EP2191486A1 - Als abschirmung in einer vakuumschaltröhre einsetzbares rohrförmiges bauteil sowie verfahren zur herstellung eines als abschirmung in einer vakuumschaltröhre einsetzbaren rohrförmigen bauteils - Google Patents

Als abschirmung in einer vakuumschaltröhre einsetzbares rohrförmiges bauteil sowie verfahren zur herstellung eines als abschirmung in einer vakuumschaltröhre einsetzbaren rohrförmigen bauteils

Info

Publication number
EP2191486A1
EP2191486A1 EP08804652A EP08804652A EP2191486A1 EP 2191486 A1 EP2191486 A1 EP 2191486A1 EP 08804652 A EP08804652 A EP 08804652A EP 08804652 A EP08804652 A EP 08804652A EP 2191486 A1 EP2191486 A1 EP 2191486A1
Authority
EP
European Patent Office
Prior art keywords
copper
shield
metal
mold
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804652A
Other languages
English (en)
French (fr)
Inventor
Klaus Gessner
Ulf SCHÜMANN
Andreas Stelzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2191486A1 publication Critical patent/EP2191486A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66269Details relating to the materials used for screens in vacuum switches

Definitions

  • the invention relates to a usable as a shield in a vacuum interrupter tubular member made of a first metal and a method for producing such a component.
  • a vacuum interrupter is ⁇ be known, the shield is uniformly made of a copper-chromium material with a melting copper and chromium content of each ⁇ wells 50%.
  • the present invention seeks to provide a shield for a vacuum switching ⁇ tube, which combines the advantages of different metals.
  • This object is achieved in a usable as a shield in a vacuum interrupter tubular member made of a first metal in that the component between two end regions has a central portion having a second metal having a melting temperature, the hö ⁇ forth than the melting temperature of the first Metal is.
  • the end regions consist of copper and between the end regions of a middle Section of a copper and chromium-containing alloy is present.
  • a shield which consists of copper-chromium in the relevant contact gap area.
  • the shield is characterized in the contact gap area by a high erosion resistance over pure copper.
  • a method for producing such a tubular component which can be used as a shield provides as the first method step that in a molten mold with a tubular cavity an axially first portion of the cavity is filled with a low-melting metal, wherein in a further step in the in axia ⁇ ler direction adjoining portion of the cavity a Herge ⁇ imputed tubular porous blank is by means of a powder of refractory metal is introduced, and wherein further provided a low-melting metal in the subsequent axially adjacent section of the cavity before the Contents of the melt mold in vacuum for a time sufficient for partial melt diffusion into the porous blank is brought to a sufficiently high temperature, and wherein finally after cooling of the melt mold, a tubular component is removed for further processing.
  • FIG. 1 is a partially sectioned side view of a vacuum interrupter according to an embodiment of the invention
  • FIG. 2 shows a press mold for producing a pressed article, in particular a CrCu blank
  • Fig. 3 is a melt mold for producing a shield in the form of a metallic, predominantly rotationally symmetrical shell, in which the material composition behaves heterogeneously only in the axial direction.
  • Fig. 1 shows a partially sectioned side view of a vacuum interrupter 1, which has a two-part hollow cylindrical ceramic housing 2 a and 2 b, the housing parts 2 a and 2 b are each sealed at the end by metallic cover 3 and 4 vaku- umdicht, so that a vacuum interrupter chamber 5 is formed.
  • the lid 3 is of a fixed contact rod
  • the lid 4 is penetrated by a switching rod 8, which carries a moving contact 9.
  • the moving contact 9 and the fixed ⁇ contact 7 have slots to generate a deletion of a ge ⁇ arc pulled supporting magnetic field.
  • the shift rod 8 and the moving contact 9 are longitudinally guided ⁇ Lich, so that the moving contact 9 can be transferred from its in the disconnected position shown in Fig. 1 out in a contact position in which the moving contact 9 on the fixed contact
  • a shield 11 is provided.
  • the cylindrical shield 11 is formed as a sleeve with three sections 12, 13 and 14.
  • the shielding 11 surrounds exhaust from the fixed contact 7 and the contact 9 Move ⁇ existing contact arrangement.
  • the shield 11 shown in FIG. 1 inside the vacuum interrupter 1 thus serves to avoid ceramic vapor deposition of the hollow cylindrical ceramic housing 2a and 2b.
  • the shield 11 is made of a metal, in particular copper or a copper-containing alloy, such as copper-chromium.
  • the end portions or portions 12, 14 are made of copper and the middle portion 13 is made of a copper-chromium alloy.
  • the method for producing the shield 11 leads to a shield 11 whose material composition is behaves heterogeneously in the axial direction.
  • a section 12 made of copper In the shield 11 in the axial direction alternately follow a section 12 made of copper, a section 13 made of copper-chromium, and then a section 14, which again consists of copper.
  • the structure of the shield 11 of three sections 12, 13 and 14 makes it possible to realize by means of the central portion 13 a ⁇ telwall for vacuum interrupters so that the shield 11 only in the contact gap region of the contacts 7 and 9 consists of copper-chromium.
  • Copper-chromium has the advantage of increased burn-off resistance of the copper chromium, reduced conductivity for reducing eddy currents, and furthermore the advantage of better properties of copper-chromium in interactions of the switching plasma with the shield 11, compared to a copper vapor shield only.
  • the process for the preparation of the three sections 12, 13, 14 having shield 11 begins with a tube section, pressing or blank of pressed refractory metal, for example, mechanically compacted Chrompul ⁇ ver or sintered chromium powder is prepared.
  • a press mold 21 made of steel or a similarly constructed graphite sinter, shown schematically in FIG.
  • the mold 21 essentially consists of a base part 23 with a flat bottom and an annular circumferential stop 25.
  • the stopper 25 forms a cylin ⁇ derförmige recess into which a cylinder mold core 27 can be inserted. Together with a stop 25 on the outside embracing hollow cylinder 29 of the cylinder mold core 27 forms an annular space 31.
  • the hollow cylinder 29 is supported on a flange 33 of the base member 23 with the interposition of a rubber ring 35.
  • a pipe section blank or pressing is made by means of the mold 21 or a graphite sinter, not shown in the drawing, by the annular space 31 is filled, for example, with a mixture of chromium powder and copper powder to a predetermined filling level.
  • the powder present in the annular space 31 is then compressed.
  • the copper powder may have a grain size of 40-250 microns and the chromium powder a grain size of 50-300 microns.
  • Fig. 3 schematically illustrates a melt mold 41 for producing the shield 11 with the sections 12, 13 and 14.
  • the melt mold 41 has a circular disk-shaped bottom plate 43 with a centering hole 42 and a circular peripheral skirt 44.
  • the bottom plate 43 and the others in the following Parts of the melt mold 41 which are still described are preferably made of hard graphite.
  • the centering hole 42 serves to receive a pin 47 formed on a mold guide column 46.
  • the skirt 44 serves to guide a guide cylinder 48 into which a lower mold part 49, a middle mold part 51, an upper mold part 53 and a final mold part 55 are inserted ,
  • Each of the mold parts 49 to 55 consists of an inner ring part 54 guided on the mold guide column 46 and an outer ring part 56 guided by the guide cylinder 48. They contact each other along annular surfaces which engage one another with recesses and projections which can be seen in the drawing.
  • the mold parts 49 to 55 thus each consist of an outer ring member 56 which is supported against the guide cylinder 48, and in each case an inner ring member 54 which is guided by the mold guide column 46.
  • a low melting ⁇ ing metal This may be a copper powder or a section of a copper tube.
  • the tubular gap portion 63 between the two annular parts of the central mold part 51 serves to receive high-melting metal such as a tubular pressing 65, for example, in the mold 21 from a mixture of copper powder with a grain size of 40-300 microns and chromium powder with a grain size of 50-300 microns was produced.
  • a compact 65 it is also possible to use a blank which has been produced by sintering chromium powder.
  • a chromium powder with a grain size of 50-300 microns at a temperature of 125O 0 C for 60 min are annealed in a vacuum furnace, not shown in the drawing.
  • the dimensions of the blank or compact 65 are chosen so that it abuts the circumferential shoulder 59 and can not fall into the gap of the lower mold part 49, even if it is only partially filled with a material.
  • the gap portion 67 in the region of the mold parts 53 and 55 similar to the tube-shaped gap in the Be rich filled ⁇ 61 with a low-melting metal in whole or in part.
  • This may again be a copper powder or a section of a copper tube.
  • the melt mold 41 When the melt mold 41 is vacuum-heated to the melting temperature of the low-melting metal, in particular the copper, is heated, the molten metal fills the melt mold 41 in the lower portion 61 from.
  • the low-melting metal, in particular copper, in the upper region 67 then diffuses through the pressure 65 and fills out its pores.
  • an alloy of the low-melting and high-melting metal is formed in the tubular gap section 63.
  • the alloy can be changed in their composition.
  • the low-melting metal from the upper portion 67 is used as an alloy depot. A sufficient amount of material must be kept from the ⁇ sem basically in the upper region 67 to a homogeneous structure si ⁇ cher creative.
  • the exposure time of the molten phase should be extended until the blank or tubular pressure is 65 completely saturated by the low-melting metal, in particular ⁇ sondere copper.
  • the melting process described at a temperature of 1150 to 125O 0 C with a holding time of 20 to 60 min is carried out in vacuo, in order to prevent oxidation of the metals used, in particular the copper and the chromium. If this does not happen in a vacuum, no connection of the metals takes place.
  • the shield 11 produced in the manner described above forms a hollow cylindrical shell, in which metal ⁇ metallic materials alternate in the axial direction, the transitions to the central portion 13 are abrupt. At a transition is always a low-melting metal and an alloy of the low-melting and high-melting metal.
  • the described combination of copper-copper-chromium-copper represents a shield 11, which is used as a vapor shield in vacuum interrupters 1 in a particularly advantageous manner to achieve increased erosion resistance and reduction of eddy currents in the relevant contact ⁇ gap area.

Abstract

Eine Vakuumschaltröhre (1) verfügt über eine Abschirmung (11) mit Abschnitten (12, 13 und 14), bei denen sich Kupfer, die Legierung Kupfer-Chrom und wieder Kupfer abwechseln.

Description

Beschreibung
Als Abschirmung in einer Vakuumschaltröhre einsetzbares rohr- förmiges Bauteil sowie Verfahren zur Herstellung eines als Abschirmung in einer Vakuumschaltröhre einsetzbaren rohrför- migen Bauteils
Die Erfindung betrifft ein als Abschirmung in einer Vakuumschaltröhre einsetzbares rohrförmiges Bauteil aus einem ers- ten Metall sowie ein Verfahren zur Herstellung eines derartigen Bauteils.
Aus der DE 10 2004 061 497 Al ist eine Vakuumschaltröhre be¬ kannt, deren Abschirmung einheitlich aus einem Kupfer-Chrom- Schmelzwerkstoff mit einem Kupfer- und Chromanteil von je¬ weils 50% hergestellt ist.
Aus der Patentschrift DE 44 29 379 C2 ist eine Vakuumschalt¬ röhre bekannt, deren zylindrischer Dampfschirm oder Abschir- mung ganz aus Kupfer hergestellt ist.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Abschirmung für eine Vakuumschalt¬ röhre zu schaffen, die die Vorteile der verschiedenen Metalle vereinigt .
Diese Aufgabe wird bei einem als Abschirmung in einer Vakuumschaltröhre einsetzbaren rohrförmigen Bauteil aus einem ersten Metall dadurch gelöst, dass das Bauteil zwischen zwei Endbereichen über einen mittleren Abschnitt verfügt, der ein zweites Metall mit einer Schmelztemperatur aufweist, die hö¬ her als die Schmelztemperatur des ersten Metalls ist.
Dabei ist es besonders von Vorteil, wenn die Endbereiche aus Kupfer bestehen und zwischen den Endbereichen ein mittlerer Abschnitt aus einer Kupfer und Chrom enthaltenden Legierung vorhanden ist.
Auf diese Weise wird eine Abschirmung realisiert, die im re- levanten Kontaktspaltbereich aus Kupfer-Chrom besteht. Bei einer derartigen Gestaltung zeichnet sich die Abschirmung im Kontaktspaltbereich durch eine hohe Abbrandfestigkeit gegenüber reinem Kupfer aus. Weiterhin ergibt sich der Vorteil der verminderten Leitfähigkeit zur Reduzierung von Wirbelströmen und damit geringerer Wechselwirkungen des Schaltplasmas mit der Abschirmung. Außerhalb des Kontaktspaltbereichs kann das dort vorliegende Kupfer besonders einfach bearbeitet und ver¬ formt werden.
Ein Verfahren zur Herstellung eines derartigen als Abschirmung einsetzbaren rohrförmigen Bauteils sieht als ersten Verfahrensschritt vor, dass in einer Schmelzform mit einem rohrförmigen Hohlraum ein in axialer Richtung erster Abschnitt des Hohlraums mit einem nieder schmelzenden Metall gefüllt wird, wobei in einem weiteren Arbeitsschritt in dem in axia¬ ler Richtung sich anschließenden Abschnitt des Hohlraums ein mittels eines Pulvers aus hoch schmelzendem Metall herge¬ stellter rohrförmiger poröser Rohling eingebracht wird, und wobei weiterhin in dem in axialer Richtung sich daran an- schließenden Abschnitt des Hohlraums ein nieder schmelzendes Metall bereitgestellt wird, bevor der Inhalt der Schmelzform im Vakuum für eine zur teilweisen Schmelzdiffusion in den porösen Rohling ausreichende Zeit auf eine ausreichend hohe Temperatur gebracht wird, und wobei schließlich nach dem Ab- kühlen der Schmelzform ein rohrförmiges Bauteil zur Weiterverarbeitung entnommen wird.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen, bei der teilweise auf die Figuren der Zeichnung Bezug genommen wird. Es zeigen :
Fig. 1 eine teilweise geschnittene Seitenansicht einer Vakuumschaltröhre gemäß einem Ausfüh- rungsbeispiel der Erfindung,
Fig. 2 eine Pressform zum Herstellen eines Press- lings, insbesondere eines CrCu-Rohlings, und
Fig. 3 eine Schmelzform zur Herstellung einer Abschirmung in Gestalt einer metallischen, überwiegend rotationssymmetrischen Hülle, in der sich die WerkstoffZusammensetzung nur in axialer Richtung heterogen verhält.
Fig. 1 zeigt eine teilweise geschnittene Seitenansicht einer Vakuumschaltröhre 1, die ein zweiteiliges hohlzylindrisches Keramikgehäuse 2a und 2b aufweist, dessen Gehäuseteile 2a und 2b jeweils stirnseitig durch metallische Deckel 3 und 4 vaku- umdicht verschlossen sind, so dass eine Vakuumschaltkammer 5 ausgebildet ist. Der Deckel 3 ist von einer Festkontaktstange
6 vakuumdicht durchgriffen. An dem in der Vakuumschaltkammer 5 angeordneten freien Ende der Festkontaktstange 6 ist ein Festkontakt 7 angeordnet.
Der Deckel 4 wird von einer Schaltstange 8 durchragt, die einen Bewegkontakt 9 trägt. Der Bewegkontakt 9 und der Fest¬ kontakt 7 weisen Schlitze auf, um ein die Löschung eines ge¬ zogenen Lichtbogens unterstützendes Magnetfeld zu erzeugen. Die Schaltstange 8 sowie der Bewegkontakt 9 sind längs beweg¬ lich geführt, so dass der Bewegkontakt 9 aus seiner in der in Fig. 1 gezeigten Trennstellung heraus in eine Kontaktstellung überführbar ist, in der der Bewegkontakt 9 an dem Festkontakt
7 anliegt und ein Stromfluss über den Vakuumschalter 1 ermög- licht ist. Um für die Beweglichkeit des Bewegkontaktes 9 zu sorgen, ist dieser über einen ein- und ausziehbaren Metallfaltenbalg 10 mit dem Deckel 4 vakuumdicht verbunden.
Werden die Kontakte 7 und 9 bei einem über die Vakuumschalt- röhre 1 fließenden Strom voneinander getrennt, wird zwischen den Kontakten 7 und 9 ein Lichtbogen gezogen. Im Bereich des Kontaktspaltes kommt es aufgrund der hohen Lichtbogen-tempe- raturen zu einem Abbrand an den Kontaktflächen der Kontakte 7 und 9 und damit zu einer Bildung von Metalldampf.
Um die Ablagerung dieses Metalldampfes an der Innenseite des Keramikgehäuses 2a und 2b zu vermeiden, ist eine Abschirmung 11 vorgesehen. Die zylinderförmige Abschirmung 11 ist als Hülse mit drei Abschnitten 12, 13 und 14 ausgebildet. Die Ab- schirmung 11 umgibt die aus dem Festkontakt 7 und dem Beweg¬ kontakt 9 bestehende Kontaktanordnung. Die in Fig. 1 im Innern der Vakuumschaltröhre 1 dargestellte Abschirmung 11 dient somit zur Vermeidung von Keramikbedampfung der hohlzy- lindrischen Keramikgehäuse 2a und 2b.
Zur Halterung der als Dampfschirm wirksamen hülsenförmigen Abschirmung 11 ist diese mit einem Befestigungselement 16 verbunden, das mit den als Keramikrohr realisierten Gehäuseteilen 2a und 2b fest verlötet ist.
Die Abschirmung 11 besteht aus einem Metall, insbesondere Kupfer oder einer Kupfer enthaltenden Legierung, wie beispielsweise Kupfer-Chrom. Vorzugsweise sind die Endbereiche oder Abschnitte 12, 14 aus Kupfer und der mittlere Bereich oder mittlere Abschnitt 13 aus einer Kupfer-Chrom-Legierung hergestellt .
Nachfolgend wird beschrieben, wie die metallische, überwie¬ gend rotationssymmetrische Hülle oder Abschirmung 11 mit Hilfe eines Schmelzdiffusionsverfahrens hergestellt werden kann. Das Verfahren zur Herstellung der Abschirmung 11 führt zu einer Abschirmung 11, deren WerkstoffZusammensetzung sich in axialer Richtung heterogen verhält. In der Abschirmung 11 folgen in axialer Richtung abwechselnd auf einen Abschnitt 12 aus Kupfer ein Abschnitt 13 aus Kupfer-Chrom, und dann ein Abschnitt 14, der wieder aus Kupfer besteht.
Der Aufbau der Abschirmung 11 aus drei Abschnitten 12, 13 und 14 gestattet es, durch den mittleren Abschnitt 13 einen Mit¬ telschirm für Vakuumschaltröhren so zu realisieren, dass die Abschirmung 11 nur im Kontaktspaltbereich der Kontakte 7 und 9 aus Kupfer-Chrom besteht. Der mittlere Abschnitt 13 aus
Kupfer-Chrom hat gegenüber einem Dampfschirm nur aus Kupfer den Vorteil der erhöhten Abbrandfestigkeit des Kupfer-Chroms, der verminderten Leitfähigkeit zur Reduzierung von Wirbelströmen und weiterhin den Vorteil der besseren Eigenschaften von Kupfer-Chrom bei Wechselwirkungen des Schaltplasmas mit der Abschirmung 11.
Das Verfahren zur Herstellung der drei Abschnitte 12, 13, 14 aufweisenden Abschirmung 11 beginnt damit, dass ein Rohrab- schnitt, Pressung oder Rohling aus gepresstem hochschmelzendem Metall, beispielsweise mechanisch verdichtetem Chrompul¬ ver oder gesintertem Chrompulver, hergestellt wird. Dies kann mit Hilfe einer in Fig. 2 schematisch dargestellten Pressform 21 aus Stahl oder einer ähnlich aufgebauten Graphitsinterform erfolgen. Die Pressform 21 besteht im Wesentlichen aus einem Basisteil 23 mit einem ebenen Boden und einem ringförmigen umlaufenden Anschlag 25. Der Anschlag 25 bildet eine zylin¬ derförmige Ausnehmung, in die ein Formzylinderkern 27 einsetzbar ist. Zusammen mit einem den Anschlag 25 auf der Außenseite umgreifenden Hohlzylinder 29 bildet der Formzylinderkern 27 einen Ringraum 31. Der Hohlzylinder 29 ist auf einem Flansch 33 des Basisteils 23 unter Zwischenlage eines Gummirings 35 abgestützt.
Zur Herstellung des mittleren Abschnittes 13 der Abschirmung 11 wird zunächst ein Rohrabschnitt, Rohling oder Pressung mit Hilfe der Pressform 21 oder einer in der Zeichnung nicht dargestellten Graphitsinterform hergestellt, indem der Ringraum 31 beispielsweise mit einer Mischung aus Chrompulver und Kupferpulver bis zu einer vorbestimmten Füllhöhe aufgefüllt wird. Mit Hilfe eines ringförmigen Pressstempels 32 wird dann das im Ringraum 31 vorhandene Pulver verdichtet. Um die Form¬ stabilität des im Ringraum 31 entstehenden Rohlings zu erhö¬ hen, kann es zweckmäßig sein, das Pulver in einer Graphitsinterform zu sintern statt es in einer Pressform 21 aus Stahl zu verdichten. Das Kupferpulver kann eine Körnung von 40-250 μm und das Chrompulver eine Körnung von 50-300 μm aufweisen.
Fig. 3 veranschaulicht schematisch eine Schmelzform 41 zur Herstellung der Abschirmung 11 mit den Abschnitten 12, 13 und 14. Die Schmelzform 41 verfügt über eine kreisscheibenförmige Bodenplatte 43 mit einem Zentrierloch 42 und einer kreisförmig umlaufenden Randleiste 44. Die Bodenplatte 43 sowie die anderen im folgenden noch beschriebenen Einzelteile der Schmelzform 41 bestehen vorzugsweise aus Hartgraphit.
Das Zentrierloch 42 dient zur Aufnahme eines an einer Formführungssäule 46 ausgebildeten Zapfens 47. Die Randleiste 44 dient zur Führung eines Führungszylinders 48, in den ein un¬ teres Formteil 49, ein mittleres Formteil 51, ein oberes Formteil 53 und ein abschließendes Formteil 55 eingesetzt sind. Die Formteile 49 bis 55 bestehen jeweils aus einem an der Formführungssäule 46 geführten inneren Ringteil 54 und einem vom Führungszylinder 48 geführten äußeren Ringteil 56. Sie berühren sich entlang von Ringflächen, die mit in der Zeichnung erkennbaren Ausnehmungen und Vorsprüngen ineinander greifen. Die Formteile 49 bis 55 bestehen somit jeweils aus einem äußeren Ringteil 56, der gegen den Führungszylinder 48 abgestützt ist, sowie jeweils einem inneren Ringteil 54, der durch die Formführungssäule 46 geführt ist. Zwischen den in- neren und äußeren Ringteilen 54, 56 der Formteile 49, 51, 53 sind jeweils ringförmige oder rohrförmige Hohlräume ausgebildet. Da der Zwischenraum zwischen dem inneren und äußeren Ringteil des unteren Formteils 49 in radialer Richtung kleiner ist als der entsprechende Spalt in den anderen Formteilen 51, 53 und 55, ergibt sich in dem rohrförmigen Hohlraum ein umlaufender Absatz 59.
Zur Herstellung der Abschirmung wird der rohrförmige Spalt im Bereich 61 des unteren Formteils 49 mit einem nieder schmel¬ zenden Metall ganz oder teilweise gefüllt. Dabei kann es sich um ein Kupfer-Pulver oder um einen Abschnitt eines Kupfer- Rohres handeln. Der rohrförmige Spaltabschnitt 63 zwischen den beiden Ringteilen des mittleren Formteils 51 dient zur Aufnahme von hoch schmelzendem Metall wie einem rohrförmigen Pressung 65, der beispielsweise in der Pressform 21 aus einer Mischung von Kupferpulver mit einer Körnung von 40-300 μm und Chrompulver mit einer Körnung von 50-300 μm hergestellt wurde.
Statt eines Presslings 65 kann auch ein Rohling verwendet werden, der durch Sintern von Chrompulver hergestellt wurde. Dazu kann ein Chrompulver mit einer Körnung von 50-300 μm bei einer Temperatur von 125O0C während 60 min in einem in der Zeichnung nicht dargestellten Vakuumofen geglüht werden. Die Abmessungen des Rohlings oder Presslings 65 sind dabei so ge- wählt, dass er am umlaufenden Absatz 59 anschlägt und nicht in den Spalt des unteren Formteils 49 absinken kann, auch wenn dieser nur teilweise mit einem Material gefüllt ist. Nach dem Einsetzen des Rohlings oder Presslings 65 in den Spaltabschnitt 63 wird der Spaltabschnitt 67 im Bereich der Formteile 53 und 55 ähnlich wie der rohrförmige Spalt im Be¬ reich 61 mit einem nieder schmelzenden Metall ganz oder teilweise ausgefüllt. Dabei kann es sich wiederum um ein Kupfer- Pulver oder um einen Abschnitt eines Kupfer-Rohres handeln.
Wenn die Schmelzform 41 im Vakuum auf die Schmelztemperatur des nieder schmelzenden Metalls, insbesondere des Kupfers, erhitzt wird, füllt das geschmolzene Metall die Schmelzform 41 im unteren Bereich 61 aus. Das niedrig schmelzende Metall, insbesondere Kupfer, im oberen Bereich 67 diffundiert dann durch den Pressung 65 und füllt dessen Poren aus. Dadurch entsteht im rohrförmigen Spaltabschnitt 63 eine Legierung aus dem nieder und hoch schmelzenden Metall. Über die Porigkeit des Rohlings oder rohrförmigen Presslings 65 lässt sich die Legierung in ihrer Zusammensetzung verändern. Bei der vorbeschriebenen Anordnung für die Herstellung der Abschirmung 11 in der Schmelzform 41 wird das niedrig schmelzende Metall aus dem oberen Bereich 67 als Legierungsdepot verwendet. Aus die¬ sem Grunde muss im oberen Bereich 67 eine ausreichende Menge an Material vorgehalten werden, um ein homogenes Gefüge si¬ cherzustellen .
Die Einwirkdauer der schmelzflüssigen Phase muss so lange ausgedehnt werden, bis der Rohling oder rohrförmige Pressung 65 vollständig durch das niedrig schmelzende Metall, insbe¬ sondere Kupfer, gesättigt ist. Der beschriebene Schmelzvor- gang bei einer Temperatur von 1150 bis 125O0C mit einer Haltezeit von 20 bis 60 min erfolgt im Vakuum, um ein Oxidieren der verwendeten Metalle, insbesondere des Kupfers und des Chroms, zu verhindern. Geschieht dies nicht im Vakuum, findet keine Verbindung der Metalle statt.
Wenn der in der Schmelzform 41 erstellte Schmelzrohling für die Abschirmung 11 abgekühlt ist, wird er der Schmelzform 41 entnommen. Anschließend kann eine spanabhebende Bearbeitung sowie auch eine spanlose Verformung der Abschirmung 11 erfol- gen, um die einbaufertige Abschirmung zu erhalten.
Die auf die oben beschriebene Weise hergestellte Abschirmung 11 bildet eine hohlzylinderförmige Hülle, in der sich metal¬ lische Materialien in axialer Richtung einander abwechseln, wobei die Übergänge zum mittleren Abschnitt 13 abrupt sind. An einem Übergang liegt immer ein nieder schmelzendes Metall und eine Legierung aus dem nieder schmelzenden und hoch schmelzenden Metall vor. Die beschriebene Kombination von Kupfer-Kupfer-Chrom-Kupfer stellt eine Abschirmung 11 dar, die als Dampfschirm in Vakuumschaltröhren 1 in besonders vorteilhafter Weise eingesetzt wird, um im relevanten Kontakt¬ spaltbereich eine erhöhte Abbrandfestigkeit und Reduzierung von Wirbelströmen zu erzielen.

Claims

Patentansprüche
1. Als Abschirmung in einer Vakuumschaltröhre (1) einsetzba- res rohrförmiges Bauteil (11) aus einem ersten Metall, d a d u r c h g e k e n n z e i c h n e t, dass das Bauteil (11) zwischen zwei Endbereichen (12, 14) über einen mittleren Abschnitt (13) verfügt, der ein zweites Metall mit einer Schmelztemperatur aufweist, die höher als die Schmelztemperatur des ersten Metalls ist.
2. Bauteil nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Endbereiche (12, 14) aus Kupfer bestehen, und zwischen den Endbereichen (12, 14) ein mittlerer Abschnitt (13) aus einer Kupfer und Chrom enthaltenden Legierung vorhanden ist.
3. Bauteil nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die Endbereiche (12, 14) auf einen Durchmesser verformt sind, der kleiner als der Durchmesser des mittleren Abschnittes ist.
4. Verfahren zur Herstellung eines als Abschirmung in einer Vakuumschaltröhre einsetzbaren rohrförmigen Bauteils, bei dem in einer Schmelzform mit einem rohrförmigen Hohlraum ein in axialer Richtung erster Abschnitt des Hohlraumes mit einem nieder schmelzenden Metall gefüllt wird, wobei in dem in axialer Richtung sich anschließenden Abschnitt des Hohlraumes ein mittels eines Pulvers aus hoch schmel¬ zendem Metall hergestellter rohrförmiger poröser Rohling eingebracht wird, und in dem in axialer Richtung sich daran anschließenden Abschnitt des Hohlraumes ein nieder schmelzendes Metall bereitgestellt wird, bevor der Inhalt der Schmelzform im Vakuum für eine zur teilweisen Schmelz- diffusion in den porösen Rohling ausreichende Zeit auf eine ausreichend hohe Temperatur gebracht wird, und nach dem Abkühlen der Schmelzform ein rohrförmiges Bauteil zur Weiterverarbeitung entnommen wird.
5. Verfahren nach Anspruch 4, bei dem das nieder schmelzende Metall ein Kupfer-Rohr ist.
6. Verfahren nach Anspruch 4, bei dem das nieder schmelzende Metall Kupfer in Pulverform ist.
7. Verfahren nach einem der Ansprüche 4 bis 6, bei dem der poröse Rohling aus einem aus Kupfer und Chrom bestehenden Pulver durch Pressen in einer Pressform bei einem ausrei- chend hohem Druck hergestellt wird.
8. Verfahren nach einem der Ansprüche 4 bis 6, bei dem der poröse Rohling dadurch hergestellt wird, dass Chrompulver in einer Sinterform bei einer Temperatur von 125O0C wäh- rend 60 min in einem Vakuumofen geglüht wird.
9. Verfahren nach Anspruch 8, bei dem zur Herstellung des porösen Rohlings Chrompulver mit einer Körnung von 50-300 μm verwendet wird.
10. Verfahren nach Anspruch 7, bei dem zur Herstellung des porösen Rohlings Kupferpulver mit einer Körnung von 40-300 μm und Chrompulver mit einer Körnung von 50-300 μm verwendet wird.
11. Verfahren nach einem der Ansprüche 4 bis 10, bei dem die Schmelzform im Vakuumofen auf 1150 bis 125O0C mit einer Haltezeit von 20 bis 60 min erhitzt wird.
EP08804652A 2007-09-27 2008-09-24 Als abschirmung in einer vakuumschaltröhre einsetzbares rohrförmiges bauteil sowie verfahren zur herstellung eines als abschirmung in einer vakuumschaltröhre einsetzbaren rohrförmigen bauteils Withdrawn EP2191486A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710047473 DE102007047473B3 (de) 2007-09-27 2007-09-27 Verfahren zur Herstellung eines als Abschirmung in einer Vakuumschaltröhre einsetzbaren rohrförmigen Bauteils
PCT/EP2008/062742 WO2009043769A1 (de) 2007-09-27 2008-09-24 Als abschirmung in einer vakuumschaltröhre einsetzbares rohrförmiges bauteil sowie verfahren zur herstellung eines als abschirmung in einer vakuumschaltröhre einsetzbaren rohrförmigen bauteils

Publications (1)

Publication Number Publication Date
EP2191486A1 true EP2191486A1 (de) 2010-06-02

Family

ID=39869083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804652A Withdrawn EP2191486A1 (de) 2007-09-27 2008-09-24 Als abschirmung in einer vakuumschaltröhre einsetzbares rohrförmiges bauteil sowie verfahren zur herstellung eines als abschirmung in einer vakuumschaltröhre einsetzbaren rohrförmigen bauteils

Country Status (4)

Country Link
EP (1) EP2191486A1 (de)
CN (1) CN101809701A (de)
DE (1) DE102007047473B3 (de)
WO (1) WO2009043769A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618355B1 (de) * 2012-01-19 2022-07-13 ABB Schweiz AG Dampfabschirmungsanordnung für Vakuumschaltröhre
JP6632158B2 (ja) * 2017-12-25 2020-01-22 株式会社Ihi ホットプレス装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932159A1 (de) * 1989-09-27 1991-04-04 Calor Emag Elektrizitaets Ag Vakuum-schaltkammer und verfahren zu deren herstellung
DE9315036U1 (de) * 1993-09-30 1994-11-03 Siemens Ag Vakuumschaltröhre mit isoliert gehaltertem Dampfschirm
DE4412991A1 (de) * 1994-04-15 1995-10-19 Abb Patent Gmbh Abschirmung für eine Vakuumschaltkammer
DE19747242C2 (de) * 1997-10-25 2002-02-21 Abb Patent Gmbh Verfahren zur Herstellung einer Blechform für Vakuumkammerschirme oder Vakuumkammerkontaktstücke
WO2006032522A1 (de) 2004-09-25 2006-03-30 Abb Technology Ag Verfahren zur herstellung einer abbrandfesten beschichtung, sowie entsprechende schirmung für vakuumschaltkammern
DE102004061497A1 (de) * 2004-12-15 2006-07-06 Siemens Ag Aus einer schmelzmetallurgisch hergestellten Kupferchromlegierung bestehendes Schirmsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009043769A1 *

Also Published As

Publication number Publication date
CN101809701A (zh) 2010-08-18
DE102007047473B3 (de) 2008-11-20
WO2009043769A1 (de) 2009-04-09

Similar Documents

Publication Publication Date Title
DE2914186C2 (de)
DE69433453T2 (de) Vakuumschalter und in diesem verwendeter elektrischer Kontakt
EP1844486B1 (de) Verfahren zur herstellung eines kontaktstückes, sowie kontaktstück für eine vakuumschaltkammer selbst
EP1794350A1 (de) Verfahren zur herstellung einer abbrandfesten beschichtung, sowie entsprechende schirmung für vakuumschaltkammern
DE102009043615B4 (de) Kontaktstruktur eines Vakuumventils sowie Verfahren zu deren Herstellung
EP2989650A1 (de) Verfahren und vorrichtung zur herstellung von kontaktelementen für elektrische schaltkontakte
DE4442161C1 (de) Verfahren zur Herstellung eines Formteils
DE2231807B2 (de) Hülse als zylindrische Druckkammer für eine Druckgießmaschine
DE3232708A1 (de) Vakuumschaltroehre mit schraubenlinienfoermiger strombahn
WO2006111175A1 (de) Verfahren zur herstellung von kontaktstücken für vakuumschaltkammern
DE102007047473B3 (de) Verfahren zur Herstellung eines als Abschirmung in einer Vakuumschaltröhre einsetzbaren rohrförmigen Bauteils
DE1236053B (de) Elektrischer Schalter, insbesondere Vakuumschalter
EP1130608B1 (de) Verfahren zum Herstellen eines Kontaktwerkstoffes für Kontaktstücke für Vakuumschaltgeräte sowie Kontaktwerkstoff und Kontaktstücke hierfür
WO2006063989A1 (de) Aus einer schmelzmetallurgisch hergestellten kupferchromlegierung bestehendes schirmsystem
DE4135089C2 (de) Vakuumschalter
DE2723749C3 (de) Kontaktstücke für Vakuum-Trennschalter
DE19822469A1 (de) Verfahren zur Herstellung von Verbundwerkstoff für Schaltröhren
EP3108489B1 (de) Kontaktstift und rohrkontakt sowie verfahren zur herstellung
DE10019121A1 (de) Elektrischer Schaltkontakt und Verfahren zu dessen Herstellung
DE1915198A1 (de) Vakuumunterbrecher
EP1848019B1 (de) Verfahren zur Herstellung eines Kontaktstückes, sowie Kontaktstück für Nieder-, Mittel,- Hochspannungs- und Generatorschaltgeräte
DE102021210839A1 (de) Herstellungsverfahren für einen Kontaktkörper einer Vakuumschaltröhre, Kontaktkörper für eine Vakuumschaltröhre und Vakuumschaltröhre mit einem solchen Kontaktkörper
DE102021210641A1 (de) Kontaktelement für Vakuumschalter, Vakuumschalter sowie Herstellungsverfahren für ein Kontaktelement
DD209317A1 (de) Kontaktwerkstoff fuer vakuumschalter und verfahren zur herstellung
DE102015218480A1 (de) Kontaktstück für einen Vakuumschalter und elektrischer Schalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120403