EP2194646B1 - Verfahren zur Verbesserung der Rauschcharakteristiken von einem volldigitalen Phasenregelkreis (ADPLL) und einem relativen ADPLL - Google Patents

Verfahren zur Verbesserung der Rauschcharakteristiken von einem volldigitalen Phasenregelkreis (ADPLL) und einem relativen ADPLL Download PDF

Info

Publication number
EP2194646B1
EP2194646B1 EP09177501A EP09177501A EP2194646B1 EP 2194646 B1 EP2194646 B1 EP 2194646B1 EP 09177501 A EP09177501 A EP 09177501A EP 09177501 A EP09177501 A EP 09177501A EP 2194646 B1 EP2194646 B1 EP 2194646B1
Authority
EP
European Patent Office
Prior art keywords
tdc
signal
time
digital
fref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09177501A
Other languages
English (en)
French (fr)
Other versions
EP2194646A1 (de
Inventor
Colin Weltin-Wu
Enrico Stefano Temporiti Milani
Daniele Baldi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Publication of EP2194646A1 publication Critical patent/EP2194646A1/de
Application granted granted Critical
Publication of EP2194646B1 publication Critical patent/EP2194646B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0991Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/50All digital phase-locked loop

Definitions

  • This invention relates to phase locked loops and more particularly to a method of improving noise characteristics of an all-digital phase locked loop and a relative all-digital phase locked loop.
  • ADPLLs all-digital PLLs
  • DCO digitally controlled oscillator
  • TDC time-to-digital converter
  • ADPLLs offer wide programmability, easy technology scaling, and environmental robustness, while maintaining the same input-output behavior as analog PLLs.
  • the "dividerless" architecture is most attractive, because it avoids the need for a critical multimodulus divider by integrating the functions of PFD-CP/dividers (Phase Frequency Detector - Charge Pump) from a classic analog synthesizer into the TDC.
  • PFD-CP/dividers Phase Frequency Detector - Charge Pump
  • Fref represents the reference clock
  • Fout the ADPLL output signal.
  • the Frequency Control Word (FCW) defines the desired ratio between Fout and Fref.
  • the TDC generates a digital word RDCO that represents the DCO output phase, and the word RR represents the reference phase.
  • the divider, Phase Frequency Detector (PFD) and Charge Pump (CP) are all replaced by the TDC, which must provide a measurement of how the oscillator phase differs from the reference one.
  • the TDC computes the ratio between Fout and Fref
  • an integrator INTEGRATOR converts the frequency error ⁇ into a phase information, that exactly corresponds to the phase difference between the output signal and the reference signal (except for a constant phase offset arising from integration).
  • a low-pass digital filter DIGITAL LPF extracts the low-pass part of the output of the integrator, that is used to control the DCO.
  • the TDC depicted in FIG. 1 may be substantially composed of a simple clocked-resettable integer counter INTEGER COUNTER, characterized by a resolution equal to a whole DCO period. Significantly better ADPLL performance can be achieved if a fractional counter FRACTIONAL COUNTER is used in conjunction with it, to improve the TDC resolution whilst keeping the same dynamic range of the integer counter, as shown in FIG. 3 .
  • the digital output C F [n] of the fractional counter is derived by the block 1-z -1 and is added to the output C I [n] of the integer counter to generate the digital word Fout/Fref.
  • the fractional counter is used to compute the residual time distance between two reference edges after integer counting, as illustrated in the time diagram of FIG. 4 .
  • the time interval Integer Count represents the result of integer counting operation (C I [n]), i.e. the number of DCO periods (periods of the continuous-time oscillating signal Fout) between two reference edges.
  • the time interval Fractional Count (indicated in gray) is the result of the fractional counter computation (C F [n]), i.e. a measurement of the time distance between each reference edge and the last DCO edge.
  • the residual time distance between two reference edges can be computed as C F [n]+(1-C F [n-1]), i.e. 1+(1-z -1 )C F [n], as shown in FIG. 3 (where the constant contribution is not highlighted).
  • in band spurious tones [4] is clearly visible in FIG. 6 , at frequencies of about 10 6 Hz and 2 ⁇ 10 6 Hz.
  • the amplitude of these tones is reduced by 30dB in the reported figure compared to the real value, due to the use of a 1kHz resolution bandwidth for the measurement [4].
  • the document EP 1956714 discloses a TDC converter comprising a fully integrated circuit for adding stochastic noise. This document discloses also a method for adding a stochastic noise in a TDC converter destined to calculate the phase difference between a first signal FDCO varying faster than a second reference signal Fref.
  • this is done by adding a dither signal to the digital word generated by the time-to-digital converter.
  • a second dither signal generated as an inverted and amplified replica of the first dither signal is added to the digital word generated by the time-to-digital converter, in order to compensate noise introduced by delaying the reference clock or the oscillating signal by a time determined in function of the level of the first dither signal.
  • variations of the digital word are measured in function of variations of the delay time in respect to a reference delay time and a look-up table is filled with the measured variations and the corresponding variations of the delay time.
  • a method of generating a digital feedback word of an ADPLL and a relative feedback circuit for an ADPLL and a relative ADPLL are also disclosed.
  • FIG. 5 A first embodiment aimed to cancel the spurious tones introduced at the output due to the finite resolution of the TDC (quantization) is depicted in FIG. 5 .
  • the signal (a) is obtained with an integer counter alone, the signals (b) with an integer counter and an infinite resolution fractional counter, the signals (c) with an integer counter and a 4-level fractional counter.
  • the finite resolution causes the ⁇ [n] signal to have periodic information, that produces spurs at the synthesizer output.
  • the output C F [n] is corrupted by a dither signal such that the quantization error becomes randomized.
  • a dither signal with a small amplitude, for example of about one quantization step of the TDC, either as a variable analog delay element immediately before the TDC on the reference path ( FIG. 6 ) or on the DCO path (Fout in FIG. 6 ), or in a second embodiment (not depicted) as a digital signal added to the TDC output Fout/Fref.
  • a shaped dither signal is preferably used to avoid a negative impact to the in-band noise. More particularly, a dither signal whose energy increases with frequency is preferably used, such that the in-band contribution is negligible and the low-pass nature of the loop counteracts the higher noise power out of band. Independently on whether the spectral density of the dither signal is white or highpass shaped, a multi-level dither is more effective than a two-level dither.
  • a multi-level dither can be done by using a programmable delay element (or any alternative means for phase programmability) with a fine delay granularity. Mismatches in the extra delay element itself do not negatively affect performances.
  • the novel technique of this disclosure removes spurs due to temporal quantization inherent in the TDC, while requiring minimal hardware modifications to a TDC-based ADPLL.
  • By placing a variable delay element before the TDC and providing a properly shaped dither signal, as shown in FIG. 7 minimal impact to in-band noise performance is achieved.
  • a pseudorandom dither signal generated by a LFSR Linear Feedback Shift Register
  • LFSR Linear Feedback Shift Register
  • the novel technique of this disclosure increases the amplitude of the dither signal and uses a multi-level dither sequence and so allows reduction of spurs due to non-linearity of the TDC to below the in-band noise floor, trading for an increase of the in-band noise power.
  • Another improvement consists in compensating the undesired effect of the voluntarily injected dither, that is the effect of increasing the in-band noise floor.
  • the input dither is a pseudorandom sequence, it is always possible to predict the resulting injected phase error and thus to compensate it, as shown in FIG. 9 .
  • the gain ⁇ relating the analog delays to the digital compensation signal is a high-resolution word, and thus can be precisely controlled.
  • digitally cancelling the introduced dither using a digital feed-forward path achieves the same reduction of spurs due to both quantization and non-linearity without penalizing significantly the in-band noise power.
  • a technique for an accurate estimation of the gain ⁇ used for compensation is used to make the in-band noise floor equal to that of an undithered ADPLL.
  • a delay value of the additional variable delay element is chosen to be the "reference delay”.
  • a different delay value to be calibrated against the "reference delay” is alternated for many samples with the "reference delay", as shown in FIG. 10 , for the simplified case of a short periodicity channel with a large number of TDC quantization levels.
  • each sample is subtracted from the previous one for measuring the relative time difference between the delays in terms of TDC output values TDC OUT .
  • the absolute values of the results are averaged, obtaining an accurate measurement of the relative time difference between the delays for various TDC output values.
  • This preferred technique based on a digital estimation preferably executed at the start-up of the proposed ADPLL, relaxes analog precision requirements of the delay element of the embodiments disclosed hereinbefore.
  • the most preferred embodiment of the proposed method is in practice a self-calibrating spur reduction method for ADPLLs with no impact to the in-band noise floor.
  • the applied dither signal has a dynamic range equal to ⁇ 1 LSB of the fractional TDC ( ⁇ 8ps) and a step of 1ps (16 levels).
  • the effect of white and 1 st order shaped dither on the ADPLL phase noise around the carrier is compared in FIG. 11 .

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Claims (6)

  1. Verfahren zur Verbesserung der Rauscheigenschaften eines volldigitalen Phasenregelkreises (Phase locked loop PLL), der ein Rückführungswort erzeugt, das ein zeitkontinuierliches oszillierendes Signal (Fout) repräsentiert, der einen Zeit-Digital-Wandler aufweist, in den das zeitkontinuierliche oszillierende Signal (Fout) und ein Referenzsignal (FrefTDC), welches eine Funktion eines Referenztakts (Fref) ist, eingegeben werden, wobei der Zeit-Digital-Wandler ein digitales Wort (TDCOUT) erzeugt, das entweder
    - das Verhältnis zwischen der Frequenz des zeitkontinuierlichen oszillierenden Signals (Fout) und der Frequenz des Referenzsignals (FrefTDC), oder
    - eine digital gesteuerte Oszillatorausgangsphase repräsentiert,
    wobei das Rückführungswort eine Funktion des digitalen Worts (TDCOUT) ist, wobei das Verfahren aufweist:
    Verschlechtern mindestens eines Elements der Gruppe, die aus dem Referenztakt (Fref), dem digitalen Wort (TDCOUT) und dem zeitkontinuierlichen oszillierenden Signal (Fout) besteht, mit einem Zittersignal,
    Erzeugen des Referenzsignals (FrefTDC), indem entweder der Referenztakt (Fref) um eine Zeit verzögert wird, die als Funktion des Pegels des Zittersignals bestimmt wird, oder in den Zeit-Digital-Wandler eine Kopie des zeitkontinuierlichen oszillierenden Signals (Fout) eingegeben wird, das um eine Zeit verzögert wird, die als Funktion des Pegels des Zittersignals bestimmt wird,
    dadurch gekennzeichnet, dass das Zittersignal eine pseudozufällige Abfolge ist, wobei das Verfahren ferner den Schritt des Erzeugens des Rückführungsworts durch Addieren des digitalen Worts (TDCOUT) zu einem zweiten Zittersignal, welches als eine invertierte und verstärkte Kopie des ersten Zittersignals erzeugt wird, verstärkt um einen Verstärkungsgewinn, aufweist.
  2. Verfahren nach Anspruch 1, wobei das Zittersignal aus einem Mehrpegeltyp besteht und/oder das Spektrum der Frequenzamplituden des Zittersignals in einem bestimmten Frequenzband verhältnismäßig klein ist und mit der Frequenz außerhalb des Durchlassbereichs zunimmt.
  3. Verfahren nach Anspruch 1, das ferner die Schritte aufweist:
    Messen von Variationen des digitalen Worts (TDCOUT) als Funktion von Variationen der Verzögerungszeit bezüglich einer Referenzverzögerungszeit und Ausfüllen einer Nachschlagtabelle mit den gemessenen Variationen und den entsprechenden Variationen der Verzögerungszeit;
    Erzeugen des ersten Zittersignals als ein pseudozufälliges Signal;
    Minimieren des Innenbandrauschens durch Einstellen des Verstärkungsgewinns, um Variationen des digitalen Worts (TDCOUT) infolge von Variationen der Verzögerungszeit gemäß der in der Nachschlagtabelle gespeicherten Werte zu kompensieren.
  4. Verfahren zum Erzeugen eines digitalen Rückführungsworts eines volldigitalen Phasenregelkreises, das ein Rückführungswort, das ein zeitkontinuierliches oszillierendes Signal (Fout) repräsentiert, durch einen Zeit-Digital-Wandler erzeugt, in den das zeitkontinuierliche oszillierende Signal (Fout) und ein Referenzsignal (FrefTDC), das eine Funktion eines Referenztakts (Fref) ist, eingegeben werden, indem mit dem Zeit-Digital-Wandler ein digitales Wort (TDCOUT) erzeugt wird, das entweder
    - das Verhältnis zwischen der Frequenz des zeitkontinuierlichen oszillierenden Signals (Fout) und der Frequenz des Referenzsignals (FrefTDC), oder
    - ihre gegenseitige Phasendifferenz repräsentiert,
    wobei das Rückführungswort eine Funktion des digitalen Worts (TDCOUT) ist, dadurch gekennzeichnet, dass das Verfahren den Schritt zur Verbesserung der Rauscheigenschaften des volldigitalen Phasenregelkreises durch Ausführen des Verfahrens nach einem der Ansprüche 1 bis 3 aufweist.
  5. Rückführungsschaltung für einen volldigitalen Phasenregelkreis, der ein Rückführungswort erzeugt, das ein zeitkontinuierliches oszillierendes Signal (Fout) repräsentiert, und einen Zeit-Digital-Wandler aufweist, in den das zeitkontinuierliche oszillierende Signal (Fout) und ein Referenzsignal (FrefTDC), das eine Funktion eines Referenztakts (Fref) ist, eingegeben werden, wobei der Zeit-Digital-Wandler eingerichtet ist, ein digitales Wort (TDCOUT) zu erzeugen, das entweder
    - das Verhältnis zwischen der Frequenz des zeitkontinuierlichen oszillierenden Signals (Fout) und der Frequenz des Referenzsignals (FrefTDC), oder
    - ihre gegenseitige Phasendifferenz repräsentiert,
    wobei das Rückführungswort eine Funktion des digitalen Worts (TDCOUT) ist, dadurch gekennzeichnet, dass die Rückführungsschaltung ferner aufweist:
    eine Verzögerungsschaltung, in die entweder der Referenztakt (Fref) oder das zeitkontinuierliche oszillierende Signal (Fout) eingegeben werden, die durch ein Zittersignal gesteuert wird und entweder eingerichtet ist, das Referenzsignal (FrefTDC) als eine Kopie des Referenztakts (Fref), die um eine Zeit verzögert ist, die durch den Pegel des Zittersignals bestimmt wird, zu erzeugen, oder eingerichtet ist, in den Zeit-Digital-Wandler eine Kopie des zeitkontinuierlichen oszillierenden Signals (Fout), die um eine Zeit verzögert ist, die durch den Pegel des Zittersignals bestimmt wird, einzugeben, wobei im letztgenannten Fall das Referenzsignal (FrefTDC) eine Kopie des Referenztakts (Fref) ist;
    dadurch gekennzeichnet, dass sie ferner aufweist:
    einen invertierenden Verstärker, in den das Zittersignal eingegeben wird und der eingerichtet ist, ein zweites Zittersignal als eine verstärkte Kopie des ersten Zittersignals zu erzeugen;
    einen Addierer, der eingerichtet ist, das Rückführungswort als die Summe des digitalen Worts (TDCOUT) und des zweiten Zittersignals zu erzeugen.
  6. Volldigitaler Phasenregelkreis, der eine Rückführungsschaltung, wie in Anspruch 5 definiert, aufweist.
EP09177501A 2008-12-04 2009-11-30 Verfahren zur Verbesserung der Rauschcharakteristiken von einem volldigitalen Phasenregelkreis (ADPLL) und einem relativen ADPLL Active EP2194646B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITVA20080060 2008-12-04

Publications (2)

Publication Number Publication Date
EP2194646A1 EP2194646A1 (de) 2010-06-09
EP2194646B1 true EP2194646B1 (de) 2013-01-02

Family

ID=40903734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09177501A Active EP2194646B1 (de) 2008-12-04 2009-11-30 Verfahren zur Verbesserung der Rauschcharakteristiken von einem volldigitalen Phasenregelkreis (ADPLL) und einem relativen ADPLL

Country Status (2)

Country Link
US (1) US7940099B2 (de)
EP (1) EP2194646B1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034618A (ja) * 2008-07-24 2010-02-12 Sony Corp Pll回路、無線端末装置およびpll回路の制御方法
US8134393B1 (en) * 2010-09-29 2012-03-13 Motorola Solutions, Inc. Method and apparatus for correcting phase offset errors in a communication device
US8548111B2 (en) 2010-09-30 2013-10-01 ST-Ericsson-SA Sampler circuit
US8395428B2 (en) 2010-09-30 2013-03-12 St-Ericsson Sa Reference clock sampling digital PLL
US8749280B2 (en) * 2011-10-17 2014-06-10 Mediatek Inc. Frequency synthesizer and associated method
US8669890B2 (en) * 2012-01-20 2014-03-11 Mediatek Inc. Method and apparatus of estimating/calibrating TDC mismatch
EP2796945A1 (de) * 2013-04-24 2014-10-29 Asahi Kasei Microdevices Corporation Zeit-Digital-Umwandlung mit Analog-Dithering
US10305493B2 (en) * 2014-10-22 2019-05-28 Sony Semiconductor Solutions Corporation Phase-locked loop and frequency synthesizer
EP3119000B1 (de) * 2015-07-17 2018-03-28 Stichting IMEC Nederland Komplett digitaler phasenregelkreis
EP3190704B1 (de) * 2016-01-06 2018-08-01 Nxp B.V. Digitale phasenregelkreise
US10715157B2 (en) 2016-03-31 2020-07-14 Apple Inc. Methods and mobile communication devices for performing spur relocation for phase-locked loops
EP3249817B1 (de) 2016-05-25 2018-12-26 IMEC vzw Dtc-basierter phasenregelkreis und verfahren zum betreiben des dtc-basierten phasenregelkreises
JP6572251B2 (ja) 2017-03-17 2019-09-04 株式会社東芝 時間計測回路および距離計測装置
US11245403B2 (en) * 2017-07-17 2022-02-08 Intel Corporation Method and a system for calibrating a phase nonlinearity of a digital-to-time converter
US10516401B2 (en) * 2018-03-09 2019-12-24 Texas Instruments Incorporated Wobble reduction in an integer mode digital phase locked loop
JP2019161442A (ja) 2018-03-13 2019-09-19 株式会社東芝 Tdc回路及びpll回路
JP2021027496A (ja) * 2019-08-07 2021-02-22 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体
CN110784212B (zh) * 2019-11-18 2020-06-30 华南理工大学 一种锁相环的频率锁定方法及电路
JP2022176788A (ja) * 2021-05-17 2022-11-30 北陽電機株式会社 Tdc装置、測距装置および補正方法
JP2022176789A (ja) * 2021-05-17 2022-11-30 北陽電機株式会社 Tdc装置、測距装置および測距方法
US11658666B1 (en) * 2022-03-30 2023-05-23 Nxp B.V. Fractional-N ADPLL with reference dithering
CN115421367B (zh) * 2022-08-10 2024-02-27 麦斯塔微电子(深圳)有限公司 校准方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205924B2 (en) * 2004-11-18 2007-04-17 Texas Instruments Incorporated Circuit for high-resolution phase detection in a digital RF processor
US7498890B2 (en) * 2005-10-19 2009-03-03 Texas Instruments Incorporated Continuous reversible gear shifting mechanism
US7714665B2 (en) * 2006-02-16 2010-05-11 Texas Instruments Incorporated Harmonic characterization and correction of device mismatch
JP2008060895A (ja) * 2006-08-31 2008-03-13 Nec Electronics Corp 位相同期回路
FR2912572A1 (fr) 2007-02-08 2008-08-15 St Microelectronics Sa Procede d'ajout d'un bruit aleatoire dans un circuit convertisseur temps-numerique et circuits pour mettre en oeuvre le procede
US8045670B2 (en) * 2007-06-22 2011-10-25 Texas Instruments Incorporated Interpolative all-digital phase locked loop
US8433025B2 (en) * 2008-01-04 2013-04-30 Qualcomm Incorporated Digital phase-locked loop with gated time-to-digital converter
US20100074387A1 (en) * 2008-09-24 2010-03-25 Infineon Technologies Ag Frequency to Phase Converter with Uniform Sampling for all Digital Phase Locked Loops

Also Published As

Publication number Publication date
US20100141316A1 (en) 2010-06-10
US7940099B2 (en) 2011-05-10
EP2194646A1 (de) 2010-06-09

Similar Documents

Publication Publication Date Title
EP2194646B1 (de) Verfahren zur Verbesserung der Rauschcharakteristiken von einem volldigitalen Phasenregelkreis (ADPLL) und einem relativen ADPLL
US9461653B2 (en) Fractional-N phase-locked loop
Levantino et al. An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs
US20200212918A1 (en) Adaptive Non-linearity Identification and Compensation Using Orthogonal Functions in a Mixed Signal Circuit
US7365607B2 (en) Low-power, low-jitter, fractional-N all-digital phase-locked loop (PLL)
US9705521B1 (en) Noise shaping signed digital-to-analog converter
US10680624B2 (en) Phase-locked loop with filtered quantization noise
US7271666B1 (en) Method and apparatus for canceling jitter in a fractional-N phase-lock loop (PLL)
US20080315928A1 (en) Digital phase locked loop with dithering
US8198929B2 (en) Dynamic element matching for time-to-digital converters
Venerus et al. A TDC-free mostly-digital FDC-PLL frequency synthesizer with a 2.8-3.5 GHz DCO
CN113810049A (zh) 参考时钟信号周期误差的校正
Levantino et al. Nonlinearity cancellation in digital PLLs
Wu et al. A quantization error minimization method using DDS-DAC for wideband fractional-N frequency synthesizer
Rhee et al. Fractional-N frequency synthesis: overview and practical aspects with FIR-embedded design
Moreira et al. Distributed DDS in a white rabbit network: An IEEE 1588 application
Alvarez-Fontecilla et al. Spectral breathing and its mitigation in digital fractional-N PLLs
Kennedy et al. Nonlinearity-induced spurs in fractional-N frequency synthesizers
Chen Trends and new opportunities in digital phase-locked loop design: Design principles, key overheads, and new opportunities in this emerging architecture
Temporiti et al. Insights into wideband fractional all-digital PLLs for RF applications
Pamarti Digital techniques for integrated frequency synthesizers: A tutorial
Reddy Noise shaping with sigma delta modulators in fractional-N synthesizers
ElSayed et al. Phase-domain fractional-N frequency synthesizers
Levantino et al. Advances in Analog and RF IC Design for Wireless Communication Systems: Chapter 5. Digital Fractional-N Frequency Synthesis
De Muer et al. A 1.8 GHz CMOS ΔΣ Fractional-N Frequency Synthesizer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101126

17Q First examination report despatched

Effective date: 20110112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STMICROELECTRONICS SRL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 592084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009012410

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 592084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130102

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

26N No opposition filed

Effective date: 20131003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009012410

Country of ref document: DE

Effective date: 20131003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131023

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009012410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091130

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 15