WO2009024705A2 - Method for cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment - Google Patents

Method for cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment Download PDF

Info

Publication number
WO2009024705A2
WO2009024705A2 PCT/FR2008/051415 FR2008051415W WO2009024705A2 WO 2009024705 A2 WO2009024705 A2 WO 2009024705A2 FR 2008051415 W FR2008051415 W FR 2008051415W WO 2009024705 A2 WO2009024705 A2 WO 2009024705A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
cooling
stage
interface
consumer
Prior art date
Application number
PCT/FR2008/051415
Other languages
French (fr)
Other versions
WO2009024705A3 (en
WO2009024705A4 (en
Inventor
Pierre Briend
Original Assignee
L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude filed Critical L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority to EP08827838.7A priority Critical patent/EP2185873B1/en
Priority to JP2010518720A priority patent/JP5149381B2/en
Publication of WO2009024705A2 publication Critical patent/WO2009024705A2/en
Publication of WO2009024705A3 publication Critical patent/WO2009024705A3/en
Publication of WO2009024705A4 publication Critical patent/WO2009024705A4/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Definitions

  • the invention relates to a refrigeration method of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.
  • the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid and collect fluid from the consumer.
  • This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.
  • a reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium.
  • a pulsed thermal load varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements. It therefore appears that, in this application in particular, the aforementioned conventional method can not be used without significant over-dimensioning of the various components of the installation to implement it.
  • the document FR 1540391 describes a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage in order to be partially liquefied in a reservoir intended to maintain a balance of phase of the fluid at a target temperature.
  • the tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).
  • the invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.
  • the invention relates to a refrigeration method of a fluid of the aforementioned type, characterized in that a first portion of the fluid from the pre-cooling stage and / or cooling is selectively directed to the interface, a second part of the fluid is returned selectively to the pre-cooling stage and / or cooling depending on whether the heat load required by the consumer is low or high, a third part of the fluid being cooled and directed to a battery designed to selectively store this fluid or to deliver, depending on whether the heat load required by the consumer is low or high, a quantity of fluid already stored in order to cool the first fluid part directed towards the interface, the first part of the fluid supplying directly the interface without passing through the accumulator.
  • the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.
  • the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.
  • the amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user.
  • the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.
  • the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.
  • the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part from the precooling stage and / or cooling.
  • the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.
  • the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.
  • the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.
  • a second fraction of the fluid from the expansion valve is intended to supply the accumulator.
  • the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.
  • the invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface a discharge pipe connecting the fluid outlet members of the interface to the pre-cooling and / or cooling stage, and a first bypass pipe connecting the supply pipe.
  • a fluid for example helium
  • the damping stage further comprising a second bypass line, connecting the supply line to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged to exchange heat energy between the fluid from the accumulator and the fluid flowing in the supply pipe.
  • the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.
  • the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.
  • the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger.
  • the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.
  • the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.
  • the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe.
  • the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.
  • the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.
  • the first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.
  • the second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).
  • the third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is to say that the third part of the fluid is removed from the first fluid).
  • the accumulator comprises for example a vacuum insulated cryogenic tank, for example housed in the pre-cooling and / or cooling stage.
  • Figure 1 is a schematic overview of the installation
  • Figure 2 is a schematic view of the damping stage of the installation;
  • Figures 3 and 4 are views corresponding to Figure 1, two embodiments.
  • FIG. 1 A helium refrigeration installation according to the invention is described in FIG.
  • this installation comprises an interface 1 in the form of a cold box or of an enclosure equipped with an inlet and a fluid outlet 2.
  • the cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.
  • the installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid. These stages are known from the prior art and will therefore be briefly described below.
  • the compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature.
  • Helium at high pressure that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6.
  • the pre-cooling is completed by a heat exchange with liquid nitrogen.
  • the cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel. For each expansion turbine 9, part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle.
  • the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power.
  • the pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin.
  • the damping stage 10 will now be described in more detail with reference to FIGS. 2 to 4.
  • This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.
  • the helium flowing in the feed pipe 1 1 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first exchanger 17 and a controlled valve 18, for example by means of a sensor 19 of the helium level within the chamber 1.
  • the helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.
  • the damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16.
  • the first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 1 1 downstream of the expansion turbine 15 and upstream of the third heat exchanger 16.
  • a second bypass pipe 24 makes it possible to deflect a portion of the fluid coming from the third heat exchanger 16.
  • the helium flowing in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.
  • the fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16.
  • the accumulator 26 is likely to contain helium both in liquid form but also in gaseous form.
  • An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.
  • the heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers.
  • the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17.
  • the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other.
  • accumulator 26 increases as it passes through the first exchanger 17.
  • the operation of the damping stage 10 is as follows.
  • the controlled bypass valve 22 is mainly open so that a large part of the fluid from the expansion turbine 15 is returned to the cooling stage 6. A small part of the flow of cold helium is fed to the interface 1 by the supply line 11. A certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.
  • the bypass valve 22 When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the available thermal load for the consumer at interface 1.
  • the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the supply pipe 11 directed towards the interface 1, thereby increasing the heat load provided. to the consumer.
  • FIG. 3 An alternative embodiment of the invention is shown in Figure 3, only the positions of the first branch pipe 21 and the bypass valve 22 having been modified.
  • the first branch pipe 21 connects the supply line 1 1, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.
  • This embodiment avoids a reduction in the efficiency of the second heat exchanger 13.
  • the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas.
  • the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions.
  • the valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger.
  • Another variant embodiment is shown in FIG.
  • the first bypass pipe 21 connects the supply pipe 1 1, at a point located downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 situated upstream of the third heat exchanger 16 and a second bypass 29 located downstream of the second heat exchanger 13.
  • the second and third heat exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase.
  • bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Abstract

The invention relates to a method for cooling a fluid such as helium for supplying a fluid consumer, the fluid flowing in a cyclic manner successively through a compression stage (4), a fluid pre-cooling and/or cooling stage (5, 6), and an interface (1) for supplying the fluid to the consumer and collecting the fluid from the consumer. A first portion of the fluid from the pre-cooling and/or cooling stage is directed towards the interface (1), a second portion of the fluid can be directed to the pre-cooling and/or cooling stage (5, 6) based on whether the thermal load required by the consumer is low or high, and a third portion of the fluid is cooled and directed towards the accumulator (26) adapted for alternatively storing said fluid or, based on whether the thermal load required by the consumer is low or high, for delivering an amount of fluid already stored in order to cool down the first portion of the fluid directed towards the interface (1).

Description

Procédé de réfrigération d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante Method for refrigerating a fluid, for example helium, for supplying a fluid consumer, and a corresponding installation
L'invention se rapporte à un procédé de réfrigération d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante.The invention relates to a refrigeration method of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.
Dans un procédé classique, le fluide circule de manière cyclique successivement au travers d'un étage de compression, d'un étage de prérefroidissement et/ou de refroidissement du fluide, et d'une interface permettant d'alimenter en fluide le consommateur et de recueillir du fluide issu du consommateur.In a conventional process, the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid and collect fluid from the consumer.
Ce type de procédé est particulièrement adapté lorsque le consommateur a besoin d'une charge thermique sensiblement constante, c'est- à-dire lorsque la puissance thermique à fournir par le procédé de réfrigération est quasiment constante dans le temps.This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.
Un tel procédé reste toutefois inadapté en cas de charge thermique variable dans le temps. Un réacteur utilisé dans le domaine de la fusion contrôlée comprend des éléments supraconducteurs refroidis à l'aide d'hélium liquide. Dans le cas de ce type de réacteur, une charge thermique puisée, variant de manière sensiblement sinusoïdale dans le temps, est nécessaire afin de ne pas endommager les éléments supraconducteurs précités. II apparaît donc que, dans cette application notamment, le procédé classique précité ne peut être utilisé sans un surdimensionnement important des différents composants de l'installation permettant de le mettre en œuvre.Such a method remains unsuitable, however, in the event of a variable thermal load over time. A reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium. In the case of this type of reactor, a pulsed thermal load, varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements. It therefore appears that, in this application in particular, the aforementioned conventional method can not be used without significant over-dimensioning of the various components of the installation to implement it.
Le document FR 1540391 décrit un procédé de maintien à très basse température d'appareils électriques utilisant un fluide soumis à un étage de compression, un étage de détente et de refroidissement afin d'être liquéfié en partie dans un réservoir destiné à maintenir un équilibre de phase du fluide à une température cible.The document FR 1540391 describes a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage in order to be partially liquefied in a reservoir intended to maintain a balance of phase of the fluid at a target temperature.
Le réservoir alimente les appareils électriques en vue de leur refroidissement. Ce système est inadapté aux applications subissant des variations de charge thermiques nécessitée par le consommateur puisque les débits de fluides subissent des variations importantes (vers l'étage de compression et l'étage de détente et de refroidissement).The tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).
L'invention vise à remédier à cet inconvénient en proposant un procédé de réfrigération d'un fluide permettant de s'adapter à des charges thermiques variables dans le temps.The invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.
A cet effet, l'invention concerne un procédé de réfrigération d'un fluide du type précité, caractérisé en ce qu'une première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est dirigé sélectivement vers l'interface, une deuxième partie du fluide est renvoyée sélectivement vers l'étage de pré-refroidissement et/ou de refroidissement selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une troisième partie du fluide étant refroidie et dirigée vers un accumulateur conçu pour sélectivement stocker ce fluide ou pour délivrer, selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une quantité de fluide déjà stockée afin de refroidir la première partie de fluide dirigée vers l'interface, la première partie du fluide alimentant directement l'interface sans transiter par l'accumulateur.For this purpose, the invention relates to a refrigeration method of a fluid of the aforementioned type, characterized in that a first portion of the fluid from the pre-cooling stage and / or cooling is selectively directed to the interface, a second part of the fluid is returned selectively to the pre-cooling stage and / or cooling depending on whether the heat load required by the consumer is low or high, a third part of the fluid being cooled and directed to a battery designed to selectively store this fluid or to deliver, depending on whether the heat load required by the consumer is low or high, a quantity of fluid already stored in order to cool the first fluid part directed towards the interface, the first part of the fluid supplying directly the interface without passing through the accumulator.
De cette manière, il est possible d'ajuster la quantité de fluide froid fourni à l'interface, et par conséquent la charge thermique disponible pour le consommateur.In this way, it is possible to adjust the amount of cold fluid supplied to the interface, and therefore the thermal load available to the consumer.
En outre, l'accumulateur permet de stocker du fluide froid lorsque la charge thermique à fournir est faible, c'est-à-dire de stocker au sein des moyens d'accumulation une charge thermique déterminée et de délivrer, par échange de chaleur, au moins une partie de cette charge stockée au fluide destiné à l'interface.In addition, the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.
Un tel procédé permet donc d'utiliser une installation pour sa mise en œuvre qui soit simplement dimensionnée en fonction de la puissance moyenne à délivrer, le procédé permettant de s'adapter aux pics de charge thermique à fournir au consommateur. Selon une caractéristique de l'invention, la quantité de fluide renvoyé vers l'étage de pré-refroidissement et/ou de refroidissement est ajustée par au moins une vanne de dérivation commandée, par exemple par l'intermédiaire d'un capteur de pression.Such a method therefore makes it possible to use an installation for its implementation which is simply dimensioned according to the average power to be delivered, the method making it possible to adapt to the peaks of thermal load to be supplied to the consumer. According to one characteristic of the invention, the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.
La quantité de fluide froid fourni à l'interface est donc ajustée de manière dynamique par la vanne de dérivation en fonction des besoins de l'utilisateur. Avantageusement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement circule au travers d'une turbine de détente.The amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user. Advantageously, the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.
Selon une possibilité de l'invention, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide délivré par l'accumulateur.According to a possibility of the invention, the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.
Préférentiellement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange l'énergie calorifique avec le fluide issu de l'interface et/ou avec la deuxième partie de fluide issu de l'étage de prérefroidissement et/ou de refroidissement. Avantageusement, la deuxième et/ou la troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide issu de l'interface.Preferably, the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part from the precooling stage and / or cooling. Advantageously, the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.
Selon une possibilité de l'invention, la deuxième partie de fluide issue de l'étage de pré-refroidissement et/ou de refroidissement est détendue par l'intermédiaire d'une vanne de détente.According to a possibility of the invention, the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.
Préférentiellement, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec une première fraction du fluide issu de la vanne de détente.Preferably, the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.
Selon une caractéristique de l'invention, une deuxième fraction du fluide issu de la vanne de détente est destinée à alimenter l'accumulateur.According to a feature of the invention, a second fraction of the fluid from the expansion valve is intended to supply the accumulator.
Avantageusement, le fluide délivré par l'accumulateur est renvoyé à l'étage de pré-refroidissement et/ou de refroidissement.Advantageously, the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.
L'invention concerne en outre une installation de réfrigération d'un fluide, par exemple d'hélium, pour la mise en œuvre du procédé selon l'invention, comportant une interface équipée d'organes d'entrée et de sortie de fluide destinés respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur, un étage de compression du fluide issu de l'interface, au moins un étage de pré-refroidissement et/ou de refroidissement du fluide issu de l'interface et/ou du fluide issu de l'étage de compression, caractérisée en ce qu'elle comporte un étage d'amortissement comportant une canalisation d'alimentation reliant l'étage de prérefroidissement et/ou de refroidissement aux organes d'entrée de fluide de l'interface, une canalisation de refoulement reliant les organes de sortie de fluide de l'interface à l'étage de pré-refroidissement et/ou de refroidissement, et une première canalisation de dérivation reliant la canalisation d'alimentation à la canalisation de refoulement par l'intermédiaire d'au moins une vanne de dérivation, l'étage d'amortissement comportant en outre une deuxième canalisation de dérivation, reliant la canalisation d'alimentation à la canalisation de refoulement, et équipée d'accumulateur, un premier échangeur thermique étant disposé de manière à échanger de l'énergie calorifique entre le fluide issu de l'accumulateur et le fluide circulant dans la canalisation d'alimentation.The invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface a discharge pipe connecting the fluid outlet members of the interface to the pre-cooling and / or cooling stage, and a first bypass pipe connecting the supply pipe. to the discharge pipe via at least one bypass, the damping stage further comprising a second bypass line, connecting the supply line to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged to exchange heat energy between the fluid from the accumulator and the fluid flowing in the supply pipe.
Selon une caractéristique de l'invention, la canalisation d'alimentation est équipée d'une turbine de détente, disposée en amont de la première canalisation de dérivation.According to a characteristic of the invention, the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.
Avantageusement, la canalisation d'alimentation est équipée d'un deuxième échangeur thermique disposé en amont de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.Advantageously, the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
Selon une possibilité de l'invention, la canalisation d'alimentation est équipée d'un troisième échangeur thermique disposé en aval de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.According to a possibility of the invention, the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe. .
Préférentiellement, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le troisième échangeur thermique et le deuxième échangeur thermique.Preferably, the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.
Selon une variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de pré-refroidissement et/ou de refroidissement, la première canalisation de dérivation traversant le deuxième échangeur thermique, la vanne de dérivation étant disposée en aval du deuxième échangeur thermique. Selon une autre variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé en aval du troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de prérefroidissement et/ou de refroidissement, la première canalisation de dérivation traversant successivement le troisième échangeur thermique et le deuxième échangeur thermique et étant équipée d'une première vanne de dérivation située en amont du troisième échangeur thermique et d'une seconde vanne de dérivation située en aval du deuxième échangeur thermique.According to an alternative embodiment of the invention, the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger. According to another variant embodiment of the invention, the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.
Selon une possibilité de l'invention, la seconde canalisation de dérivation est équipée d'une vanne de détente disposée entre le troisième échangeur et l'accumulateur.According to a possibility of the invention, the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.
Préférentiellement, l'étage d'amortissement comporte une troisième canalisation de dérivation conçue pour dévier une partie du fluide issu de la vanne de détente, la troisième canalisation traversant le premier échangeur thermique et étant reliée à la canalisation de refoulement. Selon une caractéristique de l'invention, l'accumulateur à l'intérieur duquel est disposé le premier échangeur thermique de manière à échanger de l'énergie calorifique entre le fluide traversant le premier échangeur et le fluide contenu dans l'accumulateur.Preferably, the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe. According to one characteristic of the invention, the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.
Avantageusement, l'interface comporte une enceinte équipée des moyens d'entrée et de sortie de fluide, la canalisation d'alimentation étant équipée d'une vanne commandée disposée en amont des organes d'entrée de fluide, la vanne étant commandée, par exemple par l'intermédiaire d'un capteur de niveau de fluide à l'intérieur de l'enceinte.Advantageously, the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit en référence au dessin schématique annexé représentant, à titre d'exemple, trois formes de réalisation de ce procédé et cette installation de réfrigération d'un fluide.In any case, the invention will be better understood from the description which follows with reference to the attached schematic drawing showing, by way of example, three embodiments of this method and this refrigeration system of a fluid.
Les première, seconde et troisième partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement sont obtenues par des dérivations sélectives d'au moins une partie de l'ensemble de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement.The first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.
La seconde partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement l'interface (première partie du fluide) et/ou l'accumulateur (troisième partie du fluide) (c'est-à-dire que la seconde partie de fluide est retranchée à l'ensemble du fluide issu de l'étage de compression).The second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).
La troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement directement l'interface (1 ) (c'est-à-dire que la troisième partie du fluide est retranchée à la première de fluide).The third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is to say that the third part of the fluid is removed from the first fluid).
L'accumulateur comprend par exemple un réservoir cryogénique isolé sous vide, par exemple logé dans l'étage de pré-refroidissement et/ou de refroidissement.The accumulator comprises for example a vacuum insulated cryogenic tank, for example housed in the pre-cooling and / or cooling stage.
Figure 1 est une vue schématique d'ensemble de l'installation ;Figure 1 is a schematic overview of the installation;
Figure 2 est une vue schématique de l'étage d'amortissement de l'installation ; Figures 3 et 4 sont des vues correspondant à la figure 1 , de deux variantes de réalisation.Figure 2 is a schematic view of the damping stage of the installation; Figures 3 and 4 are views corresponding to Figure 1, two embodiments.
Une installation de réfrigération d'hélium selon l'invention est décrite en figure 1 .A helium refrigeration installation according to the invention is described in FIG.
Comme cela est représentée plus particulièrement en figure 2, cette installation comporte une interface 1 se présentant sous la forme d'une boite froide ou d'une enceinte équipée d'une entrée et d'une sortie de fluide 2,As shown more particularly in FIG. 2, this installation comprises an interface 1 in the form of a cold box or of an enclosure equipped with an inlet and a fluid outlet 2.
3 destinées respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur.3 respectively for supplying a consumer with fluid and for collecting fluid from the consumer.
La boîte froide 1 permet d'échanger une charge thermique avec un fluide destiné à un consommateur constitué par exemple par un circuit de refroidissement d'éléments supraconducteurs d'un réacteur à fusion contrôlée.The cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.
L'installation comporte un étage de compression 4 du fluide issu de l'interface 1 , un étage de pré-refroidissement 5 et un étage de refroidissement 6 du fluide. Ces étages sont connus de l'art antérieur et seront, par conséquent, décrit sommairement ci-après.The installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid. These stages are known from the prior art and will therefore be briefly described below.
L'étage de compression 4 permet de comprimer l'hélium provenant de l'étage inférieur, à savoir de l'étage de pré-refroidissement 5 et d'amener l'hélium à une température ambiante. L'hélium à haute pression, c'est-à-dire à une pression comprise entre 15 et 20 bars est amené à l'étage de pré-refroidissement 5 où il est refroidi, dans des échangeurs à plaques aluminium brasé 7, 8, par l'hélium froid en provenance de l'étage inférieur, c'est-à-dire de l'étage de refroidissement 6. Le pré-refroidissement est complété par un échange de chaleur avec de l'azote liquide. Le refroidissement de l'hélium se poursuit dans l'étage de refroidissement 6, par l'intermédiaire d'une pluralité d'échangeurs du type précité et par des turbines cryogéniques de détente 9 disposées en parallèles. Pour chaque turbine de détente 9, une partie du débit d'hélium haute pression est prélevée et détendue à la moyenne pression du cycle. Selon une possibilité de l'invention, le nombre de turbines de détente 9 varie entre 2 ou 4 pour un réfrigérateur de forte puissance. L'étage de pré-refroidissement amène l'hélium à l'étage inférieur, c'est-à-dire à un étage d'amortissement 10, à une température d'environ 20 Kelvins. L'étage d'amortissement 10 va maintenant être décrit plus en détail, en référence aux figures 2 à 4.The compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature. Helium at high pressure, that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6. The pre-cooling is completed by a heat exchange with liquid nitrogen. The cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel. For each expansion turbine 9, part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle. According to a possibility of the invention, the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power. The pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin. The damping stage 10 will now be described in more detail with reference to FIGS. 2 to 4.
Cet étage 10 comporte une canalisation d'alimentation 11 dans laquelle le fluide froid circule depuis l'étage de refroidissement 6 jusqu'à l'interface 1 , ainsi qu'une canalisation de refoulement 12 permettant d'amener le fluide chaud issu de l'interface 1 jusqu'à l'étage de refroidissement 6.This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.
L'hélium circulant dans la canalisation d'alimentation 1 1 traverse successivement, dans le sens de l'écoulement, un deuxième échangeur thermique 13, une vanne de contrôle 14, une turbine de détente 15, un troisième échangeur thermique 16, un premier échangeur thermique 17 et une vanne 18 commandée, par exemple par l'intermédiaire d'un capteur 19 du niveau d'hélium au sein de l'enceinte 1 .The helium flowing in the feed pipe 1 1 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first exchanger 17 and a controlled valve 18, for example by means of a sensor 19 of the helium level within the chamber 1.
L'hélium circulant dans la canalisation de refoulement 12 traverse successivement, dans le sens de l'écoulement, le troisième échangeur thermique 16 et le deuxième échangeur thermique 13, puis est renvoyé vers l'étage de refroidissement 6.The helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.
L'étage d'amortissement 10 comporte de plus une première canalisation de dérivation 21 permettant de diriger le fluide issu de la turbine de détente 15 vers la canalisation de refoulement 12, entre le deuxième et le troisième échangeurs thermiques 13, 16. La première canalisation de dérivation 21 est équipée d'une vanne de dérivation 22 commandée, par exemple par l'intermédiaire d'un capteur de pression 23. La mesure de pression est réalisée par ce capteur 23 en un point situé dans la canalisation d'alimentation 1 1 , en aval de la turbine de détente 15 et en amont du troisième échangeur thermique 16. Une seconde canalisation de dérivation 24 permet de dévier une partie du fluide issu du troisième échangeur thermique 16. L'hélium circulant dans la seconde canalisation traverse une vanne de détente 25, une partie du flux d'hélium issu de cette vanne 25 étant alors dirigée dans un accumulateur 26, une autre partie traversant le premier échangeur thermique 17 et étant ensuite ramenée dans la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16.The damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16. The first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 1 1 downstream of the expansion turbine 15 and upstream of the third heat exchanger 16. A second bypass pipe 24 makes it possible to deflect a portion of the fluid coming from the third heat exchanger 16. The helium flowing in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.
Le fluide stocké dans l'accumulateur 26 est également dirigé vers le premier échangeur thermique 17 puis dirigé vers la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16. L'accumulateur 26 est susceptible de contenir de l'hélium à la fois sous forme liquide mais également sous forme gazeuse. Une canalisation d'échappement 27 permet d'évacuer les gaz vers la canalisation de refoulement 12, en un point de celle-ci située en amont du troisième échangeur thermique 16.The fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16. The accumulator 26 is likely to contain helium both in liquid form but also in gaseous form. An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.
Les échangeurs thermiques 13, 16, 17 permettent de refroidir ou de chauffer les fluides les traversant, les fluides chauds et les fluides froids étant agencés de manière à circuler à contre-courant les uns par rapport aux autre dans chacun des échangeurs. C'est ainsi que l'hélium circulant dans la canalisation d'alimentation 11 est refroidi successivement lorsqu'il traverse le deuxième, le troisième et le premier échangeurs 13,16,17. De la même manière, la température de l'hélium circulant dans la canalisation de refoulement 12 augmente lorsqu'il traverse le deuxième et le troisième échangeurs 13,16, et celle de l'hélium issu de la seconde canalisation de dérivation 24 ou de l'accumulateur 26 augmente lorsqu'il traverse le premier échangeur 17. Le fonctionnement de l'étage d'amortissement 10 est le suivant.The heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers. Thus, the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17. Similarly, the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other. accumulator 26 increases as it passes through the first exchanger 17. The operation of the damping stage 10 is as follows.
Lorsque la charge thermique absorbée par le consommateur est faible, la vanne de dérivation commandée 22 est majoritairement ouverte de sorte qu'une grande partie du fluide issu de la turbine de détente 15 est renvoyée vers l'étage de refroidissement 6. Une faible partie du flux d'hélium froid est amenée vers l'interface 1 par la canalisation d'alimentation 11. Une certaine quantité d'hélium provenant de la partie du flux précitée est stockée dans l'accumulateur 26, le reste étant dirigé vers la canalisation de refoulement 12.When the thermal load absorbed by the consumer is small, the controlled bypass valve 22 is mainly open so that a large part of the fluid from the expansion turbine 15 is returned to the cooling stage 6. A small part of the flow of cold helium is fed to the interface 1 by the supply line 11. A certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.
Lorsque la charge thermique absorbée par le consommateur est importante, la vanne de dérivation 22 est majoritairement fermée de sorte que la majorité du fluide est dirigée en direction de l'interface 1. Ceci a pour effet d'augmenter la charge thermique disponible pour le consommateur au niveau de l'interface 1 . En outre, le fluide froid stocké par l'accumulateur 26 est délivré et traverse le premier échangeur thermique 17, de manière à refroidir le fluide de la canalisation d'alimentation1 1 dirigé vers l'interface 1 , augmentant d'autant la charge thermique fournie au consommateur.When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the available thermal load for the consumer at interface 1. In addition, the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the supply pipe 11 directed towards the interface 1, thereby increasing the heat load provided. to the consumer.
Une variante de réalisation de l'invention est représentée en figure 3, seules les positions de la première canalisation de dérivation 21 et de la vanne de dérivation 22 ayant été modifiées. Dans cette variante, la première canalisation de dérivation 21 relie la canalisation d'alimentation 1 1 , en un point situé entre la turbine de détente 15 et le troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant le deuxième échangeur thermique 13, la vanne de dérivation 22 étant disposée en aval du deuxième échangeur thermique 13.An alternative embodiment of the invention is shown in Figure 3, only the positions of the first branch pipe 21 and the bypass valve 22 having been modified. In this variant, the first branch pipe 21 connects the supply line 1 1, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.
Cette forme de réalisation permet d'éviter une réduction de l'efficacité du deuxième échangeur thermique 13. En effet, l'efficacité d'un échangeur thermique risque d'être réduite lors du passage d'un fluide présentant une phase liquide et une phase gazeuse. Or, la vanne de dérivation 22 engendrant une détente et, par conséquent, un refroidissement du fluide qui la traverse, le fluide disposé en arrière de la vanne de dérivation 22 peut être sous forme diphasique, en fonction des conditions de fonctionnement. La vanne 22 ainsi disposée en aval de l'échangeur thermique 13 permet de ne pas modifier l'état du fluide avant de traverser cet échangeur. Une autre variante de réalisation est représentée en figure 4.This embodiment avoids a reduction in the efficiency of the second heat exchanger 13. In fact, the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas. However, the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions. The valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger. Another variant embodiment is shown in FIG.
Dans ce cas, la première canalisation de dérivation 21 relie la canalisation d'alimentation 1 1 , en un point situé en aval du troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant successivement le troisième échangeur thermique 16 et le deuxième échangeur thermique 13 et étant équipée d'une première vanne de dérivation 28 située en amont du troisième échangeur 16 et d'une seconde vanne de dérivation 29 située en aval du deuxième échangeur thermique 13. Le deuxième et le troisième échangeurs 13, 16 sont généralement regroupés en un seul et même bloc d'échange de chaleur. Une telle disposition des vannes de dérivation permet de pourvoir raccorder ces vannes 28, 29 à l'extérieur du bloc d'échange de chaleur, ce qui est d'installation plus commode, tout en assurant que le fluide traversant chacun des échangeurs 13, 16 n'est pas diphasique. Comme il va de soi l'invention ne se limite pas aux seules formes de ce procédé de réfrigération de fluide ou de cette installation, décrites ci- dessus à titre d'exemples, mais elle embrasse au contraire toutes les variantes. C'est ainsi notamment que la vanne de dérivation pourrait être commandée par un capteur de température ou par tout moyens permettant de mesurer un paramètre représentatif des besoins du consommateur. In this case, the first bypass pipe 21 connects the supply pipe 1 1, at a point located downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 situated upstream of the third heat exchanger 16 and a second bypass 29 located downstream of the second heat exchanger 13. The second and third heat exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase. It goes without saying that the invention is not limited to the forms of this fluid refrigeration process or this installation, described above as examples, but it encompasses all variants. Thus, in particular, the bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Claims

REVENDICATIONS
1. Procédé de réfrigération d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, le fluide circulant de manière cyclique successivement au travers d'un étage de compression (4) , d'un étage de pré-refroidissement et/ou de refroidissement (5, 6) du fluide, et d'une interface (1) permettant d'alimenter en fluide le consommateur et de recueillir du fluide issu du consommateur, une première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement étant dirigée vers l'interface (1 ), caractérisé en ce qu'une deuxième partie du fluide est renvoyée sélectivement vers l'étage de pré-refroidissement et/ou de refroidissement (5, 6) selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une troisième partie du fluide étant sélectivement refroidie et dirigée vers un accumulateur (26) conçu pour sélectivement stocker ce fluide ou pour délivrer, selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une quantité de fluide déjà stockée afin de refroidir la première partie de fluide dirigée vers l'interface (1 ), la première partie du fluide alimentant directement l'interface sans transiter par l'accumulateur (26).1. A method of refrigerating a fluid, for example helium, for supplying a fluid consumer, the fluid circulating cyclically successively through a compression stage (4), a pre-stage cooling and / or cooling (5, 6) of the fluid, and an interface (1) for supplying fluid to the consumer and collecting fluid from the consumer, a first portion of the fluid from the stage of pre-cooling and / or cooling being directed towards the interface (1), characterized in that a second portion of the fluid is returned selectively to the pre-cooling and / or cooling stage (5, 6) according to that the thermal load required by the consumer is low or high, a third part of the fluid being selectively cooled and directed to an accumulator (26) designed to selectively store this fluid or to deliver, depending on whether the heat load is necessary e by the consumer is low or high, a quantity of fluid already stored to cool the first fluid part directed towards the interface (1), the first part of the fluid directly supplying the interface without passing through the accumulator (26). ).
2. Procédé selon la revendication 1 , caractérisé en ce que la quantité de fluide renvoyé vers l'étage de pré-refroidissement et/ou de refroidissement (5, 6) est ajustée par au moins une vanne de dérivation (22) commandée, par exemple par l'intermédiaire d'un capteur de pression (23).2. Method according to claim 1, characterized in that the amount of fluid returned to the pre-cooling and / or cooling stage (5, 6) is adjusted by at least one bypass valve (22) controlled by example via a pressure sensor (23).
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement (5, 6) circule au travers d'une turbine de détente (15).3. Method according to one of claims 1 or 2, characterized in that the fluid from the pre-cooling stage and / or cooling (5, 6) circulates through an expansion turbine (15) .
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement (5, 6) échange de l'énergie calorifique avec le fluide délivré par l'accumulateur (26). 4. Method according to one of claims 1 to 3, characterized in that the first part of the fluid from the pre-cooling stage and / or cooling (5, 6) exchanges heat energy with the fluid delivered by the accumulator (26).
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la deuxième et/ou la troisième partie du fluide issu de l'étage de prérefroidissement et/ou de refroidissement (5, 6) échange de l'énergie calorifique avec le fluide issu de l'interface (1 ).5. Method according to one of claims 1 to 4, characterized in that the second and / or third part of the fluid from the precooling stage and / or cooling (5, 6) exchange heat energy with the fluid coming from the interface (1).
6. Procédé selon l'une des revendications 4 ou 5, caractérisé en ce que l'accumulateur (26) est alimenté sélectivement en fluide détendu par une vanne de détente (25) prélevant une fraction de la première partie de fluide, ladite vanne (25) étant située en aval de la ligne de renvoi sélectif de la deuxième partie de fluide.6. Method according to one of claims 4 or 5, characterized in that the accumulator (26) is selectively supplied with fluid expanded by an expansion valve (25) taking a fraction of the first fluid part, said valve (25) being located downstream of the selective return line of the second fluid part.
7. Procédé selon la revendication 1 à 6, caractérisé en ce que le fluide délivré par l'accumulateur (26) peut être renvoyé sélectivement à l'étage de pré-refroidissement et/ou de refroidissement (5, 6).Method according to claim 1 to 6, characterized in that the fluid delivered by the accumulator (26) can be returned selectively to the pre-cooling and / or cooling stage (5, 6).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la charge thermique nécessitée par le consommateur diminue ou est relativement faible, la première partie du fluide dirigée vers l'interface est diminuée au profit d'une part de la deuxième partie de fluide renvoyée vers l'étage de pré-refroidissement et/ou refroidissement et, d'autre part, de la troisième partie de fluide dirigée vers l'accumulateur, lorsque la charge thermique nécessitée par le consommateur augmente ou est relativement élevée, les deuxième et troisième parties de fluide renvoyées respectivement vers l'étage de pré-refroidissement et/ou refroidissement et vers l'accumulateur, sont diminuées au profit de la première partie de fluide dirigée vers l'interface, et en ce que la première partie de fluide est augmentée sélectivement par du fluide délivré via l'accumulateur (26).8. Method according to any one of claims 1 to 7, characterized in that the thermal load required by the consumer decreases or is relatively low, the first part of the fluid directed towards the interface is reduced in favor of a part of the second fluid part returned to the pre-cooling and / or cooling stage and, on the other hand, the third fluid part directed towards the accumulator, when the heat load required by the consumer increases or is relatively high the second and third fluid parts, respectively returned to the pre-cooling and / or cooling stage and to the accumulator, are reduced in favor of the first fluid part directed towards the interface, and in that the first fluid portion is selectively increased by fluid delivered via the accumulator (26).
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le débit de fluide circulant de manière cyclique est maintenu sensiblement constant dans le circuit et notamment dans l'étage de compression.9. Method according to any one of claims 1 to 8, characterized in that the cyclically circulating fluid flow rate is maintained substantially constant in the circuit and in particular in the compression stage.
10. Installation de réfrigération d'un fluide, par exemple d'hélium, pour la mise en œuvre du procédé selon l'une des revendications 1 à 9, comportant une interface (1 ) équipée d'organes d'entrée et de sortie (2, 3) de fluide destinés respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur, un étage de compression (4) du fluide issu de l'interface (1 ), au moins un étage de pré-refroidissement et/ou de refroidissement (5, 6) du fluide issu de l'interface (1 ) et/ou du fluide issu de l'étage de compression (4), l'installation comportant un étage d'amortissement (10) comportant une canalisation d'alimentation (11 ) reliant l'étage de prérefroidissement et/ou de refroidissement (5, 6) aux organes d'entrée (2) de fluide de l'interface (1 ), une canalisation de refoulement (12) reliant les organes de sortie (3) de fluide de l'interface (1) à l'étage de pré-refroidissement et/ou de refroidissement (5, 6), et une première canalisation de dérivation (21 ) reliant la canalisation d'alimentation (11 ) à la canalisation de refoulement (12) par l'intermédiaire d'au moins une vanne de dérivation (22), l'étage d'amortissement (10) comporte en outre une deuxième canalisation de dérivation (24), reliant la canalisation d'alimentation (11 ) à la canalisation de refoulement (12), et équipée d'un accumulateur (26), un premier échangeur thermique (17) étant disposé de manière à échanger de l'énergie calorifique entre le fluide issu de l'accumulateur (26) et le fluide circulant dans la canalisation d 'alimentation (11 ).10. Refrigeration installation of a fluid, for example helium, for the implementation of the method according to one of claims 1 to 9, comprising an interface (1) equipped with input and output members ( 2, 3) for respectively supplying a consumer with fluid and collecting fluid from the consumer, a compression stage (4) of the fluid coming from the interface (1), at least one pre-cooling stage and or cooling (5, 6) of the fluid coming from the interface (1) and / or the fluid coming from the compression stage (4), the installation comprising a damping stage (10) comprising a pipe supply circuit (11) connecting the precooling and / or cooling stage (5, 6) to the fluid inlet members (2) of the interface (1), a discharge pipe (12) connecting the organs fluid outlet (3) from the interface (1) to the precooling and / or cooling stage (5, 6), and a first bypass analization (21) connecting the supply pipe (11) to the discharge pipe (12) via at least one bypass valve (22), the stage damping element (10) further comprises a second bypass pipe (24), connecting the supply pipe (11) to the discharge pipe (12), and equipped with an accumulator (26), a first heat exchanger (17) being arranged to exchange heat energy between the fluid from the accumulator (26) and the fluid flowing in the supply line (11).
11. Installation selon la revendication 14, caractérisée en ce que la première canalisation de dérivation (21 ) relie la canalisation d'alimentation (11 ), en un point situé entre une turbine de détente (15) et un troisième échangeur thermique (16), à la canalisation de refoulement (12), en un point situé entre un deuxième échangeur thermique (13) et l'étage de pré-refroidissement et/ou de refroidissement (5, 6), la première canalisation de dérivation (21 ) traversant un deuxième échangeur thermique (13), une vanne de dérivation (22) étant disposée en aval du deuxième échangeur thermique (13). 11. Installation according to claim 14, characterized in that the first bypass pipe (21) connects the supply pipe (11) at a point between an expansion turbine (15) and a third heat exchanger (16). at the discharge pipe (12) at a point between a second heat exchanger (13) and the pre-cooling and / or cooling stage (5, 6), the first bypass pipe (21) passing through a second heat exchanger (13), a bypass valve (22) being arranged downstream of the second heat exchanger (13).
12. Installation selon la revendication 11 , caractérisée en ce que la seconde canalisation de dérivation (24) est équipée d'une vanne de détente (25) disposée entre le troisième échangeur thermique (16) et l'accumulateur (26).12. Installation according to claim 11, characterized in that the second branch line (24) is equipped with an expansion valve (25) disposed between the third heat exchanger (16) and the accumulator (26).
13. Installation selon la revendication 12, caractérisée en ce que l'étage d'amortissement (10) comporte une troisième canalisation de dérivation conçue pour dévier une partie du fluide issu de la vanne de détente (25), la troisième canalisation traversant le premier échangeur thermique (17) et étant reliée à la canalisation de refoulement (12).13. Installation according to claim 12, characterized in that the damping stage (10) comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve (25), the third pipe passing through the first heat exchanger (17) and being connected to the discharge pipe (12).
14. Installation selon l'une des revendications 10 à 13, caractérisée en ce que l'interface comporte une enceinte (1 ) équipée des organes d'entrée et de sortie de fluide (2, 3), la canalisation d'alimentation (11 ) étant équipée d'une vanne commandée (18) disposée en amont des organes d'entrée de fluide (2), la vanne (18) étant commandée, par exemple par l'intermédiaire d'un capteur de niveau (19) de fluide à l'intérieur de l'enceinte (1 ). 14. Installation according to one of claims 10 to 13, characterized in that the interface comprises an enclosure (1) equipped with fluid inlet and outlet members (2, 3), the supply pipe (11). ) being equipped with a controlled valve (18) arranged upstream of the fluid inlet members (2), the valve (18) being controlled, for example by means of a fluid level sensor (19) inside the enclosure (1).
15. Installation selon l'une quelconque des revendications 10 à 14, caractérisée en ce que les première et troisième partie du fluide sont détendues dans une turbine (15) commune, de préférence de type à distributeur fixe, la troisième partie de fluide étant obtenue par un système de bypass (25) de fluide en aval de ladite turbine (15) commune. 15. Installation according to any one of claims 10 to 14, characterized in that the first and third part of the fluid are expanded in a turbine (15) common, preferably of fixed distributor type, the third fluid part being obtained by a fluid bypass system (25) downstream of said common turbine (15).
PCT/FR2008/051415 2007-08-03 2008-07-28 Method for cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment WO2009024705A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08827838.7A EP2185873B1 (en) 2007-08-03 2008-07-28 Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment
JP2010518720A JP5149381B2 (en) 2007-08-03 2008-07-28 Method and corresponding equipment for cooling fluids such as helium for supply to fluid consumers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756926A FR2919713B1 (en) 2007-08-03 2007-08-03 METHOD OF REFRIGERATING A FLUID, SUCH AS A HELIUM, FOR FEEDING A FLUID CONSUMER, AND A CORRESPONDING INSTALLATION
FR0756926 2007-08-03

Publications (3)

Publication Number Publication Date
WO2009024705A2 true WO2009024705A2 (en) 2009-02-26
WO2009024705A3 WO2009024705A3 (en) 2009-05-14
WO2009024705A4 WO2009024705A4 (en) 2009-07-02

Family

ID=39358379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051415 WO2009024705A2 (en) 2007-08-03 2008-07-28 Method for cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment

Country Status (4)

Country Link
EP (1) EP2185873B1 (en)
JP (1) JP5149381B2 (en)
FR (1) FR2919713B1 (en)
WO (1) WO2009024705A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110768A1 (en) * 2010-03-12 2011-09-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and equipment for pulsed charge refrigeration
WO2011117499A1 (en) * 2010-03-23 2011-09-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration method and apparatus with a pulsating load
WO2012011017A1 (en) 2010-07-20 2012-01-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for estimating the heat load imposed on a cryogenic refrigerator, associated program product, and method for controlling the refrigerator
WO2013088303A1 (en) 2011-12-12 2013-06-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regulating a cryogenic cooling system
CN104854413A (en) * 2012-12-18 2015-08-19 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device, and associated method
CN104884878A (en) * 2013-01-03 2015-09-02 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device and corresponding method
EP3467401A1 (en) * 2011-07-01 2019-04-10 Brooks Automation, Inc. Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943768B1 (en) * 2009-03-24 2011-04-29 Commissariat Energie Atomique CRYOGENIC SYSTEM FOR COOLING A CONSUMER HAVING A VARIABLE THERMAL LOAD IN TIME.
FR2959558B1 (en) 2010-04-29 2014-08-22 Ecolactis METHOD FOR MIGRATION OF THE REFRIGERANT FLUID LOAD OF A REDUCED CHARGE REFRIGERATION SYSTEM AND DEVICE USING THE SAME
FR3014544A1 (en) * 2013-12-06 2015-06-12 Air Liquide REFRIGERATION METHOD, COLD BOX AND CORRESPONDING CRYOGENIC INSTALLATION
FR3014546B1 (en) * 2013-12-09 2018-11-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude LOADING THE LOAD OF A PROCESS FOR PRODUCING COLD BY USING REFRIGERANT FLUID STORAGE MEANS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1540391A (en) * 1967-05-24 1968-09-27 Air Liquide Method of maintaining electrical devices at very low temperatures
GB2069119B (en) * 1980-02-13 1983-09-21 Petrocarbon Dev Ltd Refrigeration process
JPH0738464B2 (en) * 1984-02-10 1995-04-26 日本原子力研究所 Refrigeration control method
JPH0718611B2 (en) * 1986-11-25 1995-03-06 株式会社日立製作所 Weight reduction operation method of cryogenic liquefaction refrigeration system
JPH06101919A (en) * 1992-09-18 1994-04-12 Hitachi Ltd Cryogenic freezing apparatus
JPH06147667A (en) * 1992-11-09 1994-05-27 Kobe Steel Ltd Method and apparatus for controlling operation of liquified freezer device
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JPH08285395A (en) * 1995-04-10 1996-11-01 Kobe Steel Ltd Device for liquefying herium
JPH09170834A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Helium refrigerating system
US8511100B2 (en) * 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285141B2 (en) 2010-03-12 2016-03-15 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method and equipment for pulsed charge cooling of a component of a tokomak
CN102812310A (en) * 2010-03-12 2012-12-05 乔治洛德方法研究和开发液化空气有限公司 Method and equipment for pulsed charge refrigeration
JP2013522571A (en) * 2010-03-12 2013-06-13 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for pulse load cooling
KR101691253B1 (en) * 2010-03-12 2016-12-29 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method and equipment for pulsed charge refrigeration
WO2011110768A1 (en) * 2010-03-12 2011-09-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and equipment for pulsed charge refrigeration
KR20130018688A (en) * 2010-03-12 2013-02-25 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method and equipment for pulsed charge refrigeration
FR2957406A1 (en) * 2010-03-12 2011-09-16 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
WO2011117499A1 (en) * 2010-03-23 2011-09-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration method and apparatus with a pulsating load
FR2958025A1 (en) * 2010-03-23 2011-09-30 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
KR20130039718A (en) * 2010-03-23 2013-04-22 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Refrigeration method and apparatus with a pulsating load
JP2013522577A (en) * 2010-03-23 2013-06-13 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cooling method and apparatus with pulse load
CN102803866A (en) * 2010-03-23 2012-11-28 乔治洛德方法研究和开发液化空气有限公司 Refrigeration method and apparatus with a pulsating load
KR101708088B1 (en) * 2010-03-23 2017-02-17 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Refrigeration method and apparatus with a pulsating load
US9389006B2 (en) 2010-03-23 2016-07-12 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Refrigeration method and apparatus with a pulsating load
WO2012011017A1 (en) 2010-07-20 2012-01-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for estimating the heat load imposed on a cryogenic refrigerator, associated program product, and method for controlling the refrigerator
FR2963090A1 (en) * 2010-07-20 2012-01-27 Commissariat Energie Atomique METHOD FOR ESTIMATING THE THERMAL LOAD IMPOSED ON A CRYOGENIC REFRIGERATOR, ASSOCIATED PROGRAM PRODUCT AND METHOD FOR CONTROLLING THE REFRIGERATOR
EP3467401A1 (en) * 2011-07-01 2019-04-10 Brooks Automation, Inc. Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management
US11175075B2 (en) 2011-07-01 2021-11-16 Edwards Vacuum Llc Systems and methods for warming a cryogenic heat exchanger array, for compact and efficient refrigeration, and for adaptive power management
WO2013088303A1 (en) 2011-12-12 2013-06-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regulating a cryogenic cooling system
CN104854413A (en) * 2012-12-18 2015-08-19 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device, and associated method
CN104884878A (en) * 2013-01-03 2015-09-02 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefaction device and corresponding method
CN104884878B (en) * 2013-01-03 2017-08-11 乔治洛德方法研究和开发液化空气有限公司 Refrigeration and/or liquefying plant and corresponding method

Also Published As

Publication number Publication date
FR2919713A1 (en) 2009-02-06
EP2185873A2 (en) 2010-05-19
EP2185873B1 (en) 2018-12-26
FR2919713B1 (en) 2013-12-06
JP2010536002A (en) 2010-11-25
WO2009024705A3 (en) 2009-05-14
WO2009024705A4 (en) 2009-07-02
JP5149381B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
EP2185873B1 (en) Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment
EP0940624B1 (en) Distribution station and method for expanded gas
FR3086367A1 (en) DEVICE AND METHOD FOR FILLING PRESSURE GAS TANKS
EP1620637A2 (en) System for cooling a piece of equipment to a low temperature, such as a piece of motor vehicle equipment, and associated heat exchangers
EP2941602B1 (en) Refrigeration and/or liquefaction device and method thereof
EP0125980A2 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
EP4158169A1 (en) Installation for heating a cryogenic fuel
FR2988695A1 (en) DEVICE AND METHOD FOR FILLING THE RESERVOIR
EP4158172A2 (en) Installation for supplying cryogenic fuel to the combustion chamber of a turbomachine
EP2936006B1 (en) Refrigeration and/or liquefaction device and method thereof
EP0644390A1 (en) Gas compression process and assembly
FR2520131A1 (en) REGULATION DEVICE FOR A JOULE-THOMSON EFFECT REFRIGERATOR
EP3077736B1 (en) Refrigeration method, and corresponding cold box and cryogenic equipment
FR2775846A1 (en) PROCESS FOR THE LOW TEMPERATURE HOLD OF A SUPERCONDUCTIVE CRYOLIAISON
CH693187A5 (en) Process and refrigeration production facility from a thermal cycle of a low boiling point fluid.
WO2022022920A1 (en) Facility and method for refrigerating a fluid
CH683287A5 (en) refrigeration plant.
EP0526320A1 (en) Compression circuit for a gaseous fluid at a low pressure and temperature
WO2023088607A1 (en) Cryogenic pumping system and innovative integration for sub-kelvin cryogenics below 1.5k
EP2665979A2 (en) Installation and method for producing liquid helium
FR3079918A1 (en) REVERSIBLE DEVICE FOR RECOVERING CALORIFIC ENERGY.
WO2013104838A1 (en) Thermodynamic device for heating and/or air-conditioning a space

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08827838

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008827838

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010518720

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE