100)는 다수의 배터리 셀(10)과 함께, 냉각 유체의 흐름을 수용할 수 있으며, 케이스(100) 내부의 냉각 유체는 다수의 배터리 셀(10)은 물론이고, 케이스(100) 외부에 장착되는 스위치 소자(185)와 같은 발열 부품에 대한 방열을 제공할 수 있다. 후술하는 바와 같이, 상기 냉각 유체는 열 용량이 상대적으로 큰 액체 상태의 냉각 매체를 의미할 수 있으며, 공기와 같은 기체 상태의 냉각 매체 보다 우수한 방열 성능을 제공할 수 있다. 예를 들어, 상기 스위치 소자(185)는, 케이스(100) 외부에서 상대적으로 낮은 온도의 대기와 접촉하여 일부 열을 방출할 수도 있으나, 케이스(100) 내부의 냉각 유체를 통하여 보다 많은 열을 방출할 수 있다. 본 발명의 일 실시형태에서, 상기 스위치 소자(185)는 릴레이 소자 또는 FET와 같은 솔리드 스테이트 스위치(solid state switch)를 포함할 수 있다. 도 2b에 도시된 본 발명의 일 실시형태에서, 스위치 소자(185)는, 제1 커버(100a) 측의 제1 탭 플레이트(110a) 상에 배치될 수 있고, 제1 탭 플레이트(110a)를 통하여 냉각 유체와 열적으로 연결될 수 있다. 예를 들어, 제1 탭 플레이트(110a)와 같은 열전도성이 우수한 금속 플레이트를 통하여 냉각 유체와 열적으로 연결됨으로써 스위치 소자(185)와 같은 발열 부품의 방열을 촉진할 수 있다.
도 3a 및 도 3b에는 본 발명의 다른 실시형태에 따른 스위치 소자의 냉각 구조를 보여주는 도면이 도시되어 있다.
도면들을 참조하면, 상기 케이스(100)는 배터리 셀(10)의 냉각을 위한 냉각 유체의 흐름을 수용할 수 있으며, 상기 케이스(100) 내에는 배터리 셀(10)의 수용 공간(A)을 가로질러 연장되면서, 상기 수용 공간(A)을, 냉각 유체의 인렛(I)과 연결되는 상류부(A1)와 냉각 유체의 아웃렛(O)과 연결되는 하류부(A2)로 구획하는 격벽(150)이 형성될 수 있다.
냉각 유체의 인렛(I)과 아웃렛(O)은, 상기 격벽(150)의 연장 방향을 따라, 케이스(100)의 일단(제1 단변부 100S1) 측에 형성될 수 있으며, 상기 케이스(100)의 타단(제2 단변부 100S2) 측에는 상기 상류부(A1)와 하류부(A2)를 연결하는 연통부(CN)가 형성될 수 있다. 이때, 일단 측의 인렛(I)으로부터 케이스(100) 내부로 유입된 냉각 유체는, 타단 측의 연통부(CN) 부근에서 흐름의 방향이 반전된 후 일단 측의 아웃렛(O)을 통하여 케이스(100) 외부로 유출되는 U-턴 패스를 형성할 수 있다.
상기 냉각 유체는 인렛(I)과 아웃렛(O)이 형성된 일단(제1 단변부 100S1)과 연통부(CN)가 형성된 타단(제2 단변부 100S2) 사이에서 격벽(150)의 연장 방향을 따라 유동하다가 연통부(CN) 부근에서, 원심력의 영향으로 케이스(100)의 내벽을 향하여 밀집된 형태의 흐름을 형성하고, 케이스(100)의 내벽으로부터 작용하는 압력의 영향으로 흐름의 방향이 전환될 수 있다. 이때, 상기 격벽(150)과 마주하는 케이스(100) 일 측, 보다 구체적으로, 격벽(150)과 대체로 나란하게 연장되는 미들 케이스(100c)는 냉각 유체와 높은 압력으로 접촉을 형성하면서 상대적으로 우수한 방열 성능을 제공할 수 있다. 본 발명의 일 실시형태에서, 스위치 소자(185)와 같은 발열 부품을 격벽(150)과 마주하는 케이스(100) 일 측, 그러니까, 미들 케이스(100c) 상에 배치함으로써, 냉각 유체의 흐름이 집중되는 미들 케이스(100c)를 통하여 스위치 소자(185)를 보다 효과적으로 냉각시킬 수 있고, 미들 케이스(100c)를 통하여 방열 경로를 제공함으로써 스위치 소자(185)와 냉각 유체가 서로 열적으로 연결되도록 할 수 있다. 이때, 도 3a에 도시된 바와 같이, 스위치 소자(185)는 미들 케이스(100c) 측에 배치되되, 회로기판(180)은 제1 커버(100a) 측에 배치될 수 있다. 또한, 도 3b에 도시된 바와 같이, 스위치 소자(185)와 함께, 스위치 소자(185)가 탑재된 회로기판(180)도 미들 케이스(100c) 측에 배치될 수 있다.
상기 미들 케이스(100c)는 격벽(150)으로부터 가장 멀리 떨어진 위치에서 냉각 유체와 넓은 접촉 면적을 형성하면서 냉각 유체의 원심력에 의해 냉각 유체와 높은 압력으로 접촉을 형성할 수 있다. 예를 들어, 도 2b에 도시된 바와 같이, 스위치 소자(185)가 제1 커버(100a) 측에 배치되는 실시형태와 비교할 때, 상기 미들 케이스(100c)는 냉각 유체와 넓은 접촉 면적을 형성하면서 냉각 유체의 원심력에 의해 냉각 유체와 높은 압력으로 접촉을 형성하므로, 보다 효율적인 방열 성능을 제공할 수 있다.
본 발명의 일 실시형태에서, 상기 케이스(100)는 제1, 제2 커버(100a,100b)와 미들 케이스(100c)의 3 분할된 형태로 형성될 수 있고, 이때, 상기 제1, 제2 커버(100a,100b)는, 배터리 셀(10)의 제1, 제2 단부(11,12)를 커버하며, 상기 미들 케이스(100c)는, 배터리 셀(10)의 길이 대부분을 커버할 수 있다. 즉, 상기 미들 케이스(100c)는, 제1, 제2 커버(100a,100b) 보다 넓은 면적으로 냉각 유체와 접촉을 형성할 수 있으며, 이에 따라, 스위치 소자(185)와 같은 발열 부품에 대한 효율적인 방열 성능을 제공할 수 있다.
상기 스위치 소자(185)는 격벽(180)과 마주하며 격벽(180)의 연장 방향을 따라 형성되는 미들 케이스(100c)의 장변부(100L3) 측에 배치될 수 있다. 상기 미들 케이스(100c)의 장변부(100L3)는 미들 케이스(100c)의 단변부(케이스 100의 제1, 제2 단변부 100S1,100S2) 보다 넓은 방열 면적을 제공할 수 있으며, 스위치 소자(185)의 탑재에 유리하도록 넓은 장착 면적을 제공할 수 있다. 상기 미들 케이스(100c)의 일 단변부(케이스 100의 제1 단변부 100S1) 측에는 냉각 유체의 인렛(I) 및 아웃렛(O)이 형성될 수 있으므로, 이들 구조와 물리적인 간섭을 회피하도록 상기 스위치 소자(185)는 미들 케이스(100c)의 장변부(100L3) 측에 배치될 수 있다.
상기 미들 케이스(100c)의 장변부(100L3)는 케이스(100)의 제1, 제2 단변부(100S1,100S2) 사이에서 격벽(150)의 연장 방향을 따라 형성되면서 냉각 유체의 흐름을 안내할 수 있고, 냉각 유체와 넓은 접촉 면적을 형성함과 동시에 높은 압력으로 냉각 유체와의 접촉을 형성할 수 있다.
상기 미들 케이스(100c)는 케이스(100)의 제1, 제2 단변부(100S1,100S2) 사이에서 연장되는 한 쌍의 장변부(100L3)를 포함할 수 있다. 이때, 본 발명의 일 실시형태에서, 상기 스위치 소자(185)가 탑재되는 미들 케이스(100c)의 장변부(100L3)는, 제1, 제2 커버(100a,100b)의 제2 장변부(100L2)와 가까운 장변부에 해당될 수 있다. 도 2b를 참조하여 설명된 바와 같이, 제1, 제2 커버(100a)의 제1 장변부(100L1) 측에는 제1, 제2 탭 플레이트(110a,110b)와 연결된 다수의 제1, 제2 리드(120a,120b)가 집중적으로 배치되므로, 이들 제1, 제2 리드(120a,120b)와의 전기적인 간섭을 피하도록 상기 스위치 소자(180)는 제1, 제2 커버(100a,100b)의 제2 장변부(100L2)에 가까운 장변부에 배치될 수 있다. 이때, 상기 스위치 소자(185)가 탑재되는 미들 케이스(100c)의 장변부(100L3)는, 상대적으로 고온의 냉각 유체가 유출되는 아웃렛(O) 보다는 상대적으로 저온의 냉각 유체가 유입되는 인렛(I)과 가까운 위치의 장변부, 그러니까, 아웃렛(O)과 연결된 하류부(A2) 보다는 인렛(I)과 연결된 상류부(A1)에 가까운 장변부에 해당될 수 있다.
본 발명의 일 실시형태에서, 상기 스위치 소자(185)는, 미들 케이스(100c)의 장변부(100L3)를 따라 케이스(100)의 제1, 제2 단변부(100S1,100S2) 중에서 어느 일 단변부(100S1,100S2)을 향하여 편향된 위치에 형성될 수 있다. 상기 스위치 소자(185)는, 충, 방전 패스 상에서 충방전 전류의 흐름을 단속할 수 있고, 이에 따라, 상기 스위치 소자(185)는 출력 단자(PE1,PE2, 도 4 참조)와 가까운 위치에 배치되도록 미들 케이스(100c)의 장변부(100L3)를 따라 케이스(100)의 제1, 제2 단변부(100S1,100S2) 중에서 어느 일 단변부(100S1,100S2)를 향하여 편향된 위치에 형성될 수 있다.
예를 들어, 상기 스위치 소자(185)는 미들 케이스(100c)의 장변부(100L3) 중에서 연통부(CN)와 인접한 제2 단변부(100S2) 측을 향하여 편향된 위치에 형성될 수 있으며, 달리 말하면, 인렛(I) 및 아웃렛(O)이 형성된 제1 단변부(100S1)와 반대되는 제2 단변부(100S2)를 향하여 편향된 위치에 형성될 수 있다. 상기 미들 케이스(100c)는 연통부(CN) 부근에서 냉각 유체의 원심력에 의해 냉각 유체와 높은 압력으로 접촉을 형성할 수 있으므로, 미들 케이스(100c)의 연통부(CN) 부근에 스위치 소자(185)를 배치할 수 있고, 연통부(CN)와 가까운 제2 단변부(100S2)를 향하여 편향된 위치에 스위치 소자(185)를 배치할 수 있다. 도 3b에 도시된 실시형태에서, 상기 미들 케이스(100c)의 장변부(100L3)에는 스위치 소자(185)와 함께, 스위치 소자(185)가 탑재된 회로기판(180)이 배치될 수 있으며, 회로기판(180)은 미들 케이스(100c)의 장변부(100L3) 방향을 따라 중심 위치에 배치되더라도, 회로기판(180) 상에 탑재된 스위치 소자(185)는 제2 단변부(100S2)를 향하여 편향된 위치에 배치될 수 있다. 본 발명의 다른 실시형태에서, 상기 회로기판(180)은 미들 케이스(100c)의 장변부(100L3) 방향을 따라 제1 단변부(100S1) 보다는 제2 단변부(100S2)를 향하여 상대적으로 편향된 위치에 배치될 수 있다. 이때, 회로기판(180) 상에는 스위치 소자(185)를 포함하여 다수의 회로 소자들이 배치될 수 있으므로, 회로기판(180)의 위치 설계에 따라 다수의 회로 소자들에 대해 보다 효율적인 방열이 제공될 수 있다. 한편, 도면에 도시되어 있지는 않지만, 상기 스위치 소자(185)는, 미들 케이스(100c)의 장변부(100L3) 방향을 따라 상대적으로 저온의 냉각 유체가 유입되는 인렛(I)이 형성된 케이스(100)의 제1 단변부(100S1)를 향하여 편향된 위치에 형성될 수도 있다.
도 3a 및 도 3b에 도시된 실시형태에서는, 상대적으로 충, 방전 전류가 집중되어 방열 부하가 집중되는 제1 탭 플레이트(110a)를 피하여 미들 케이스(100c) 측에 스위치 소자(185)와 같은 발열 부품을 배치함으로써 케이스(100)의 서로 다른 위치를 통하여 제1 탭 플레이트(110a)와 스위치 소자(185)의 방열 부하가 분산되도록 할 수 있고, 이들 사이의 전기적인 간섭을 회피할 수 있다.
도 4에는, 본 발명의 다른 실시형태에 관한 것으로, 도 2b에 도시된 코어팩을 수용하는 하우징의 분해 사시도가 도시되어 있다.
도 2b 및 4를 함께 참조하면, 본 발명의 다른 실시형태에 따른 배터리 팩은, 외부에 회로기판(180)이 장착되고, 내부에 다수의 배터리 셀(10)이 수납된 케이스(100)를 포함하는 코어팩(CP)과, 상기 코어팩(CP)을 수용하는 하우징(200)을 포함할 수 있다. 그리고, 상기 하우징(200)은, 코어팩(CP)을 사이에 두고 서로 마주하게 결합되는 하우징 본체(202)와, 하우징 커버(201)를 포함할 수 있다.
상기 하우징 본체(202)와 하우징 커버(201)는, 서로 다른 이종 소재로 형성될 수 있다. 예를 들어, 하우징 본체(202)는 알루미늄과 같은 금속 소재로 형성될 수 있고, 하우징 커버(201)는 사출 성형이 가능한 수지 소재로 형성될 수 있다. 상기 하우징 본체(202)와 하우징 커버(201)는, 코어팩(CP)을 사이에 두고 서로 마주하는 방향으로 결합될 수 있으며, 예를 들어, 서로 다른 이종 소재로 형성된 하우징 본체(202)와 하우징 커버(201)는, 클립 구조를 통하여 서로에 대해 결합될 수 있다. 즉, 상기 하우징 본체(202)와, 하우징 커버(201) 각각에는 클립(250)이 끼워질 수 있는 클립 홈(201c,202c)이 형성될 수 있고, 클립 홈(201c,202c)끼리 서로 맞닿도록 하우징 본체(202)와 하우징 커버(201)를 위치 정렬시킨 후, 서로 맞닿게 배치된 클립 홈(201c,202c)에 함께 끼워지는 클립(250)을 통하여 하우징 본체(202)와 하우징 커버(201)를 서로 결합시킬 수 있다.
상기 하우징 본체(202)는, 코어팩(CP)의 전부 또는 대부분을 수용하는 공간을 제공하며, 상기 하우징 커버(201)는, 하우징 본체(202)의 상부를 덮어 내부 공간을 밀폐하는 기능을 한다. 상기 하우징 본체(202)는 전체 배터리 팩의 구조적인 강성을 제공하면서도 방열 성능에 유리한 알루미늄 또는 알루미늄 합금과 같은 금속 소재로 형성될 수 있으며, 상기 회로기판(180) 중에서 상기 하우징 본체(202)의 측면과 마주하는 측에는 절연 포장된 전기 소자, 예를 들어, 절연 수지로 포장되어 있는 스위치 소자(185, 도 2b 참조)가 배치되어, 회로기판(180)과 하우징 본체(202) 사이의 전기적인 절연을 제공할 수 있다. 본 발명의 일 실시형태에서, 도 2b에 도시된 코어팩(CP)은, 회로기판(180)이 하우징 본체(202)의 측면을 향하도록 세워진 직립 상태로 하우징 본체(202)에 수납될 수 있으며, 이때, 회로기판(180)과 하우징 본체(202)의 측면 사이에 배치된 스위치 소자(185, 도 2b 참조)를 통하여 회로기판(180)과 하우징 본체(202) 사이의 절연이 제공될 수 있다.
도 5에는, 도 1에 도시된 케이스의 분해 사시도가 도시되어 있다. 도 6에는, 도 5에 도시된 케이스 내부에 형성되는 냉각 유체의 흐름을 보여주는 도면이 도시되어 있다.
상기 케이스(100)는, 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)의 3분할된 형태로 형성될 수 있으며, 각각 서로 다른 부재로 형성된 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)의 결합에 의해 밀폐된 수용 공간(A)이 제공될 수 있다. 상기 미들 케이스(100c)와 제1, 제2 커버(100a,100b)는 레이저 용접에 의해 서로 결합될 수 있으며, 미들 케이스(100c)와 제1 커버(100a) 사이의 경계를 따라 제1 레이저 용접부(L1, 도 2b 참조)가 형성될 수 있고, 미들 케이스(100c)와 제2 커버(100b) 사이의 경계를 따라 제2 레이저 용접부(L2, 도 2b 참조)가 형성될 수 있다. 상기 케이스(100)는, 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)의 3분할된 형태로 형성됨으로써, 레이저 용접 위치를 배터리 팩의 상부 및 하부에 가까운 위치로 형성할 수 있고, 배터리 팩의 상부 및 하부로부터 사선 방향으로 조사되는 레이저 빔에 용이하게 노출될 수 있도록 용접 위치를 조정함으로써, 레이저 용접의 작업 편이성이 향상될 수 있다.
상기 미들 케이스(100c)와 제1, 제2 커버(100a,100b)는, 사출 성형을 통하여 형성될 수 있으며, 사출 성형이 가능하면서도 레이저 용접이 가능한 엔지니어링 플라스틱 소재로 형성될 수 있다. 보다 구체적으로, 상기 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)는, 글래스 파이버를 포함하는 폴리아미드(polyamide) 계열로 형성될 수 있다. 예를 들어, 서로에 대해 적층된 두 개의 모재를 레이저 용접하기 위한 광학적인 조건으로, 레이저 조사 방향을 따라 상대적으로 근거리의 모재는 적정 이상의 레이저 투과율을 가질 필요가 있고, 레이저 조사 방향을 따라 상대적으로 원거리의 모재는 적정 이상의 레이저 흡수율을 가질 필요가 있으며, 상기 미들 케이스(100c)와, 제1, 제2 커버(100a,100b)는 이러한 광학적인 특성을 만족하도록 글래스 파이버를 포함하는 폴리아미드(polyamide) 계열로 형성될 수 있다.
도 1 및 도 5를 참조하면, 상기 제2 커버(100b)에는, 가이드 리브(G)가 형성될 수 있다. 상기 가이드 리브(G)는, 배터리 셀(10)의 조립 위치를 정의하는 것으로, 배터리 셀(10)의 제2 단부(12)를 둘러싸도록 제2 커버(100b)로부터 배터리 셀(10)의 제2 단부(12)를 향하여 돌출 형성될 수 있다. 상기 제2 커버(100b)와 유사하게, 제1 커버(100a)에도 배터리 셀(10)의 조립 위치를 정의하기 위한 가이드 리브(G)가 형성될 수 있으며, 제1 커버(100a)의 가이드 리브(G)는 배터리 셀(10)의 제1 단부(11)를 둘러싸도록 제1 커버(100a)로부터 배터리 셀(10)의 제1 단부(11)를 향하여 돌출 형성될 수 있다. 상기 제1, 제2 커버(100a,100b) 측의 가이드 리브(G)는 각각 동일한 배터리 셀(10)의 서로 다른 제1, 제2 단부(11,12)를 둘러싸도록 형성되어, 배터리 셀(10)의 조립 위치를 규제하기 위한 것으로, 서로 대응되는 위치에 형성될 수 있다.
상기 가이드 리브(G) 사이에는 유격부(103`)가 형성될 수 있다. 예를 들어, 상기 유격부(103`)는 외주끼리 인접하도록 이웃하는 4개의 가이드 리브(G) 사이의 여분의 공간으로 마련될 수 있다. 후술하는 바와 같이, 상기 유격부(103`)는 케이스(100) 내부에 설치되는 격벽(150)의 위치 고정을 위한 결합 위치를 제공할 수 있다. 예를 들어, 상기 제1, 제2 커버(100a,100b) 측의 유격부(103`)는 서로 대응되는 위치에 형성되어, 케이스(100) 내부에 설치되는 격벽(150)의 위치 고정을 위한 결합 위치를 제공할 수 있다. 상기 가이드 리브(G) 및 유격부(103`)에 관한 기술적 사항은 후에 보다 구체적으로 설명하기로 한다.
상기 제1, 제2 커버(100a,100b)는, 배터리 셀(10)의 제1, 제2 단부(11,12)를 커버하며, 상기 미들 케이스(100c)는, 배터리 셀(10)의 길이 대부분을 커버할 수 있다. 즉, 상기 배터리 셀(10)의 길이 방향을 따라, 상기 미들 케이스(100c)는 제1, 제2 커버(100a,100b) 보다 길게 연장 형성될 수 있다. 상기 미들 케이스(100c)는, 배터리 셀(10)의 외곽을 둘러싸면서 수용 공간(A)을 정의할 수 있고, 상기 수용 공간(A) 내부에 형성되는 격벽(150)과 일체로 형성될 수 있다. 즉, 상기 미들 케이스(100c)와 격벽(150)은 사출 성형을 통하여 일체로 형성될 수 있다.
도 5 및 도 6을 참조하면, 상기 케이스(100)는 배터리 셀(10)의 냉각을 위한 냉각 유체의 흐름을 수용할 수 있으며, 상기 케이스(100) 내에는 배터리 셀(10)의 수용 공간(A)을 가로질러 연장되면서, 상기 수용 공간(A)을, 상류부(A1)와 하류부(A2)로 구획하는 격벽(150)이 형성될 수 있다. 상기 상류부(A1)는, 냉각 유체의 인렛(I)과 연결되어 상대적으로 저온의 냉각 유체가 유입될 수 있고, 상기 하류부(A2)는 냉각 유체의 아웃렛(O)과 연결되어 상대적으로 고온의 냉각 유체가 배출될 수 있다. 상기 냉각 유체의 인렛(I)과 아웃렛(O)은, 격벽(150)의 연장 방향을 따라 일단 측에 형성될 수 있으며, 상기 격벽(150)의 연장 방향을 따라 타단 측에는 상기 상류부(A1)와 하류부(A2)를 연결하는 연통부(CN)가 형성될 수 있다. 상기 연통부(CN)는 상류부(A1)와 하류부(A2)를 연결하면서 일단 측의 인렛(I)으로부터 타단 측으로 흘러온 상류부(A1)의 흐름을 반전시키고 냉각 유체의 흐름을 유턴시킴으로써 타단 측으로부터 일단 측의 아웃렛(O)을 향하는 하류부(A2)의 흐름을 형성할 수 있다.
상기 인렛(I)과 아웃렛(O)은, 상기 격벽(150)의 연장 방향을 따라 일단 측에 형성될 수 있고, 예를 들어, 케이스(100)의 제1 단변부(100S1) 측에 함께 형성될 수 있다. 이와 같이, 상기 인렛(I)과 아웃렛(O)은, 케이스(100)의 제1 단변부(100S1) 측에 함께 형성되며, 예를 들어, 케이스(100)의 서로 반대측에 위치하는 제1, 제2 단변부(100S1,100S2) 측에 각각 형성되지 않고 제1 단변부(100S1) 측에 집중적으로 형성됨으로써, 케이스(100)의 유체적인 연결이 용이하게 이루어질 수 있다. 예를 들어, 상기 케이스(100)는, 격벽(150)의 연장 방향과 나란한 한 쌍의 장변부와, 한 쌍의 장변부를 서로 연결하는 제1, 제2 단변부(100S1,100S2)를 포함할 수 있고, 상기 인렛(I)과 아웃렛(O)은, 제1 단변부(100S1) 측에 집중적으로 형성될 수 있으며, 제1 단변부(100S1)와 반대되는 제2 단변부(100S2) 측에는 형성되지 않을 수 있다.
본 발명에서는 인렛(I)과 아웃렛(O)을 케이스(100)의 제1 단변부(100S1) 측에 형성하고, 케이스(100) 내부의 격벽(150)을 통하여 인렛(I)의 흐름과 아웃렛(O)의 흐름을 연결하도록 케이스(100)의 제2 단변부(100S2) 측에서 유턴 형태로 냉각 유체의 흐름을 반전시킴으로써, 냉각 유체의 흐름에 상대적으로 큰 유동 저항을 제공할 수 있으며, 이에 따라, 냉각 유체가 케이스(100)의 내부(수용 공간 A의 내부)를 완전히 또는 대부분 채우도록 냉각 유체의 흐름을 형성할 수 있다. 이와 달리, 냉각 유체의 흐름에 충분한 유동 저항이 제공되지 않는다면, 예를 들어, 케이스(100)의 제1 단변부(100S1) 측으로부터 케이스(100)의 제2 단변부(100S2) 측을 향하여 일 방향으로 흘러가는 냉각 유체의 흐름을 형성할 경우, 냉각 유체가 케이스(100)의 상부나 코너 부분과 같이 취약한 공간을 채우지 않고 그대로 흘러감으로써, 냉각의 공백이 형성될 수 있다.
본 발명에서는 배터리 셀(10)의 수용 공간(A)을 2분할하여 냉각 유체의 인렛(I)과 연결된 상류부(A1)와, 냉각 유체의 아웃렛(O)과 연결된 하류부(A2)로 구획함으로써, 냉각 유체가 흘러가는 단면적(방열 대상에 해당되는 단면적)이 수용 공간(A)의 횡단면적의 1/2로 축소될 수 있고, 이에 따라, 냉각 유체의 방열 성능이 향상될 수 있다. 이와 달리, 케이스(100)의 제1 단변부(100S1) 측으로부터 케이스(100)의 제2 단변부(100S2) 측을 향하여 일 방향으로 흘러가는 냉각 유체의 흐름을 형성할 경우, 냉각 유체가 흘러가는 단면적(방열 대상에 해당되는 단면적)이 수용 공간(A)의 횡단면적과 같게 되므로, 냉각 유체가 흘러가는 단면적(방열 대상에 해당되는 단면적)을 1/2로 줄이기 위해서는, 케이스(100)의 제1, 제2 단변부(100S1,100S2) 측에 각각 별도의 인렛(I)과 아웃렛(O)이 연결될 필요가 있고, 이는 냉각 유체의 연결 구조를 복잡화하게 되는 문제와 함께, 냉각 유체의 누수 가능성을 높이게 된다는 문제를 야기할 수 있다.
본 발명의 다양한 실시형태에서, 상기 인렛(I) 및 아웃렛(O)은 케이스의 제1, 제2 단변부(100S1, 100S2)에 분산되어 형성될 수 있고, 서로 동수로 형성되지 않고 서로 다른 개수로 형성될 수 있으며, 각각 둘 이상 다수로 형성될 수 있다. 예를 들어, 상기 격벽(150)은 둘 이상 다수로 마련될 수 있고, 각각 분할된 영역마다 인렛(I) 또는 아웃렛(O)이 제공되도록 둘 이상 다수의 인렛(I) 또는 아웃렛(O)이 형성될 수도 있으며, 이때, 인렛(I)과 아웃렛(O)은 동수가 아닌 서로 다른 개수로 마련될 수도 있다. 다만, 도 5에 도시된 실시형태에서, 상기 인렛(I) 및 아웃렛(O)은 케이스(100)의 제1 단변부(100S1) 측에 함께 형성되며, 쌍을 이루도록 각각 하나씩 단수로 형성될 수 있고, 이러한 실시형태에서, 케이스(100)의 유체적인 연결이 용이하게 이루어질 수 있으며, 적정의 유동 저항을 통하여 케이스(100)의 상부나 코너 부분과 같이 취약한 공간에서 발생될 수 있는 냉각의 공백을 해소할 수 있으며, 냉각 유체가 흘러가는 단면적(방열 대상에 해당되는 단면적)이 축소되어 냉각 유체의 방열 성능이 향상될 수 있음은 앞서 설명된 바와 같다.
도 6을 참조하면, 상기 가이드 리브(G, 또는 배터리 셀 10)는, 격벽(150)의 연장 방향을 따라 열을 이루어 배열될 수 있고, 이때, 상기 격벽(150)은, 가이드 리브(G, 또는 배터리 셀 10)가 형성하는 다수의 열을, 동일한 개수의 열로 2분할하도록 서로 이웃한 제1, 제2 열(R1,R2) 사이를 가로질러 연장될 수 있다.
본 발명의 일 실시형태에서, 상기 가이드 리브(G, 또는 배터리 셀 10)는, 격벽(150)의 연장 방향을 따라 8개의 열로 배열될 수 있고, 이때, 상기 격벽(150)은, 8개의 열을 2분할하여, 4개씩의 열로 각각 상류부(A1) 및 하류부(A2)를 형성할 수 있다. 이와 같이, 상류부(A1)와 하류부(A2)에 속하는 배터리 셀(10)의 개수를 대략 동등한 수준으로 맞춤으로써, 냉각 유체의 방열 부담이 상류부(A1)와 하류부(A2)에서 균등하게 배분될 수 있도록 할 수 있다.
상기 격벽(150)이 서로 이웃한 제1, 제2 열(R1,R2) 사이를 가로질러 연장된다고 할 때, 상기 제1 열(R1)의 가이드 리브(G, 또는 배터리 셀 10)가 제2 열(R2)의 가이드 리브(G, 또는 배터리 셀 10) 사이 사이에 끼워지도록 제1, 제2 열(R1,R2)이 서로 인접한 위치에 배열될 수 있고, 이때, 상기 격벽(150)은 제1, 제2 열(R1,R2) 사이를 미앤더(meander) 형태로 가로질러 연장될 수 있다. 예를 들어, 상기 격벽(150)은, 제1, 제2 열(R1,R2)의 가이드 리브(G, 또는 배터리 셀 10)의 외면을 따라 지그 재그 패턴으로 연장되면서 다수의 절곡된 부분을 포함할 수 있다.
도 5를 참조하면, 상기 격벽(150)은, 수용 공간(A)을 가로질러 연장되는 본체부(155)와, 본체부(155)의 연장 방향을 따라 일단으로부터 타단으로 가면서 제1, 제2 커버(100a,100b)를 향하여 간헐적인 위치에서 돌출 형성되는 제1, 제2 결합부(151,152)를 포함할 수 있다. 상기 제1, 제2 결합부(151,152)는, 제1, 제2 커버(100a,100b)의 유격부(103`)에 각각 결합될 수 있다.
상기 제2 결합부(152)는, 제2 커버(100b)의 유격부(103`)와 맞닿도록 격벽(150)의 본체부(155)로부터 돌출될 수 있고, 서로 맞닿은 제2 결합부(152)와 제2 커버(100b)의 유격부(103`)는, 레이저 용접을 통하여 서로 결합될 수 있으며, 제2 커버(100b)의 유격부(103`)에는 제2 결합부(152)와의 용접부가 형성될 수 있다. 유사하게, 상기 제1 결합부(151)는, 제1 커버(100a)의 유격부(103`)와 맞닿도록 격벽(150)의 본체부(155)로부터 돌출될 수 있고, 서로 맞닿은 제1 결합부(151)와 제1 커버(100a)의 유격부(103`)는, 레이저 용접을 통하여 서로 결합될 수 있으며, 제1 커버(100a)의 유격부(103`)에는 제1 결합부(151)와의 용접부가 형성될 수 있다. 상기 제1, 제2 결합부(151,152)는 격벽(150)의 연장 방향을 따라 서로 대응되는 위치에 형성되어, 서로 대응되는 위치에 형성된 제1, 제2 커버(100a,100b)의 유격부(103`)에 각각 결합될 수 있다.
상기 격벽(150)은, 미들 케이스(100c)와 함께 일체적으로 형성될 수 있으며, 예를 들어, 미들 케이스(100c)와 함께 사출 성형으로 형성될 수 있다. 이때, 상기 제1, 제2 결합부(151,152)는 미들 케이스(100c)로부터 돌출되어 상기 제1, 제2 커버(100a,100b)의 유격부(103`)에 각각 결합될 수 있다.
상기 격벽(150)의 본체부(155)는, 격벽(150)의 연장 방향을 따라 서로 다른 제1, 제2 높이(h1,h2)로 형성될 수 있다. 상기 격벽(150)의 본체부(155)는, 인렛(I)과 아웃렛(O)이 형성된 일단 측(제1 단변부 100S1 측)으로부터 대부분의 길이에 걸쳐서 제1 높이(h1)로 형성될 수 있으며, 제1, 제2 커버(100a,100b) 사이에서 상류부(A1)와 하류부(A2)를 구획할 수 있다. 상기 격벽(150)의 본체부(155)는, 인렛(I)과 아웃렛(O)이 형성된 일단 측과 반대되는 타단 측(제2 단변부 100S2 측)에서, 상류부(A1)와 하류부(A2) 사이를 서로 연결해주는 연통부(CN)를 형성하도록, 타단 측(제2 단변부 100S2 측)에서는 일단 측(제1 단변부 100S1 측)의 제1 높이(h1) 보다 낮은 제2 높이(h2)로 형성될 수 있고, 상기 제1 높이(h1)와 제2 높이(h2) 사이의 높이 단차에 해당되는 연통부(CN)를 형성할 수 있다. 즉, 상기 격벽(150)의 본체부(155)는, 일단 측의 제1 높이(h1)로부터 타단 측의 제2 높이(h2)로 단차지게 형성될 수 있으며, 제1, 제2 높이(h1,h2) 사이의 높이 단차에 해당되는 연통부(CN)를 형성할 수 있다.
상기 제1 높이(h1)에 대한 제2 높이(h2)의 상대적인 비율이 증가하면, 제1, 제2 높이(h1,h2) 사이의 높이 단차가 감소하면서 연통부(CN)의 크기가 줄어들게 되어 냉각 유체의 유동 저항은 증가하고 유속은 감소하는 반면에, 격벽(150)의 기계적인 강성은 증가하게 된다. 역으로, 상기 제1 높이(h1)에 대한 제2 높이(h2)의 상대적인 비율이 감소하면, 제1, 제2 높이(h1,h2) 사이의 높이 단차가 증가하면서 연통부(CN)의 크기가 증가하게 되어 냉각 유체의 유동 저항은 감소하고 유속은 증가되지만, 격벽(150)의 강성은 감소하게 된다. 본 발명에서는 냉각 유체의 유동 저항에 따른 구동 동력을 고려하면서 동시에 격벽(150)의 형태를 견고하게 유지하고 충분한 강성이 제공될 수 있도록 격벽(150)의 제1 높이(h1)에 대한 제2 높이(h2)의 상대적인 비율이 적정하게 설계될 수 있다.
상기 제2 높이(h2)로 형성된 부분은, 제1 높이(h1)로 형성된 부분의 중앙 위치에 형성될 수 있고, 이에 따라, 상기 제2 높이(h2)로 형성된 부분과 제1 높이(h1)로 형성된 부분 사이에는 상부 단차 및 하부 단차가 형성될 수 있다. 이때, 상기 연통부(CN)는, 제1 커버(100a) 측에 가까운 상부 단차에 해당되는 제1 연통부(CN1)와, 제2 커버(100b) 측에 가까운 하부 단차에 해당되는 제2 연통부(CN2)를 포함할 수 있으며, 격벽(150)의 높이 방향을 따라 서로 반대 위치에 형성된 제1, 제2 연통부(CN1,CN2)를 통하여 상류부(A1)와 하류부(A2) 사이의 냉각 유체의 흐름이 원활하게 이어질 수 있다. 예를 들어, 상기 제1 연통부(CN1)는, 배터리 셀(10)의 제1 단부(11) 측과 접촉하는 냉각 유체의 흐름을 형성할 수 있고, 제2 연통부(CN2)는, 배터리 셀(10)의 제2 단부(12) 측과 접촉하는 냉각 유체의 흐름을 형성할 수 있다. 제1, 제2 연통부(CN1,CN2)를 통하여 상대적으로 발열이 집중되는 제1, 제2 단부(11,12) 측에 냉각 유체의 흐름을 형성할 수 있다.
본 발명의 일 실시형태에서, 상기 연통부(CN)는, 격벽(150)의 본체부(155)에 형성된 제1, 제2 높이(h1,h2) 단차에 해당되는 오프닝으로 제공될 수 있다. 본 발명의 다른 실시형태에서, 상기 연통부(CN)는, 격벽(150)의 본체부(155)에 형성된 홀 형태의 오프닝으로 제공될 수 있으며, 이러한 홀 형태의 연통부(CN)를 통하여 상류부(A1)와 하류부(A2)의 냉각 유체의 흐름이 서로 이어지면서 U-턴 형태의 냉각 유체의 흐름이 형성될 수 있다.
본 발명의 일 실시형태에서, 상기 연통부(CN)는, 격벽(150) 중에서 본체부(155)에 형성될 수 있다. 상기 격벽(150)의 본체부(155)는, 수용 공간(A)을 가로질러 연장되면서, 냉각 유체의 흐름을 가이드 하는 역할을 하며, 이런 의미에서 냉각 유체의 반전 흐름을 유도하기 위한 연통부(CN)는, 격벽(150)의 본체부(155)에 형성될 수 있다. 본 발명의 다른 실시형태에서, 상기 격벽(150)은, 제1, 제2 커버(100a,100b)에 결합되는 제1, 제2 결합부(151,152)를 포함하지 않을 수 있고, 이러한 실시형태의 격벽(150)에서는, 제1, 제2 결합부(151,152)와 본체부(155)가 구분되지 않으므로, 상기 연통부(CN)는, 격벽(150) 자체에 형성된다고 할 수 있다.
도 7a 및 도 7b에는, 도 1에 도시된 제1 커버의 분해 사시도 및 평면도가 도시되어 있다.
도 1, 도 7a 및 도 7b를 참조하면, 상기 케이스(100)는, 배터리 셀(10)의 냉각을 위한 냉각 유체를 기밀하게 수용할 수 있고, 냉각 유체로 채워진 수용 공간(A)의 내부로부터 냉각 유체의 누수를 차단할 수 있도록 수용 공간(A)에 대한 실링을 제공할 수 있다.
상기 케이스(100)의 제1, 제2 커버(100a,100b)에는 배터리 셀(10)의 제1, 제2 단부(11,12)를 노출시키기 위한 제1, 제2 단자 홀(101`,102`)이 형성될 수 있고, 제1, 제2 단자 홀(101`,102`)로부터 노출된 배터리 셀(10)의 제1, 제2 단부(11,12)를 통하여 배터리 셀(10)의 전기적인 연결이 이루어질 수 있다.
상기 제1, 제2 단자 홀(101`,102`)은, 제1, 제2 단자 홀(101`,102`)을 통하여 배터리 셀(10)의 제1, 제2 단부(11,12)가 완전히 빠져 나오지 않도록 배터리 셀(10)의 제1, 제2 단부(11,12) 중에서 중앙부만을 노출시킬 수 있고, 제1, 제2 단부(11,12) 중에서 테두리부는 제1, 제2 단자 홀(101`,102`) 주변의 제1, 제2 커버(100a,100b)에 의해 커버될 수 있다.
도 1 및 도 7b를 함께 참조하면, 상기 제1, 제2 커버(100a,100b)에는, 가이드 리브(G)가 형성될 수 있다. 상기 가이드 리브(G)는, 배터리 셀(10) 제1, 제2 단부(11,12)의 외주를 둘러싸는 것으로, 배터리 셀(10)의 제1, 제2 단자 홀(101`,102`)을 둘러싸는 차단 리브(B) 보다는 외측 위치에 형성될 수 있으며, 제1, 제2 단자 홀(101`,102`)을 중심으로, 내측 위치의 차단 리브(B)와 외측 위치의 가이드 리브(G)는, 상기 제1, 제2 커버(100a,100b)로부터 배터리 셀(10)의 제1, 제2 단부(11,12)를 향하여 나란하게 연장되는 동심원 형태로 형성될 수 있다. 상기 가이드 리브(G)는 배터리 셀(10)의 조립 위치를 규제하면서, 실링부재(S, 도 7b 참조)의 외측에서 실링부재(S)를 정 위치로 고정시켜주는 역할을 할 수 있고, 실링부재(S)의 유동이나 흔들림을 방지해줄 수 있다. 상기 차단 리브(B) 및 실링부재(S)에 관한 기술적 사항은, 후에 보다 구체적으로 설명하기로 한다.
상기 가이드 리브(G)는, 배터리 셀(10) 제1, 제2 단부(11,12)의 외곽을 둘러싸도록 환상으로 형성될 수 있고, 상기 가이드 리브(G)는 열을 이루어 배열되되, 서로 이웃한 열의 가이드 리브(G)는, 서로 서로의 골 영역에 끼워지도록 인접한 위치에 배치될 수 있다. 상기 가이드 리브(G)는 배터리 셀(10)과 대응되는 위치에 형성되므로, 서로 이웃한 열의 배터리 셀(10)이 서로 서로의 골 영역에 끼워지도록 인접하게 배열됨에 따라 가이드 리브(G)의 배열도 배터리 셀(10)의 배열에 대응되는 패턴으로 형성될 수 있다.
상기 가이드 리브(G) 사이에는 유격부(103`)가 형성될 수 있고, 보다 구체적으로, 상기 유격부(103`)는 가이드 리브(G)의 골 영역을 사이에 두고 서로 마주하도록 이웃하는 가이드 리브(G) 사이에 형성될 수 있다. 예를 들어, 상기 유격부(103`)는 외주끼리 인접하도록 이웃하는 4개의 가이드 리브(G) 사이의 여분의 공간으로 마련될 수 있다.
상기 유격부(103`)는 이웃하는 가이드 리브(G)의 공차를 흡수할 수 있으며, 케이스(100) 내부에 설치되는 격벽(150, 도 5 참조)의 위치 고정을 위한 결합 위치를 제공할 수 있다. 상기 유격부(103`)는, 제1, 제2 커버(100a,100b)로부터 돌출되는 가이드 리브(G)의 두께 보다는 얇은 두께로 형성됨으로써, 격벽(150, 도 5 참조)의 결합 위치를 제공할 수 있으며, 또한, 사출 성형시 고온의 용융 수지가 상온으로 냉각되면서 유격부(103`)의 부피 수축에 따라 서로 이웃한 가이드 리브(G) 사이의 간격이 왜곡되는 것을 방지할 수 있다.
도 7a 및 도 7b를 참조하면, 제1 커버(100a)에는 실링부재(S)가 배치될 수 있다. 보다 구체적으로, 제1 단자 홀(101`) 외측에는, 제1 단자 홀(101`)을 통한 냉각 유체의 누출 경로를 차단하기 위한 실링부재(S)가 배치될 수 있다. 도면에 도시되어 있지는 않지만, 제2 커버(100b) 측 제2 단자 홀(102`)의 외측에도 제2 단자 홀(102`)을 통한 냉각 유체의 누출 경로를 차단하기 위한 또 다른 실링부재(S)가 배치될 수 있다. 이하에서는 제1 단자 홀(101`) 측에 배치된 실링부재(S)를 위주로 설명하고 있으나, 제2 단자 홀(102`) 측에 배치된 또 다른 실링부재(S)에 대해서도 실질적으로 동일한 기술적 특징이 적용될 수 있다.
상기 실링부재(S)는 제1 단자 홀(101`)을 연속적으로 둘러싸도록 환상으로 형성될 수 있다. 본 발명의 일 실시형태에서, 상기 실링부재(S, 보다 구체적으로, 제1 실링부재 S1)는, 서로 개별적으로 형성되어 각각의 제1 단자 홀(101`)을 둘러싸도록 다수로 배열될 수 있으며, 각각의 실링부재(S, 보다 구체적으로, 제1 실링부재 S1)는 배터리 셀(10)의 제1 단부(11)를 둘러싸는 가이드 리브(G)의 내측에 위치 정렬될 수 있다. 본 발명의 다른 실시형태에서, 다수의 실링부재(S, 제1 실링부재 S1)는 하나의 시트 형태를 이루도록 서로 연결될 수 있으며, 이 경우, 1회의 위치 정렬에 의해 다수의 제1 단자 홀(101`)에 대해 각각의 실링부재(S, 제1 실링부재 S1)가 동시에 위치 정렬될 수 있다.
도 8에는 도 1의 VIII-VIII 선을 따라 절개한 사시도가 도시되어 있다.
도면을 참조하면, 상기 실링부재(S)는 제1 단자 홀(101`)의 외측에서 제1 단자 홀(101`)을 이중으로 둘러싸는 제1, 제2 실링부재(S1,S2)를 포함할 수 있다. 상기 제1 단자 홀(101`)은, 제1, 제2 실링부재(S1,S2)에 의해 이중으로 둘러싸여 실링될 수 있으며, 상기 제1, 제2 실링부재(S1,S2)는, 제1 단자 홀(101`)의 외측에서 제1 커버(100a)와 배터리 셀(10)의 제1 단부(11) 사이의 틈새를 이중으로 차단할 수 있다.
상기 제1, 제2 실링부재(S1,S2)는 제1 단자 홀(101`)을 연속적으로 둘러싸도록 환상으로 형성될 수 있다. 보다 구체적으로, 상기 제1 실링부재(S1)는 상대적으로 외측 위치에서 제1 단자 홀(101`)을 둘러싸도록 환상으로 형성될 수 있으며, 상기 제2 실링부재(S2)는, 상대적으로 내측 위치에서 제1 단자 홀(101`)을 둘러싸도록 환상으로 형성될 수 있다.
상기 제1 실링부재(S1)는, 정형화된 형태로 형성되어 제1 커버(100a)와 함께 인서트 사출로 형성될 수 있다. 예를 들어, 상기 제1 실링부재(S1)는, 실링 특성이 우수한 탄성 소재로 형성될 수 있으며, 예를 들어, EPDM과 같은 고무 소재로 형성될 수 있다.
상기 제1 실링부재(S1)는, 제1 커버(100a)로부터 돌출된 돌출부(S11)를 포함할 수 있다. 상기 제1 실링부재(S1)는 제1 커버(100a)와 배터리 셀(10)의 제1 단부(11) 사이의 틈새를 차단하기 위한 것으로, 제1 실링부재(S1) 중 돌출부(S11)는 제1 커버(100a)로부터 돌출되어, 배터리 셀(10)의 제1 단부(11)에 접촉될 수 있다. 예를 들어, 상기 돌출부(S11)는 제1 단자 홀(101`)을 둘러싸며 제1 단자 홀(101`)을 통한 냉각 유체의 누출 경로를 차단할 수 있고, 이를 위해, 제1 커버(100a)로부터 돌출되어 배터리 셀(10)의 제1 단부(11)에 대해 탄성적으로 가압 접촉될 수 있다.
이와 같이, 제1 실링부재(S1)의 일부는 제1 커버(100a)로부터 돌출되어 배터리 셀(10)의 제1 단부(11)에 접촉되는 돌출부(S11)를 형성할 수 있으며, 제1 실링부재(S1)의 다른 일부는 제1 커버(100a)에 형성된 결합 홈(S`)에 끼워져 제1 실링부재(S1)를 위치 고정하기 위한 매립부(S12)를 형성할 수 있다. 상기 돌출부(S11)와 매립부(S12)는 제1 실링부재(S1)의 일측 및 타측을 형성하도록 서로 맞붙어 있을 수 있다.
상기 매립부(S12)와 제1 커버(100a)의 결합 홈(S`)은, 서로 정합되도록 상보적인 형상으로 형성될 수 있고, 서로로부터 이탈되지 않도록 더브 테일(dove-tail) 형상으로 형합을 이룰 수 있다. 보다 구체적으로, 상기 매립부(S12)는, 결합 홈(S`)의 인입 방향을 따라 점진적으로 증대되는 폭을 가질 수 있고, 결합 홈(S`)의 인입 방향을 따라 증대되는 매립부(S12)의 폭은, 결합 홈(S`)으로부터 매립부(S12)의 이탈을 저지하는 걸림턱으로 작용할 수 있다.
상기 매립부(S12)는, 인서트 사출에 의해 제1 커버(100a)의 결합 홈(S`)에 끼워진 형태로 형성될 수 있다. 예를 들어, 더브 테일(dove-tail) 형상의 매립부(S12)를 포함하는 제1 실링부재(S1)를, 제1 커버(100a)의 용융 수지가 주입되는 금형(미도시) 내에 가 고정시킨 뒤, 용융 수지를 주입함으로써, 더브 테일 형상의 매립부(S12)와 정합되는 결합 홈(S`)을 갖춘 제1 커버(100a)가 형성될 수 있다. 그리고, 상기 매립부(S12)는, 제1 커버(100a)의 결합 홈(S`)에 매립되어 있는 형태로 형성될 수 있다.
상기 제1, 제2 실링부재(S1,S2)는, 제1 단자 홀(101`) 외측의 서로 다른 위치에서 제1 단자 홀(101`)을 둘러싸도록 형성될 수 있다. 즉, 상기 제1 실링부재(S1)는, 제1 단자 홀(101`)의 외측에 배치될 수 있고, 상기 제2 실링부재(S2)는, 상기 제1 단자 홀(101`)의 반경 방향을 따라 제1 단자 홀(101`)과 제1 실링부재(S1) 사이에 형성될 수 있다.
참고로, 본 명세서를 통하여, 제1 단자 홀(101`)의 반경 방향이란, 제1 단자 홀(101`)이 원형으로 형성됨을 한정하는 것은 아니며, 제1 단자 홀(101`)은 원형이나 타원형을 포함하는 여타의 형상으로 형성될 수 있고, 이때, 상기 제1 단자 홀(101`)의 반경 방향이란, 제1 단자 홀(101`)의 중심 위치로부터 주위를 향하여 방사상으로 확산되는 방향을 의미할 수 있다.
상기 제2 실링부재(S2)는, 제1 단자 홀(101`)과 제1 실링부재(S1) 사이에 채워질 수 있으며, 가열에 따라 유동성에 차이를 둘 수 있는 소재로 형성될 수 있다. 예를 들어, 상기 제2 실링부재(S2)는 고온에서 액상 또는 액상에 가까운 겔 상으로 존재할 수 있으며, 제1 단자 홀(101`)과 제1 실링부재(S1) 사이의 충진 공간(F)으로 스며들어 충진 공간(F)을 채울 수 있도록 충분한 유동성을 가질 수 있고, 상온으로 냉각되면서 고화될 수 있다. 상기 제2 실링부재(S2)의 소재는, 열이나 압력에 따라 유동성에 차이가 생기거나 또는 자외선과 같이 특정 파장대의 광을 조사함에 따라 유동성에 차이가 생길 수 있는 소재로 형성될 수 있으며, 가열, 가압, 광의 조사 등 다양한 유동성 조절 인자에 따라 유동성에 차이를 둘 수 있는 소재로 형성될 수 있다.
상기 제1 단자 홀(101`)의 외측에는, 유동성을 띤 제2 실링부재(S2)가 제1 단자 홀(101`)로 스며들지 못하도록 차단 리브(B)가 형성될 수 있다. 예를 들어, 상기 차단 리브(B)는, 제1 커버(100a)로부터 배터리 셀(10)의 제1 단부(11)를 향하여 돌출되도록 형성됨으로써, 유동성을 띤 제2 실링부재(S2)가 제1 커버(100a)와 배터리 셀(10)의 제1 단부(11) 사이의 틈새를 통하여 제1 단자 홀(101`)의 내측으로 스며들지 못하도록 제2 실링부재(S2)의 충진 공간(F)을 정의할 수 있다. 상기 차단 리브(B)는, 제1 단자 홀(101`)의 외측에 형성될 수 있으며, 예를 들어, 상기 차단 리브(B)는 제1 단자 홀(101`)을 둘러싸면서 제1 단자 홀(101`)을 정의할 수 있다.
상기 차단 리브(B)는, 제1 단자 홀(101`)의 외측에서 제2 실링부재(S2)의 충진 공간(F)을 정의하는 한편으로, 제1, 제2 실링부재(S1,S2)와 더불어, 제1 단자 홀(101`)을 통한 냉각 유체의 누출 경로를 함께 차단할 수 있으며, 제1 단자 홀(101`)을 둘러싸는 또 다른 실링을 제공함으로써, 전체적으로 상기 제1 단자 홀(101`)의 주변으로는 3중의 실링 구조가 제공된다고 할 수 있다.
상기 제2 실링부재(S2)의 충진 공간(F)은, 제1 단자 홀(101`)의 반경 방향을 따라 차단 리브(B)와 제1 실링부재(S1) 사이로 정의될 수 있으며, 제1 단자 홀(101`)의 관통 방향을 따라 제1 커버(100a)와 배터리 셀(10)의 제1 단부(11) 사이로 정의될 수 있다. 예를 들어, 상기 제2 실링부재(S2)의 충진 공간(F)은, 제1 단자 홀(101`)의 외주를 따라 도넛 형태로 형성될 수 있다.
상기 제1 커버(100a)에는 상기 충진 공간(F)과 연결되어 있는 주입 홀(H)이 형성될 수 있다. 예를 들어, 상기 주입 홀(H)은, 상기 충진 공간(F)이 형성되는 차단 리브(B)와 제1 실링부재(S1) 사이의 위치에 형성될 수 있다. 상기 주입 홀(H)을 통하여 충진 공간(F)으로 주입된 제2 실링부재(S2)는 충진 공간(F)을 채우고 잔존의 제2 실링부재(S2)는 주입 홀(H)의 내부를 채울 수 있다. 예를 들어, 소정의 압력으로 가압된 제2 실링부재(S2)는 주입 홀(H)을 통하여 충진 공간(F)으로 주입될 수 있고, 실질적으로 충진 공간(F)의 부피 전부를 채우도록 주입될 수 있다.
상기 제1, 제2 실링부재(S1,S2)는, 제1 단자 홀(101`)의 반경 방향을 따라 서로 인접한 위치에서 이중의 실링 구조를 제공할 수 있다. 다만, 본 발명의 기술적 범위는 이에 한정되지 않으며, 본 발명의 실링 구조는 제1 단자 홀(101`)의 반경 방향을 따라 불연속적인 경계를 갖고 서로 인접한 위치에 배치되는 다중의 실링 구조를 포함할 수 있으며, 이중 이상 다중의 실링 구조를 제공함으로써, 제1 단자 홀(101`)을 통한 냉각 유체의 누출을 높은 신뢰도로 차단할 수 있다.
도 8의 실시형태에서, 상기 제2 실링부재(S2)는, 제1 실링부재(S1)와 달리, 액상 또는 액상에 가깝게 유동화된 형태로 형성된 후 제1 커버(100a)에 형성된 주입 홀(H)을 통하여 주입되는 방식으로 형성될 수 있다. 다만, 본 발명의 기술적 범위는 이에 한정되지 않으며, 예를 들어, 상기 제2 실링부재(S2)는 주입 홀(H)을 통한 충진 방식 외에, 정형화된 형태로 형성되어 제1 커버(100a)와 함께 사출 성형으로 형성되거나 또는 제1 커버(100a)와는 별도로 형성된 제2 실링부재(S2)를 제1 커버(100a)에 끼우는 방식으로 제1 커버(100a)에 조립될 수도 있다.
제1 단자 홀(101`)의 외측에는 제1, 제2 실링부재(S1,S2)가 배치될 수 있으며, 도면으로 도시되어 있지는 않지만, 제2 단자 홀(102`)의 외측에도, 또 다른 제1, 제2 실링부재(S1,S2)가 이중으로 배치될 수 있다. 상기 제2 단자 홀(102`) 측의 제1, 제2 실링부재(S1,S2)는, 제2 단자 홀(102`)의 외측에서 제2 커버(100b)와 배터리 셀(10)의 제2 단부(12) 사이의 틈새를 이중으로 차단할 수 있다. 즉, 상기 제1 실링부재(S1)는 제2 단자 홀(102`)의 외측을 따라 환상으로 형성될 수 있으며, 상기 제2 실링부재(S2)는, 제2 단자 홀(102`)을 둘러싸는 차단 리브(B)와, 차단 리브(B) 외측의 제1 실링부재(S1)에 의해 정의된 충진 공간(F)을 채우도록 형성될 수 있다. 상기 제1, 제2 실링부재(S1,S2)에 관한 기술적 사항은 이미 설명된 바와 사실상 동일하므로, 반복적인 설명은 생략하기로 한다.
도 9a 및 도 9b에는, 도 8에 도시된 제1 실링부재의 변형된 실시형태를 보여주는 단면도들이 도시되어 있다.
도면들을 참조하면, 제1 실링부재(S1a,S1b)는 제1 커버(100a) 내에 매립되는 매립부(S12a,S12b)와, 상기 매립부(S12a,S12b)로부터 연장되어 제1 커버(100a)로부터 돌출되는 돌출부(S11a,S11b)를 포함할 수 있다. 상기 매립부(S12a,S12b)는 제1 커버(100a)의 결합 홈(S`)과 정합되는 상보적인 형상으로 형성될 수 있으며, 매립부(S12a,S12b)의 적어도 일부는 결합 홈(S`)의 걸림턱(SP)에 의해 이탈이 저지되도록 걸림턱(SP) 보다는 넓은 폭을 가질 수 있다.
보다 구체적으로, 상기 매립부(S12a,S12b)는 결합 홈(S`)의 걸림턱(SP)에 대응되도록 제1 실링부재(S1a,S1b)의 병목 부분을 형성하는 협폭부(NPa,NPb)와, 상기 협폭부(NPa,NPb) 보다 넓은 폭의 광폭부(WPa,WPb)를 포함할 수 있다. 이때, 상기 광폭부(WPa,WPb)는, 도 9a 및 도 9b에 도시된 바와 같이, 결합 홈(S`)의 걸림턱(SP)으로부터 빠져 나오지 않도록 걸림턱(SP) 보다 넓은 폭을 갖는 한도에서, 다양한 형태로 형성될 수 있으며, 사다리꼴 단면 또는 직사각형 단면을 가질 수 있다. 상기 돌출부(S11a,S11b)는 상기 제1 커버(100a)로부터 돌출되어 배터리 셀(10)의 제1 단부(11)에 접촉될 수 있으며, 배터리 셀(10)의 제1 단부(11)와의 넓은 접촉면을 형성하도록 매립부(S12a,S12b)의 협폭부(NPa,NPb) 보다는 넓은 폭으로 형성될 수 있다.
도 9a 및 도 9b에 도시된 제1 실링부재(S1a,S1b)는, 도 8에 도시된 제1 실링부재(S1)와 유사하게, 제1 커버(100a)와 함께 사출 성형으로 형성될 수도 있고, 이와 달리, 제1 커버(100a)와는 별도로 형성된 제1 실링부재(S1a,S1b)를 제1 커버(100a)의 결합 홈(S`)에 끼우는 방식으로 조립될 수도 있다.
상기 케이스(100)는 배터리 셀(10)과 함께, 배터리 셀(10)의 냉각을 위한 냉각 유체를 수용할 수 있다. 여기서, 냉각 유체란, 열 용량이 상대적으로 큰 액체 상태의 냉각 매체를 의미하는 것으로, 공기와 같은 기체 상태의 냉각 매체 보다 우수한 방열 성능을 제공할 수 있다. 상기 냉각 유체는, 케이스(100)의 수용 공간(A, 도 1 참조)을 유동하며 배터리 셀(10)과 직접 접촉하면서 배터리 셀(10)의 표면을 통하여 방열을 수행할 수 있다. 예를 들어, 상기 케이스(100)의 수용 공간(A, 도 1 참조)은, 배터리 셀(10)과 직접 접촉하는 냉각 유체의 흐름을 수용할 수 있으며, 케이스(100)의 수용 공간(A, 도 1 참조)에서는 냉각 유체의 흐름을 통하여 배터리 셀(10)의 열을 직접 수송하는 대류 열 전달이 이루어질 수 있다.
본 발명의 일 실시형태에서, 상기 배터리 셀(10)은, 높은 전기적 출력을 제공할 수 있도록 고출력 고용량의 대형 배터리로 마련될 수 있으며, 이에 따라, 상기 배터리 셀(10)은, 충, 방전 중에 상대적으로 많은 발열을 수반할 수 있다. 이에, 본 발명에서는, 배터리 셀(10)의 방열을 위해, 배터리 셀(10)과 직접 접촉하는 냉각 유체의 흐름을 형성하고, 공기와 같은 기체 상태의 냉각 매체가 아닌 상대적으로 큰 열 용량을 갖는 냉각 유체를 적용함으로써, 배터리 셀(10)로부터의 작동 열을 원활하게 소산시킬 수 있다.
본 발명의 일 실시형태에서, 상기 배터리 셀(10)은, 직경 21mm 이상이며, 길이 700mm 이상의 치수를 갖는 원통형 배터리로 형성될 수 있다. 예를 들어, 냉각 유체의 직접 접촉에 의한 방열은, 직경 30mm 이상이며, 길이 1000mm 이상의 원통형 배터리에 대해서도 원활한 방열 효과를 제공할 수 있으며, 치수 증가에 수반되는 개별 배터리 셀(10)의 출력 향상에 따라 고출력 고용량의 배터리 팩이 제공될 수 있다. 다만, 본 발명의 기술적 범위는 상대적으로 큰 사이즈의 배터리에 한정되지 않으며, 적용 개소에 따라 요구되는 전기적인 출력 특성을 고려하여, 예를 들어, 순간적으로 높은 출력이 요구되는 개소에 적용되거나 또는 내부 저항이 상대적으로 큰 배터리와 같이, 개별적인 상황에 따라 높은 발열이 동반될 수 있는 적용 개소에 배치되거나 또는 특성상 높은 발열이 동반될 수 있는 배터리에 대해 적용될 수 있다.
상기 냉각 유체는, 전기 절연성 유체 또는 전기 도전성 유체를 포함할 수 있으므로, 도 8에 도시된 바와 같이, 냉각 유체와 직접 맞닿는 배터리 셀(10)의 외부에는 절연성 피복(T)이 제공될 수 있다. 예를 들어, 배터리 셀(10)의 표면은, 배터리 셀(10)의 제1, 제2 단부(11,12) 중 어느 하나와 동일한 극성을 가질 수 있고, 다수의 배터리 셀(10)과 직접 접촉하면서 열 수송에 참여하는 냉각 유체의 흐름을 따라 서로 다른 배터리 셀(10) 간의 전기적인 간섭이 일어나지 않도록 배터리 셀(10)의 표면에는 절연성 피복(T)이 형성될 수 있다.
도 8을 참조하면, 상기 배터리 셀(10)의 절연성 피복(T)은, 배터리 셀(10)의 전기적인 연결이 이루어지는 제1 단부(11)의 중앙부를 노출시키도록 형성될 수 있다. 보다 구체적으로, 상기 절연성 피복(T)은, 배터리 셀(10)의 전기적인 연결이 이루어지는 제1 단부(11)의 중앙부 및 배터리 셀(10)의 또 다른 전기적인 연결이 이루어지는 제2 단부(12)의 중앙부를 제외한 배터리 셀(10)의 전체를 덮도록 형성될 수 있다. 즉, 상기 절연성 피복(T)은, 배터리 셀(10)의 측면은 전체적으로 둘러싸면서, 배터리 셀(10)의 제1, 제2 단부(11,12) 상에서 종단될 수 있다. 이와 같이, 상기 절연성 피복(T)의 종단 위치(P1)는 제1, 제2 단부(11,12) 상에 형성될 수 있고, 상기 절연성 피복(T)의 종단 위치(P1)에서 벗어난 제1, 제2 단부(11,12)의 중앙부는 절연성 피복(T)으로부터 노출되어 배터리 셀(10)의 전기적인 연결을 형성할 수 있다.
이하에서는 배터리 셀(10)의 제1, 제2 단부(11,12) 중에서, 제1 단부(11) 상에 형성되는 절연성 피복(T)의 종단 위치(P1)를 위주로 설명하고 있으나, 이하에서 설명되는 기술적 특징은, 배터리 셀(10)의 제2 단부(12) 상에 형성되는 절연성 피복(T)의 종단 위치(P1)에 대해서도 동일하게 적용될 수 있다.
도 8을 참조하면, 상기 절연성 피복(T)의 종단 위치(P1)는, 제1 단자 홀(101`)의 반경 방향을 따라, 제1 단자 홀(101`)과 제2 실링부재(S2) 사이에 형성될 수 있다. 즉, 상기 절연성 피복(T)은 최장으로는 제1 단자 홀(101`)까지 형성될 수 있으며, 최단으로는 제2 실링부재(S2)까지 형성될 수 있다.
만일 절연성 피복(T)이 제1 단자 홀(101`)의 내측까지 연장되어 배터리 셀(10) 제1 단부(11)의 중앙부까지 덮게 되면, 배터리 셀(10)의 전기적인 연결이 방해될 수 있고, 만일 절연성 피복(T)이 제1, 제2 실링부재(S1,S2)에 의해 냉각 유체의 차단이 이중으로 확보된 지점까지 형성되지 않으면, 누출된 냉각 유체와 배터리 셀(10) 사이의 직접적인 접촉이 이루어질 수 있고, 전기적인 간섭이 야기될 수 있다.
상기 절연성 피복(T)의 종단 위치(P1)는, 제1 단자 홀(101`)과 제2 실링부재(S2) 사이에 형성될 수 있는데, 본 발명의 일 실시형태에서, 상기 절연성 피복(T)의 종단 위치(P1)는, 제1 단자 홀(101`)과 제2 실링부재(S2) 사이에 해당되는 차단 리브(B)의 두께(w) 내에 형성될 수 있다. 보다 구체적으로, 상기 차단 리브(B)의 내측은 제1 단자 홀(101`)을 둘러싸며, 상기 차단 리브(B)의 외측은 제2 실링부재(S2)와 맞닿기 때문에, 차단 리브(B)의 내측과 외측 사이의 두께(w) 내에 절연성 피복(T)의 종단 위치(P1)가 형성될 수 있다.
도 10에는, 도 1에 도시된 배터리 셀의 배열을 보여주는 도면이 도시되어 있다.
도면을 참조하면, 상기 배터리 셀(10)은, 배터리 셀(10)의 길이 방향을 따라 서로로부터 오프셋된 레벨에 배치된 제1, 제2 배터리 셀(10a,10b)을 포함할 수 있다. 이때, 상기 제1, 제2 배터리 셀(10a,10b)의 서로 인접한 제1 단부(11)끼리와, 제1 단부(11)의 반대편에서 서로 인접한 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리는 서로 단차(d1,d2)를 형성할 수 있다. 여기서, 제1 단부(11)는, 제1 커버(100a)와 마주하는 배터리 셀(10)의 일 단부를 의미하고, 제2 단부(12)는, 제2 커버(100b)와 마주하는 배터리 셀(10)의 타 단부를 의미할 수 있다.
서로 같은 종장을 갖는 제1, 제2 배터리 셀(10a,10b)을, 길이 방향을 따라 서로로부터 오프셋된 레벨에 배치함으로써, 서로 인접한 제1 단부(11)끼리의 단차(d1)와 서로 인접한 제2 단부(12)끼리의 단차(d2)는, 서로 같은 크기로 형성될 수 있고, 단차진 방향은 서로 반대로 형성되어, 제1, 제2 배터리 셀(10a,10b) 중에서 상대적으로 돌출된 제1 단부(11)를 갖는 제1 배터리 셀(10a)은, 상대적으로 인입된 제2 단부(12)를 가질 수 있고, 반대로, 제1, 제2 배터리 셀(10a,10b) 중에서 상대적으로 인입된 제1 단부(11)를 갖는 제2 배터리 셀(10b)은, 상대적으로 돌출된 제2 단부(12)를 가질 수 있다. 즉, 제1 배터리 셀(10a)의 제1 단부(11)가 제2 배터리 셀(10b)의 제1 단부(11) 보다 외부를 향하여 돌출되면, 돌출된 만큼 제1 배터리 셀(10a)의 제2 단부(12)는 제2 배터리 셀(10b)의 제2 단부(12) 보다 내부로 인입될 수 있다.
예를 들어, 제1, 제2 배터리 셀(10a,10b) 사이에서 서로 인접한 제1 단부(11)끼리의 단차(d1) 및 서로 인접한 제2 단부(12)끼리의 단차(d2)는 3mm ~ 12mm의 범위로 형성될 수 있으며, 바람직하게, 4mm ~ 10mm의 범위로 형성될 수 있다. 후술하는 바와 같이, 제1, 제2 배터리 셀(10a,10b)의 배기 경로를 확보하기에 충분하도록 서로 인접한 제1 단부(11)끼리의 단차(d1) 및 서로 인접한 제2 단부(12)끼리의 단차(d2)는 3mm 이상, 바람직하게는, 4mm 이상으로 형성될 수 있다. 이때, 과도한 단차(d1,d2)에 의해 배터리 팩의 에너지 밀도가 떨어지지 않도록 서로 인접한 제1 단부(11)끼리의 단차(d1) 및 서로 인접한 제2 단부(12)끼리의 단차(d2)는 12mm 이하, 바람직하게는, 10mm 이하로 형성될 수 있다.
상기 제1, 제2 배터리 셀(10a,10b)은, 실질적으로 동일한 배터리 셀(10)로 형성될 수 있으며, 제1, 제2 단부(11,12)의 극성이 서로 반전되도록 배열됨으로써, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리와, 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리는 전기적으로 서로 반대 극성을 가질 수 있다. 이때, 상기 제1, 제2 배터리 셀(10a,10b)은, 제1, 제2 단부(11,12)의 극성이 서로 반전되도록 배열되면서 동시에 서로로부터 오프셋된 레벨로 배치됨으로써, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리 전기적으로는 서로 반대 극성을 갖고 공간적으로는 서로 단차(d1)를 형성할 수 있으며, 유사하게, 제1 단부(11)의 반대편에서 서로 인접한 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리 전기적으로는 서로 반대 극성을 갖고, 공간적으로는 서로 단차(d2)를 형성할 수 있다.
도 1 및 도 10을 함께 참조하면, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11) 상으로는 제1 단부(11)를 덮도록 제1 커버(100a)가 배치될 수 있고, 상기 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12) 상으로는 제2 단부(12)를 덮도록 제2 커버(100b)가 배치될 수 있다. 이때, 제1 커버(100a)는, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리의 단차(d1)를 따라 연장되면서, 제1 커버(100a)의 외측으로 단차 공간(ST)을 형성할 수 있고, 유사하게, 상기 제2 커버(100b)는, 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리의 단차(d2)를 따라 연장되면서, 제2 커버(100b)의 외측으로 또 다른 단차 공간(ST)을 형성할 수 있다.
이하에서는, 제1 커버(100a) 측에 형성된 단차 공간(ST)을 위주로 설명하고 있으나, 이하에서 설명되는 기술적 특징은, 제2 커버(100b) 측에 형성된 단차 공간(ST)에 대해서도 동일하게 적용될 수 있다.
도 1 및 도 10을 참조하면, 상기 제1 커버(100a)는, 서로 다른 레벨에서 각각 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)를 덮는 돌출부(P)와 인입부(R)를 포함할 수 있고, 상기 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리의 단차(d1)를 따라 연장되는 단차부(PR)를 포함할 수 있다. 그리고, 상기 인입부(R) 외측으로는 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리의 단차(d1)에 대응되는 단차 공간(ST)이 형성될 수 있다.
본 발명의 일 실시형태에서, 상기 돌출부(P)는 상대적으로 볼록하게 돌출된 제1 배터리 셀(10a)의 제1 단부(11)를 덮도록 상대적으로 돌출된 높은 레벨에 형성될 수 있고, 상기 인입부(R)는 상대적으로 오목하게 인입된 제2 배터리 셀(10b)의 제1 단부(11)를 덮도록 상대적으로 인입된 낮은 레벨에 형성될 수 있다. 그리고, 상기 단차부(PR)는, 상기 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리의 단차(d1)를 따라 연장되면서 상기 돌출부(P)와 인입부(R)를 서로 연결해줄 수 있다. 이때, 상기 단차 공간(ST)은 상대적으로 낮은 레벨에 형성된 인입부(R) 외측에 형성될 수 있다.
도 1에 도시된 본 발명의 일 실시형태에서, 상기 제1, 제2 배터리 셀(10a,10b)은 각각 열을 이루어 배열될 수 있으며, 제1 배터리 셀(10a)의 열과 제2 배터리 셀(10b)의 열은 서로 이웃한 위치에서 나란하게 배열될 수 있다. 본 발명의 일 실시형태에서, 상기 제1, 제2 배터리 셀(10a,10b)은 원통형 배터리로 마련될 수 있으며, 제1 배터리 셀(10a)은 서로 이웃한 제2 배터리 셀(10b)의 골 영역에 배치되고, 제2 배터리 셀(10b)은 서로 이웃한 제1 배터리 셀(10a)의 골 영역에 배치됨으로써, 사공간을 줄이고 높은 에너지 밀도의 배터리 팩이 제공될 수 있다.
상기 제1 커버(100a)의 돌출부(P)는, 상대적으로 돌출된 제1 단부(11)를 갖는 제1 배터리 셀(10a)의 열을 따라 형성될 수 있고, 제1 배터리 셀(10a)의 전기적인 연결을 위한 제1 단자 홀(101`)을 포함할 수 있다. 상기 제1 커버(100a)의 인입부(R)는 상대적으로 인입된 제1 단부(11)를 갖는 제2 배터리 셀(10b)의 열을 따라 형성될 수 있고, 제2 배터리 셀(10b)의 전기적인 연결을 위한 제1 단자 홀(101`)을 포함할 수 있다. 상기 인입부(R) 외측으로는 단차 공간(ST)이 형성되므로, 상기 단차 공간(ST)은 제2 배터리 셀(10b)의 열을 따라 제1 커버(100a)를 가로지르는 채널(N, 도 1 참조) 형태로 형성될 수 있다.
상기 제1 커버(100a)의 단차 공간(ST)은, 배터리 셀(10)로부터의 배기 가스를 배출하기 위한 배출 경로를 제공할 수 있다. 예를 들어, 상기 제1 커버(100a)의 단차 공간(ST)은, 인입부(R) 외측에 형성되며, 인입부(R)에 형성된 제1 단자 홀(101`)을 통하여 인입부(R) 내측에서 상대적으로 오목하게 인입된 제2 배터리 셀(10b)의 제1 단부(11)와 연결되며, 제2 배터리 셀(10b)의 제1 단부(11)로부터 배출된 배기 가스의 배출 경로를 제공할 수 있다.
도 11에는, 도 1에 도시된 배터리 팩의 단차 공간을 보여주는 사시도가 도시되어 있다. 도 12에는, 도 11의 XII-XII 선을 따라 절개한 사시도로서, 단차 공간을 이용한 배터리 셀의 가스 배출을 설명하기 위한 도면이 도시되어 있다.
도 11을 참조하면, 제1 커버(100a) 상에는 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)와 전기적으로 연결되는 제1 탭 플레이트(110a)가 배치될 수 있다. 도 12를 참조하면, 상기 제1 탭 플레이트(110a)는, 제1 커버(100a) 상의 단차 공간(ST)과 제1 단자 홀(101`)을 통하여 제2 배터리 셀(10b)의 제1 단부(11)와 연결될 수 있다. 이때, 제2 배터리 셀(10b)의 제1 단부(11) 중에서 제1 탭 플레이트(110a)와 결합되는 중앙부의 외곽을 따라서는 배기 홀(E)이 형성될 수 있다. 예를 들어, 상기 배기 홀(E)은 제1 단부(11)의 중앙부를 둘러싸도록 다수로 배열됨으로써, 제2 배터리 셀(10b)의 내부에 축적된 배기 가스가 신속하게 외부로 방출되도록 할 수 있다. 본 발명의 일 실시형태에서, 상기 배기 홀(E)은 제1 단부(11)의 중앙부를 둘러싸도록 원형으로 배열될 수 있으며, 다수의 배기 홀(E)이 제1 단부(11)의 중앙부를 중심으로 대략 같은 반경 위치에 배치됨으로써, 후술하는 바와 같이, 원형의 제1 단자 홀(101`)을 통하여 함께 노출될 수 있다. 본 발명의 일 실시형태에서, 상기 배기 홀(E)은 제1 단부(11)의 중앙부를 둘러싸도록 배열된 세 개의 배기 홀(E)을 포함할 수 있다. 본 발명의 일 실시형태에서, 각각의 배기 홀(E)은 제1 단부(11)의 중앙부를 둘러싸는 원호 형상으로 연장될 수 있다. 한편, 본 발명의 다른 실시형태에서, 상기 배기 홀(E)은 단수로 형성될 수도 있으며, 제1 단부(11)의 중앙부를 둘러싸는 원호 형상을 따라 충분한 길이로 연장될 수 있다.
상기 배기 홀(E) 및 제1 단부(11)의 중앙부는 제1 단자 홀(101`)을 통하여 함께 노출될 수 있으며, 상기 제1 단자 홀(101`)은 배기 홀(E) 및 제1 단부(11)의 중앙부를 함께 노출시키기에 충분한 크기(예를 들어, 직경)로 형성될 수 있다.
상기 배기 홀(E)은, 제1 단자 홀(101`)을 경유하여 제1 커버(100a) 외측의 단차 공간(ST)으로 연결될 수 있다. 보다 구체적으로, 상기 제1 단자 홀(101`)을 통하여 배출된 배기 가스는, 제1 커버(100a, 보다 구체적으로, 인입부 R)와 제1 탭 플레이트(110a) 사이의 단차 공간(ST)을 통하여 외부로 배출될 수 있으며, 상기 단차 공간(ST)이 제1 단자 홀(101`)과 연결되는 배기 경로를 제공한다는 점에서, 상기 단차 공간(ST)은, 제1 커버(100a, 보다 구체적으로, 인입부 R)와 제1 탭 플레이트(110a) 사이에 형성된다고 할 수 있다. 한편, 상기 제2 배터리 셀(10b)의 제1 단부(11)는 배기 홀(E)이 형성된 양극 측에 해당될 수 있다.
도 10을 참조하면, 상기 제1 커버(100a)와 유사하게, 제2 커버(100b)는, 제1 배터리 셀(10a)의 제2 단부(12)와, 제2 배터리 셀(10b)의 제2 단부(12)를 덮으면서 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리의 단차(d2)를 따라 연장될 수 있고, 이에 따라, 상기 제2 커버(100b)의 외측으로는 제2 단부(12)끼리의 단차(d2)에 대응되는 단차 공간(ST)이 형성될 수 있다. 이때, 상기 단차 공간(ST)은, 상대적으로 오목하게 인입된 제1 배터리 셀(10a)의 제2 단부(12) 상에 형성될 수 있다.
상기 제2 커버(100b)의 단차 공간(ST)은, 배터리 셀(10)의 배기 가스를 배출하기 위한 배출 경로를 제공할 수 있다. 예를 들어, 상기 제2 커버(100b)의 단차 공간(ST)은, 제2 커버(100b)에 형성된 제2 단자 홀(102`)을 통하여 제2 커버(100b)의 내측에서 상대적으로 오목하게 인입된 제1 배터리 셀(10a)의 제2 단부(12)와 연결되며, 제1 배터리 셀(10a)의 제2 단부(12)로부터 배출된 배기 가스의 배출 경로를 제공할 수 있다. 이때, 상기 제1 배터리 셀(10a)의 제2 단부(12)에는 내부에 축적된 배기 가스를 방출하기 위한 또 다른 배기 홀(E)이 형성될 수 있으며, 상기 제1 배터리 셀(10a)의 제2 단부(12)는 배기 홀(E)이 형성된 양극 측에 해당될 수 있다.
이와 같이, 상기 제1 커버(100a)의 단차 공간(ST)은 제2 배터리 셀(10b)로부터 배출된 배기 가스의 배출 경로를 제공할 수 있고, 상기 제2 커버(100b)의 단차 공간(ST)은 제1 배터리 셀(10a)로부터 배출된 배기 가스의 배출 경로를 제공할 수 있다. 이에 따라, 제1, 제2 배터리 셀(10a,10b)은, 제1 커버(100a)의 단차 공간(ST) 또는 제2 커버(100b)의 단차 공간(ST)을 통하여 각각의 배기 경로가 확보될 수 있다.
본 발명의 일 실시형태에서는, 제1, 제2 배터리 셀(10a,10b)을 서로 이웃한 위치에서 서로 오프셋된 레벨에 배치함으로써, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리, 그리고, 제2 단부(12)끼리 단차(d1,d2)를 형성하고, 상대적으로 오목하게 인입된 제1 단부(11) 또는 제2 단부(12) 위로 단차 공간(ST)을 마련함으로써, 상대적으로 오목하게 인입된 제1 단부(11) 또는 제2 단부(12)를 통하여 배출된 배기 가스가 단차 공간(ST)을 통하여 외부로 배출될 수 있도록 배기 경로를 제공한다. 이때, 상대적으로 오목하게 인입된 제1 단부(11) 또는 제2 단부(12)에는 배기 홀(E)이 형성될 수 있고, 본 발명의 일 실시형태에서, 상대적으로 오목하게 인입된 제2 배터리 셀(10b)의 제1 단부(11)와, 제1 배터리 셀(10a)의 제2 단부(12)는 배기 홀(E)이 형성된 양극 측을 형성할 수 있고, 상대적으로 볼록하게 돌출된 제1 배터리 셀(10a)의 제1 단부(11)와, 제2 배터리 셀(10b)의 제2 단부(12)는 음극 측을 형성할 수 있다.
도 13에는, 도 11에 도시된 제1 탭 플레이트의 사시도가 도시되어 있다.
도 11 및 도 13을 함께 참조하면, 상기 제1 커버(100a)의 외측으로는 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리를 전기적으로 연결하기 위한 제1 탭 플레이트(110a)가 배치될 수 있다. 상기 제1 탭 플레이트(110a)는, 제1 커버(100a) 상에 안착되는 평편한 형태의 본체부(M)와, 상기 본체부(M)로부터 상기 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)를 향하여 서로 다른 깊이로 돌출되는 제1, 제2 접촉부(C1,C2)를 포함할 수 있다.
상기 본체부(M)는 제1 커버(100a) 상에 배치될 수 있고, 제1 커버(100a) 상에서 평편하게 연장될 수 있다. 상기 본체부(M)는, 상기 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)에 각각 결합되는 제1, 제2 접촉부(C1,C2)에 의해 제1 커버(100a) 상에서 위치 고정될 수 있다.
상기 제1, 제2 접촉부(C1,C2)는, 제1 단자 홀(101`)을 통하여 노출된 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)와 접촉을 형성하며, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)에 이르도록 충분한 깊이로 형성될 수 있다.
상기 제1 접촉부(C1)는, 제1 커버(100a) 상에 배치된 본체부(M)로부터 제1 커버(100a, 보다 구체적으로, 돌출부 P)의 제1 단자 홀(101`)을 관통하여 상대적으로 볼록하게 돌출된 제1 배터리 셀(10a)의 제1 단부(11)에 결합될 수 있다. 상기 제2 접촉부(C2)는, 제1 커버(100a) 상에 배치된 본체부(M)로부터 제1 커버(100a, 보다 구체적으로, 인입부 R) 외측의 단차 공간(ST)과, 제1 단자 홀(101`)을 연속적으로 관통하여 상대적으로 오목하게 인입된 제2 배터리 셀(10b)의 제1 단부(11)에 결합될 수 있다. 이와 같이, 상기 제1, 제2 접촉부(C1,C2)는, 상기 본체부(M)로부터 서로 다른 깊이로 돌출되어, 상대적으로 돌출된 제1 배터리 셀(10a)의 제1 단부(11)와, 상대적으로 인입된 제2 배터리 셀(10b)의 제1 단부(11)에 각각 결합될 수 있고, 도 13에 도시된 바와 같이, 제1 접촉부(C1)의 돌출 깊이(z1) 보다 제2 접촉부(C2)의 돌출 깊이(z2)가 상대적으로 깊게 형성될 수 있다.
상기 제1, 제2 접촉부(C1,C2)는 서로 단차진 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)와 접촉되도록 본체부(M)로부터 서로 다른 깊이로 돌출되며, 본체부(M)와 같은 평면에 배치되지 않는다. 제1 커버(100a) 상에 배치되는 본체부(M)로부터 돌출되는 제1, 제2 접촉부(C1,C2)가 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)와 접촉을 형성하기 위해서는, 제1, 제2 접촉부(C1,C2)가 적어도 제1 커버(100a)의 제1 단자 홀(101`)을 관통하기에 충분한 깊이로 형성될 필요가 있기 때문이다.
상기 제1, 제2 접촉부(C1,C2)는 본체부(M)로부터의 돌출 깊이를 따라 점진적으로 반경이 축소되어 최소 반경으로 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)에 결합되도록 돌출 깊이에 따라 축소되는 단면을 갖는 원기둥 형상으로 형성될 수 있다. 상기 제1, 제2 접촉부(C1,C2)가 본체부(M)로부터의 돌출 깊이에 따라 축소되는 반경으로 형성되어 최소 반경으로 제1 단부(11)의 중앙부에 결합됨으로써, 제1 단부(11)의 중앙부 외곽에 형성되어 있는 배기 홀(E, 도 12 참조)을 통하여 배기 경로가 확보될 수 있다.
상기 제1, 제2 접촉부(C1,C2)는, 상기 본체부(M) 보다 얇은 두께로 형성될 수 있다. 상기 제1, 제2 접촉부(C1,C2)는, 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)와 용접 결합될 수 있으며, 용접 강도의 향상을 위하여 충분한 용융이 이루어질 수 있도록 제1, 제2 접촉부(C1,C2)는 상대적으로 얇은 두께로 형성될 수 있다. 상기 제1, 제2 접촉부(C1,C2)는, 원소재 금속판의 소정 위치를 하방으로 연신시키는 단조 내지는 프레스 가공을 통하여 형성될 수 있으며, 제1, 제2 접촉부(C1,C2)는 원소재 금속판의 연신을 통하여 상대적으로 얇은 두께로 형성될 수 있다. 예를 들어, 도 12에 도시된 바와 같이, 제2 접촉부(C2) 중에서 제2 배터리 셀(10b)의 제1 단부(11)와 용접 결합되는 최소 반경 부분은, 본체부(M)의 제1 두께(t1) 보다는 얇은 제2 두께(t2)로 형성될 수 있다. 상기 본체부(M)는, 충, 방전 전류의 저항을 최소화하기 위해 상대적으로 두꺼운 제1 두께(t1)로 형성될 수 있다. 예를 들어, 상기 제1 두께(t1)는 1mm 이상으로 형성될 수 있고, 상기 제2 두께(t2)는 0.4mm 이상으로 형성될 수 있다. 예를 들어, 상기 제2 두께(t2)는, 제2 배터리 셀(10b)의 제1 단부(11)와의 용접을 통하여 형상을 유지하면서 제2 배터리 셀(10b)의 제1 단부(11)와 결합을 형성하기 위하여, 0.4mm의 최소값을 가질 수 있고, 상기 제1 두께(t1)는 단조 내지는 프레스 가공을 통하여 0.4mm의 최소값을 갖는 제2 두께(t2)를 형성하기 위하여, 1mm의 최소값을 가질 수 있다. 본 발명의 일 실시형태에서, 상기 제1 두께(t1)는 1mm로 형성될 수 있고, 상기 제2 두께(t2)는 0.4mm로 형성될 수 있다.
도 13을 참조하면, 상기 제1, 제2 접촉부(C1,C2)는, 상기 본체부(M) 상에서 각각 열을 이루어 다수로 배치될 수 있다. 도 11에 도시된 본 발명의 일 실시형태에서, 상기 제1 탭 플레이트(110a)는 서로 이웃한 위치에 배치된 일 열의 제1 배터리 셀(10a)과, 일 열의 제2 배터리 셀(10b)을 서로 연결할 수 있고, 이때, 서로 같은 극성을 갖는 제1 배터리 셀(10a)의 제1 단부(11)끼리, 그리고, 서로 같은 극성을 갖는 제2 배터리 셀(10b)의 제1 단부(11)끼리는 병렬로 연결하면서 동시에, 서로 반대 극성을 갖는 제1, 제2 배터리 셀(10a,10b)의 제1 단부(11)끼리는 직렬로 연결할 수 있다. 이와 같이, 상기 제1 탭 플레이트(110a)가 다수의 제1, 제2 배터리 셀(10a,10b)을 직병렬로 연결하기 위하여, 상기 제1 탭 플레이트(110a)에는 각각 제1, 제2 배터리 셀(10a,10b)과 연결되는 다수의 제1, 제2 접촉부(C1,C2)가 형성될 수 있고, 열을 이루어 배열된 제1, 제2 배터리 셀(10a,10b)에 대응하여, 다수의 제1, 제2 접촉부(C1,C2)가 열을 이루어 배열될 수 있다.
도 11을 참조하면, 상기 제2 커버(100b) 상으로는 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리를 전기적으로 연결하기 위한 제2 탭 플레이트(110b)가 배치될 수 있다. 제1 탭 플레이트(110a)와 유사하게, 상기 제2 탭 플레이트(110b)도, 제2 커버(100b) 상에 배치된 본체부(M)와, 상기 본체부(M)로부터 서로 다른 깊이로 돌출된 제1, 제2 접촉부(C1,C2)를 포함할 수 있다.
상기 제2 탭 플레이트(110b)는, 서로 같은 극성을 갖는 제1 배터리 셀(10a)의 제2 단부(12)끼리, 그리고, 서로 같은 극성을 갖는 제2 배터리 셀(10b)의 제2 단부(12)끼리는 병렬로 연결하면서 동시에, 서로 반대 극성을 갖는 제1, 제2 배터리 셀(10a,10b)의 제2 단부(12)끼리는 직렬로 연결할 수 있다. 이를 위해, 상기 제2 탭 플레이트(110b)에는 각각 제1, 제2 배터리 셀(10a,10b)과 연결되는 다수의 제1, 제2 접촉부(C1,C2)가 형성될 수 있다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다.
10: 배터리 셀 10a: 제1 배터리 셀
10b: 제2 배터리 셀 11: 배터리 셀의 제1 단부
12: 배터리 셀의 제2 단부 100: 케이스
100a: 제1 커버 100b: 제2 커버
100c: 미들 케이스 101`: 제1 단자 홀
102`: 제2 단자 홀 103`: 유격부
110a,110b: 제1, 제2 탭 플레이트
120a.120b: 제1, 제2 리드 150: 격벽
151,152: 제1, 제2 결합부 155: 격벽의 본체부
180: 회로기판 185: 스위치 소자
A: 수용 공간 A1: 상류부
A2: 하류부 CN: 연통부
P: 돌출부 R: 인입부
PR: 단차부 d1,d2: 단차
ST: 단차 공간 G: 가이드 리브
B: 차단 리브 S: 실링부재
S1,S2: 제1, 제2 실링부재 F: 충진 공간
H: 주입 홀

Claims (20)

  1. 각각 길이 방향을 따라 서로 반대되는 제1, 제2 단부를 포함하는 배터리 셀;
    상기 배터리 셀과 함께, 배터리 셀의 냉각을 위한 냉각 유체를 수용하는 수용 공간을 제공하는 것으로, 상기 배터리 셀의 제1, 제2 단부를 각각 덮도록 형성된 제1, 제2 커버를 포함하는 케이스;
    상기 제1, 제2 커버 상에 배치되어 상기 배터리 셀의 제1, 제2 단부와 전기적으로 연결되는 제1, 제2 탭 플레이트;
    상기 제1 탭 플레이트 상에 배치된 회로기판; 및
    상기 제1, 제2 탭 플레이트와 회로기판 사이의 전기적인 연결을 매개하는 제1, 제2 리드를 포함하되, 상기 제1, 제2 리드는 상기 회로기판의 제1 변부에 함께 접속되는 것을 특징으로 하는 배터리 팩.
  2. 제1항에 있어서,
    상기 회로기판의 제1 변부는, 일 방향을 따라 직선적으로 연장되며, 연속적으로 연장되는 회로기판의 테두리 부분인 것을 특징으로 하는 배터리 팩.
  3. 제1항에 있어서,
    상기 제1, 제2 리드는, 상기 회로기판의 제1 변부와 반대측에 위치하는 제2 변부에는 접속되지 않는 것을 특징으로 하는 배터리 팩.
  4. 제1항에 있어서,
    상기 제1, 제2 리드는, 다수의 제1, 제2 탭 플레이트로부터 연장되는 다수의 제1, 제2 리드를 포함하는 것을 특징으로 하는 배터리 팩.
  5. 제4항에 있어서,
    상기 제1, 제2 리드는, 상기 회로기판의 제1 변부를 따라 열을 이루어 접속되는 것을 특징으로 하는 배터리 팩.
  6. 제4항에 있어서,
    상기 제1, 제2 리드가 서로 교번되는 패턴으로 배열되도록, 제1 리드는 서로 이웃한 제2 리드 사이에 개재되며, 제2 리드는 서로 이웃한 제1 리드 사이에 개재되는 것을 특징으로 하는 배터리 팩.
  7. 제1항에 있어서,
    상기 제1 리드 보다 제2 리드가 더 길게 연장되는 것을 특징으로 하는 배터리 팩.
  8. 제7항에 있어서,
    상기 제2 리드는, 제2 커버 측으로부터 제1 커버 측을 향하여 케이스의 측면을 가로질러 연장되는 것을 특징으로 하는 배터리 팩.
  9. 제8항에 있어서,
    상기 제2 리드는 케이스의 측면에 돌출 형성된 용접부를 우회하도록 절곡부를 포함하는 것을 특징으로 하는 배터리 팩.
  10. 제1항에 있어서,
    상기 제1, 제2 리드는, 제1, 제2 커버의 장변부 방향을 따라 교번되게 배열되는 것을 특징으로 하는 배터리 팩.
  11. 제10항에 있어서,
    상기 제1, 제2 탭 플레이트는, 제1, 제2 커버 상에서 서로 다른 쌍의 배터리 셀을 연결하도록 제1, 제2 커버의 장변부 방향을 따라 서로 교번되는 패턴으로 배열되며,
    상기 제1, 제2 리드는, 각각의 제1, 제2 탭 플레이트로부터 연장되어 제1, 제2 커버의 장변부 방향을 따라 교번되는 패턴으로 배열되는 것을 특징으로 하는 배터리 팩.
  12. 제10항에 있어서,
    상기 제1, 제2 리드는, 제1, 제2 커버의 제1 장변부 측에 집중적으로 배열되고, 제1, 제2 커버의 제1 장변부와 반대되는 제2 장변부 측에는 배치되지 않는 것을 특징으로 하는 배터리 팩.
  13. 제12항에 있어서,
    상기 제1 커버의 제2 장변부와 제2 커버의 제2 장변부 사이에는 스위치 소자가 배치되는 것을 특징으로 하는 배터리 팩.
  14. 제12항에 있어서,
    상기 케이스는, 제1, 제2 커버 사이에 개재되는 미들 케이스를 더 포함하며,
    상기 제1, 제2 커버의 제2 장변부와 가까운 미들 케이스 상에는 스위치 소자가 배치되는 것을 특징으로 하는 배터리 팩.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020180123928A 2018-10-17 2018-10-17 배터리 팩 KR102220898B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020180123928A KR102220898B1 (ko) 2018-10-17 2018-10-17 배터리 팩
CN201910949820.8A CN111063836B (zh) 2018-10-17 2019-10-08 电池组
CN202310879676.1A CN116885368A (zh) 2018-10-17 2019-10-08 电池组
US16/595,900 US11742537B2 (en) 2018-10-17 2019-10-08 Battery pack
EP19202014.7A EP3651233A3 (en) 2018-10-17 2019-10-08 Battery pack
CN201921681935.5U CN210897381U (zh) 2018-10-17 2019-10-08 电池组
KR1020200099831A KR102332333B1 (ko) 2018-10-17 2020-08-10 배터리 팩
US18/179,268 US20230207925A1 (en) 2018-10-17 2023-03-06 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180123928A KR102220898B1 (ko) 2018-10-17 2018-10-17 배터리 팩

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200099831A Division KR102332333B1 (ko) 2018-10-17 2020-08-10 배터리 팩

Publications (2)

Publication Number Publication Date
KR20200043170A KR20200043170A (ko) 2020-04-27
KR102220898B1 true KR102220898B1 (ko) 2021-02-26

Family

ID=68242365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180123928A KR102220898B1 (ko) 2018-10-17 2018-10-17 배터리 팩

Country Status (4)

Country Link
US (2) US11742537B2 (ko)
EP (1) EP3651233A3 (ko)
KR (1) KR102220898B1 (ko)
CN (3) CN210897381U (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200040024A (ko) 2018-10-08 2020-04-17 삼성에스디아이 주식회사 배터리 팩
KR102617730B1 (ko) 2018-10-08 2023-12-26 삼성에스디아이 주식회사 배터리 팩
KR102220898B1 (ko) 2018-10-17 2021-02-26 삼성에스디아이 주식회사 배터리 팩
CN212810495U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 一种电池以及用电设备
US20220077549A1 (en) * 2020-09-07 2022-03-10 Samsung Sdi Co., Ltd. Battery system with advanced battery disconnecting unit
WO2022198416A1 (zh) * 2021-03-22 2022-09-29 宁德新能源科技有限公司 电池包和具有所述电池包的用电装置
US20240088491A1 (en) * 2022-09-13 2024-03-14 Rivian Ip Holdings, Llc Integrally formed terminal structure for battery cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114780A (ja) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd 電池パック

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025928B2 (ja) 1995-02-17 2007-12-26 株式会社ジーエス・ユアサコーポレーション 円筒型電池及び組電池
US5578392A (en) 1995-02-17 1996-11-26 Japan Storage Battery Co., Ltd. Cylindrical cell, a cell pack, and a cell holder
JPH1167178A (ja) * 1997-08-25 1999-03-09 Nissan Motor Co Ltd 電気自動車のバッテリ固定構造及びこの固定構造によるバッテリ空調方法
JP4631118B2 (ja) 1999-02-15 2011-02-16 ソニー株式会社 移動体搭載用バッテリ装置
JP4791076B2 (ja) 2005-05-13 2011-10-12 本田技研工業株式会社 バッテリボックスの冷却構造
KR100684766B1 (ko) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 이차 전지 모듈
JP5034316B2 (ja) 2006-05-22 2012-09-26 トヨタ自動車株式会社 電源装置
CN1905267B (zh) 2006-07-28 2010-12-01 北京中润恒动电池有限公司 电动自行车锂电池充电用串并联转换连接器
JP5057720B2 (ja) 2006-08-10 2012-10-24 三洋電機株式会社 パック電池
DE102006045564A1 (de) 2006-09-25 2008-04-03 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung elektrischer Elemente
KR100814853B1 (ko) 2006-12-01 2008-03-20 삼성에스디아이 주식회사 전지 모듈
JP5173227B2 (ja) 2007-03-30 2013-04-03 三洋電機株式会社 パック電池
US20080311468A1 (en) 2007-06-18 2008-12-18 Weston Arthur Hermann Optimized cooling tube geometry for intimate thermal contact with cells
DE102007045183A1 (de) 2007-09-21 2009-04-02 Robert Bosch Gmbh Temperierte Batterieeinrichtung und Verfahren hierzu
KR100949335B1 (ko) 2007-11-12 2010-03-26 삼성에스디아이 주식회사 전지 모듈
DE102008010820A1 (de) 2008-02-23 2009-08-27 Daimler Ag Batterie mit mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen
JP2010097836A (ja) 2008-10-17 2010-04-30 Panasonic Corp 電池パック、それを電源として用いた電子機器、及び電池パック用ケース
CN103943912B (zh) 2008-11-12 2018-02-27 江森自控帅福得先进能源动力系统有限责任公司 具有热交换器的电池系统
DE102008059967B4 (de) 2008-12-02 2015-02-05 Daimler Ag Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
JP4935802B2 (ja) * 2008-12-10 2012-05-23 パナソニック株式会社 電池モジュールとそれを用いた集合電池モジュール
KR101065926B1 (ko) 2009-07-09 2011-09-19 삼성에스디아이 주식회사 다수의 단위 셀을 구비하는 배터리 팩
DE102009035487A1 (de) 2009-07-31 2011-02-03 Daimler Ag Batterie und Verfahren zu deren Herstellung
US8124263B2 (en) 2010-01-05 2012-02-28 Tesla Motors, Inc. Corrosion resistant cell mounting well
KR101202333B1 (ko) 2010-06-09 2012-11-16 삼성에스디아이 주식회사 배터리 팩
KR101173467B1 (ko) * 2011-01-14 2012-08-13 (주)신성이엔지 냉각 기능을 구비한 전지 모듈 어셈블리
KR101264512B1 (ko) 2011-04-04 2013-05-14 로베르트 보쉬 게엠베하 배터리 팩
CN103563124B (zh) 2011-05-30 2016-08-17 松下知识产权经营株式会社 电池块及其制造方法
KR101254903B1 (ko) 2011-06-07 2013-04-18 삼성에스디아이 주식회사 퓨즈부를 구비하는 배터리 팩
JP2014197452A (ja) 2011-08-03 2014-10-16 パナソニック株式会社 電池モジュール
CN102324770A (zh) 2011-09-20 2012-01-18 重庆地质仪器厂 一种电池箱充电系统与一种电池箱用电系统
JP5803513B2 (ja) 2011-09-29 2015-11-04 ソニー株式会社 電池パック、蓄電システム、電子機器および電動車両
CN202550023U (zh) * 2012-01-16 2012-11-21 微宏动力系统(湖州)有限公司 安全电池组
US9660231B2 (en) 2012-02-03 2017-05-23 Samsung Sdi Co., Ltd. Battery pack
JP5867582B2 (ja) 2012-02-21 2016-02-24 トヨタ自動車株式会社 蓄電装置
WO2013171885A1 (ja) 2012-05-17 2013-11-21 日立ビークルエナジー株式会社 電池モジュール
US9847182B2 (en) * 2012-11-30 2017-12-19 Toyota Jidosha Kabushiki Kaisha Electric storage apparatus configured to pass a heat exchange medium
KR20150048501A (ko) 2013-10-28 2015-05-07 삼성에스디아이 주식회사 배터리 팩
KR101621407B1 (ko) * 2013-11-12 2016-05-16 주식회사 엘지화학 배터리 팩 관리 장치 및 관리 방법
JP2017505512A (ja) 2013-12-17 2017-02-16 フスクバルナ アクティエボラーグ セル固定装置を有する電池パック
JP2015133266A (ja) 2014-01-14 2015-07-23 トヨタ自動車株式会社 蓄電装置
DE102014106852A1 (de) 2014-05-15 2015-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul
EP3158619A4 (en) 2014-06-20 2018-03-07 Ioxus, Inc. Engine start and battery support module
KR101803958B1 (ko) 2014-10-06 2017-12-28 주식회사 엘지화학 효율적인 냉각 구조의 전지팩 케이스
KR102308635B1 (ko) 2015-04-17 2021-10-05 삼성에스디아이 주식회사 배터리 모듈
JP2016219146A (ja) 2015-05-15 2016-12-22 株式会社東芝 蓄電池装置
DE102015219280A1 (de) 2015-10-06 2017-04-06 Robert Bosch Gmbh Batteriesystem mit Vergussmasse
KR102014462B1 (ko) 2015-10-23 2019-08-26 주식회사 엘지화학 이차 전지용 카트리지 및 이를 포함하는 배터리 모듈
KR101805546B1 (ko) 2016-03-08 2017-12-07 삼성에스디아이 주식회사 절곡부를 갖춘 연결 탭을 포함하는 전지 팩
KR101985387B1 (ko) 2016-03-14 2019-06-03 신흥에스이씨주식회사 내구성이 우수한 배터리팩
CN109075278B (zh) 2016-04-05 2021-10-29 株式会社村田制作所 电池组以及具有电池组的电子设备
CN106169544A (zh) 2016-08-04 2016-11-30 江苏大学 一种可遥控电池均衡保温电池箱
DE102016219302A1 (de) 2016-10-05 2018-04-05 Continental Automotive Gmbh Energiezellenhaltevorrichtung für ein Kraftfahrzeug
KR102358437B1 (ko) 2017-02-08 2022-02-04 삼성에스디아이 주식회사 전원 공급 장치 및 이를 포함하는 배터리 팩
CN207116551U (zh) 2017-08-31 2018-03-16 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN107394315A (zh) 2017-09-12 2017-11-24 华霆(合肥)动力技术有限公司 散热装置及电池模组
CN207183378U (zh) 2017-09-27 2018-04-03 扬州北辰电气集团有限公司 一种高安全性的电池箱
KR102617730B1 (ko) 2018-10-08 2023-12-26 삼성에스디아이 주식회사 배터리 팩
KR20200040024A (ko) 2018-10-08 2020-04-17 삼성에스디아이 주식회사 배터리 팩
KR20200040025A (ko) 2018-10-08 2020-04-17 삼성에스디아이 주식회사 배터리 팩
KR102220898B1 (ko) 2018-10-17 2021-02-26 삼성에스디아이 주식회사 배터리 팩

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114780A (ja) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd 電池パック

Also Published As

Publication number Publication date
US20200127350A1 (en) 2020-04-23
US11742537B2 (en) 2023-08-29
CN116885368A (zh) 2023-10-13
CN111063836B (zh) 2023-08-04
CN210897381U (zh) 2020-06-30
CN111063836A (zh) 2020-04-24
KR20200043170A (ko) 2020-04-27
US20230207925A1 (en) 2023-06-29
EP3651233A2 (en) 2020-05-13
EP3651233A3 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
KR102220898B1 (ko) 배터리 팩
KR102617730B1 (ko) 배터리 팩
CN111009626B (zh) 电池组
KR20200040025A (ko) 배터리 팩
KR102332333B1 (ko) 배터리 팩
EP2515359B1 (en) Cover including gas outlet for a battery module
US20230238631A1 (en) Battery pack
KR20210030071A (ko) 배터리 팩
KR20210086089A (ko) 배터리 팩
KR101806417B1 (ko) 전력 저장 장치의 단위 전지 팩
US20210167346A1 (en) Battery pack
KR20220090207A (ko) 배터리 모듈 및 이를 구비하는 배터리 팩

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant