EP2185915A1 - Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers - Google Patents

Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers

Info

Publication number
EP2185915A1
EP2185915A1 EP08801240A EP08801240A EP2185915A1 EP 2185915 A1 EP2185915 A1 EP 2185915A1 EP 08801240 A EP08801240 A EP 08801240A EP 08801240 A EP08801240 A EP 08801240A EP 2185915 A1 EP2185915 A1 EP 2185915A1
Authority
EP
European Patent Office
Prior art keywords
bearing
measuring device
lubricant
receiver
sample area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08801240A
Other languages
English (en)
French (fr)
Inventor
Jörg Franke
Joachim Hering
Martin Kram
Joachim Schleifenbaum
Alexander Weiss
Gerhard Röhner
Sven Flösser
Marcel Schreiner
Thomas Otto
Thomas Gessner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Carl Freudenberg KG
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG, Schaeffler Technologies AG and Co KG filed Critical Carl Freudenberg KG
Publication of EP2185915A1 publication Critical patent/EP2185915A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/14Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/34Transparency; Light; Photo sensor

Definitions

  • the invention relates to a measuring device according to the preamble of claim 1 for the analysis of a lubricant of a bearing, in particular a rolling or sliding bearing, a bearing according to claim 8, a seal according to claim 11 for a bearing, and a method according to claim 12 for Detecting and monitoring the state of a lubricant of a bearing, in particular a rolling or sliding bearing.
  • lubricant refers to any lubricant which is used in a bearing for lubrication, reduces friction and wear and occasionally also to fulfill other functions, for example for transmitting power between the bearing components, for cooling the bearing Corrosion protection, can serve for vibration damping or as a sealant.
  • DE 35 10 408 A1 describes a device for monitoring the operating state of bearings.
  • the current state of the lubricant of the bearing is determined such that in the immediate vicinity of the bearing, a collecting device is provided, which captures from the bearing exiting lubricant and analyzed.
  • the analysis is limited to the detection of metallic particles contained in the lubricant of the bearing and the detection of the temperature of the lubricant.
  • a statement about the chemical composition of the lubricant inside the bearing is not provided.
  • DE 93 11 938 LM describes a device for taking a sample of lubricant, especially grease, from a rolling bearing.
  • a sample of lubricant especially grease
  • holes are inserted into the bearing rings of the rolling bearing, through which each grease samples can be taken. Again, no immediate in-situ measurement of the condition of the lubricant is possible.
  • sample area is located inside the bearing, there is no need for time-consuming sample collection; rather, it offers the possibility To measure the lubricant in situ, ie under the physical or chemical conditions of the bearing interior. This eliminates distortions of the measurement result in a sampling with a subsequent transport to the analysis unit.
  • the recording of spectra of the electromagnetic radiation emanating from the sample provides information about the chemical state of the lubricant in a short time.
  • the electromagnetic radiation does not affect or alter the lubricant itself; Also, in contrast to frequent sampling, there is no longer a loss of lubricant that must be replaced.
  • the spectrum itself provides chemical information about the composition of the lubricant, which is largely independent of foreign bodies such as particles contained in the lubricant.
  • the sample area is arranged on an inner wall of the bearing, in particular on such a section of the inner wall of the bearing, which is mechanically stressed and for which lubrication is absolutely necessary in order to enable the functional capability of the bearing or to maintain.
  • the sample area is conveniently arranged, for example, in the raceway or in the immediate vicinity of the raceway of the rolling elements on one of the two bearing rings, since just in the contact zone between the rolling elements and the bearing ring lubrication is required.
  • the arrangement of the sample area is decisive for immediate information about the actual condition of the lubricant; In addition, it is also possible to recognize the situation that there is no longer any lubricant. if not or no longer where the lubricant is needed.
  • a reflection in particular a total reflection of the electromagnetic radiation emitted by the transmitter takes place in the sample area.
  • the reflection spectrum for example the diffuse reflectance spectrum or the total reflection spectrum, provides the information about the chemical composition of the lubricant. Reflection or total reflection as measuring principles for the acquisition of spectra have the advantage of being surface-sensitive and of being able to reliably detect only small amounts of lubricant to be detected. In addition, penetration of the electromagnetic radiation into the interior of the bearing can be avoided. Furthermore, it is possible for reflection or total reflection to arrange transmitter and receiver adjacent to one another, so that the measuring arrangement can be designed to be physically small.
  • the transmitter, the receiver and the sample area are combined to form a structural unit, and that the sample area comprises an interface to the interior of the bearing, at which a reflection or total reflection occurs.
  • the structural unit can be easily and quickly attached or replaced at the camp; the contact surface between the structural unit is formed only by the interface, which can be optimized in terms of their function for the reflection or the total reflection of the electromagnetic radiation with respect to their geometric design or with respect to the material of the interface.
  • the receiver detects and spectrally analyzes the electromagnetic radiation in the region of the infrared, in particular in the region of the near or middle infrared.
  • the measuring device is thus designed in the manner of an IR spectrometer. It proves to be advantageous that IR radiation, in particular in the NIR or MIR, excites molecular vibrations in the lubricant, which provides precise information provide characteristic, IR-active groups of the lubricant on the chemical nature; On the other hand, unlike UV or X-rays, IR rays do not affect the chemical composition of the lubricant.
  • an IR beam can be coupled into an optically dense medium so that total reflection occurs at the interfaces to the optically thin medium, for example the interior of the rolling bearing with the lubricant, an evanescent field from the optically denser medium in the optically thinner medium and thus in the lubricant occurs, so that the sample chamber is located in the interior of the camp and the optically denser medium, especially designed in the manner of a window optically denser medium, outside the interior of the camp.
  • the receiver detects and analyzes the electromagnetic radiation in the range of the combined modes of the CH vibrations.
  • CH vibrations in particular CH stretching vibrations
  • have a high absorption coefficient so that even small amounts or thin layers in the relevant wavelength range cause almost complete absorption, as a result of which the downstream receiver no longer receives a usable signal.
  • details of the spectrum for example the position and strength of individual absorption peaks, also fall away for the evaluation of the spectrum, so that the information is essentially limited to the detection of C-H bonds as such got to.
  • Combination modes are understood to mean combination modes in the narrower sense as well as overtone vibrations.
  • CH stretching vibrations for example, it is advisable to evaluate the CH combination mode in the range of about 2000 to about 2450 nm, or the first harmonic of said combination mode in the range of about 1350 to about 1450 nm
  • the first harmonic of the CH stretching vibration in the range of about 1630 to about 1800 nm are evaluated, as well as the range of the second harmonic of the CH stretching vibration in the range of about 1200 nm.
  • Each of the aforementioned combination modes, harmonic of a combination mode or first or harmonic offers the advantage of only a small absorption coefficient.
  • the range of CH combination modes is therefore particularly suitable for a method to detect and monitor the condition, especially the chemical composition, of the lubricant in the bearing.
  • the method may preferably provide for continuously detecting and spectrally analyzing the range of CH combination modes for a bearing at particular times, for example, before the bearing is put into service or during operation of the bearing.
  • the spectra thus provide a time series whose course corresponds to the aging and degradation of the lubricant. Changes in the chemical composition of the lubricant are reflected in the time series; For example, it may be provided to relate temporally successive recorded spectra to one another or to compare them with the spectrum that was recorded before the startup of the bearing.
  • the named method can be carried out, for example, with a measuring device described above; However, it is understood that it may also be provided to remove samples of the lubricant from the bearing and to investigate these spectroscopically outside the camp if the spectra in the range of the CH combination mode are recorded and evaluated.
  • the transmitter of the measuring device comprises a diode, in particular an IR diode, which is of small construction and has no significant losses due to heat emission.
  • the mentioned measuring device can be arranged both in a bearing and in a seal for a bearing. If the bearing is designed, for example, as a roller bearing, the measuring device can be accommodated as a structural unit in a bore in one of the bearing rings of the roller bearing.
  • FIG. 1 schematically shows an embodiment of a measuring device according to the invention in a section of an embodiment of a bearing according to the invention.
  • Fig. 1 shows a measuring device for analyzing the chemical composition of a lubricant 1 of a fragmentary shown bearing, which is designed as a rolling bearing 2.
  • the roller bearing 2 comprises a sectionally illustrated outer ring 3 and rolling elements 4, which are arranged in the interior 5 of the rolling bearing 2 and roll on a raceway 6 on the inside of the outer ring 3.
  • the lubricant 1 is at least partially in the region of the raceway 6 of the rolling elements. 4
  • the measuring device comprises a transmitter 7, which is embodied as IR diodes, and a sample region 8, on an IR-transparent window 10, which forms an interface 9 with the interior 5 of the roller bearing 2.
  • a transmitter 7 which is embodied as IR diodes
  • a sample region 8 on an IR-transparent window 10, which forms an interface 9 with the interior 5 of the roller bearing 2.
  • lubricant 1 is partially applied to the interface 9.
  • the boundary surface 9 is curved, wherein the curvature of the interface 9 corresponds to that of the inside of the outer ring 3 in the region of the raceway 6.
  • the boundary surface 9 represents a section of an inner wall of the rolling bearing 2.
  • the region of the interface 9 facing the interior 5 of the rolling bearing 2, which is coated with the lubricant 1 forms the sample region 8, which is penetrated by the IR radiation.
  • the rolling elements 4 pass from the raceway 6 to the interface 9 and then back to the raceway 6, which promote lubricant 1 at the interface 9.
  • the lubricant 1 at the interface 9 prevents excessive friction of the rolling elements 4 at the interface 9 and compensates for differences in the coefficient of friction between the region of the raceway 6 and the interface 9 from.
  • the transmitters 7 are arranged in a ring around a receiver 12.
  • a unit for signal processing 13 is shown, which is connected downstream of the receiver 12.
  • the signal processing may in particular comprise an electronic correction of the temperatures under which different spectra were recorded, and for this process the signal of a temperature measuring unit, not shown.
  • the receiver 12 is designed to that it can respond in the area of the NIR and the MIR and supply a spectrum of the lubricant 9 located in the sample area 8.
  • said spectral range also includes the range of combination modes of CH vibrations.
  • the transmitter 7, the receiver 12 and the window 11 with the interface 9, which is adjacent to the sample area 8 in the interior 5 of the rolling bearing 2, form a structural unit 14 which is formed substantially rod-shaped and in a bore in the wall surface of the outer ring 3 is arranged such that the interface 9 terminates substantially flush with the inside of the outer ring 3, so that the sample area 8 of the measuring device, ie the area between the transmitter 7 and the receiver 12 having the sample to be analyzed, in the interior 5 of the rolling bearing 2, especially on an inner wall of the outer ring 3 of the rolling bearing 2, is arranged.
  • the transmitters 7 emit electromagnetic radiation, which also has a component in the MIR and NIR.
  • the output of the transmitter 7 couples to the inside 11 of the window 10 and is reflected back and forth between the inside 11 and the interface 9.
  • Window 10 is selected such that the beam located in the window 10 at an angle of approximately 45 ° hits the interface 9, so that total reflection occurs. In total reflection, the beam does not enter the
  • the evanescent field covers the sample area 8 in FIG Inside 5 of the rolling bearing 2.
  • the field received by the receiver 12 on the outwardly facing side 11 of the window 10 is thus weakened by the amount absorbed in the sample area 8.
  • the receiver 12 analyzes the beam spectroscopically; Here, in the region of the C-H stretching vibration, an almost complete absorption occurs, which does not reveal any spectral details. In the field of C-H combination modes, individual absorption lines can be identified which allow conclusions to be drawn about the chemical composition of the lubricant 1. In particular, the receiver 12 determines a spectrum of the beam passing through the sample region 8 in the region of the combination modes, especially the second harmonic of the CH stretching vibration, ie at wavelengths of approximately 1200 nm in the region of the NIR (wavelength range from 800 to 2500 nm; Wavelength range from 2500 to 50,000 nm).
  • the aging of the lubricant 1 can be monitored spectroscopically and the state of the lubricant 1 in the interior 5 of the rolling bearing 2 can be monitored.
  • the intensity of the characteristic absorption lines of the C-H vibrations including their combination modes, it is possible to determine whether sufficient lubricant 1 is present, as well as how the chemical composition of the lubricant 1 is.
  • changes in the spectra can be determined, which allow an indication of the time when the lubricant 1 is consumed or changed in its chemical composition and must be replaced at the latest.
  • the interface 9 of the window 10 was curved, while the outwardly facing side 11 of the window 10 was planar. It should be understood that the interface 9 may also be planar and parallel to the outwardly facing side 11 of the window 10 so that the reflection of the IR beam in the window 10 takes place between two plane-parallel surfaces 9,11. Such an arrangement of the surfaces 9, 11 corresponds to a typical ATR geometry.
  • ATR attenuated total reflection
  • ATR means a frustrated total reflection-based measuring principle with a sample structure in which a beam is optically coupled into a more dense material, which is totally reflected in the optically denser material between interfaces to an optically thinner material, wherein For each total reflection, a sample, which is located in the area of the optically thinner material at the interface, is measured.
  • the window 10 with the two plane-parallel surfaces 9, 11 can be arranged in the raceway of the rolling elements 4 or laterally next to the raceway of the rolling elements 4, the latter arrangement has the advantage that the rolling elements 4, the window 10 does not mechanically load, but at the same time provide lubricant through the side of the window 10 pressed lubricant to analyze the lubricant chemically.
  • the curved boundary surface 9 closed substantially with the adjacent inner surface of the outer ring 3 from. It is understood that the interface may be spaced from the adjacent surface of the outer or inner ring to provide a recess in which lubricant may accumulate and the lubricant in the recess to the window 10, which is then a flat Having interface 9, can be chemically analyzed.
  • the recess may be arranged in the raceway of the rolling elements 4 or - preferably - laterally next to the raceway of the rolling elements 4, wherein the
  • Rolling elements 4 Always pump lubricant into the recess.
  • Sample area 8 is then in the recess, ie in the interior 5 of the rolling bearing. 2
  • the structural unit 14 formed by the transmitter 7, the receiver 12 and the window 10 with the interface 9 was arranged fixed in a bore in the body of the outer ring 3. It is understood that the structural unit 14 or only the window 10 with the interface 9 can be arranged displaceably in the bore, for example, such that each overrunning of the unit 14 and the window 10 by a rolling element 4 in the bore away from the interior 5 of the bearing 2 while the unit 14 is biased, for example, by a spring means towards the interior 5 of the bearing 2.
  • the construction described above allows not only ATR measurements, but also diffuse reflectance measurements.
  • the transmitters 7 irradiate through the window 10 the sample area 8, in which absorption takes place in the lubricating grease with diffuse reflection.
  • the reflected radiation is collected in the receiver 12, specifically the area of the sample space 8 which is directly opposite the receiver 12 is evaluated.
  • an optics may be present, which collects the reflected radiation and focuses on an evaluation unit.
  • the invention has been explained above with reference to a measuring device structurally integrated into the roller bearing 2. It is understood that the measuring device can also be provided for a sliding bearing or a jointed bearing.
  • the measuring device can also be installed in a seal of a bearing.
  • the transmitter and / or the receiver is mounted in the body of the seal.
  • it may be provided to integrate the structural unit of the transmitter, the receiver and the window with the interface in total in the body of the seal, so that the sample area in the Inside 5 of the camp is arranged.
  • it may be provided to provide said structural unit in the interior of the bearing, near the seal and possibly attached to the seal.
  • the unit of the transmitter and the receiver may be provided to provide a unit of the transmitter and the receiver outside the seal and to provide a photoconductive connection in the body of the seal, so that the radiation of the transmitter through the photoconductive connection in the sample area in the interior 5 of the bearing and guided from the interior 5 of the bearing through the photoconductive connection to the receiver where the chemical analysis of the spectrum is performed.
  • the said unit is attachable to the seal, but since it is located outside the seal, regardless of the specific design of the seal and suitable for different types of seals.
  • the attachment of the unit to the seal can be designed releasably, for example as a clip, which is attached to the seal of the bearing if necessary.
  • the light-conducting connection may comprise a light guide, on the outwardly facing terminals said unit is releasably inserted in the manner of a plug-in module.
  • said possibilities of arrangement of the transmitter and the receiver on the seal can also be combined, for example, such that the transmitter is arranged inside and the receiver outside of the seal, or such that the transmitter while on the Body of the seal is attached, however, the receiver can be mounted interchangeably on the seal, in particular in the event that different spectral ranges can be analyzed by means of the receiver.
  • a light guide is arranged between the sample space 8 and the transmitter 7; the transmitter or transmitters 7 can then be provided outside the bearing.
  • a light guide between the sample chamber 8 and the receiver 12 may be provided. The sample space 8 is then through the area of the interior 5 of the camp formed, which is provided between the output of the transmitter 7 associated light guide and the input of the receiver 12 associated light guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Die Erfindung betrifft eine Messvorrichtung für die Analyse eines Schmiermittels (1) eines Lagers (2), wobei die Messvorrichtung einen Sender (7) von elektromagnetischer Strahlung, einen Empfänger (12) und einen zwischen dem Sender (7) und dem Empfänger (12) angeordneten Probenbereich (8) umfasst. Die Aufgabe, die genannte Messvorrichtung derart auszubilden, dass sie eine zeitnahe Information über den Zustand des in dem Lager befindlichen Schmiermittels ermöglicht, wird erfindungsgemäss dadurch gelöst, dass der Probenbereich (8) mindestens abschnittsweise im Innern (5) des Lagers (2) angeordnet ist, und dass der Empfänger (12) ein Spektrum der von dem Probenbereich (8) empfangenen elektromagnetischen Strahlung liefert. Die Erfindung betrifft weiter ein Lager (2) sowie eine Dichtung für ein Lager (2) und ein Verfahren zum Erfassen und Überwachen des Zustandes eines Schmiermittels (1) eines Lagers (2).

Description

Bezeichnung der Erfindung
Messvorrichtung und Verfahren zur Analyse des Schmiermittels eines Lagers
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine Messvorrichtung nach dem Oberbegriff des An- Spruchs 1 für die Analyse eines Schmiermittels eines Lagers, insbesondere eines Wälz- oder Gleitlagers, ein Lager nach Anspruch 8, eine Dichtung nach Anspruch 11 für ein Lager, sowie ein Verfahren nach Anspruch 12 zum Erfassen und Überwachen des Zustandes eines Schmiermittels eines Lagers, insbesondere eines Wälz- oder Gleitlagers.
Aus der Praxis ist bekannt, den Zustand eines Schmiermittels eines Lagers, insbesondere eines Wälz- oder Gleitlagers, speziell die chemische Zusammensetzung des Schmiermittels, zu erfassen und zu überwachen. Änderungen des chemischen Zustandes des Schmiermittels geben Hinweise auf Alterungsvorgänge in dem Schmiermittel und zeigen an, wann das Schmiermittel ausgetauscht oder ergänzt werden muss. Als .Schmiermittel' wird dabei im Rahmen dieser Anmeldung jeder Schmierstoff bezeichnet, der in einem Lager zur Schmierung eingesetzt wird, Reibung und Verschleiss reduziert sowie fallweise auch zur Erfüllung weiterer Funktionen, beispielsweise zur Kraftübertragung zwischen den Lagerkompo- nenten, zur Kühlung des Lagers, als Korrosionsschutz, zur Schwingungsdämpfung oder auch als Dichtmittel dienen kann.
Es ist bekannt, an dem Schmiermittel Kapazitätsmessungen durchzuführen. Dabei haben jedoch Schichtdicken auf das Messergebnis einen grossen Einfluss; zudem hat sich erwiesen, dass die Messergebnisse stark streuen und schlecht reproduzierbar sind. Auch geben Kapazitätsmessungen nur indirekt einen Hinweis auf die chemische Zusammensetzung des Schmiermittels, beispielsweise werden die Messergebnisse von Kapazitätsmessungen durch in dem Schmiermittel befindliche metallisch leitende Partikel be- einflusst.
Es ist weiter bekannt, eine Probe des Schmiermittels dem Lager zu entnehmen und mittels elektromagnetischer Strahlung zu bestrahlen, um ein Spektrum der Probe aufzunehmen und zu analysieren. Speziell bekannt ist die IR- spektroskopische Analyse von Schmierfettproben ausserhalb des Lagers, im Spektralbereich des Mittleren bzw. Nahen Infrarot (MIR bzw. NIR). Die Messung findet ausserhalb des Lagers statt, also nicht unter den speziellen physikalischen oder chemischen Randbedingungen des Lagerinnern. Ausser- dem ist die Probenentnahme aufwendig, insbesondere, wenn das Lager schwer zugänglich ist und bzw. oder das Lager für die Probenentnahme stillgelegt werden muss. Zudem hat die Stelle innerhalb des Lagers, an der die Probe entnommen wurde, einen Einfluss auf das Messergebnis der Spektroskopie, da das Schmiermittel eine Mischung von Komponenten ist, die sich bei Betrieb des Lagers innerhalb des Lagerinnenraums verteilen. Auch er- weist sich als problematisch, dass innerhalb des Lagers das Schmiermittel an verschiedenen Stellen in unterschiedlichen Ausmass altert. DE 35 10 408 A1 beschreibt eine Vorrichtung zum Überwachen des Betriebszustandes von Lagerungen. Dabei wird der momentane Zustand des Schmiermittels des Lagers derart ermittelt, dass in unmittelbarer Nähe des Lagers eine Auffangvorrichtung vorgesehen ist, die aus dem Lager austre- tendes Schmiermittel auffängt und analysiert. Die Analyse beschränkt sich auf den Nachweis von metallischen Partikeln, die in dem Schmiermittel des Lagers enthalten sind, sowie der Erfassung der Temperatur des Schmiermittels. Eine Aussage über die chemische Zusammensetzung des Schmiermittels im Innern des Lagers ist nicht vorgesehen.
DE 93 11 938 LM beschreibt eine Vorrichtung zur Entnahme einer Probe von Schmiermittel, speziell Schmierfett, aus einem Wälzlager. Hierbei sind in die Lagerringe des Wälzlagers Bohrungen eingefügt, durch die jeweils Schmierfettproben entnommen werden können. Auch hier ist keine sofortige in-situ- Messung des Zustandes des Schmiermittels möglich.
Aufgabe der Erfindung
Es ist die Aufgabe der Erfindung, eine Messvorrichtung der eingangs ge- nannten Art für ein Lager anzugeben, die eine zeitnahe Information über den Zustand des in dem Lager befindlichen Schmiermittels ermöglicht.
Zusammenfassung der Erfindung
Diese Aufgabe wird erfindungsgemäss für die eingangs genannte Messvorrichtung mit den Merkmalen des Anspruchs 1 für ein Lager nach Anspruch 8 bzw. für eine Dichtung nach Anspruch 11 für ein Lager gelöst und ermöglicht eine beispielhafte Durchführung eines Verfahrens nach Anspruch 12 zum Erfassen und Überwachen des Zustandes des Schmiermittels des Lagers.
Weil der Probenbereich im Innern des Lagers angeordnet ist, entfällt eine zeitaufwendige Entnahme von Proben; vielmehr bietet sich die Möglichkeit, das Schmiermittel in situ, also unter den physikalischen oder chemischen Bedingungen des Lagerinnern, zu vermessen. Damit entfallen Verfälschungen des Messergebnisses bei einer Probenentnahme mit einem nachfolgenden Transport zu der Analyseeinheit.
Während des Betriebs des Lagers kann dieses fortwährend überwacht werden; diese Überwachung kann automatisiert geschehen, wobei beispielsweise ein Alarm ausgelöst wird, sobald die erfassten Spektren von einer vorgegebenen Norm abweichen.
Die Aufnahme von Spektren der von der Probe ausgehenden elektromagnetischen Strahlung liefert in schneller Zeit eine Information über den chemischen Zustand des Schmiermittels. Die elektromagnetische Strahlung beein- flusst oder verändert das Schmiermittel selbst nicht; auch kommt es im Ge- gensatz zu der häufigen Probenentnahme nicht mehr zu einem Verlust an Schmiermittel, der zu ersetzen ist. Das Spektrum selbst liefert eine chemische Information über die Zusammensetzung des Schmiermittels, die von in dem Schmiermittel enthaltenen Fremdkörpern wie Partikeln weitgehend unabhängig ist.
Vorzugsweise ist vorgesehen, dass der Probenbereich an einer inneren Wandung des Lagers angeordnet ist, insbesondere an einem solchen Abschnitt der inneren Wandung des Lagers, der mechanisch beansprucht ist und für den eine Schmierung zwingend erforderlich ist, um die Funktionsfä- higkeit des Lagers zu ermöglichen bzw. aufrechtzuerhalten. Bei Wälzlagern ist der Probenbereich günstigerweise beispielsweise in der Laufbahn oder in unmittelbarer Nähe zu der Laufbahn der Wälzkörper an einem der beiden Lagerringe angeordnet, da gerade in der Kontaktzone zwischen den Wälzkörpern und dem Lagerring eine Schmierung erforderlich ist. Die Anordnung des Probenbereichs ist maßgeblich für eine unmittelbare Information über den tatsächlichen Zustand des Schmiermittels; zusätzlich kann auch die Situation erkannt werden, dass kein Schmiermittel mehr vorhanden ist, jeden- falls nicht oder nicht mehr dort, wo das Schmiermittel erforderlich ist.
Vorzugsweise ist vorgesehen, dass in dem Probenbereich eine Reflexion, insbesondere eine Totalreflexion der von dem Sender ausgestrahlten elekt- romagnetischen Strahlung stattfindet. In diesem Fall liefert das Reflexions- Spektrum, beispielsweise das Spektrum bei diffuser Reflexion, bzw. das Spektrum bei Totalreflexion die Information über die chemische Zusammensetzung des Schmiermittels. Reflexion bzw. Totalreflexion als Messprinzipien zur Aufnahme von Spektren weisen den Vorteil auf, oberflächensensitiv zu sein und nur geringe Mengen an nachzuweisenden Schmiermittel bereits sicher erfassen zu können. Zudem ist ein Eindringen der elektromagnetischen Strahlung in den Innenraum des Lagers vermeidbar. Weiter ist es bei Reflexion bzw. Totalreflexion möglich, Sender und Empfänger benachbart zueinander anzuordnen, so dass die Messanordnung kleinbauend ausgelegt werden kann.
Vorzugsweise ist vorgesehen, dass der Sender, der Empfänger und der Probenbereich zu einer baulichen Einheit zusammengefasst sind, und dass der Probenbereich eine Grenzfläche zu dem Inneren des Lagers umfasst, an der eine Reflexion oder Totalreflexion auftritt. Die bauliche Einheit lässt sich einfach und schnell anbringen bzw. an dem Lager austauschen; die Kontaktfläche zwischen der baulichen Einheit wird nur durch die Grenzfläche gebildet, die in Hinblick auf ihre Funktion für die Reflexion bzw. die Totalreflexion der elektromagnetischen Strahlung hinsichtlich ihrer geometrischen Auslegung bzw. hinsichtlich des Materials der Grenzfläche optimiert werden kann.
Vorzugsweise ist vorgesehen, dass der Empfänger die elektromagnetische Strahlung im Bereich des Infraroten, insbesondere im Bereich des Nah- oder Mittleren Infrarot, erfasst und spektral analysiert. Die Messvorrichtung ist damit nach Art eines IR-Spektrometers ausgelegt. Hierbei erweist sich als vorteilhaft, dass IR-Strahlung, insbesondere im NIR bzw. MIR, Molekülschwingungen in dem Schmiermittel anregt, die eine präzise Information über die chemische Beschaffenheit charakteristischer, IR-aktive Gruppen des Schmiermittels liefern; andererseits beeinflussen IR-Strahlen, anders als UV- oder Röntgenstrahlen, die chemische Zusammensetzung des Schmiermittels nicht. Weiter ist vorteilhaft, dass im IR-Bereich, insbesondere im Be- reich des NIR bzw. des MIR, viele IR-durchlässige Substanzen einen Brechungsindex aufweisen, der deutlich grösser als 1 ist, so dass der Glanzwinkel, unter dem an einer Grenzfläche Totalreflexion auftritt, nicht sehr hoch ist. Insbesondere lässt sich ein IR-Strahl in ein optisch dichtes Medium ein- koppeln, so dass an den Grenzflächen zu dem optisch dünnen Medium, bei- spielsweise dem Inneren des Wälzlagers mit dem Schmiermittel, Totalreflexion auftritt, wobei ein evanescentes Feld von dem optisch dichteren Medium in das optisch dünnere Medium und damit in das Schmiermittel tritt, so dass der Probenraum in dem Inneren des Lagers liegt und das optisch dichtere Medium, speziell das nach Art eines Fensters ausgebildete optisch dichtere Medium, ausserhalb des Inneren des Lagers liegt. Weil weder das optisch dichtere Medium noch andere Teile der Messvorrichtung in das Innere des Lagers reichen, stören diese das Lager bei dem Betrieb nicht, ermöglichen jedoch über das in das Innere des Lagers reichende evanescente Feld eine Messung der chemischen Verhältnisse im Innern des Lagers, speziell eine chemische Analyse des Zustandes des Schmiermittels.
Besonders bevorzugt ist vorgesehen, dass der Empfänger die elektromagnetische Strahlung im Bereich der Kombinationsmoden der C-H-Schwingungen erfasst und analysiert. Hierbei wird dem Umstand Rechnung getragen, dass C-H-Schwingungen, insbesondere C-H-Streckschwingungen, einen hohen Absorptionskoeffizienten aufweisen, so dass bereits geringe Mengen bzw. dünne Schichten im relevanten Wellenlängenbereich eine nahezu vollständige Absorption hervorrufen, wodurch der nachgeschaltete Empfänger kein verwertbares Signal mehr erhält. Dabei fallen insbesondere auch Details des Spektrums, beispielsweise die Lage und Stärke einzelner Absorptionspeaks, für die Auswertung des Spektrums weg, so dass sich die Information im wesentlichen auf den Nachweis von C-H-Bindungen als solchen beschränken muss. Im Bereich der C-H-Kombinationsmoden ist der Absorptionskoeffizient deutlich geringer; hier lassen sich Einzelheiten des Spektrums erkennen und es kann ggf. aus der Stärke der Absorption auf die Dicke der Schicht des Schmierstoffs gefolgert werden. Unter .Kombinationsmoden' werden dabei Kombinationsmoden im engeren Sinn sowie Obertonschwingungen verstanden. Für C-H-Streckschwingungen bietet sich beispielsweise an, die C-H- Kombinationsmode im Bereich von ca. 2000 bis ca. 2450 nm auszuwerten, oder die erste Oberschwingung der genannten Kombinationsmode im Bereich von ca. 1350 bis ca. 1450 nm. Auch kann der Bereich der ersten Ober- Schwingung der C-H-Streckschwingung im Bereich von ca. 1630 bis ca. 1800 nm ausgewertet werden, ebenso wie der bereich der zweiten Oberschwingung der C-H-Streckschwingung im Bereich von ca. 1200 nm. Jede der vorgenannten Kombinationsmoden, Oberschwingung einer Kombinationsmode oder ersten bzw. Oberschwingung bietet den Vorteil eines nur geringen Ab- Sorptionskoeffizienten.
Der Bereich der C-H-Kombinationsmoden bietet sich daher besonders für ein Verfahren an, um den Zustand, speziell die chemische Zusammensetzung, des Schmiermittels in dem Lager zu erfassen und zu überwachen. Das Verfahren kann in einer vorzugsweisen Durchführung vorsehen, den Bereich der C-H-Kombinationsmoden für ein Lager zu bestimmten Zeiten, beispielsweise vor Inbetriebnahme des Lagers oder während des Betriebs des Lagers, fortwährend zu erfassen und spektral zu analysieren. Die Spektren bieten damit eine Zeitreihe, deren Verlauf der Alterung und Degradation des Schmiermittels entspricht. Veränderungen der chemischen Zusammensetzung des Schmiermittels spiegeln sich in der Zeitreihe wieder; beispielsweise kann vorgesehen sein, zeitlich aufeinander folgend aufgenommene Spektren zueinander in Beziehung zu setzen bzw. mit dem Spektrum, das vor der Inbetriebnahme des Lagers aufgenommen wurde, zu vergleichen. Das ge- nannte Verfahren kann beispielsweise mit einer oben beschriebenen Messvorrichtung durchgeführt werden; es versteht sich aber, dass ebenfalls vorgesehen sein kann, dem Lager Proben des Schmiermittels zu entnehmen und diese ausserhalb des Lagers spektroskopisch zu untersuchen, sofern die Spektren im Bereich der C-H-Kombinationsmode erfasst und ausgewertet werden.
Vorzugsweise umfasst der Sender der Messvorrichtung eine Diode, insbesondere eine IR-Diode, die kleinbauend ausgebildet ist und keine wesentlichen Verluste durch Wärmeabgabe aufweist.
Die genannte Messvorrichtung lässt sich sowohl in einem Lager als auch in einer Dichtung für ein Lager anordnen. Ist das Lager beispielsweise als Wälzlager ausgebildet, kann die Messvorrichtung als bauliche Einheit in einer Bohrung in einem der Lagerringe des Wälzlagers aufgenommen sein.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Be- Schreibung eines Ausführungsbeispiels der Erfindung sowie aus den abhängigen Ansprüchen.
Die Erfindung wird im folgenden unter Bezugnahme auf die anliegende Zeichnung anhand eines bevorzugten Ausführungsbeispiels näher beschrie- ben und erläutert.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt schematisch ein Ausführungsbeispiel einer erfindungs- gemässen Messvorrichtung in einem Abschnitt eines Ausführungsbeispiels eines erfindungsgemässen Lagers.
Detaillierte Beschreibung der Zeichnung
Fig. 1 zeigt eine Messvorrichtung zur Analyse der chemischen Zusammensetzung eines Schmiermittels 1 eines ausschnittsweise dargestellten Lagers, das als Wälzlager 2 ausgebildet ist. Das Wälzlager 2 umfasst einen abschnittsweise dargestellten Aussenring 3 sowie Wälzkörper 4, die in dem Innern 5 des Wälzlagers 2 angeordnet sind und an einer Laufbahn 6 an der Innenseite des Aussenrings 3 abrollen. Das Schmiermittel 1 befindet sich zumindest teilweise im Bereich der Laufbahn 6 der Wälzkörper 4.
Die Messvorrichtung umfasst einen Sender 7, der als IR-Dioden ausgebildet ist, sowie einen Probenbereich 8, an einem IR-durchlässigen Fenster 10, das eine Grenzfläche 9 mit dem Innern 5 des Wälzlagers 2 bildet. Im Bereich des Probenbereichs 8 liegt Schmiermittel 1 teilweise an der Grenzfläche 9 an. Die Grenzfläche 9 ist gekrümmt ausgebildet, wobei die Krümmung der Grenzfläche 9 derjenigen der Innenseite des Aussenrings 3 im Bereich der Laufbahn 6 entspricht. Die Grenzfläche 9 stellt einen Abschnitt einer inneren Wandung des Wälzlagers 2 dar. Der mit dem Schmiermittel 1 belegte, auf das Innere 5 des Wälzlagers 2 weisende Bereich der Grenzfläche 9 bildet den Probenbereich 8 aus, der von der IR-Strahlung durchsetzt wird. Die Wälzkörper 4 treten aus der Laufbahn 6 auf die Grenzfläche 9 und dann wieder auf die Laufbahn 6 über, wobei diese Schmiermittel 1 an der Grenzfläche 9 fördern. Das Schmiermittel 1 an der Grenzfläche 9 verhindert eine zu starke Reibung der Wälzkörper 4 an der Grenzfläche 9 und gleicht Unterschiede im Reibungskoeffizienten zwischen dem Bereich der Laufbahn 6 bzw. der Grenzfläche 9 aus.
An eine nach aussen weisende Seite 11 des Fensters 10 koppelt der Eingang der Sender 7, von denen zwei dargestellt sind. Die Sender 7 sind ringförmig um einen Empfänger 12 angeordnet. Weiter ist eine Einheit zur Signalaufbereitung 13 dargestellt, die dem Empfänger 12 nachgeschaltet ist. Die Signalaufbereitung kann insbesondere eine elektronische Korrektur der Temperaturen umfassen, unter denen verschiedene Spektren aufgenommen wurden, und hierzu das Signal einer nicht dargestellten Temperaturmesseinheit verarbeiten. Der Empfänger 12 ist so ausgelegt, dass dieser im Bereich des NIR und des MIR ansprechen kann und ein Spektrum des in dem Probenbereich 8 befindlichen Schmiermittels 9 liefern. Insbesondere schliesst der genannte Spektralbereich auch den Bereich der Kombinationsmoden von C-H-Schwingungen ein.
Die Sender 7, der Empfänger 12 und das Fenster 11 mit der Grenzfläche 9, die dem Probenbereich 8 im Innern 5 des Wälzlagers 2 benachbart ist, bilden eine bauliche Einheit 14, die im wesentlichen stabförmig ausgebildet ist und in einer Bohrung in der Wandfläche des Aussenrings 3 derart angeordnet ist, dass die Grenzfläche 9 mit der Innenseite des Aussenrings 3 im wesentlichen bündig abschliesst, so dass der Probenbereich 8 der Messvorrichtung, also der Bereich zwischen dem Sender 7 und dem Empfänger 12, der die zu analysierende Probe aufweist, in dem Innern 5 des Wälzlagers 2, speziell an einer inneren Wandung des Aussenrings 3 des Wälzlagers 2, angeordnet ist.
Die Erfindung funktioniert nun wie folgt:
Die Sender 7 senden elektromagnetische Strahlung, die auch eine Komponente im MIR und NIR aufweist. Der Ausgang der Sender 7 koppelt an die Innenseite 11 des Fensters 10 und wird zwischen der Innenseite 11 und der Grenzfläche 9 hin- und herreflektiert. Dabei ist das Material des
Fensters 10 derart gewählt, dass der in dem Fenster 10 befindliche Strahl unter einem Winkel von ca. 45° auf die Grenzfläche 9 trifft, so dass Totalreflektion eintritt. Bei der Totalreflektion tritt der Strahl nicht in das
Innere 5 des Wälzlagers 2 ein, sondern es bildet sich im Bereich des
Schmiermittels ein evanescentes Feld aus, das mit zunehmenden Abstand von der Grenzfläche 9 exponentiell abklingt. Im Bereich des evanescenten
Feldes, also in dem Teilabschnitt des Inneren 5 des Wälzlagers 2, der unmittelbar an die Grenzfläche 9 anschliesst, wird das evanescente Feld durch C-H-Bindungen des Schmiermittels 1 teilweise absorbiert.
Insbesondere überstreicht das evanescente Feld den Probenbereich 8 im Innern 5 des Wälzlagers 2. Das von dem Empfänger 12 an der nach aussen weisenden Seite 11 des Fensters 10 empfangene Feld ist damit um den im Probenbereich 8 absorbierten Betrag geschwächt.
Der Empfänger 12 analysiert den Strahl spektroskopisch; hierbei tritt im Bereich der C-H-Streckschwingung eine nahezu vollständige Absorption auf, die keine spektralen Einzelheiten erkennen lässt. Im Bereich der C-H- Kombinationsmoden lassen sich einzelne Absorptionslinien erkennen, die Rückschlüsse auf die chemische Zusammensetzung des Schmiermittels 1 zulassen. Der Empfänger 12 ermittelt insbesondere ein Spektrum des den Probenbereich 8 durchsetzenden Strahls im Bereich der Kombinationsmoden, speziell der zweiten Oberschwingung der C-H- Streckschwingung, also bei Wellenlängen von ca. 1200 nm im Bereich des NIR (Wellenlängenbereich von 800 bis 2500 nm; wobei MIR ein Wellenlängenbereich von 2500 bis 50000 nm entspricht).
Wird zu verschiedenen Zeiten ein Spektrum durch den Empfänger 12 aufgenommen, lässt sich die Alterung des Schmiermittels 1 spektroskopisch verfolgen und der Zustand des Schmiermittels 1 in dem Innern 5 des Wälzlagers 2 überwachen. Anhand der Intensität der charakteristischen Absorptionslinien der C-H-Schwingungen, auch von deren Kombinationsmoden, lässt sich ermitteln, ob hinreichend Schmiermittel 1 vorhanden ist, sowie weiter, wie die chemische Zusammensetzung des Schmiermittels 1 ist. Durch Vergleich der Spektren, beispielsweise durch Abgleich mit Normspektren, lassen sich Änderungen in den Spektren ermitteln, die eine Angabe über den Zeitpunkt ermöglichen, wann das Schmiermittel 1 verbraucht bzw. in seiner chemischen Zusammensetzung verändert ist und spätestens ausgetauscht werden muss.
Bei dem vorstehend beschriebenen Ausführungsbeispiel war die Grenzfläche 9 des Fensters 10 gekrümmt ausgebildet, während die nach aussen weisende Seite 11 des Fensters 10 eben ausgebildet war. Es versteht sich, dass die Grenzfläche 9 ebenfalls eben ausgebildet und parallel zu der nach aussen weisenden Seite 11 des Fensters 10 sein kann, so dass die Reflexion des IR-Strahls in dem Fenster 10 zwischen zwei planparallelen Flächen 9, 11 stattfindet. Eine derartige Anordnung der Flächen 9, 11 entspricht einer typischen ATR-Geometrie. Dabei bedeutet ,ATR' (attenuated total reflection) ein auf frustrierter Totalreflexion beruhendes Messprinzip mit einem Probenaufbau, bei dem in ein optisch dichteres Material ein Strahl eingekoppelt wird, der in dem optisch dichteteren Material zwischen Grenzflächen zu einem optisch dünneren Material totalreflektiert wird, wobei bei jeder Totalreflexion eine Probe, die sich im Bereich des optisch dünneren Materials an der Grenzfläche befindet, gemessen wird. Das Fenster 10 mit den beiden planparallelen Flächen 9, 11 kann dabei in der Laufbahn der Wälzkörper 4 oder seitlich neben der Laufbahn der Wälzkörper 4 angeordnet sein, wobei letztere Anordnung den Vorteil bietet, dass die Wälzkörper 4 das Fenster 10 mechanisch nicht belasten, gleichzeitig aber durch das seitlich auf das Fenster 10 weggedrückte Schmiermittel die Möglichkeit bieten, das Schmiermittel chemisch zu analysieren.
Bei dem vorstehend beschriebenen Ausführungsbeispiel schloss die gekrümmte Grenzfläche 9 im wesentlichen mit der anliegenden Innenfläche des Aussenrings 3 ab. Es versteht sich, dass die Grenzfläche einen Abstand zu der angrenzenden Fläche des Aussen- oder Innenrings aufweisen kann, so dass eine Vertiefung entsteht, in der sich Schmiermittel sammeln kann, und das in der Vertiefung befindliche Schmiermittel an dem Fenster 10, das dann eine ebene Grenzfläche 9 aufweist, chemisch analysiert werden kann.
Die Vertiefung kann in der Laufbahn der Wälzkörper 4 oder - bevorzugt - seitlich neben der Laufbahn der Wälzkörper 4 angeordnet sein, wobei die
Wälzkörper 4 Schmiermittel ständig in die Vertiefung fördern. Der
Probenbereich 8 liegt dann in der Vertiefung, also im Innern 5 des Wälzlagers 2. Bei dem vorstehend beschriebenen Ausführungsbeispiel war die aus dem Sender 7, dem Empfänger 12 und dem Fenster 10 mit der Grenzfläche 9 gebildete bauliche Einheit 14 in einer Bohrung in dem Korpus des Aussenrings 3 feststehend angeordnet. Es versteht sich, dass die bauliche Einheit 14 bzw. nur das Fenster 10 mit der Grenzfläche 9 auch in der Bohrung verschieblich angeordnet sein kann, beispielsweise derart, dass jedes Überrollen der Einheit 14 bzw. des Fensters 10 durch einen Wälzkörper 4 dieses in der Bohrung weg von dem Innern 5 des Lagers 2 drückt, während die Einheit 14 beispielsweise durch ein Federmittel in Richtung auf das Innere 5 des Lagers 2 vorgespannt ist.
Der vorstehend beschriebene Aufbau lässt nicht nur ATR-Messungen zu, sondern ebenfalls diffuse Reflexionsmessungen. Dabei bestrahlen die Sender 7 durch das Fenster 10 hindurch den Probenbereich 8, in dem eine Absorption in dem Schmierfett bei diffuser Reflexion stattfindet. Die reflektierte Strahlung wird in dem Empfänger 12 gesammelt, und zwar wird insbesondere der Bereich des Probenraums 8 ausgewertet, der dem Empfänger 12 unmittelbar gegenüberliegt. In dem Empfänger 12 kann eine Optik vorhanden sein, die die reflektierte Strahlung sammelt und auf eine Auswerteeinheit fokussiert.
Die Erfindung wurde vorstehend anhand einer in das Wälzlager 2 baulich integrierten Messvorrichtung erläutert. Es versteht sich, dass die Messvorrichtung ebenfalls für ein Gleitlager oder ein Gelenklager vorgesehen sein kann.
Es versteht sich ebenfalls, dass die Messvorrichtung auch in eine Dichtung eines Lagers eingebaut sein kann. Hierzu kann vorgesehen sein, dass der Sender und bzw. oder der Empfänger in dem Korpus der Dichtung befestigt ist. Speziell kann vorgesehen sein, die bauliche Einheit aus dem Sender, dem Empfänger und dem Fenster mit der Grenzfläche insgesamt in das Korpus der Dichtung zu integrieren, so dass der Probenbereich in dem Innern 5 des Lagers angeordnet ist. Alternativ hierzu kann vorgesehen sein, die genannte bauliche Einheit in dem Innern des Lagers, nahe der Dichtung und ggf. an der Dichtung befestigt, vorzusehen. Wiederum alternativ zu den beiden vorgenannten Anordnungen kann vorgesehen sein, eine Einheit aus dem Sender und dem Empfänger außerhalb der Dichtung vorzusehen und eine lichtleitende Verbindung in dem Korpus der Dichtung vorzusehen, so dass die Strahlung des Senders durch die lichtleitende Verbindung in den Probenbereich in das Innere 5 des Lagers geleitet und von dem Innern 5 des Lagers durch die lichtleitende Verbindung zu dem Empfänger geführt werden, wo die chemische Analyse des Spektrums durchgeführt wird. Die genannte Einheit ist dabei an der Dichtung befestigbar, da sie aber außerhalb der Dichtung angeordnet ist, von der konkreten Gestaltung der Dichtung unabhängig und für verschiedene Arten von Dichtungen geeignet. Die Befestigung der Einheit an der Dichtung kann lösbar ausgestaltet werden, beispielsweise als Clip, der bei Bedarf an die Dichtung des Lagers angebracht wird. Die lichtleitende Verbindung kann einen Lichtleiter umfassen, an dessen nach außen weisende Anschlüsse die genannte Einheit nach Art eines Steckmoduls lösbar einsteckbar ist. Es versteht sich weiter, dass die genannten Möglichkeiten der Anordnung des Senders und des Empfängers an der Dichtung auch kombiniert werden können, beispielsweise derart, dass der Sender innen und der Empfänger außen an der Dichtung angeordnet ist, oder derart, dass der Sender zwar an dem Korpus der Dichtung befestigt ist, der Empfänger jedoch austauschbar an der Dichtung angebracht werden kann, insbesondere für den Fall, dass verschiedene Spektralbereiche mittels des Empfängers analysiert werden können.
Weiter kann vorgesehen sein, dass ein Lichtleiter zwischen dem Probenraum 8 und dem Sender 7 angeordnet ist; der oder die Sender 7 können dann ausserhalb des Lagers vorgesehen sein. Ebenso kann ein Lichtleiter zwischen dem Probenraum 8 und dem Empfänger 12 vorgesehen sein. Der Probenraum 8 ist dann durch den Bereich des Innern 5 des Lagers gebildet, der zwischen dem Ausgang des dem Sender 7 zugeordneten Lichtleiter und dem Eingang des dem Empfänger 12 zugeordneten Lichtleiters vorgesehen ist.
Es versteht sich ferner, dass nicht ausschliesslich C-H-Schwingungen, sondern auch andere Moden, wie solche von Wasser oder allgemeiner von O-H-Gruppen oder funktioneller Gruppen von Additiven erfasst und analysiert werden können.
Insofern im vorhergehenden auf .Kombinationsmoden' Bezug genommen wurde, versteht es sich, dass der Begriff .Kombinationsmoden' neben Kombinationsmoden im direkten Sinn auch Obertonschwingungen, sei es von Grundschwingungen, sei es von Kombinationsmoden, umfassen soll.
Bezugszeichenliste
1 Schmiermittel
2 Wälzlager
3 Aussenring
4 Wälzkörper
5 Inneres des Wälzlagers 2
6 Laufbahn
7 Sender
8 Probenbereich
9 Grenzfläche
10 Fenster
11 nach aussen weisende Seite von Fenster 10
12 Empfänger
13 Einheit zur Signalaufbereitung
14 bauliche Einheit

Claims

Patentansprüche
1. Messvorrichtung für die Analyse eines Schmiermittels (1) eines Lagers (2), wobei die Messvorrichtung einen Sender (7) von elektromagnetischer Strahlung, einen Empfänger (12) und einen zwischen dem Sender (7) und dem Empfänger (12) angeordneten Probenbereich (8) umfasst, dadurch gekennzeichnet, dass der Probenbereich (8) mindestens abschnittsweise im Innern (5) des Lagers (2) angeordnet ist, und dass der Empfänger (12) ein Spektrum der von dem Probenbereich (8) empfangenen elektromagnetischen Strahlung liefert.
2. Messvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Probenbereich (8) an einer inneren Wandung des Lagers (2) angeordnet ist.
3. Messvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in oder nahe dem Probenbereich (8) eine Reflexion, insbesondere eine Totalreflexion der von dem Sender (7) ausgestrahlen elektromagnetischen Strahlung stattfindet.
4. Messvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sender (7), der Empfänger (12) und eine Grenzfläche (9) zu dem Probenbereich (8) zu einer baulichen Einheit (14) zu- sammengefasst sind, und dass der Probenbereich (8) die Grenzfläche (9) an dem Inneren (5) des Lagers umfasst, an der eine Reflexion o- der Totalreflexion auftritt.
5. Messvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Empfänger (12) die elektromagnetische Strahlung im Bereich des Infraroten, insbesondere im Bereich des Nah- oder Mittleren Infrarot, erfasst und spektral analysiert.
6. Messvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Empfänger (12) die elektromagnetische Strahlung im Bereich der Kombinationsmoden der C-H-Schwingungen erfasst und analysiert.
7. Messvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekenn- zeichnet, dass der Sender (7) eine Diode ist.
8. Messvorrichtung nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine lichtleitende Verbindung zwischen dem Sender (7) und dem Probenbereich (8).
9. Messvorrichtung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine lichtleitende Verbindung zwischen dem Probenbereich (8) und dem Empfänger (12).
10. Messvorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die lichtleitende Verbindung einen Lichtleiter umfasst.
11. Lager (2), insbesondere Wälz- oder Gleitlager, umfassend eine Messvorrichtung für die Analyse eines Schmiermittels des Lagers, dadurch gekennzeichnet, dass die Messvorrichtung nach einem der Ansprüche
1 bis 7 ausgebildet ist.
12. Lager nach Anspruch 11 , dadurch gekennzeichnet, dass das Lager einen Lagerring (3) umfasst, und dass zumindest der Probenbereich (8) der Messvorrichtung an oder benachbart zu dem Lagerring (3) angeordnet ist.
13. Lager nach Anspruch 11 , dadurch gekennzeichnet, dass das Lager (2) eine Lagerdichtung umfasst, und dass zumindest der Probenbereich (8) der Messvorrichtung in der Lagerdichtung angeordnet ist.
14. Dichtung für ein Lager, insbesondere für ein Wälz- oder Gleitlager, umfassend eine Messvorrichtung für die Analyse eines Schmiermittels des Lagers, dadurch gekennzeichnet, dass die Messvorrichtung nach einem der Ansprüche 1 bis 10 ausgebildet ist.
15. Dichtung nach Anspruch 14, wobei der Sender und / oder der Empfänger in dem Korpus der Dichtung befestigt ist.
16. Dichtung nach Anspruch 14 oder 15, wobei in dem Korpus der Dichtung eine lichtleitende Verbindung vorgesehen ist, die den Probenbe- reich mit dem Sender und / oder Empfänger verbindet.
17. Verfahren zum Erfassen und Überwachen des Zustandes eines Schmiermittels eines Lagers, insbesondere eines Wälz- oder Gleitlagers, gekennzeichnet durch die Schritte Bestrahlen einer Probe des Schmiermittels mit elektromagnetischer Strahlung, und
Erfassen des Spektrums der bestrahlten Probe im Bereich der C-H-Kombinationsmode im Nahen oder Mittleren Infrarotbereich des Spektrums.
18. Verfahren nach Anspruch 17, wobei das Spektrum der bestrahlten Probe vor Inbetriebnahme und / oder während des Betriebs des La- gers zu verschiedenen Zeiten erfasst wird, und eine Veränderung des Spektrums im Bereich der C-H-Kombinationsmode ermittelt wird.
EP08801240A 2007-09-06 2008-08-27 Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers Ceased EP2185915A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007042254A DE102007042254A1 (de) 2007-09-06 2007-09-06 Messvorrichtung und Verfahren zur Analyse des Schmiermittels eines Lagers
PCT/DE2008/001432 WO2009030202A1 (de) 2007-09-06 2008-08-27 Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers

Publications (1)

Publication Number Publication Date
EP2185915A1 true EP2185915A1 (de) 2010-05-19

Family

ID=40293878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08801240A Ceased EP2185915A1 (de) 2007-09-06 2008-08-27 Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers

Country Status (8)

Country Link
US (1) US8624191B2 (de)
EP (1) EP2185915A1 (de)
JP (1) JP2010538280A (de)
CN (2) CN104728588A (de)
BR (1) BRPI0816366A2 (de)
DE (1) DE102007042254A1 (de)
RU (1) RU2010112699A (de)
WO (1) WO2009030202A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157304A1 (en) * 2006-01-23 2010-06-24 Ntn Corporation Lubricant deterioration detecting device and detecting device incorporated bearing assembly
DE102009059655A1 (de) 2009-12-19 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 Schmierstoffüberwachungsvorrichtung einer Windkraftanlage und Windkraftanlage
DE102010005057A1 (de) 2010-01-20 2011-07-21 Schaeffler Technologies GmbH & Co. KG, 91074 Vorrichtung zum Überwachen des Zustandes eines Schmiermittels in einem Lager
DE102010015722A1 (de) 2010-04-21 2011-10-27 Schaeffler Technologies Gmbh & Co. Kg Lageranordnung, insbesondere für ein Spindellager
DE102010020759B4 (de) * 2010-05-17 2018-05-03 Schaeffler Technologies AG & Co. KG Sensierter Wälzkörper
DE102010021234B4 (de) * 2010-05-21 2018-10-25 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zum Erfassen des Wassergehalts eines Schmiermittels
DE102010023013A1 (de) 2010-06-08 2011-12-08 Carl Freudenberg Kg Wälzkörper für ein Lager
DE102010023011A1 (de) 2010-06-08 2011-12-08 Carl Freudenberg Kg Käfig für ein Lager
DE102010031919B4 (de) 2010-07-22 2020-12-03 Schaeffler Technologies AG & Co. KG Messsonde für einen Sensor zur Analyse eines Mediums mittels Infrarotspektroskopie und Verfahren zur Herstellung der Messsonde
JP2012189456A (ja) * 2011-03-10 2012-10-04 Ihi Corp 潤滑剤分布取得装置及び潤滑剤分布取得方法
DE102011076376A1 (de) 2011-05-24 2012-11-29 Schaeffler Technologies AG & Co. KG Lager mit einer Vorrichtung zur Erfassung von Wasser in dem Lager
DE102012204721A1 (de) 2012-03-23 2013-09-26 Schaeffler Technologies AG & Co. KG Direktantrieb für eine Rotationsmaschine, insbesondere für eine Behälterbehandlungsmaschine
DE102012013709B3 (de) * 2012-07-11 2014-01-02 Sms Meer Gmbh Schmiervorrichtung zur Versorgung einesWerkzeugs mit Schmiermittel
DE102012220261A1 (de) 2012-11-07 2014-05-08 Schaeffler Technologies Gmbh & Co. Kg Konverterlager
DE102013208936A1 (de) * 2013-05-15 2014-11-20 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Steuerung der Einbringung zusätzlichen Schmiermittels in ein mit einem Schmiermittel geschmiertes Lager, insbesondere Wälzlager oder Gleitlager
US10145178B2 (en) * 2013-05-22 2018-12-04 Halliburton Energy Services, Inc. Roller cone seal failure detection using an integrated computational element
DE102013211486A1 (de) * 2013-06-19 2014-12-24 Schaeffler Technologies Gmbh & Co. Kg Schmierstoffsensor
DE102013110320B3 (de) 2013-09-19 2014-09-25 AEMtec GmbH, Berlin Sensorvorrichtung zur Überwachung eines Schmierstoffzustands sowie Verfahren zur Fertigung der Sensorvorrichtung
DE102013220457A1 (de) 2013-10-10 2015-04-16 Schaeffler Technologies Gmbh & Co. Kg Sensoreinheit zum Bestimmen von Eigenschaften eines Schmiermittels sowie Maschinenelement und Maschinenanordnung
DE102013220456A1 (de) 2013-10-10 2015-04-16 Schaeffler Technologies AG & Co. KG Sensoreinheit zum Bestimmen von Eigenschaften eines Schmiermittels, Verfahren zu deren Betrieb und Maschinenelement
DE102013220459A1 (de) 2013-10-10 2015-04-16 Schaeffler Technologies Gmbh & Co. Kg Sensoreinheit zum Bestimmen von Eigenschaften eines Schmiermittels und Verfahren zu deren Betrieb sowie Maschinenelement
WO2015178823A1 (en) * 2014-05-19 2015-11-26 Aktiebolaget Skf Bearing arrangement and method for determining optical properties of a lubricant in a bearing
DE102014214486A1 (de) * 2014-07-24 2016-01-28 Aktiebolaget Skf Verfahren zum Betrieb eines Lagers
DE102014217979B4 (de) * 2014-09-09 2018-05-24 Schaeffler Technologies AG & Co. KG Schmierstoffqualitätsmodul für Wälzlager und Schmierstoffüberwachungsanordnung
DE102014219312A1 (de) * 2014-09-24 2016-03-24 Aktiebolaget Skf Verfahren und Vorrichtung zum Nachschmieren eines Wälzlagers
EP3211417A1 (de) * 2016-02-23 2017-08-30 C.C. Jensen A/S System und sensoreinheit zur überwachung und auswertung von des zustands einer flüssigkeit
US10890575B2 (en) * 2016-04-28 2021-01-12 Nsk Ltd. Lubricant deterioration detection device and lubricant deterioration state evaluation method
CA2960323C (en) * 2016-05-31 2020-04-28 Komatsu Ltd. Mechanical device, working vehicle, and deterioration state estimation system and deterioration state estimation method of machine component
GB201613312D0 (en) 2016-08-02 2016-09-14 Skf Ab Bearing assembly with contamination sensor
CN108333222A (zh) * 2017-01-20 2018-07-27 舍弗勒技术股份两合公司 工件及其润滑剂含水量监测方法及系统、确定方法及装置
DE102018219137A1 (de) * 2018-11-09 2020-05-14 Siemens Mobility GmbH Weichenantriebsanordnung und Verfahren zur Weichendiagnose
CN110987302B (zh) * 2019-11-29 2021-11-05 上海大学 一种涂层密封测试试验机
CN214149458U (zh) * 2020-04-30 2021-09-07 罗美特有限公司 油监测系统和带有油监测系统的旋转流量计
TWI778739B (zh) * 2021-08-10 2022-09-21 崑山科技大學 可應用於線性滑軌及滾珠螺桿進給系統之潤滑狀況即時偵測方法
DE102022124480A1 (de) 2022-09-23 2024-03-28 R. Stahl Schaltgeräte GmbH Dichtungsanordnung und Verfahren zur Zustands- und/oder Leckagenüberwachung der Dichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706050A1 (de) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Feststellung von Schmieröleigenschaften
JP2007212205A (ja) * 2006-02-08 2007-08-23 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777127A (en) * 1972-04-17 1973-12-04 Celanese Corp Analyzer apparatus and method
DE3510408A1 (de) 1985-03-22 1986-10-02 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Einrichtung zum ueberwachen des betriebszustandes von lagerungen
FR2694610B1 (fr) 1992-08-10 1994-10-14 Rks Procédé de contrôle de l'état d'usure d'un roulement, et roulement correspondant.
US5548393A (en) * 1993-07-05 1996-08-20 Nippondenso Co., Ltd. Oil deterioration detection apparatus and apparatus for detecting particles in liquid
EP0658757A1 (de) * 1993-12-16 1995-06-21 Shell Internationale Researchmaatschappij B.V. Methode und Vorrichtung zur berührungslosen chemischen in situ Analyse eines schmierenden Films in einer zyklisch arbeitenden Maschine
JPH10111241A (ja) * 1996-10-04 1998-04-28 Hitachi Ltd 非破壊診断方法および非破壊診断装置
US5884494A (en) * 1997-09-05 1999-03-23 American Standard Inc. Oil flow protection scheme
US6657197B2 (en) * 2000-12-22 2003-12-02 Honeywell International Inc. Small profile spectrometer
JP2002207014A (ja) * 2001-01-10 2002-07-26 Fuji Fine Kk 欠点検出装置
CN2530261Y (zh) * 2001-04-20 2003-01-08 油沿币韩国(株) 实时间润滑油污染度测定装置
CA2463151A1 (en) 2001-10-11 2003-04-17 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detector combinations
JP4029604B2 (ja) * 2001-11-29 2008-01-09 日本精工株式会社 転がり軸受
US6737649B2 (en) * 2002-04-16 2004-05-18 Foss Nirsystems, Inc. Infrared analysis instrument with offset probe for particulate sample
US7163911B2 (en) * 2003-05-22 2007-01-16 Chevron Oronite Company Llc Carboxylated detergent-dispersant additive for lubricating oils
US7024920B2 (en) * 2003-09-30 2006-04-11 Rockwell Automation Technologies, Inc. Lubricity measurement using MEMs sensor
US7635596B2 (en) * 2004-12-15 2009-12-22 Rohm And Haas Company Method for monitoring degradation of lubricating oils
US20100157304A1 (en) * 2006-01-23 2010-06-24 Ntn Corporation Lubricant deterioration detecting device and detecting device incorporated bearing assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706050A1 (de) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Feststellung von Schmieröleigenschaften
JP2007212205A (ja) * 2006-02-08 2007-08-23 Ntn Corp 潤滑剤劣化検出装置および検出装置付き軸受

Also Published As

Publication number Publication date
CN104728588A (zh) 2015-06-24
US8624191B2 (en) 2014-01-07
CN101971007A (zh) 2011-02-09
RU2010112699A (ru) 2011-10-20
WO2009030202A1 (de) 2009-03-12
BRPI0816366A2 (pt) 2015-02-24
US20100208241A1 (en) 2010-08-19
JP2010538280A (ja) 2010-12-09
DE102007042254A1 (de) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2009030202A1 (de) Messvorrichtung und verfahren zur analyse des schmiermittels eines lagers
DE102012100794B3 (de) Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem
WO2000055603A1 (de) Infrarot-gasanalysator und verfahren zum betrieb dieses analysators
EP2946191A1 (de) Staubleitung mit optischem sensor und verfahren zur messung der zusammensetzung von staub
DE102014010712A1 (de) "Gassensoranordnung zur Messung einer Zielgaskonzentration"
WO2013004664A1 (de) Vorrichtung mit einer messanordnung zur optischen messung von gasen und gasgemischen mit kompensation von umgebungseinflüssen
WO2009039920A1 (de) Anordnung, verfahren und sensor zur erfassung von flüssigkeitsparametern
DE102014016515A1 (de) Optischer Gassensor
DE112013007716T5 (de) Optischer Fasersensor zur Ölzustandsüberwachung
EP3055671A1 (de) Sensoreinheit zum bestimmen von eigenschaften eines schmiermittels sowie maschinenelement und maschinenanordnung
DE102014010713A1 (de) "Gassensoranordnung zur Messung einer Zielgaskonzentration"
DE102006017203A1 (de) Linearführungseinrichtung
EP1881319B1 (de) Vorrichtung und Verfahren zur Messung der Lichtstreuung
EP3011224B1 (de) Schmierstoffsensor
EP3112845B1 (de) Vorrichtung zur optischen in-situ analyse eines messgases
WO2018215374A1 (de) Lufttrocknerkartusche und vorrichtung umfassend eine lufttrocknerkartusche
DE112013007097T5 (de) Erkennen von Rollenkegeldichtungsversagen unter Verwendung eines integrierten Rechenelements
DE102010023011A1 (de) Käfig für ein Lager
DE102014217979B4 (de) Schmierstoffqualitätsmodul für Wälzlager und Schmierstoffüberwachungsanordnung
AT510630B1 (de) Spektrometer
DE19932354B4 (de) Verfahren und Vorrichtung zum Fernnachweis von Kohlenwasserstoffen im untergrund- oder bodennahen Bereich der Atmosphäre
DE102021119834A1 (de) Vorrichtung zum Messen des Methangehalts eines Gases
DE102016111657A1 (de) Vorrichtung zur optischen in-situ Gasanalyse
DE10204906A1 (de) Optische Sensoranordnung zur Detektion von Aerosolen
WO2024017997A1 (de) Rf-bohrlochsondensystem und verfahren zum betrieb einer rf-bohrlochsonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL FREUDENBERG KG

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

17Q First examination report despatched

Effective date: 20120308

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

Owner name: CARL FREUDENBERG KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200910

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523