EP2185873B1 - Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment - Google Patents

Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment Download PDF

Info

Publication number
EP2185873B1
EP2185873B1 EP08827838.7A EP08827838A EP2185873B1 EP 2185873 B1 EP2185873 B1 EP 2185873B1 EP 08827838 A EP08827838 A EP 08827838A EP 2185873 B1 EP2185873 B1 EP 2185873B1
Authority
EP
European Patent Office
Prior art keywords
fluid
cooling
interface
stage
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08827838.7A
Other languages
German (de)
French (fr)
Other versions
EP2185873A2 (en
Inventor
Pierre Briend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2185873A2 publication Critical patent/EP2185873A2/en
Application granted granted Critical
Publication of EP2185873B1 publication Critical patent/EP2185873B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Definitions

  • the invention relates to a cryogenic refrigeration process of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.
  • the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid. and collect fluid from the consumer.
  • This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.
  • a reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium.
  • a pulsed thermal load varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements.
  • the document FR 1540391 discloses a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage to be partially liquefied in a reservoir for maintaining a phase equilibrium of the fluid to a target temperature.
  • the tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).
  • the invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.
  • the invention relates to a refrigeration method according to claim 1.
  • the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.
  • Such a method therefore makes it possible to use an installation for its implementation which is simply dimensioned according to the average power to be delivered, the method making it possible to adapt to the peaks of thermal load to be supplied to the consumer.
  • the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.
  • the amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user.
  • the documents JP9170834 A and JP61005586 A describe cryogenic refrigeration processes and installations that do not adapt sufficiently satisfactorily to variable heat loads.
  • the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.
  • the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.
  • the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part coming from the pre-cooling stage and / or cooling.
  • the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.
  • the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.
  • the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.
  • a second fraction of the fluid from the expansion valve is intended to supply the accumulator.
  • the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.
  • the invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface, a delivery pipe connecting the fluid outlet members of the interface to the pre-cooling stage and / or cooling, and a first branch line connecting upstream of the interface the supply line to the discharge pipe via at least one bypass, the damping stage further comprising a second bypass pipe, connecting upstream of the interface the supply pipe to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged so as to exchanging heat energy between the fluid from the accumulator and the fluid flowing in the supply
  • the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.
  • the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.
  • the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger.
  • the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.
  • the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.
  • the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe.
  • the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.
  • the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.
  • the first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.
  • the second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).
  • the third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is, the third portion of the fluid is withdrawn from the first fluid portion).
  • a helium refrigeration plant according to the invention is described in figure 1 .
  • this installation comprises an interface 1 in the form of a cold box or an enclosure equipped with an inlet and a fluid outlet 2, 3 intended respectively to supply a consumer with fluid and to collect fluid from the consumer.
  • the cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.
  • the installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid.
  • the compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature.
  • Helium at high pressure that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6.
  • Pre-cooling is supplemented by heat exchange with liquid nitrogen.
  • the cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel.
  • each expansion turbine 9 part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle.
  • the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power.
  • the pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin.
  • This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.
  • the helium flowing in the feed pipe 11 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first heat exchanger 17 and a valve 18 controlled, for example by means of a sensor 19 of the helium level within the chamber 1.
  • the helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.
  • the damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16.
  • the first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 11, downstream of the expansion turbine 15 and upstream of the third heat exchanger 16.
  • a second bypass pipe 24 makes it possible to deflect a part of the fluid coming from the third heat exchanger 16.
  • the helium circulating in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.
  • the fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16.
  • the accumulator 26 is likely to contain helium both in liquid form but also in gaseous form.
  • An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.
  • the heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers.
  • the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17.
  • the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other.
  • accumulator 26 increases as it passes through the first exchanger 17.
  • the operation of the damping stage 10 is as follows.
  • the controlled bypass valve 22 is mainly open so that a large part of the fluid coming from the expansion turbine 15 is sent back to the cooling stage 6.
  • a small portion of the cold helium flow is supplied to the interface 1 by the supply line 11.
  • a certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.
  • the bypass valve 22 When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the heat load available to the consumer at the interface 1.
  • the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the pipe d supply 11 directed to the interface 1, thereby increasing the heat load supplied to the consumer.
  • FIG. 3 An alternative embodiment of the invention is shown in figure 3 only the positions of the first branch line 21 and the bypass valve 22 having been modified.
  • the first bypass pipe 21 connects the supply pipe 11, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12 at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.
  • This embodiment avoids a reduction in the efficiency of the second heat exchanger 13.
  • the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas.
  • the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions.
  • the valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger.
  • the first bypass pipe 21 connects the supply pipe 11, at a point situated downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 located upstream of the third heat exchanger 16 and a second bypass valve 29 located downstream of the second heat exchanger 13.
  • the second and third exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase.
  • bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Description

L'invention se rapporte à un procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante.The invention relates to a cryogenic refrigeration process of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.

Dans un procédé classique, le fluide circule de manière cyclique successivement au travers d'un étage de compression, d'un étage de pré-refroidissement et/ou de refroidissement du fluide, et d'une interface permettant d'alimenter en fluide le consommateur et de recueillir du fluide issu du consommateur.In a conventional method, the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid. and collect fluid from the consumer.

Ce type de procédé est particulièrement adapté lorsque le consommateur a besoin d'une charge thermique sensiblement constante, c'est-à-dire lorsque la puissance thermique à fournir par le procédé de réfrigération est quasiment constante dans le temps.This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.

Un tel procédé reste toutefois inadapté en cas de charge thermique variable dans le temps.Such a method remains unsuitable, however, in the event of a variable thermal load over time.

Un réacteur utilisé dans le domaine de la fusion contrôlée comprend des éléments supraconducteurs refroidis à l'aide d'hélium liquide. Dans le cas de ce type de réacteur, une charge thermique puisée, variant de manière sensiblement sinusoïdale dans le temps, est nécessaire afin de ne pas endommager les éléments supraconducteurs précités.A reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium. In the case of this type of reactor, a pulsed thermal load, varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements.

Il apparaît donc que, dans cette application notamment, le procédé classique précité ne peut être utilisé sans un surdimensionnement important des différents composants de l'installation permettant de le mettre en oeuvre.It therefore appears that, in this particular application, the aforementioned conventional method can not be used without significant over-sizing of the various components of the installation to implement it.

Le document FR 1540391 décrit un procédé de maintien à très basse température d'appareils électriques utilisant un fluide soumis à un étage de compression, un étage de détente et de refroidissement afin d'être liquéfié en partie dans un réservoir destiné à maintenir un équilibre de phase du fluide à une température cible.The document FR 1540391 discloses a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage to be partially liquefied in a reservoir for maintaining a phase equilibrium of the fluid to a target temperature.

Le réservoir alimente les appareils électriques en vue de leur refroidissement. Ce système est inadapté aux applications subissant des variations de charge thermiques nécessitée par le consommateur puisque les débits de fluides subissent des variations importantes (vers l'étage de compression et l'étage de détente et de refroidissement).The tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).

L'invention vise à remédier à cet inconvénient en proposant un procédé de réfrigération d'un fluide permettant de s'adapter à des charges thermiques variables dans le temps.The invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.

A cet effet, l'invention concerne un procédé de réfrigération selon la revendication 1.For this purpose, the invention relates to a refrigeration method according to claim 1.

De cette manière, il est possible d'ajuster la quantité de fluide froid fourni à l'interface, et par conséquent la charge thermique disponible pour le consommateur.In this way, it is possible to adjust the amount of cold fluid supplied to the interface, and therefore the thermal load available to the consumer.

En outre, l'accumulateur permet de stocker du fluide froid lorsque la charge thermique à fournir est faible, c'est-à-dire de stocker au sein des moyens d'accumulation une charge thermique déterminée et de délivrer, par échange de chaleur, au moins une partie de cette charge stockée au fluide destiné à l'interface.In addition, the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.

Un tel procédé permet donc d'utiliser une installation pour sa mise en oeuvre qui soit simplement dimensionnée en fonction de la puissance moyenne à délivrer, le procédé permettant de s'adapter aux pics de charge thermique à fournir au consommateur.Such a method therefore makes it possible to use an installation for its implementation which is simply dimensioned according to the average power to be delivered, the method making it possible to adapt to the peaks of thermal load to be supplied to the consumer.

Selon une caractéristique de l'invention, la quantité de fluide renvoyé vers l'étage de pré-refroidissement et/ou de refroidissement est ajustée par au moins une vanne de dérivation commandée, par exemple par l'intermédiaire d'un capteur de pression.According to one characteristic of the invention, the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.

La quantité de fluide froid fourni à l'interface est donc ajustée de manière dynamique par la vanne de dérivation en fonction des besoins de l'utilisateur.The amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user.

Les documents JP9170834 A et JP61005586 A décrivent des procédés et des installations de réfrigération cryogénique ne s'adaptant pas de façon suffisamment satisfaisante à des charges thermiques variables. Avantageusement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement circule au travers d'une turbine de détente.The documents JP9170834 A and JP61005586 A describe cryogenic refrigeration processes and installations that do not adapt sufficiently satisfactorily to variable heat loads. Advantageously, the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.

Selon une possibilité de l'invention, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide délivré par l'accumulateur.According to a possibility of the invention, the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.

Préférentiellement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange l'énergie calorifique avec le fluide issu de l'interface et/ou avec la deuxième partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement.Preferably, the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part coming from the pre-cooling stage and / or cooling.

Avantageusement, la deuxième et/ou la troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide issu de l'interface.Advantageously, the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.

Selon une possibilité de l'invention, la deuxième partie de fluide issue de l'étage de pré-refroidissement et/ou de refroidissement est détendue par l'intermédiaire d'une vanne de détente.According to a possibility of the invention, the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.

Préférentiellement, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec une première fraction du fluide issu de la vanne de détente.Preferably, the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.

Selon une caractéristique de l'invention, une deuxième fraction du fluide issu de la vanne de détente est destinée à alimenter l'accumulateur.According to a feature of the invention, a second fraction of the fluid from the expansion valve is intended to supply the accumulator.

Avantageusement, le fluide délivré par l'accumulateur est renvoyé à l'étage de pré-refroidissement et/ou de refroidissement.Advantageously, the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.

L'invention concerne en outre une installation de réfrigération d'un fluide, par exemple d'hélium, pour la mise en oeuvre du procédé selon l'invention, comportant une interface équipée d'organes d'entrée et de sortie de fluide destinés respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur, un étage de compression du fluide issu de l'interface, au moins un étage de pré-refroidissement et/ou de refroidissement du fluide issu de l'interface et/ou du fluide issu de l'étage de compression, caractérisée en ce qu'elle comporte un étage d'amortissement comportant une canalisation d'alimentation reliant l'étage de pré-refroidissement et/ou de refroidissement aux organes d'entrée de fluide de l'interface, une canalisation de refoulement reliant les organes de sortie de fluide de l'interface à l'étage de pré-refroidissement et/ou de refroidissement, et une première canalisation de dérivation reliant en amont de l'interface la canalisation d'alimentation à la canalisation de refoulement par l'intermédiaire d'au - moins une vanne de dérivation, l'étage d'amortissement comportant en outre une deuxième canalisation de dérivation, reliant en amont de l'interface la canalisation d'alimentation à la canalisation de refoulement, et équipée d'accumulateur, un premier échangeur thermique étant disposé de manière à échanger de l'énergie calorifique entre le fluide issu de l'accumulateur et le fluide circulant dans la canalisation d'alimentation.The invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface, a delivery pipe connecting the fluid outlet members of the interface to the pre-cooling stage and / or cooling, and a first branch line connecting upstream of the interface the supply line to the discharge pipe via at least one bypass, the damping stage further comprising a second bypass pipe, connecting upstream of the interface the supply pipe to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged so as to exchanging heat energy between the fluid from the accumulator and the fluid flowing in the supply pipe.

Selon une caractéristique de l'invention, la canalisation d'alimentation est équipée d'une turbine de détente, disposée en amont de la première canalisation de dérivation.According to a characteristic of the invention, the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.

Avantageusement, la canalisation d'alimentation est équipée d'un deuxième échangeur thermique disposé en amont de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.Advantageously, the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.

Selon une possibilité de l'invention, la canalisation d'alimentation est équipée d'un troisième échangeur thermique disposé en aval de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.According to a possibility of the invention, the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe. .

Préférentiellement, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le troisième échangeur thermique et le deuxième échangeur thermique.Preferably, the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.

Selon une variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de pré-refroidissement et/ou de refroidissement, la première canalisation de dérivation traversant le deuxième échangeur thermique, la vanne de dérivation étant disposée en aval du deuxième échangeur thermique.According to an alternative embodiment of the invention, the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger.

Selon une autre variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé en aval du troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de pré-refroidissement et/ou de refroidissement, la première canalisation de dérivation traversant successivement le troisième échangeur thermique et le deuxième échangeur thermique et étant équipée d'une première vanne de dérivation située en amont du troisième échangeur thermique et d'une seconde vanne de dérivation située en aval du deuxième échangeur thermique.According to another variant embodiment of the invention, the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.

Selon une possibilité de l'invention, la seconde canalisation de dérivation est équipée d'une vanne de détente disposée entre le troisième échangeur et l'accumulateur.According to a possibility of the invention, the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.

Préférentiellement, l'étage d'amortissement comporte une troisième canalisation de dérivation conçue pour dévier une partie du fluide issu de la vanne de détente, la troisième canalisation traversant le premier échangeur thermique et étant reliée à la canalisation de refoulement.Preferably, the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe.

Selon une caractéristique de l'invention, l'accumulateur à l'intérieur duquel est disposé le premier échangeur thermique de manière à échanger de l'énergie calorifique entre le fluide traversant le premier échangeur et le fluide contenu dans l'accumulateur.According to one characteristic of the invention, the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.

Avantageusement, l'interface comporte une enceinte équipée des moyens d'entrée et de sortie de fluide, la canalisation d'alimentation étant équipée d'une vanne commandée disposée en amont des organes d'entrée de fluide, la vanne étant commandée, par exemple par l'intermédiaire d'un capteur de niveau de fluide à l'intérieur de l'enceinte.Advantageously, the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.

De toute façon, l'invention sera bien comprise à l'aide de la description qui suit en référence au dessin schématique annexé représentant, à titre d'exemple, trois formes de réalisation de ce procédé et cette installation de réfrigération d'un fluide.In any case, the invention will be better understood from the description which follows with reference to the attached schematic drawing showing, by way of example, three embodiments of this method and this refrigeration system of a fluid.

Les première, seconde et troisième partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement sont obtenues par des dérivations sélectives d'au moins une partie de l'ensemble de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement.The first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.

La seconde partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement l'interface (première partie du fluide) et/ou l'accumulateur (troisième partie du fluide) (c'est-à-dire que la seconde partie de fluide est retranchée à l'ensemble du fluide issu de l'étage de compression).The second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).

La troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement directement l'interface (1) (c'est-à-dire que la troisième partie du fluide est retranchée à la première partie de fluide).The third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is, the third portion of the fluid is withdrawn from the first fluid portion).

L'accumulateur comprend par exemple un réservoir cryogénique isolé sous vide, par exemple logé dans l'étage de pré-refroidissement et/ou de refroidissement.

  • Figure 1 est une vue schématique d'ensemble de l'installation ;
  • Figure 2 est une vue schématique de l'étage d'amortissement de l'installation ;
  • Figures 3 et 4 sont des vues correspondant à la figure 1, de deux variantes de réalisation.
The accumulator comprises for example a vacuum insulated cryogenic tank, for example housed in the pre-cooling and / or cooling stage.
  • Figure 1 is a schematic overview of the installation;
  • Figure 2 is a schematic view of the damping stage of the installation;
  • Figures 3 and 4 are views corresponding to the figure 1 , two embodiments.

Une installation de réfrigération d'hélium selon l'invention est décrite en figure 1.A helium refrigeration plant according to the invention is described in figure 1 .

Comme cela est représentée plus particulièrement en figure 2, cette installation comporte une interface 1 se présentant sous la forme d'une boite froide ou d'une enceinte équipée d'une entrée et d'une sortie de fluide 2, 3 destinées respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur.As shown more particularly in figure 2 this installation comprises an interface 1 in the form of a cold box or an enclosure equipped with an inlet and a fluid outlet 2, 3 intended respectively to supply a consumer with fluid and to collect fluid from the consumer.

La boîte froide 1 permet d'échanger une charge thermique avec un fluide destiné à un consommateur constitué par exemple par un circuit de refroidissement d'éléments supraconducteurs d'un réacteur à fusion contrôlée.The cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.

L'installation comporte un étage de compression 4 du fluide issu de l'interface 1, un étage de pré-refroidissement 5 et un étage de refroidissement 6 du fluide.The installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid.

Ces étages sont connus de l'art antérieur et seront, par conséquent, décrit sommairement ci-après.These stages are known from the prior art and will therefore be briefly described below.

L'étage de compression 4 permet de comprimer l'hélium provenant de l'étage inférieur, à savoir de l'étage de pré-refroidissement 5 et d'amener l'hélium à une température ambiante.The compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature.

L'hélium à haute pression, c'est-à-dire à une pression comprise entre 15 et 20 bars est amené à l'étage de pré-refroidissement 5 où il est refroidi, dans des échangeurs à plaques aluminium brasé 7, 8, par l'hélium froid en provenance de l'étage inférieur, c'est-à-dire de l'étage de refroidissement 6.Helium at high pressure, that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6.

Le pré-refroidissement est complété par un échange de chaleur avec de l'azote liquide.Pre-cooling is supplemented by heat exchange with liquid nitrogen.

Le refroidissement de l'hélium se poursuit dans l'étage de refroidissement 6, par l'intermédiaire d'une pluralité d'échangeurs du type précité et par des turbines cryogéniques de détente 9 disposées en parallèles. Pour chaque turbine de détente 9, une partie du débit d'hélium haute pression est prélevée et détendue à la moyenne pression du cycle. Selon une possibilité de l'invention, le nombre de turbines de détente 9 varie entre 2 ou 4 pour un réfrigérateur de forte puissance. L'étage de pré-refroidissement amène l'hélium à l'étage inférieur, c'est-à-dire à un étage d'amortissement 10, à une température d'environ 20 Kelvins.The cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel. For each expansion turbine 9, part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle. According to a possibility of the invention, the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power. The pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin.

L'étage d'amortissement 10 va maintenant être décrit plus en détail, en référence aux figures 2 à 4.The damping stage 10 will now be described in more detail, with reference to Figures 2 to 4 .

Cet étage 10 comporte une canalisation d'alimentation 11 dans laquelle le fluide froid circule depuis l'étage de refroidissement 6 jusqu'à l'interface 1, ainsi qu'une canalisation de refoulement 12 permettant d'amener le fluide chaud issu de l'interface 1 jusqu'à l'étage de refroidissement 6.This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.

L'hélium circulant dans la canalisation d'alimentation 11 traverse successivement, dans le sens de l'écoulement, un deuxième échangeur thermique 13, une vanne de contrôle 14, une turbine de détente 15, un troisième échangeur thermique 16, un premier échangeur thermique 17 et une vanne 18 commandée, par exemple par l'intermédiaire d'un capteur 19 du niveau d'hélium au sein de l'enceinte 1.The helium flowing in the feed pipe 11 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first heat exchanger 17 and a valve 18 controlled, for example by means of a sensor 19 of the helium level within the chamber 1.

L'hélium circulant dans la canalisation de refoulement 12 traverse successivement, dans le sens de l'écoulement, le troisième échangeur thermique 16 et le deuxième échangeur thermique 13, puis est renvoyé vers l'étage de refroidissement 6.The helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.

L'étage d'amortissement 10 comporte de plus une première canalisation de dérivation 21 permettant de diriger le fluide issu de la turbine de détente 15 vers la canalisation de refoulement 12, entre le deuxième et le troisième échangeurs thermiques 13, 16. La première canalisation de dérivation 21 est équipée d'une vanne de dérivation 22 commandée, par exemple par l'intermédiaire d'un capteur de pression 23. La mesure de pression est réalisée par ce capteur 23 en un point situé dans la canalisation d'alimentation 11, en aval de la turbine de détente 15 et en amont du troisième échangeur thermique 16.The damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16. The first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 11, downstream of the expansion turbine 15 and upstream of the third heat exchanger 16.

Une seconde canalisation de dérivation 24 permet de dévier une partie du fluide issu du troisième échangeur thermique 16. L'hélium circulant dans la seconde canalisation traverse une vanne de détente 25, une partie du flux d'hélium issu de cette vanne 25 étant alors dirigée dans un accumulateur 26, une autre partie traversant le premier échangeur thermique 17 et étant ensuite ramenée dans la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16.A second bypass pipe 24 makes it possible to deflect a part of the fluid coming from the third heat exchanger 16. The helium circulating in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.

Le fluide stocké dans l'accumulateur 26 est également dirigé vers le premier échangeur thermique 17 puis dirigé vers la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16.The fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16.

L'accumulateur 26 est susceptible de contenir de l'hélium à la fois sous forme liquide mais également sous forme gazeuse. Une canalisation d'échappement 27 permet d'évacuer les gaz vers la canalisation de refoulement 12, en un point de celle-ci située en amont du troisième échangeur thermique 16.The accumulator 26 is likely to contain helium both in liquid form but also in gaseous form. An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.

Les échangeurs thermiques 13, 16, 17 permettent de refroidir ou de chauffer les fluides les traversant, les fluides chauds et les fluides froids étant agencés de manière à circuler à contre-courant les uns par rapport aux autre dans chacun des échangeurs. C'est ainsi que l'hélium circulant dans la canalisation d'alimentation 11 est refroidi successivement lorsqu'il traverse le deuxième, le troisième et le premier échangeurs 13,16,17. De la même manière, la température de l'hélium circulant dans la canalisation de refoulement 12 augmente lorsqu'il traverse le deuxième et le troisième échangeurs 13,16, et celle de l'hélium issu de la seconde canalisation de dérivation 24 ou de l'accumulateur 26 augmente lorsqu'il traverse le premier échangeur 17.The heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers. Thus, the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17. Similarly, the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other. accumulator 26 increases as it passes through the first exchanger 17.

Le fonctionnement de l'étage d'amortissement 10 est le suivant.The operation of the damping stage 10 is as follows.

Lorsque la charge thermique absorbée par le consommateur est faible, la vanne de dérivation commandée 22 est majoritairement ouverte de sorte qu'une grande partie du fluide issu de la turbine de détente 15 est renvoyée vers l'étage de refroidissement 6.When the heat load absorbed by the consumer is low, the controlled bypass valve 22 is mainly open so that a large part of the fluid coming from the expansion turbine 15 is sent back to the cooling stage 6.

Une faible partie du flux d'hélium froid est amenée vers l'interface 1 par la canalisation d'alimentation 11. Une certaine quantité d'hélium provenant de la partie du flux précitée est stockée dans l'accumulateur 26, le reste étant dirigé vers la canalisation de refoulement 12.A small portion of the cold helium flow is supplied to the interface 1 by the supply line 11. A certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.

Lorsque la charge thermique absorbée par le consommateur est importante, la vanne de dérivation 22 est majoritairement fermée de sorte que la majorité du fluide est dirigée en direction de l'interface 1. Ceci a pour effet d'augmenter la charge thermique disponible pour le consommateur au niveau de l'interface 1. En outre, le fluide froid stocké par l'accumulateur 26 est délivré et traverse le premier échangeur thermique 17, de manière à refroidir le fluide de la canalisation d'alimentation11 dirigé vers l'interface 1, augmentant d'autant la charge thermique fournie au consommateur.When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the heat load available to the consumer at the interface 1. In addition, the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the pipe d supply 11 directed to the interface 1, thereby increasing the heat load supplied to the consumer.

Une variante de réalisation de l'invention est représentée en figure 3, seules les positions de la première canalisation de dérivation 21 et de la vanne de dérivation 22 ayant été modifiées. Dans cette variante, la première canalisation de dérivation 21 relie la canalisation d'alimentation 11, en un point situé entre la turbine de détente 15 et le troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant le deuxième échangeur thermique 13, la vanne de dérivation 22 étant disposée en aval du deuxième échangeur thermique 13.An alternative embodiment of the invention is shown in figure 3 only the positions of the first branch line 21 and the bypass valve 22 having been modified. In this variant, the first bypass pipe 21 connects the supply pipe 11, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12 at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.

Cette forme de réalisation permet d'éviter une réduction de l'efficacité du deuxième échangeur thermique 13. En effet, l'efficacité d'un échangeur thermique risque d'être réduite lors du passage d'un fluide présentant une phase liquide et une phase gazeuse. Or, la vanne de dérivation 22 engendrant une détente et, par conséquent, un refroidissement du fluide qui la traverse, le fluide disposé en arrière de la vanne de dérivation 22 peut être sous forme diphasique, en fonction des conditions de fonctionnement. La vanne 22 ainsi disposée en aval de l'échangeur thermique 13 permet de ne pas modifier l'état du fluide avant de traverser cet échangeur.This embodiment avoids a reduction in the efficiency of the second heat exchanger 13. In fact, the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas. However, the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions. The valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger.

Une autre variante de réalisation est représentée en figure 4. Dans ce cas, la première canalisation de dérivation 21 relie la canalisation d'alimentation 11, en un point situé en aval du troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant successivement le troisième échangeur thermique 16 et le deuxième échangeur thermique 13 et étant équipée d'une première vanne de dérivation 28 située en amont du troisième échangeur 16 et d'une seconde vanne de dérivation 29 située en aval du deuxième échangeur thermique 13.Another variant embodiment is represented in figure 4 . In this case, the first bypass pipe 21 connects the supply pipe 11, at a point situated downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 located upstream of the third heat exchanger 16 and a second bypass valve 29 located downstream of the second heat exchanger 13.

Le deuxième et le troisième échangeurs 13, 16 sont généralement regroupés en un seul et même bloc d'échange de chaleur. Une telle disposition des vannes de dérivation permet de pourvoir raccorder ces vannes 28, 29 à l'extérieur du bloc d'échange de chaleur, ce qui est d'installation plus commode, tout en assurant que le fluide traversant chacun des échangeurs 13, 16 n'est pas diphasique.The second and third exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase.

Comme il va de soi l'invention ne se limite pas aux seules formes de ce procédé de réfrigération de fluide ou de cette installation, décrites ci-dessus à titre d'exemples, mais elle embrasse au contraire toutes les variantes. C'est ainsi notamment que la vanne de dérivation pourrait être commandée par un capteur de température ou par tout moyens permettant de mesurer un paramètre représentatif des besoins du consommateur.It goes without saying that the invention is not limited to the forms of this fluid refrigeration process or this installation, described above as examples, but it encompasses all variants. Thus, in particular, the bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Claims (14)

  1. Method for the cryogenic cooling of a fluid, for example helium, intended for supplying a fluid consumer, the fluid flowing in a cyclic manner successively through a compression stage (4), a fluid pre-cooling and/or cooling stage (5, 6), and an interface (1) making it possible to supply the fluid to the consumer and collecting the fluid from the consumer, a first portion of the fluid from the pre-cooling and/or cooling stage being directed towards the interface (1), characterised in that a second portion of the fluid from the pre-cooling and/or cooling stage is directed selectively to the pre-cooling and/or cooling stage (5, 6) upstream of the interface (1) based on whether the thermal load required by the consumer is low or high, a third portion of the fluid from the pre-cooling and/or cooling stage upstream of the interface (1) being selectively cooled and directed towards an accumulator (26) designed to selectively store this fluid or to deliver, based on whether the thermal load required by the consumer is low or high, a quantity of fluid already stored in order to cool the first portion of fluid directed towards the interface (1), the first portion of the fluid directly supplying the interface without transiting through the accumulator (26), the second portion of the fluid from the pre-cooling and/or cooling stage being obtained via a selective diverting of a portion of the fluid from the pre-cooling and/or cooling stage intended to selectively supply the interface and/or the accumulator, i.e. the second portion of the fluid is separated from all of the fluid from the compression stage, the third portion of the fluid from the pre-cooling and/or cooling stage being obtained by a selective diverting of a portion of the fluid from the pre-cooling and/or cooling stage intended to selectively directly supply the interface (1), i.e. the third portion of the fluid is separated from the first portion of the fluid.
  2. Method according to claim 1, characterised in that the quantity of fluid directed towards the pre-cooling and/or cooling stage (5, 6) is adjusted by at least one diverter valve (22) controlled, for example by way of a pressure sensor (23).
  3. Method according to one of claims 1 or 2, characterised in that the fluid from the pre-cooling and/or cooling stage (5, 6) flows through an expansion turbine (15).
  4. Method according to one of claims 1 to 3, characterised in that the first portion of the fluid from the pre-cooling and/or cooling stage (5, 6) exchanges heat energy with the fluid delivered by the accumulator (26).
  5. Method according to one of claims 1 to 4, characterised in that the second and/or the third portion of the fluid from the pre-cooling and/or cooling stage (5, 6) exchanges heat energy with the fluid from the interface (1).
  6. Method according to one of claims 4 or 5, characterised in that the accumulator (26) is selectively supplied with fluid expanded by an expansion valve (25) taking a fraction of the first portion of the fluid, said valve (25) being located downstream of the selective return line of the second portion of the fluid.
  7. Method according to claim 1 to 6, characterised in that the fluid delivered by the accumulator (26) can be selectively directed to the pre-cooling and/or cooling stage (5, 6).
  8. Method according to any one of claims 1 to 7, characterised in that the thermal load required by the consumer decreases or is relatively low, the first portion of the fluid directed towards the interface is decreased to the benefit on the one hand of the second portion of the fluid directed towards the pre-cooling and/or cooling stage and, on the other hand, of the third portion of the fluid directed towards the accumulator, when the thermal load required by the consumer increases or is relatively high, the second and third portions of the fluid directed respectively towards the pre-cooling and/or cooling stage and towards the accumulator, are decreased to the benefit of the first portion of the fluid directed towards the interface, and in that the first portion of the fluid is selectively increased by fluid delivered via the accumulator (26).
  9. Method according to any one of claims 1 to 8, characterised in that the flow rate of the fluid flowing in a cyclic manner is maintained substantially constant in the circuit and in particular in the compression stage.
  10. Installation for the cryogenic cooling of a fluid, for example helium, for implementing the method according to one of claims 1 to 9, comprising an interface (1) provided with fluid inlet and outlet members (2, 3) intended respectively to supply a consumer with fluid and to collect fluid from the consumer, a compression stage (4) of the fluid from the interface (1), at least one fluid pre-cooling and/or cooling stage (5, 6) from the interface (1) and/or of the fluid from the compression stage (4), the equipment comprising a damping stage (10) comprising a supply line (11) that connects the pre-cooling and/or cooling stage (5, 6) to the fluid inlet members (2) of the interface (1), a discharge line (12) that connects the fluid outlet members (3) of the interface (1) to the pre-cooling and/or cooling stage (5, 6), and a first diverter line (21) that connects the supply line (11) to the discharge line (12) by way of at least one diverter valve (22), the damping stage (10) comprising a supply line (11) that connects the pre-cooling and/or cooling stage (5, 6) to the fluid inlet members (2) of the interface (1), a discharge line (12) that connects the fluid outlet members (3) of the interface (1) to the pre-cooling and/or cooling stage (5, 6), and a first diverter line (21) that connects upstream of the interface (1) the supply line (11) to the discharge line (12) by way of at least one diverter valve (22), the damping stage (10) further comprises a second diverter line (24), that connects upstream of the interface (1) the supply line (11) to the discharge line (12), and provided with an accumulator (26), a first heat exchanger (17) being arranged so as to exchange heat energy between the fluid from the accumulator (26) and the fluid flowing in the supply line (11).
  11. Installation according to claim 10, characterised in that the first diverter line (21) connects the supply line (11), at a point located between an expansion turbine (15) and a third heat exchanger (16), to the discharge line (12), at a point located between a second heat exchanger (13) and the pre-cooling and/or cooling stage (5, 6), the first diverter line (21) passing through a second heat exchanger (13), a diverter valve (22) being arranged downstream of the second heat exchanger (13).
  12. Installation according to claim 11, characterised in that the second diverter line (24) is provided with an expansion valve (25) arranged between the third heat exchanger (16) and the accumulator (26).
  13. Installation according to claim 12, characterised in that the damping stage (10) comprises a third diverter line designed to divert a portion of the fluid from the expansion valve (25), the third line passing through the first heat exchanger (17) and being connected to the discharge line (12).
  14. Installation according to one of claims 10 to 13, characterised in that the interface comprises a chamber (1) provided with fluid inlet and outlet members (2, 3), the supply line (11) being provided with a controlled valve (18) arranged upstream of the fluid inlet members (2), the valve (18) being controlled, for example by way of a fluid level sensor (19) inside the chamber (1).
EP08827838.7A 2007-08-03 2008-07-28 Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment Active EP2185873B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756926A FR2919713B1 (en) 2007-08-03 2007-08-03 METHOD OF REFRIGERATING A FLUID, SUCH AS A HELIUM, FOR FEEDING A FLUID CONSUMER, AND A CORRESPONDING INSTALLATION
PCT/FR2008/051415 WO2009024705A2 (en) 2007-08-03 2008-07-28 Method for cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment

Publications (2)

Publication Number Publication Date
EP2185873A2 EP2185873A2 (en) 2010-05-19
EP2185873B1 true EP2185873B1 (en) 2018-12-26

Family

ID=39358379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08827838.7A Active EP2185873B1 (en) 2007-08-03 2008-07-28 Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment

Country Status (4)

Country Link
EP (1) EP2185873B1 (en)
JP (1) JP5149381B2 (en)
FR (1) FR2919713B1 (en)
WO (1) WO2009024705A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943768B1 (en) 2009-03-24 2011-04-29 Commissariat Energie Atomique CRYOGENIC SYSTEM FOR COOLING A CONSUMER HAVING A VARIABLE THERMAL LOAD IN TIME.
FR2957406A1 (en) 2010-03-12 2011-09-16 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
FR2958025A1 (en) 2010-03-23 2011-09-30 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
FR2959558B1 (en) 2010-04-29 2014-08-22 Ecolactis METHOD FOR MIGRATION OF THE REFRIGERANT FLUID LOAD OF A REDUCED CHARGE REFRIGERATION SYSTEM AND DEVICE USING THE SAME
FR2963090B1 (en) 2010-07-20 2012-08-17 Commissariat Energie Atomique METHOD FOR ESTIMATING THE THERMAL LOAD IMPOSED ON A CRYOGENIC REFRIGERATOR, ASSOCIATED PROGRAM PRODUCT AND METHOD FOR CONTROLLING THE REFRIGERATOR
JP6513400B2 (en) * 2011-07-01 2019-05-15 ブルックス オートメーション インコーポレイテッド System and method for warming a cryogenic heat exchanger array for compact and efficient refrigeration and adaptive power management
FR2983947B1 (en) 2011-12-12 2014-01-10 Commissariat Energie Atomique METHOD FOR CONTROLLING A CRYOGENIC COOLING SYSTEM
FR2999693B1 (en) * 2012-12-18 2015-06-19 Air Liquide REFRIGERATION AND / OR LIQUEFACTION DEVICE AND CORRESPONDING METHOD
FR3000541B1 (en) * 2013-01-03 2015-01-23 Air Liquide REFRIGERATION AND / OR LIQUEFACTION DEVICE AND CORRESPONDING METHOD
FR3014544A1 (en) 2013-12-06 2015-06-12 Air Liquide REFRIGERATION METHOD, COLD BOX AND CORRESPONDING CRYOGENIC INSTALLATION
FR3014546B1 (en) * 2013-12-09 2018-11-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude LOADING THE LOAD OF A PROCESS FOR PRODUCING COLD BY USING REFRIGERANT FLUID STORAGE MEANS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1540391A (en) * 1967-05-24 1968-09-27 Air Liquide Method of maintaining electrical devices at very low temperatures
GB2069119B (en) * 1980-02-13 1983-09-21 Petrocarbon Dev Ltd Refrigeration process
JPH0738464B2 (en) * 1984-02-10 1995-04-26 日本原子力研究所 Refrigeration control method
JPH0718611B2 (en) * 1986-11-25 1995-03-06 株式会社日立製作所 Weight reduction operation method of cryogenic liquefaction refrigeration system
JPH06101919A (en) * 1992-09-18 1994-04-12 Hitachi Ltd Cryogenic freezing apparatus
JPH06147667A (en) * 1992-11-09 1994-05-27 Kobe Steel Ltd Method and apparatus for controlling operation of liquified freezer device
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JPH08285395A (en) * 1995-04-10 1996-11-01 Kobe Steel Ltd Device for liquefying herium
JPH09170834A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Helium refrigerating system
US8511100B2 (en) * 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2919713B1 (en) 2013-12-06
JP5149381B2 (en) 2013-02-20
EP2185873A2 (en) 2010-05-19
WO2009024705A3 (en) 2009-05-14
WO2009024705A2 (en) 2009-02-26
WO2009024705A4 (en) 2009-07-02
FR2919713A1 (en) 2009-02-06
JP2010536002A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP2185873B1 (en) Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment
EP0940624B1 (en) Distribution station and method for expanded gas
EP0125980B1 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
EP1620637A2 (en) System for cooling a piece of equipment to a low temperature, such as a piece of motor vehicle equipment, and associated heat exchangers
EP1953479A2 (en) Device for cooling an electrical device in a turbomachine
EP2941602B1 (en) Refrigeration and/or liquefaction device and method thereof
EP4158169A1 (en) Installation for heating a cryogenic fuel
FR2988695A1 (en) DEVICE AND METHOD FOR FILLING THE RESERVOIR
EP4158172A2 (en) Installation for supplying cryogenic fuel to the combustion chamber of a turbomachine
EP0644390B1 (en) Gas compression process and assembly
EP2936006B1 (en) Refrigeration and/or liquefaction device and method thereof
FR2520131A1 (en) REGULATION DEVICE FOR A JOULE-THOMSON EFFECT REFRIGERATOR
EP3077736B1 (en) Refrigeration method, and corresponding cold box and cryogenic equipment
FR2775846A1 (en) PROCESS FOR THE LOW TEMPERATURE HOLD OF A SUPERCONDUCTIVE CRYOLIAISON
EP0968387A1 (en) Method and installation for filling a tank under pressure
FR2775518A1 (en) PROCESS AND INSTALLATION FOR REFRIGERATED PRODUCTION FROM A THERMAL CYCLE OF A FLUID WITH LOW BOILING POINT
EP0526320B1 (en) Compression circuit for a gaseous fluid at a low pressure and temperature
EP2665979B1 (en) Installation and method for producing liquid helium
CH683287A5 (en) refrigeration plant.
EP4189310A1 (en) Facility and method for refrigerating a fluid
WO2023088607A1 (en) Cryogenic pumping system and innovative integration for sub-kelvin cryogenics below 1.5k
FR2811712A1 (en) AIR DISTILLATION AND ELECTRICITY GENERATION PLANT AND CORRESPONDING METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100628

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008058502

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. GEVERS SA, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DES NOYERS 11, 2000 NEUCHATEL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008058502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080728

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

Ref country code: CH

Payment date: 20230801

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16