EP2185873B1 - Verfahren zur kryogenischen kühlung einer flüssigkeit, z. b. helium, und zur bereitstellung eines flüssigkeitsbehälters sowie entsprechende vorrichtung - Google Patents

Verfahren zur kryogenischen kühlung einer flüssigkeit, z. b. helium, und zur bereitstellung eines flüssigkeitsbehälters sowie entsprechende vorrichtung Download PDF

Info

Publication number
EP2185873B1
EP2185873B1 EP08827838.7A EP08827838A EP2185873B1 EP 2185873 B1 EP2185873 B1 EP 2185873B1 EP 08827838 A EP08827838 A EP 08827838A EP 2185873 B1 EP2185873 B1 EP 2185873B1
Authority
EP
European Patent Office
Prior art keywords
fluid
cooling
interface
stage
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08827838.7A
Other languages
English (en)
French (fr)
Other versions
EP2185873A2 (de
Inventor
Pierre Briend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2185873A2 publication Critical patent/EP2185873A2/de
Application granted granted Critical
Publication of EP2185873B1 publication Critical patent/EP2185873B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Definitions

  • the invention relates to a cryogenic refrigeration process of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.
  • the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid. and collect fluid from the consumer.
  • This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.
  • a reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium.
  • a pulsed thermal load varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements.
  • the document FR 1540391 discloses a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage to be partially liquefied in a reservoir for maintaining a phase equilibrium of the fluid to a target temperature.
  • the tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).
  • the invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.
  • the invention relates to a refrigeration method according to claim 1.
  • the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.
  • Such a method therefore makes it possible to use an installation for its implementation which is simply dimensioned according to the average power to be delivered, the method making it possible to adapt to the peaks of thermal load to be supplied to the consumer.
  • the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.
  • the amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user.
  • the documents JP9170834 A and JP61005586 A describe cryogenic refrigeration processes and installations that do not adapt sufficiently satisfactorily to variable heat loads.
  • the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.
  • the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.
  • the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part coming from the pre-cooling stage and / or cooling.
  • the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.
  • the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.
  • the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.
  • a second fraction of the fluid from the expansion valve is intended to supply the accumulator.
  • the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.
  • the invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface, a delivery pipe connecting the fluid outlet members of the interface to the pre-cooling stage and / or cooling, and a first branch line connecting upstream of the interface the supply line to the discharge pipe via at least one bypass, the damping stage further comprising a second bypass pipe, connecting upstream of the interface the supply pipe to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged so as to exchanging heat energy between the fluid from the accumulator and the fluid flowing in the supply
  • the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.
  • the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.
  • the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger.
  • the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.
  • the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.
  • the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe.
  • the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.
  • the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.
  • the first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.
  • the second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).
  • the third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is, the third portion of the fluid is withdrawn from the first fluid portion).
  • a helium refrigeration plant according to the invention is described in figure 1 .
  • this installation comprises an interface 1 in the form of a cold box or an enclosure equipped with an inlet and a fluid outlet 2, 3 intended respectively to supply a consumer with fluid and to collect fluid from the consumer.
  • the cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.
  • the installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid.
  • the compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature.
  • Helium at high pressure that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6.
  • Pre-cooling is supplemented by heat exchange with liquid nitrogen.
  • the cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel.
  • each expansion turbine 9 part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle.
  • the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power.
  • the pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin.
  • This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.
  • the helium flowing in the feed pipe 11 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first heat exchanger 17 and a valve 18 controlled, for example by means of a sensor 19 of the helium level within the chamber 1.
  • the helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.
  • the damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16.
  • the first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 11, downstream of the expansion turbine 15 and upstream of the third heat exchanger 16.
  • a second bypass pipe 24 makes it possible to deflect a part of the fluid coming from the third heat exchanger 16.
  • the helium circulating in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.
  • the fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16.
  • the accumulator 26 is likely to contain helium both in liquid form but also in gaseous form.
  • An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.
  • the heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers.
  • the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17.
  • the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other.
  • accumulator 26 increases as it passes through the first exchanger 17.
  • the operation of the damping stage 10 is as follows.
  • the controlled bypass valve 22 is mainly open so that a large part of the fluid coming from the expansion turbine 15 is sent back to the cooling stage 6.
  • a small portion of the cold helium flow is supplied to the interface 1 by the supply line 11.
  • a certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.
  • the bypass valve 22 When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the heat load available to the consumer at the interface 1.
  • the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the pipe d supply 11 directed to the interface 1, thereby increasing the heat load supplied to the consumer.
  • FIG. 3 An alternative embodiment of the invention is shown in figure 3 only the positions of the first branch line 21 and the bypass valve 22 having been modified.
  • the first bypass pipe 21 connects the supply pipe 11, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12 at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.
  • This embodiment avoids a reduction in the efficiency of the second heat exchanger 13.
  • the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas.
  • the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions.
  • the valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger.
  • the first bypass pipe 21 connects the supply pipe 11, at a point situated downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 located upstream of the third heat exchanger 16 and a second bypass valve 29 located downstream of the second heat exchanger 13.
  • the second and third exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase.
  • bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Claims (14)

  1. Verfahren zur kryogenen Kühlung eines Fluids, zum Beispiel von Helium, zur Versorgung eines Fluidverbrauchers bestimmt, wobei das Fluid zyklisch nacheinander durch eine Verdichtungsstufe (4), eine Vorkühl- und/oder Kühlstufe (5, 6) des Fluids und eine Schnittstelle (1) zirkuliert, die es ermöglicht, den Verbraucher mit Fluid zu versorgen und vom Verbraucher stammendes Fluid zu sammeln, wobei ein erster Teil des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids zur Schnittstelle (1) geleitet wird, dadurch gekennzeichnet, dass ein zweiter Teil des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids selektiv zur Vorkühl- und/oder Kühlstufe (5, 6) stromaufwärts der Schnittstelle (1) zurückgeschickt wird, je nachdem, ob die vom Verbraucher geforderte Wärmebelastung niedrig oder hoch ist, ein dritter Teil des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids stromaufwärts der Schnittstelle (1) selektiv gekühlt und zu einem Akkumulator (26) geleitet wird, der dazu ausgelegt ist, dieses Fluid selektiv zu speichern oder, je nachdem, ob die vom Verbraucher geforderte Wärmebelastung niedrig oder hoch ist, eine bereits gespeicherte Fluidmenge zum Kühlen des ersten Teils des Fluids, das zur Schnittstelle (1) geleitet wird, zu liefern, wobei der erste Teil des Fluids die Schnittstelle direkt versorgt, ohne den Akkumulator (26) zu passieren, der zweite Teil des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids durch selektives Umleiten eines aus der Vorkühl- und/oder Kühlstufe stammenden Fluidteils erhalten wird, dazu bestimmt, um selektiv die Schnittstelle und/oder den Akkumulator zu versorgen, das heißt, dass der zweite Fluidteil aus dem gesamten aus der Verdichtungsstufe stammenden Fluid entfernt wird, wobei der dritte Teil des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids durch selektives Umleiten eines Teils des aus der Vorkühl- und/oder Kühlstufe stammenden Fluids erhalten wird, dazu bestimmt, um die Schnittstelle (1) selektiv direkt zu versorgen, das heißt, dass der dritte Teil des Fluids aus dem ersten Fluidteil entfernt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die zur Vorkühl- und/oder Kühlstufe (5, 6) zurückgeschickte Fluidmenge durch mindestens ein gesteuertes Bypassventil (22), zum Beispiel mittels eines Drucksensors (23), eingestellt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das aus der Vorkühl- und/oder Kühlstufe (5, 6) stammende Fluid durch eine Expansionsturbine (15) zirkuliert.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Teil des aus der Vorkühl- und/oder Kühlstufe (5, 6) stammenden Fluids die Wärmeenergie mit dem vom Akkumulator (26) gelieferten Fluid austauscht.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zweite und/oder dritte Teil des aus der Vorkühl- und/oder Kühlstufe (5, 6) stammenden Fluids die Wärmeenergie mit dem aus der Schnittstelle (1) stammenden Fluid austauscht.
  6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Akkumulator (26) selektiv mit durch ein Expansionsventil (25) expandiertem Fluid versorgt wird, das einen Anteil des ersten Fluidteils entnimmt, wobei sich das Ventil (25) stromabwärts von der Leitung der selektiven Zurückschickung des zweiten Fluidteils befindet.
  7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass das vom Akkumulator (26) gelieferte Fluid selektiv in die Vorkühl- und/oder Kühlstufe (5, 6) zurückgeschickt werden kann.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die vom Verbraucher geforderte Wärmebelastung abnimmt oder relativ gering ist, der erste Teil des zur Schnittstelle geleiteten Fluids zugunsten einerseits des zweiten Teils des zur Vorkühl- und/oder Kühlstufe zurückgeschickten Fluids und andererseits des dritten Teils des zum Akkumulator geleiteten Fluids verringert wird, wenn die vom Verbraucher geforderte Wärmebelastung zunimmt oder relativ hoch ist, der zweite und dritte Teil des zur Vorkühl- und/oder Kühlstufe und zum Akkumulator zurückgeschickten Fluids zugunsten des ersten Teils des zur Schnittstelle geleiteten Fluids verringert werden, und dadurch, dass der erste Teil des Fluids selektiv durch das über den Akkumulator (26) gelieferte Fluid erhöht wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Durchsatz des zyklisch zirkulierenden Fluids im Kreislauf und insbesondere in der Verdichtungsstufe im Wesentlichen konstant gehalten wird.
  10. Vorrichtung zur kryogenen Kühlung eines Fluids, zum Beispiel von Helium, zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, beinhaltend eine Schnittstelle (1), die mit Fluid-Einlass- und -Ausgangsorganen (2, 3) ausgestattet ist, die jeweils dazu bestimmt sind, einen Verbraucher mit Fluid zu versorgen und von dem Verbraucher stammendes Fluid zu sammeln, eine Verdichtungsstufe (4) des aus der Schnittstelle (1) stammenden Fluids, mindestens eine Vorkühl- und/oder Kühlstufe (5, 6) des aus der Schnittstelle (1) stammenden Fluids und/oder des aus der Verdichtungsstufe (4) stammenden Fluids, wobei die Vorrichtung eine Dämpfungsstufe (10) beinhaltet, die eine Versorgungsleitung (11) beinhaltet, welche die Vorkühl- und/oder Kühlstufe (5, 6) mit den Fluid-Einlassorganen (2) der Schnittstelle (1) verbindet, eine Auslassleitung (12), welche die Fluid-Ausgangsorgane (3) der Schnittstelle (1) mit der Vorkühl- und/oder Kühlstufe (5, 6) verbindet, und eine erste Bypassleitung (21), welche die Versorgungsleitung (11) mittels mindestens eines Bypassventils (22) mit der Auslassleitung (12) verbindet, wobei die Dämpfungsstufe (10) eine Versorgungsleitung (11) beinhaltet, welche die Vorkühl- und/oder Kühlstufe (5, 6) mit den Fluid-Einlassorganen (2) der Schnittstelle (1) verbindet, eine Auslassleitung (12), welche die Fluid-Auslassorgane (3) der Schnittstelle (1) mit der Vorkühl- und/oder Kühlstufe (5,6) verbindet, und eine erste Bypassleitung (21), welche die Versorgungsleitung (11) stromaufwärts der Schnittstelle (1) mittels mindestens eines Bypassventils (22) mit der Auslassleitung (12) verbindet, wobei die Dämpfungsstufe (10) weiter eine zweite Bypassleitung (24) beinhaltet, welche die Versorgungsleitung (11) stromaufwärts der Schnittstelle (1) mit der Auslassleitung (12) verbindet, und mit einem Akkumulator (26) ausgestattet ist, wobei ein erster Wärmeaustauscher (17) derart angeordnet ist, dass er Wärmeenergie zwischen dem aus dem Akkumulator (26) stammenden Fluid und dem in der Versorgungsleitung (11) zirkulierenden Fluid austauscht.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die erste Bypassleitung (21) die Versorgungsleitung (11) an einer Stelle, die sich zwischen einer Expansionsturbine (15) und einem dritten Wärmeaustauscher (16) befindet, mit der Auslassleitung (12) verbindet, an einer Stelle, die sich zwischen einem zweiten Wärmeaustauscher (13) und der Vorkühl- und/oder Kühlstufe (5, 6) befindet, wobei die erste Bypassleitung (21) einen zweiten Wärmeaustauscher (13) durchläuft, wobei ein Bypassventil (22) stromabwärts des zweiten Wärmeaustauschers (13) angeordnet ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die zweite Bypassleitung (24) mit einem zwischen dem dritten Wärmeaustauscher (16) und dem Akkumulator (26) angeordneten Expansionsventil (25) ausgestattet ist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Dämpfungsstufe (10) eine dritte Bypassleitung beinhaltet, die dazu ausgelegt ist, einen Teil des aus Expansionsventil (25) stammenden Fluids abzulenken, wobei die dritte Leitung den ersten Wärmeaustauscher (17) durchläuft und mit der Auslassleitung (12) verbunden ist.
  14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Schnittstelle ein Gehäuse (1) beinhaltet, das mit Fluid-Einlass- und -Ausgangsorganen (2, 3) ausgestattet ist, wobei die Versorgungsleitung (11) mit einem stromaufwärts der Fluid-Einlassorgane (2) angeordneten gesteuerten Ventil (18) ausgestattet ist, wobei das Ventil (18) zum Beispiel mittels eines Pegelsensors (19) innerhalb des Gehäuses (1) gesteuert wird.
EP08827838.7A 2007-08-03 2008-07-28 Verfahren zur kryogenischen kühlung einer flüssigkeit, z. b. helium, und zur bereitstellung eines flüssigkeitsbehälters sowie entsprechende vorrichtung Active EP2185873B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756926A FR2919713B1 (fr) 2007-08-03 2007-08-03 Procede de refrigeration d'un fluide, par exemple d'helium, destine a alimenter un consommateur de fluide, ainsi qu'a une installation correspondante
PCT/FR2008/051415 WO2009024705A2 (fr) 2007-08-03 2008-07-28 Procédé de réfrigération d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante

Publications (2)

Publication Number Publication Date
EP2185873A2 EP2185873A2 (de) 2010-05-19
EP2185873B1 true EP2185873B1 (de) 2018-12-26

Family

ID=39358379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08827838.7A Active EP2185873B1 (de) 2007-08-03 2008-07-28 Verfahren zur kryogenischen kühlung einer flüssigkeit, z. b. helium, und zur bereitstellung eines flüssigkeitsbehälters sowie entsprechende vorrichtung

Country Status (4)

Country Link
EP (1) EP2185873B1 (de)
JP (1) JP5149381B2 (de)
FR (1) FR2919713B1 (de)
WO (1) WO2009024705A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943768B1 (fr) 2009-03-24 2011-04-29 Commissariat Energie Atomique Systeme cryogenique pour le refroidissement d'un consommateur presentant une charge thermique variable dans le temps.
FR2957406A1 (fr) * 2010-03-12 2011-09-16 Air Liquide Procede et installation de refrigeration en charge pulsee
FR2958025A1 (fr) * 2010-03-23 2011-09-30 Air Liquide Procede et installation de refrigeration en charge pulsee
FR2959558B1 (fr) * 2010-04-29 2014-08-22 Ecolactis Procede de migration de la charge en fluide frigorigene d'un systeme de refrigeration a charge reduite et dispositif mettant en oeuvre ledit procede
FR2963090B1 (fr) * 2010-07-20 2012-08-17 Commissariat Energie Atomique Procede d'estimation de la charge thermique imposee a un refrigerateur cryogenique, produit programme associe et procede de regulation du refrigerateur
EP3467401B1 (de) * 2011-07-01 2023-10-18 Edwards Vacuum, LLC Systeme und verfahren zur erwärmung einer kryogenen wärmetauscheranordnung für kompakte und effiziente kühlung und für adaptive leistungsverwaltung
FR2983947B1 (fr) 2011-12-12 2014-01-10 Commissariat Energie Atomique Procede de regulation d'un systeme de refroidissement cryogenique.
FR2999693B1 (fr) * 2012-12-18 2015-06-19 Air Liquide Dispositif de refrigeration et/ou de liquefaction et procede correspondant
FR3000541B1 (fr) * 2013-01-03 2015-01-23 Air Liquide Dispositif de refrigeration et/ou de liquefaction et procede correspondant
FR3014544A1 (fr) 2013-12-06 2015-06-12 Air Liquide Procede de refrigeration, boite froide et installation cryogenique correspondantes
FR3014546B1 (fr) * 2013-12-09 2018-11-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Lissage de la charge d'un procede de production de froid par l'utilisation de moyens de stockage du fluide frigorigene

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1540391A (fr) * 1967-05-24 1968-09-27 Air Liquide Procédé de maintien à très basse température d'appareils électriques
GB2069119B (en) * 1980-02-13 1983-09-21 Petrocarbon Dev Ltd Refrigeration process
JPH0738464B2 (ja) * 1984-02-10 1995-04-26 日本原子力研究所 冷凍制御方法
JPH0718611B2 (ja) * 1986-11-25 1995-03-06 株式会社日立製作所 極低温液化冷凍装置の減量運転方法
JPH06101919A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 極低温冷凍装置
JPH06147667A (ja) * 1992-11-09 1994-05-27 Kobe Steel Ltd 液化冷凍装置の運転制御方法及び装置
JPH06265230A (ja) * 1993-03-11 1994-09-20 Kobe Steel Ltd 液化冷凍装置の運転制御方法及び装置
JPH08285395A (ja) * 1995-04-10 1996-11-01 Kobe Steel Ltd ヘリウム液化冷凍装置
JPH09170834A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd ヘリウム冷凍システム
US8511100B2 (en) * 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2919713A1 (fr) 2009-02-06
EP2185873A2 (de) 2010-05-19
WO2009024705A2 (fr) 2009-02-26
FR2919713B1 (fr) 2013-12-06
JP5149381B2 (ja) 2013-02-20
JP2010536002A (ja) 2010-11-25
WO2009024705A4 (fr) 2009-07-02
WO2009024705A3 (fr) 2009-05-14

Similar Documents

Publication Publication Date Title
EP2185873B1 (de) Verfahren zur kryogenischen kühlung einer flüssigkeit, z. b. helium, und zur bereitstellung eines flüssigkeitsbehälters sowie entsprechende vorrichtung
EP0940624B1 (de) Station und Verfahren zur Verteilung von Gas
EP0125980B1 (de) Kühl- und Verflüssigungsverfahren und Anlage für mindestens ein Gas mit niedrigem Siedepunkt, wie z.B. Erdgas
EP1620637A2 (de) System zum kühlen eines ausstattungsteils auf eine niedrige temperatur, wie zum beispiel eines teils einer kraftfahrzeugausstattung, und zugehörige wärmetauscher
EP1953479A2 (de) Vorrichtung zum Kühlen einer elektrischen Apparatur in einer Strömungsmaschine
EP2941602B1 (de) Kühlanlage und/oder verflüssigungsanlage und verfahren dafür
WO2021240114A2 (fr) Installation d'alimentation en carburant cryogénique de la chambre de combustion d'une turbomachine
WO2021240111A1 (fr) Installation de réchauffement d'un carburant cryogénique
FR2988695A1 (fr) Dispositif et procede de remplissage de reservoir
EP0644390B1 (de) Gaskompressionsverfahren und Vorrichtung
EP2936006B1 (de) Kühlanlage und/oder verflüssigungsanlage und verfahren dafür
FR2520131A1 (fr) Dispositif de regulation d'un refrigerateur a effet joule-thomson
EP3077736B1 (de) Kühlverfahren, zugehörige kühlbox und kryogene anlage
FR2775846A1 (fr) Procede pour le maintien a basse temperature d'une cryoliaison supraconductrice
FR2775518A1 (fr) Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
EP2665979B1 (de) Anlage und verfahren zur erzeugung von flüssigem helium
CH683287A5 (fr) Installation de réfrigération.
EP4189310A1 (de) Anlage und verfahren zur kühlung eines fluids
WO2023088607A1 (fr) Système de pompage cryogénique et intégration innovante pour la cryogénie sub kelvin inférieure à 1,5k

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100628

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008058502

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. GEVERS SA, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DES NOYERS 11, 2000 NEUCHATEL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008058502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080728

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

Ref country code: CH

Payment date: 20230801

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16