WO2013104838A1 - Thermodynamic device for heating and/or air-conditioning a space - Google Patents

Thermodynamic device for heating and/or air-conditioning a space Download PDF

Info

Publication number
WO2013104838A1
WO2013104838A1 PCT/FR2012/000554 FR2012000554W WO2013104838A1 WO 2013104838 A1 WO2013104838 A1 WO 2013104838A1 FR 2012000554 W FR2012000554 W FR 2012000554W WO 2013104838 A1 WO2013104838 A1 WO 2013104838A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
thermodynamic device
expansion chamber
pressure
Prior art date
Application number
PCT/FR2012/000554
Other languages
French (fr)
Inventor
Denis BEDELL
Original Assignee
Bedell Denis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bedell Denis filed Critical Bedell Denis
Publication of WO2013104838A1 publication Critical patent/WO2013104838A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2503Condenser exit valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a thermodynamic device for heating and / or conditioning a volume
  • a thermodynamic device for heating and / or conditioning a volume
  • a main refrigerant circuit provided with at least one compressor arranged to raise the pressure and consequently the temperature of said refrigerant in the gaseous state and a. condenser arranged to evacuate to an external circuit at. at least a portion of the thermal energy absorbed by said refrigerant which passes from the gaseous state to a liquid state.
  • Heat pumps are widely known and are available in different versions depending on the nature of the external source of capture of useful heat energy: air (aerothermal), water (aquathermy), soil (geothermal energy). ) or others. They all operate on the same principle namely that the change in liquid / gaseous state of a refrigerant is used to produce thermal energy depending on whether the fluid is compressed under high pressure in the gaseous state and then expanded to the liquid state by means of a compressor and an expander respectively.
  • the thermal energy absorbed by the refrigerant is used to heat and / or cool a room, an enclosure, a building or the like, via a condenser or heat exchanger in which the refrigerant transfers a portion of the refrigerant. thermal energy that it has absorbed directly or to a secondary fluid such as the water of a heating circuit or the brine of an air conditioning circuit.
  • Heat pumps generally comprise four main organs namely: a compressor driven by an electric motor which raises the pressure and therefore the temperature of the gaseous refrigerant by compressing it,
  • a pressure reducing valve which reduces the pressure of the refrigerant in the liquid state
  • this regulator being generally connected to a reserve of refrigerant, and an evaporator which captures heat in an external source (air, water, soil, other) for passing the refrigerant from the liquid state to the gaseous state under low pressure and avoid icing of the suction port of the compressor.
  • the evaporator therefore requires a pump or a fan associated with a power supply and a control circuit, which have a negative impact on the total efficiency of the heat pump and its energy cost.
  • the aerothermal version requires placing the fan or fans outside, which is not always possible either because of lack of space, or because of noise generated.
  • Aquathermy and geothermal versions require vertical or horizontal drilling representing heavy and expensive earthworks, which are not always feasible or are difficult to achieve.
  • the present invention aims to provide a solution to the problems mentioned above by proposing a new generation of thermodynamic device or heat pump that can operate autonomously, that is to say without external source of capture thus without evaporator, only with a source electrical energy to power the compressor, this solution to reduce the cost of investment and operation of such a device, to make it versatile, easy to install in a small footprint, without prior work.
  • Another object of the invention is to use a very small amount of refrigerant and to offer an ecological and economical device.
  • Another object is also to reduce the size of such a thermodynamic device to make it mobile and easily removable.
  • the invention relates to a thermodynamic device of the kind indicated in the preamble, characterized in that it is housed in a closed and sealed box and in that it comprises a relaxation chamber disposed between said condenser and said compressor and arranged to instantly relax the refrigerant which instantly switches from the high pressure liquid state to a low pressure gaseous state, said expansion chamber being connected to a suction port of said compressor by a return duct whose section is degressive to gradually compress said previously relaxed refrigerant by heating it, so that said thermodynamic device operates autonomously, without external source of heat capture.
  • said expansion chamber is provided with an inlet orifice having a diameter arranged to vaporize said refrigerant which arrives in the liquid state under high pressure, this inlet orifice being located on a first side of said chamber and an outlet orifice having a diameter greater than that of the inlet orifice, this outlet orifice being located on a second side of said chamber opposite said first side and lower than the inlet orifice .
  • the expansion chamber defines a transverse dimension at least three times greater than the diameter of the suction port of said compressor.
  • the return duct is connected to the outlet of said expansion chamber with a passage diameter at least twice greater than the diameter of the suction port of said compressor and the suction port of said compressor with a diameter of passage equal to the diameter of said suction port.
  • the expansion chamber is disposed above the return duct which itself consists of a coil disposed above the compressor.
  • the expansion chamber can be oriented in a substantially horizontal or vertical plane, and advantageously comprises an inclined bottom allowing gravity flow e direction of the compressor any oil residues of the compressor contained in said refrigerant.
  • the condenser may consist of a heat exchanger in the form of a coil preferably wrapped around the compressor so as to recovering by conduction part of the thermal energy produced by said compressor.
  • This thermodynamic device may comprise a control valve, disposed on the main circuit downstream of the compressor and upstream of the expansion chamber, to control its pressure of the refrigerant at the outlet of the compressor. Similarly, it may comprise a pressure switch arranged upstream of the control valve to control the operation of the compressor as a function of the pressure of the refrigerant.
  • thermodynamic device may comprise an additional refrigerant circuit connected in parallel to the main refrigerant circuit by means of three-way valves arranged to reverse the circulation of the refrigerant and make the device reversible. Heating Air Conditioning.
  • FIG. 1 is a front view of a thermodynamic device according to the invention in heating mode
  • Figure 2 is a view similar to Figure 1 of a thermodynamic device in heating / air conditioning reversible mode.
  • thermodynamic device 1, 10 is an autonomous device for heating a volume, such as a local or similar, through a traditional central heating circuit or the like, without the need for an external source of heat capture.
  • the superimposed and nested design of the theriodynamic device 1, as shown in the figures and explained below allows a concentration of the components in a small volume, compact and confined in a closed box and thermally insulated.
  • This box can contain the calories released by the compressor which are advantageously absorbed by convection by the refrigerant favoring the autonomous operation of the device.
  • the size of this box is comparable to a wall-mounted gas boiler.
  • This box can be suspended on a wall, placed on a base, or carried by wheels to be mobile, since it only needs a power supply.
  • the theraiodynamique device 1 comprises a main refrigerant circuit 2 provided with a compressor 3 arranged to raise the pressure and therefore the temperature of said refrigerant in the gaseous state, a condenser 4 connected to the discharge port 31 of the compressor 3 and arranged to evacuate the heat absorbed by said high-pressure refrigerant to an external circuit 5, such as a heating circuit, and an expansion chamber 6 disposed between the condenser 4 and the compressor 3 and arranged to reduce the pressure of the refrigerant by vaporizing it before it returns to the compressor 3 through the suction port 30.
  • a main refrigerant circuit 2 provided with a compressor 3 arranged to raise the pressure and therefore the temperature of said refrigerant in the gaseous state
  • a condenser 4 connected to the discharge port 31 of the compressor 3 and arranged to evacuate the heat absorbed by said high-pressure refrigerant to an external circuit 5, such as a heating circuit
  • an expansion chamber 6 disposed between the condenser 4 and the compressor 3 and arranged to
  • the condenser 4 consists of a heat exchanger comprising a primary circuit 2a, forming part of the main circuit 2, in which the HP high-pressure refrigerant circulates from the compressor 3 which will pass from a gaseous state in a liquid state while losing its calories, and a secondary circuit or external circuit 5, in which circulates a heat transfer fluid such as the water of a heating circuit by means of a pump 50 and control valves 51.
  • the fluids contained in the primary and secondary circuits of the heat exchanger circulate in the opposite direction, and the coil forming the heat exchanger is advantageously wound around the compressor 3 to recover thermal energy produced by said compressor 3 thereby increasing the temperature gradient of the fluids circulating in said exchanger.
  • the invention differs from prior art by the presence of a particular 6 expansion chamber arranged on the return line 2b of the refrigerant in the high pressure HP in the liquid state, which replaces the expander and evaporator of conventional heat pumps.
  • the refrigerant having evacuated part of its calories in the condenser 4 enters the return circuit 2b in the HP high pressure liquid state or it undergoes an instantaneous expansion in the expansion chamber 6, making it pass to a gaseous state. low pressure BP.
  • the inlet orifice 60 has a diameter such that it instantly causes the vaporization of the refrigerant passing instantly from a liquid state to a state gaseous, and whose section SI or transverse dimension is greatly enlarged relative to the diameter of the conduits of the main circuit 2 and the suction port 30 of the compressor 3 to reduce the pressure of the refrigerant passing instantly from a high pressure HP at a low BP pressure.
  • the inlet orifice 60 has in fact a very small diameter, such as an injection nozzle, this diameter being a function of the power of the compressor 3.
  • the refrigerant returns in this gaseous state at low pressure BP in the compressor 3 by a return duct 7 whose section or transverse dimension is degressive to lead to the section or diameter of the suction port 30 of the compressor 3 having the effect of gradually compressing the previously relaxed refrigerant and therefore to heat it, without having need external source of capture.
  • the expansion chamber 6 thus defines a detent section or transverse dimension SI at least three times greater than the section or diameter S3 of the suction port 30 of the compressor 3 and the return duct 7 is connected to the expansion chamber 6. by a section or transverse dimension S2 at least twice as high at the section or diameter S3 of the suction port 30 of the compressor and ends with a section or diameter equal to the diameter S3 allowing the refrigerant to enter the compressor in the gaseous state only.
  • the volume of the expansion chamber 6 is calculated as a function of the suction power of said compressor 3.
  • the expansion chamber 6 is disposed above the return duct 7 and can extend in a substantially horizontal plane as illustrated or in a vertical plane or other. It comprises a refrigerant inlet port 60 located on a first side of the chamber and an outlet 61 of the refrigerant located on a second side of the chamber, opposite the first side, the outlet orifice 61 being located lower than the inlet orifice 60.
  • the inlet orifice 60 as explained above is calibrated to instantaneously vaporize the refrigerant which arrives in the high-pressure liquid state HP and the outlet orifice 61 has a diameter or a section S2 significantly greater than the diameter of the inlet orifice 60, determined in particular according to the flow rate of the compressor 3, and at least twice the section or the diameter S3 of the suction orifice 30 of the compressor 3. It further comprises an inclined bottom 62 in the direction of circulation of the refrigerant, allowing gravity flow towards the compressor 3 any oil residues from the compressor 3 and contents da ns the refrigerant.
  • the return duct 7 is in the form of a coil disposed below the expansion chamber 6 and above the compressor 3. It thus constitutes a ramp towards the compressor 3 for gravity flow of any residues of oil from the compressor 3 and contained in the refrigerant. In addition, it benefits by convection of the thermal energy released by said compressor 3 thus promoting the heating of the refrigerant in the gaseous state at low pressure BP before entering the compressor 3.
  • the temperature of the refrigerant is regulated by a control valve 8 which makes it possible to vary the pressure of the refrigerant at the outlet of the refrigerant. compressor 3 and thus avoid icing of the refrigerant at the inlet of the expansion chamber 6.
  • Safety pressure switches 9a and 9b are respectively provided upstream of the regulating valve 8 and on the expansion chamber 6 or downstream of the latter to control the high pressure HP and low pressure LP BP thresholds of the refrigerant and act on the operation 3.
  • thermodynamic device to prevent thermal runaway of such a thermodynamic device, the pressure switch 9a will stop the compressor 3 as soon as a determined threshold of high pressure HP will be reached by the refrigerant.
  • This thermodynamic device can be supplemented by temperature sensors and other control and / or safety devices in accordance with the practices in thermodynamics. It can be controlled by an electronic management unit comprising for example a room thermostat.
  • Figure 2 illustrates a reversible version of the thermodynamic device 10 according to the invention for working in air conditioner mode by reversing the flow direction of the refrigerant.
  • thermodynamic device of the previous example identified with the same reference numbers, supplemented by an additional refrigerant circuit 20 connected in parallel on the main circuit 2 by means of three-way valves. 21, 22, 23.
  • a first three-way valve 21 is disposed on the return circuit 2b upstream of the expansion chamber 6 to divert the refrigerant to a first bypass circuit 20a which shunts the expansion chamber 6 and which is connected between the outlet of the condenser 4 and the inlet of the return duct 7.
  • a second three-way valve 22 is disposed between the expansion chamber 6 and the return duct 7 to divert the refrigerant towards a second bypass circuit 20b which shunts the return duct 7 and which is connected between the outlet orifice 61 of the expansion chamber 6 and the inlet of the condenser 4 to exchange with an external circuit 5 It can be a refrigeration or air conditioning circuit.
  • the third three-way valve 23 is disposed between the discharge port 31 of the compressor 3 and the inlet of the condenser 4 to divert the refrigerant to a third bypass circuit 20c to shunt the condenser 4 and which is connected between the discharge port 31 of the compressor 3 and the inlet port 60 of the expansion chamber 6.
  • the fluid refrigerant leaves the compressor 3 through the discharge port 31 in gaseous state compressed HP high pressure and heated, it is sent into the expansion chamber 6 by the third bypass circuit 23 where it is instantly expanded and cooled for enter the condenser 4 in the gaseous state at low pressure BP by the second bypass circuit 20b.
  • the condenser 4 where it has warmed it is directed to the return duct 7 by the first bypass circuit 20a. In this return duct 7, it is gradually compressed while remaining in the gaseous state before entering the compressor 3 through the suction port 30 where it can be compressed again in the gaseous state to be charged in calories.
  • the cooling of the refrigerant is used to cool or refrigerate a volume, a room or the like.
  • the constituent elements of the thermodynamic device according to the invention such as the expansion chamber 6 and the return duct 7 are preferably made of a very good heat conducting metal and offering a very high resistance to temperature and at pressure (up to 40 bar), such as copper, stainless steel or the like, it being specified that copper offers an excellent quality / price ratio.
  • These constituent elements can be made in one piece or in several pieces assembled by any appropriate method according to the constraints to which said elements must resist.
  • the compressor 3 is advantageously a commercial compressor with fixed speed or variable speed of rotation according to the inverter technology.
  • the control valve 8 is not necessary since it is replaced by the frequency regulator of the inverter compressor.
  • the refrigerant used is chosen according to the intended application and the regulations in force.
  • the volume of refrigerant necessary for the operation of a thermodynamic device developing for example 4kWh of power is of the order of 200g against 1.5kg in a conventional heat pump, 7.5 times less.
  • thermodynamic device compact, powerful, secure and quiet, offering a cost-effective and environmentally friendly solution for heating and / or air conditioning for any type application. It can thus be installed everywhere without constraint. It can also serve as auxiliary heating for domestic use, but also for professional use such as for example to accelerate the drying of a concrete slab.
  • the thermodynamic device according to the invention can be proposed both new for sale and after-sales service to transform the heat pumps already in service. In this regard, the thermodynamic device according to the invention can of course replace conventional heat pumps without much modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The invention relates to a thermodynamic device (1, 10) for heating and/or air-conditioning a space, comprising a main cooling fluid circuit (2) provided with at least one compressor (3) arranged to increase the pressure and, consequently, the temperature of the cooling fluid in the gaseous state and one condenser (4) arranged to discharge, to an external circuit (5), at least part of the thermal energy absorbed by the cooling fluid which passes from the gaseous state to the liquid state. The invention is characterised in that the thermodynamic device (1, 10) is housed in a closed and sealed casing and in that it comprises an expansion chamber (6) which is disposed between the aforementioned condenser (4) and compressor (3) and which is arranged to expand the cooling fluid instantaneously such that it passes instantaneously from the high-pressure liquid state to a low-pressure gaseous state, said expansion chamber (6) being connected to a suction port (30) of the compressor (3) via a return duct (7) having a decreasing transverse dimension so as to gradually compress the previously expanded cooling fluid by heating same, such that the thermodynamic device (1, 10) operates independently, without an external source for collecting heat.

Description

DISPOSITIF THERMODYNAMIQUE POUR CHAUFFER ET/OU  THERMODYNAMIC DEVICE FOR HEATING AND / OR
CLIMATISER UN VOLUME  CLIMATE A VOLUME
Domaine technique : Technical area :
La présente invention concerne un dispositif thermodynamique pour chaulfer et/ou climatiser un volume comportant un circuit de fluide frigorigène principal pourvu au moins d'un compresseur agencé pour élever la pression et par conséquent la température dudit fluide frigorigène à l'état gazeux et d'un. condenseur agencé pour évacuer vers un circuit externe au. moins une partie de l'énergie thermique absorbée par ledit fluide frigorigène qui passe de l'état gazeux à un état liquide. The present invention relates to a thermodynamic device for heating and / or conditioning a volume comprising a main refrigerant circuit provided with at least one compressor arranged to raise the pressure and consequently the temperature of said refrigerant in the gaseous state and a. condenser arranged to evacuate to an external circuit at. at least a portion of the thermal energy absorbed by said refrigerant which passes from the gaseous state to a liquid state.
Technique antérieure : Les pompes à chaleur sont largement connues et se déclinent en différentes versions selon la nature de la source externe de captage de l'énergie thermique utile : l'air (aérothermie), l'eau (aquathermie), le sol (géothermie) ou autres. Elles fonctionnent toutes sur le même principe à savoir qu'on utilise le changement d'état liquide/gazeux d'un fluide frigorigène pour produire de l'énergie thermique selon que le fluide est comprimé sous haute pression à l'état gazeux puis détendu à l'état liquide au moyen respectivement d'un compresseur et d'un détendeur. L'énergie thermique absorbée par le fluide frigorigène est utilisée pour chauffer et/ou refroidir un local, une enceinte, un bâtiment ou similaire, par l'intermédiaire d'un condenseur ou échangeur de chaleur dans lequel le fluide frigorigène transfert une partie de l'énergie thermique qu'il a absorbée directement ou à un fluide secondaire tel que l'eau d'un circuit de chauffage ou l'eau glycolée d'un circuit de climatisation. PRIOR ART Heat pumps are widely known and are available in different versions depending on the nature of the external source of capture of useful heat energy: air (aerothermal), water (aquathermy), soil (geothermal energy). ) or others. They all operate on the same principle namely that the change in liquid / gaseous state of a refrigerant is used to produce thermal energy depending on whether the fluid is compressed under high pressure in the gaseous state and then expanded to the liquid state by means of a compressor and an expander respectively. The thermal energy absorbed by the refrigerant is used to heat and / or cool a room, an enclosure, a building or the like, via a condenser or heat exchanger in which the refrigerant transfers a portion of the refrigerant. thermal energy that it has absorbed directly or to a secondary fluid such as the water of a heating circuit or the brine of an air conditioning circuit.
Les pompes à chaleur comportent en général quatre organes principaux à savoir : un compresseur actionné par un moteur électrique qui élève la pression et par conséquent la température du fluide frigorigène à l'état gazeux en le comprimant, Heat pumps generally comprise four main organs namely: a compressor driven by an electric motor which raises the pressure and therefore the temperature of the gaseous refrigerant by compressing it,
un condenseur dans lequel le fluide frigorigène sous haute pression libère sa chaleur directement ou indirectement à un fluide secondaire et passe de l'état gazeux à l'état liquide,  a condenser in which the high-pressure refrigerant releases its heat directly or indirectly to a secondary fluid and passes from the gaseous state to the liquid state,
un détendeur qui réduit la pression du fluide frigorigène à l'état liquide, ce détendeur étant généralement raccordé à une réserve de fluide frigorigène, et - un évaporateur qui capte de la chaleur dans une source externe (air, eau, sol, autres) pour faire passer le fluide frigorigène de l'état liquide à l'état gazeux sous basse pression et éviter le givrage de l'orifice d'aspiration du compresseur.  a pressure reducing valve which reduces the pressure of the refrigerant in the liquid state, this regulator being generally connected to a reserve of refrigerant, and an evaporator which captures heat in an external source (air, water, soil, other) for passing the refrigerant from the liquid state to the gaseous state under low pressure and avoid icing of the suction port of the compressor.
L'évaporateur nécessite par conséquent une pompe ou un ventilateur associé à une alimentation électrique et un circuit de commande, qui ont un impact négatif sur le rendement total de la pompe à chaleur et sur son coût énergétique. La version aérothermie nécessite de placer le ou les ventilateurs à l'extérieur, ce qui n'est pas toujours possible soit à cause du manque de place, soit à cause dès nuisances sonores générées. Les versions aquathermie et géothermie nécessitent quant à elles des forages verticaux ou horizontaux représentant des travaux de terrassement lourds et coûteux, qui ne sont pas toujours réalisables ou sont difficilement réalisables. The evaporator therefore requires a pump or a fan associated with a power supply and a control circuit, which have a negative impact on the total efficiency of the heat pump and its energy cost. The aerothermal version requires placing the fan or fans outside, which is not always possible either because of lack of space, or because of noise generated. Aquathermy and geothermal versions require vertical or horizontal drilling representing heavy and expensive earthworks, which are not always feasible or are difficult to achieve.
Dans toutes les versions, il est nécessaire d'avoir à disposition une source externe de captage d'énergie thermique, ce qui constitue une contrainte pour certaines applications dans lesquelles aucune source externe de captage n'est disponible ou réalisable. Dans le cas où l'utilisation d'une pompe à chaleur n'est pas possible, la solution consiste à se rabattre sur des chaudières ou climatiseurs utilisant d'autres technologies que celle des pompes à chaleur. Un exemple est notamment décrit dans la publication US 2,707,868 qui présente un dispositif de réfrigération traditionnel pourvu d'un compresseur suivi d'un condenseur et d'un évaporateur constitué d'un échangeur de chaleur à ailettes communiquant avec une source externe de captage à air ou similaire. Cet échangeur de chaleur comporte un distributeur et un collecteur connectés en parallèles à plusieurs tubes évaporateurs pourvus d'ailettes de transfert de chaleur. Ces tubes évaporateurs comportent des orifices d'entrée calibrés pour comprimer le fluide réfrigérant afin de le répartir de manière plus uniforme dans les tubes évaporateurs. Ce dispositif nécessite une source externe de captage et ne peut par conséquent fonctionner de manière autonome. In all versions, it is necessary to have available an external source of thermal energy capture, which is a constraint for some applications where no external source capture n 'is available or feasible. In the case where the use of a heat pump is not possible, the solution is to fall back on boilers or air conditioners using other technologies than that of heat pumps. An example is described in US Pat. No. 2,707,868, which discloses a conventional refrigeration device provided with a compressor followed by a condenser and an evaporator consisting of a finned heat exchanger communicating with an external source of air capture. or similar. This heat exchanger comprises a distributor and a collector connected in parallel to a plurality of evaporator tubes provided with heat transfer fins. These evaporator tubes have calibrated inlets for compressing the coolant to distribute it more evenly in the evaporator tubes. This device requires an external source of capture and therefore can not operate autonomously.
Exposé de l'invention : Presentation of the invention
La présente invention vise à apporter une solution aux problèmes évoqués ci-dessus en proposant une nouvelle génération de dispositif thermodynamique ou pompe à chaleur pouvant fonctionner de manière autonome, c'est à dire sans source externe de captage donc sans évaporateur, uniquement avec une source d'énergie électrique pour alimenter le compresseur, cette solution permettant de réduire le coût d'investissement et d'exploitation d'un tel dispositif, de le rendre polyvalent, facile à installer, dans un encombrement réduit, sans travaux préalables. Un autre but de l'invention est d'utiliser une quantité très réduite de fluide frigorigène et d'offrir un dispositif écologique et économique. Un autre but est également de réduire l'encombrement d'un tel dispositif thermodynamique pour le rendre mobile et facilement amovible. The present invention aims to provide a solution to the problems mentioned above by proposing a new generation of thermodynamic device or heat pump that can operate autonomously, that is to say without external source of capture thus without evaporator, only with a source electrical energy to power the compressor, this solution to reduce the cost of investment and operation of such a device, to make it versatile, easy to install in a small footprint, without prior work. Another object of the invention is to use a very small amount of refrigerant and to offer an ecological and economical device. Another object is also to reduce the size of such a thermodynamic device to make it mobile and easily removable.
Dans ce but, l'invention concerne un dispositif thermodynamique du genre indiqué en préambule, caractérisé en ce qu'il est logé dans un caisson fermé et étanche et en ce qu'il comporte une chambre de détente disposée entre ledit condenseur et ledit compresseur et agencée pour détendre instantanément le fluide frigorigène qui passe instantanément de l'état liquide à haute pression à un état gazeux à basse pression, ladite chambre de détente étant raccordée à un orifice d'aspiration dudit compresseur par un conduit retour dont la section est dégressive pour comprimer progressivement ledit fluide frigorigène préalablement détendu en le réchauffant, de sorte que ledit dispositif thermodynamique fonctionne de manière autonome, sans source externe de captage de chaleur. For this purpose, the invention relates to a thermodynamic device of the kind indicated in the preamble, characterized in that it is housed in a closed and sealed box and in that it comprises a relaxation chamber disposed between said condenser and said compressor and arranged to instantly relax the refrigerant which instantly switches from the high pressure liquid state to a low pressure gaseous state, said expansion chamber being connected to a suction port of said compressor by a return duct whose section is degressive to gradually compress said previously relaxed refrigerant by heating it, so that said thermodynamic device operates autonomously, without external source of heat capture.
De manière préférentielle, ladite chambre de détente est pourvue d'un orifice d'entrée présentant un diamètre agencé pour vaporiser ledit fluide frigorigène qui arrive à l'état liquide sous haute pression, cet orifice d'entrée étant situé sur un premier côté de ladite chambre et, d'un orifice de sortie présentant un diamètre supérieur à celui de l'orifice d'entrée, cet orifice de sortie étant situé sur un second côté de ladite chambre opposé audit premier côté et plus bas que l'orifice d'entrée. Preferably, said expansion chamber is provided with an inlet orifice having a diameter arranged to vaporize said refrigerant which arrives in the liquid state under high pressure, this inlet orifice being located on a first side of said chamber and an outlet orifice having a diameter greater than that of the inlet orifice, this outlet orifice being located on a second side of said chamber opposite said first side and lower than the inlet orifice .
Dans une forme de réalisation préférée, la chambre de détente définit une dimension transversale au moins trois fois supérieure au diamètre de l'orifice d'aspiration dudit compresseur. De même, le conduit retour est raccordé à l'orifice de sortie de ladite chambre de détente- avec un diamètre de passage au moins deux fois supérieur au diamètre de l'orifice d'aspiration dudit compresseur et à l'orifice d'aspiration dudit compresseur avec un diamètre de passage égal au diamètre dudit orifice d'aspiration. In a preferred embodiment, the expansion chamber defines a transverse dimension at least three times greater than the diameter of the suction port of said compressor. Similarly, the return duct is connected to the outlet of said expansion chamber with a passage diameter at least twice greater than the diameter of the suction port of said compressor and the suction port of said compressor with a diameter of passage equal to the diameter of said suction port.
De manière avantageuse, la chambre de détente est disposée au-dessus du conduit retour qui est lui-même constitué d'un serpentin disposé au dessus du compresseur. Advantageously, the expansion chamber is disposed above the return duct which itself consists of a coil disposed above the compressor.
La chambre de détente peut être orientée selon un plan sensiblement horizontal ou vertical, et comporte avantageusement un fond incliné permettant l'écoulement par gravité e direction du compresseur des éventuels résidus d'huile du compresseur contenus dans ledit fluide frigorigène. The expansion chamber can be oriented in a substantially horizontal or vertical plane, and advantageously comprises an inclined bottom allowing gravity flow e direction of the compressor any oil residues of the compressor contained in said refrigerant.
Le condenseur peut être constitué d'un échangeur de chaleur se présentant sous la forme d'un serpentin de préférence enroulé autour du compresseur de sorte à récupérer par conduction une partie de l'énergie thermique produite par ledit compresseur. The condenser may consist of a heat exchanger in the form of a coil preferably wrapped around the compressor so as to recovering by conduction part of the thermal energy produced by said compressor.
Ce dispositif thermodynamique peut comporter une vanne de régulation, disposée sur le circuit principal en aval du compresseur et en amont de la chambre de détente, pour contrôler Sa pression du fluide frigorigène en sortie du compresseur. De même, il peut comporter un pressostat disposé en amont de la vanne de régulation pour contrôler le fonctionnement du compresseur en fonction de la pression du fluide frigorigène. This thermodynamic device may comprise a control valve, disposed on the main circuit downstream of the compressor and upstream of the expansion chamber, to control its pressure of the refrigerant at the outlet of the compressor. Similarly, it may comprise a pressure switch arranged upstream of the control valve to control the operation of the compressor as a function of the pressure of the refrigerant.
Dans une variante de réalisation, le dispositif thermodynamique selon l'invention peut comporter un circuit de fluide frigorigène additionnel raccordé en parallèle sur le circuit de fluide frigorigène principal au moyen de vannes trois voies agencées pour inverser la circulation du fluide frigorigène et rendre le dispositif réversible chauffage/climatisation. In an alternative embodiment, the thermodynamic device according to the invention may comprise an additional refrigerant circuit connected in parallel to the main refrigerant circuit by means of three-way valves arranged to reverse the circulation of the refrigerant and make the device reversible. Heating Air Conditioning.
Description sommaire des dessins : Brief description of the drawings:
La présente invention et ses avantages apparaîtront mieux dans la description suivante de deux modes de réalisation donnés à titre d'exemple non limitatif, en référence aux dessins annexés, dans lesquels: The present invention and its advantages will appear better in the following description of two embodiments given by way of non-limiting example, with reference to the appended drawings, in which:
la figure 1 est une vue de face d'un dispositif thermodynamique selon l'invention en mode chauffage, et  FIG. 1 is a front view of a thermodynamic device according to the invention in heating mode, and
la figure 2 est une vue similaire à la figure 1 d'un dispositif thermodynamique en mode réversible chauffage/climatiseur.  Figure 2 is a view similar to Figure 1 of a thermodynamic device in heating / air conditioning reversible mode.
Illustrations de l'invention et différentes manières de la réaliser : Illustrations of the invention and different ways of making it:
En référence aux figures, le dispositif thermodynamique 1, 10 selon l'invention tel que représenté est un dispositif autonome permettant de chauffer un volume, tel un local ou similaire, par le biais d'un circuit de chauffage central traditionnel ou similaire, sans nécessité de source externe de captage de calories. La conception superposée et imbriquée du dispositif theraiodynamique l , 10 telle que représentée dans les figures et expliquée ci-après permet une concentration des éléments constitutifs dans un faible volume, compact et confiné dans un caisson fermé et isolé thermiquement. Ce caisson permet de contenir les calories dégagées par le compresseur qui sont avantageusement absorbées par convection par le fluide frigorigène favorisant le fonctionnement autonome du dispositif. La dimension de ce caisson est comparable à une chaudière à gaz murale. Ce caisson peut être suspendu à un mur, posé sur un socle, ou encore porté par des roulettes pour être mobile, étant donné qu'il n'a besoin que d'une alimentation électrique. With reference to the figures, the thermodynamic device 1, 10 according to the invention as shown is an autonomous device for heating a volume, such as a local or similar, through a traditional central heating circuit or the like, without the need for an external source of heat capture. The superimposed and nested design of the theriodynamic device 1, as shown in the figures and explained below allows a concentration of the components in a small volume, compact and confined in a closed box and thermally insulated. This box can contain the calories released by the compressor which are advantageously absorbed by convection by the refrigerant favoring the autonomous operation of the device. The size of this box is comparable to a wall-mounted gas boiler. This box can be suspended on a wall, placed on a base, or carried by wheels to be mobile, since it only needs a power supply.
En référence plus particulièrement à la figure 1, le dispositif theraiodynamique 1 comporte un circuit de fluide frigorigène principal 2 pourvu d'un compresseur 3 agencé pour élever la pression et par conséquent la température dudit fluide frigorigène à l'état gazeux, d'un condenseur 4 raccordé à l'orifice de refoulement 31 du compresseur 3 et agencé pour évacuer la chaleur absorbée par ledit fluide frigorigène sous haute pression vers un circuit externe 5, tel qu'un circuit de chauffage, et d'une chambre de détente 6 disposée entre le condenseur 4 et le compresseur 3 et agencée pour réduire la pression du fluide frigorigène en le vaporisant avant son retour dans le compresseur 3 par l'orifice d'aspiration 30. Referring more particularly to Figure 1, the theraiodynamique device 1 comprises a main refrigerant circuit 2 provided with a compressor 3 arranged to raise the pressure and therefore the temperature of said refrigerant in the gaseous state, a condenser 4 connected to the discharge port 31 of the compressor 3 and arranged to evacuate the heat absorbed by said high-pressure refrigerant to an external circuit 5, such as a heating circuit, and an expansion chamber 6 disposed between the condenser 4 and the compressor 3 and arranged to reduce the pressure of the refrigerant by vaporizing it before it returns to the compressor 3 through the suction port 30.
Dans l'exemple représenté, le condenseur 4 est constitué d'un échangeur de chaleur comportant un circuit primaire 2a, faisant partie du circuit principal 2, dans lequel circule le fluide frigorigène en haute pression HP en provenance du compresseur 3 qui va passer d'un état gazeux à un état liquide en perdant ses calories, et un circuit secondaire ou circuit externe 5, dans lequel circule un fluide caloporteur tel que l'eau d'un circuit de chauffage grâce à une pompe 50 et des vannes de régulation 51. Les fluides contenus dans les circuits primaire et secondaire de l'échangeur de chaleur circulent en sens inverse, et le serpentin formant l'échangeur de chaleur est avantageusement enroulé autour du compresseur 3 pour récupérer par conduction énergie thermique produite par ledit compresseur 3 augmentant ainsi le gradient de température des fluides circulant dans ledit échangeur. L'invention se distingue de l'état de la technique par la présence d'une chambre de détente 6 particulière disposée sur le circuit retour 2b du fluide frigorigène en haute pression HP à l'état liquide, qui remplace avantageusement le détendeur et l'évaporateur des pompes à chaleur classiques. Le fluide frigorigène ayant évacué une partie de ses calories dans le condenseur 4 entre dans le circuit de retour 2b à l'état liquide en haute pression HP ou il subit une détente instantanée dans la chambre de détente 6 le faisant passer à un état gazeux en basse pression BP. Cet effet technique est obtenu grâce à la configuration particulière de la chambre de détente 6 dont l'orifice d'entrée 60 a un diamètre tel qu'il provoque instantanément la vaporisation du fluide frigorigène le faisant passer instantanément d'un état liquide à un état gazeux, et dont la section SI ou dimension transversale est très élargie par rapport au diamètre des conduits du circuit principal 2 et de l'orifice d'aspiration 30 du compresseur 3 pour faire chuter la pression du fluide frigorigène passant instantanément d'une haute pression HP à une basse pression BP. L'orifice d'entrée 60 a de fait un très petit diamètre comme une buse d'injection, ce diamètre étant fonction de la puissance du compresseur 3. Le fluide frigorigène retourne dans cet état gazeux à basse pression BP dans le compresseur 3 par un conduit retour 7 dont la section ou dimension transversale est dégressive pour aboutir à la section ou au diamètre de l'orifice d'aspiration 30 du compresseur 3 ayant pour effet de comprimer progressivement le fluide frigorigène préalablement détendu et par conséquent de le réchauffer, sans avoir besoin de source de captage externe. In the example shown, the condenser 4 consists of a heat exchanger comprising a primary circuit 2a, forming part of the main circuit 2, in which the HP high-pressure refrigerant circulates from the compressor 3 which will pass from a gaseous state in a liquid state while losing its calories, and a secondary circuit or external circuit 5, in which circulates a heat transfer fluid such as the water of a heating circuit by means of a pump 50 and control valves 51. The fluids contained in the primary and secondary circuits of the heat exchanger circulate in the opposite direction, and the coil forming the heat exchanger is advantageously wound around the compressor 3 to recover thermal energy produced by said compressor 3 thereby increasing the temperature gradient of the fluids circulating in said exchanger. The invention differs from prior art by the presence of a particular 6 expansion chamber arranged on the return line 2b of the refrigerant in the high pressure HP in the liquid state, which replaces the expander and evaporator of conventional heat pumps. The refrigerant having evacuated part of its calories in the condenser 4 enters the return circuit 2b in the HP high pressure liquid state or it undergoes an instantaneous expansion in the expansion chamber 6, making it pass to a gaseous state. low pressure BP. This technical effect is obtained thanks to the particular configuration of the expansion chamber 6, the inlet orifice 60 has a diameter such that it instantly causes the vaporization of the refrigerant passing instantly from a liquid state to a state gaseous, and whose section SI or transverse dimension is greatly enlarged relative to the diameter of the conduits of the main circuit 2 and the suction port 30 of the compressor 3 to reduce the pressure of the refrigerant passing instantly from a high pressure HP at a low BP pressure. The inlet orifice 60 has in fact a very small diameter, such as an injection nozzle, this diameter being a function of the power of the compressor 3. The refrigerant returns in this gaseous state at low pressure BP in the compressor 3 by a return duct 7 whose section or transverse dimension is degressive to lead to the section or diameter of the suction port 30 of the compressor 3 having the effect of gradually compressing the previously relaxed refrigerant and therefore to heat it, without having need external source of capture.
La chambre de détente 6 définit ainsi une section de détente ou dimension transversale S I au moins trois fois supérieure à la section ou diamètre S3 de l'orifice d'aspiration 30 du compresseur 3 et le conduit retour 7 est raccordé à la chambre de détente 6 par une section ou dimension transversale S2 au moins deux fois supérieure à la section ou diamètre S3 de l'orifice d'aspiration 30 du compresseur et se termine par une section ou diamètre égal au diamètre S3 permettant au fluide frigorigène d'entrer dans le compresseur à l'état gazeux uniquement. Le volume de la chambre de détente 6 est calculé en fonction de la puissance d'aspiration dudit compresseur 3. The expansion chamber 6 thus defines a detent section or transverse dimension SI at least three times greater than the section or diameter S3 of the suction port 30 of the compressor 3 and the return duct 7 is connected to the expansion chamber 6. by a section or transverse dimension S2 at least twice as high at the section or diameter S3 of the suction port 30 of the compressor and ends with a section or diameter equal to the diameter S3 allowing the refrigerant to enter the compressor in the gaseous state only. The volume of the expansion chamber 6 is calculated as a function of the suction power of said compressor 3.
La chambre de détente 6 est disposée au-dessus du conduit retour 7 et peut s'étendre selon un plan sensiblement horizontal comme illustrée ou selon un plan vertical ou autre. Elle comporte un orifice d'entrée 60 du fluide frigorigène situé sur un premier côté de la chambre et un orifice de sortie 61 du fluide frigorigène situé sur un second côté de la chambre, opposé au premier côté, l'orifice de sortie 61 étant situé plus bas que l'orifice d'entrée 60. L'orifice d'entrée 60 comme expliqué plus haut est calibré pour vaporiser instantanément le fluide frigorigène qui arrive à l'état liquide en haute pression HP et l'orifice de sortie 61 présente un diamètre ou une section S2 nettement supérieur au diamètre de l'orifice d'entrée 60, déterminé en fonction notamment du débit du compresseur 3, et au moins deux fois supérieur à la section ou au diamètre S3 de l'orifice d'aspiration 30 du compresseur 3. Elle comporte en outre un fond incliné 62 dans le sens de circulation du fluide frigorigène, permettant l'écoulement par gravité en direction du compresseur 3 des éventuels résidus d'huile issus du compresseur 3 et contenus dans le fluide frigorigène. The expansion chamber 6 is disposed above the return duct 7 and can extend in a substantially horizontal plane as illustrated or in a vertical plane or other. It comprises a refrigerant inlet port 60 located on a first side of the chamber and an outlet 61 of the refrigerant located on a second side of the chamber, opposite the first side, the outlet orifice 61 being located lower than the inlet orifice 60. The inlet orifice 60 as explained above is calibrated to instantaneously vaporize the refrigerant which arrives in the high-pressure liquid state HP and the outlet orifice 61 has a diameter or a section S2 significantly greater than the diameter of the inlet orifice 60, determined in particular according to the flow rate of the compressor 3, and at least twice the section or the diameter S3 of the suction orifice 30 of the compressor 3. It further comprises an inclined bottom 62 in the direction of circulation of the refrigerant, allowing gravity flow towards the compressor 3 any oil residues from the compressor 3 and contents da ns the refrigerant.
Le conduit retour 7 se présente sous la forme d'un serpentin disposé en-dessous de la chambre de détente 6 et au-dessus du compresseur 3. Il constitue ainsi une rampe en direction du compresseur 3 pour l'écoulement par gravité des éventuels résidus d'huile issus du compresseur 3 et contenus dans le fluide frigorigène. De plus, il bénéficie par convection de l'énergie thermique dégagée par ledit compresseur 3 favorisant ainsi le réchauffage du fluide frigorigène à l'état gazeux en basse pression BP avant son entrée dans le compresseur 3. The return duct 7 is in the form of a coil disposed below the expansion chamber 6 and above the compressor 3. It thus constitutes a ramp towards the compressor 3 for gravity flow of any residues of oil from the compressor 3 and contained in the refrigerant. In addition, it benefits by convection of the thermal energy released by said compressor 3 thus promoting the heating of the refrigerant in the gaseous state at low pressure BP before entering the compressor 3.
Sur le circuit retour 2b, la température du fluide frigorigène est régulée par une vanne de régulation 8 qui permet de varier la pression dudit fluide frigorigène à la sortie du compresseur 3 et éviter ainsi le givrage du fluide frigorigène à l'entrée de la chambre de détente 6. Plus la vanne de régulation 8 est fermée et plus la température du fluide frigorigène est élevée car sa pression en sortie du compresseur 3 est élevée. Des pressostats de sécurité 9a et 9b sont prévus respectivement en amont de la vanne de régulation 8 et sur la chambre de détente 6 ou en aval de celle ci pour contrôler les seuils haute pression HP et basse pression BP du fluide frigorigène et agir sur le fonctionnement dudit compresseur 3. Notamment, pour éviter l'emballement thermique d'un tel dispositif thermodynamique, le pressostat 9a arrêtera le compresseur 3 dès qu'un seuil déterminé de haute pression HP sera atteint par le fluide frigorigène. Ce dispositif thermodynamique peut être complété par des capteurs de température et autres organes de contrôle et/ou de sécurité conformément aux pratiques en thermodynamique. Il peut être piloté par une unité de gestion électronique comportant par exemple un thermostat d'ambiance. La figure 2 illustre une version réversible du dispositif thermodynamique 10 selon l'invention permettant de travailler en mode climatiseur par inversion du sens de circulation du fluide frigorigène. Pour ce faire, il comporte les mêmes éléments constitutifs du dispositif thermodynamique de l'exemple précédent identifiés avec les mêmes numéros de référence, complété par un circuit de fluide frigorigène additionnel 20 raccordé en parallèle sur le circuit principal 2 au moyen de vannes à trois voies 21, 22, 23. Une première vanne à trois voies 21 est disposée sur le circuit retour 2b en amont de la chambre de détente 6 pour dévier le fluide frigorigène vers un premier circuit by-pass 20a qui shunte la chambre de détente 6 et qui est raccordé entre la sortie du condenseur 4 et l'entrée du conduit retour 7. Une deuxième vanne à trois voies 22 est disposée entre la chambre de détente 6 et le conduit retour 7 pour dévier le fluide frigorigène vers un deuxième circuit by-pass 20b qui shunte le conduit retour 7 et qui est raccordé entre l'orifice de sortie 61 de la chambre de détente 6 et l'entrée du condenseur 4 pour échanger avec un circuit externe 5 qui peut être un circuit de réfrigération ou de climatisation. Et la troisième vanne à trois voies 23 est disposée entre l'orifice de refoulement 31 du compresseur 3 et l'entrée du condenseur 4 pour dévier le fluide frigorigène vers un troisième circuit by-pass 20c pour shunter le condenseur 4 et qui est raccordé entre orifice de refoulement 31 du compresseur 3 et l'orifice d'entrée 60 de la chambre de détente 6. Lorsque le fluide frigorigène sort du compresseur 3 par l'orifice de refoulement 31 à l'état gazeux comprimé en haute pression HP et réchauffé, il est envoyé dans la chambre de détente 6 par le troisième circuit by-pass 23 où il est instantanément détendu et refroidi pour entrer dans le condenseur 4 à l'état gazeux en basse pression BP par le deuxième circuit by-pass 20b. Lorsqu'il sort du condenseur 4 où il s'est réchauffé il est dirigé vers le conduit retour 7 par le premier circuit by-pass 20a. Dans ce conduit retour 7, il est progressivement comprimé tout en restant à l'état gazeux avant d'entrer dans le compresseur 3 par l'orifice d'aspiration 30 où il peut être à nouveau comprimé à l'état gazeux pour se charger en calories. Ainsi, en faisant circuler le fluide frigorigène en sens inverse que dans l'exemple précédent, on utilise le refroidissement du fluide frigorigène pour climatiser ou réfrigérer un volume, un local ou similaire. On the return circuit 2b, the temperature of the refrigerant is regulated by a control valve 8 which makes it possible to vary the pressure of the refrigerant at the outlet of the refrigerant. compressor 3 and thus avoid icing of the refrigerant at the inlet of the expansion chamber 6. The more the control valve 8 is closed and the higher the temperature of the refrigerant is high because its pressure at the outlet of the compressor 3 is high. Safety pressure switches 9a and 9b are respectively provided upstream of the regulating valve 8 and on the expansion chamber 6 or downstream of the latter to control the high pressure HP and low pressure LP BP thresholds of the refrigerant and act on the operation 3. In particular, to prevent thermal runaway of such a thermodynamic device, the pressure switch 9a will stop the compressor 3 as soon as a determined threshold of high pressure HP will be reached by the refrigerant. This thermodynamic device can be supplemented by temperature sensors and other control and / or safety devices in accordance with the practices in thermodynamics. It can be controlled by an electronic management unit comprising for example a room thermostat. Figure 2 illustrates a reversible version of the thermodynamic device 10 according to the invention for working in air conditioner mode by reversing the flow direction of the refrigerant. To do this, it comprises the same constituent elements of the thermodynamic device of the previous example identified with the same reference numbers, supplemented by an additional refrigerant circuit 20 connected in parallel on the main circuit 2 by means of three-way valves. 21, 22, 23. A first three-way valve 21 is disposed on the return circuit 2b upstream of the expansion chamber 6 to divert the refrigerant to a first bypass circuit 20a which shunts the expansion chamber 6 and which is connected between the outlet of the condenser 4 and the inlet of the return duct 7. A second three-way valve 22 is disposed between the expansion chamber 6 and the return duct 7 to divert the refrigerant towards a second bypass circuit 20b which shunts the return duct 7 and which is connected between the outlet orifice 61 of the expansion chamber 6 and the inlet of the condenser 4 to exchange with an external circuit 5 It can be a refrigeration or air conditioning circuit. And the third three-way valve 23 is disposed between the discharge port 31 of the compressor 3 and the inlet of the condenser 4 to divert the refrigerant to a third bypass circuit 20c to shunt the condenser 4 and which is connected between the discharge port 31 of the compressor 3 and the inlet port 60 of the expansion chamber 6. When the fluid refrigerant leaves the compressor 3 through the discharge port 31 in gaseous state compressed HP high pressure and heated, it is sent into the expansion chamber 6 by the third bypass circuit 23 where it is instantly expanded and cooled for enter the condenser 4 in the gaseous state at low pressure BP by the second bypass circuit 20b. When it leaves the condenser 4 where it has warmed it is directed to the return duct 7 by the first bypass circuit 20a. In this return duct 7, it is gradually compressed while remaining in the gaseous state before entering the compressor 3 through the suction port 30 where it can be compressed again in the gaseous state to be charged in calories. Thus, by circulating the refrigerant in the opposite direction as in the previous example, the cooling of the refrigerant is used to cool or refrigerate a volume, a room or the like.
Possibilités d'application industrielle : Les éléments constitutifs du dispositif thermodynamique selon l'invention tels que la chambre de détente 6 et le conduit retour 7 sont de préférence réalisés dans un métal très bon conducteur de chaleur et offrant une résistance très élevée à la température et à la pression (jusqu'à 40 bars), tel que le cuivre, l'inox ou similaire, étant précisé que le cuivre offre un excellent rapport qualité/prix. Ces éléments constitutifs peuvent être réalisés une seule pièce ou en plusieurs pièces assemblées par tout procédé approprié selon les contraintes auxquelles lesdits éléments doivent résister. Possibilities of industrial application: The constituent elements of the thermodynamic device according to the invention such as the expansion chamber 6 and the return duct 7 are preferably made of a very good heat conducting metal and offering a very high resistance to temperature and at pressure (up to 40 bar), such as copper, stainless steel or the like, it being specified that copper offers an excellent quality / price ratio. These constituent elements can be made in one piece or in several pieces assembled by any appropriate method according to the constraints to which said elements must resist.
Le compresseur 3 est avantageusement un compresseur du commerce à vitesse de rotation fixe ou à vitesse de rotation variable selon la technologie inverter. Dans ce cas, la vanne de régulation 8 n'est pas nécessaire puisqu'elle est remplacée par le régulateur de fréquence du compresseur inverter. The compressor 3 is advantageously a commercial compressor with fixed speed or variable speed of rotation according to the inverter technology. In this case, the control valve 8 is not necessary since it is replaced by the frequency regulator of the inverter compressor.
Le fluide frigorigène utilisé est choisi en fonction de l'application visée et des réglementations en vigueur. Le volume de fluide frigorigène nécessaire pour le fonctionnement d'un dispositif thermodynamique développant par exemple 4kWh de puissance est de l'ordre de 200g contre 1 ,5kg dans une pompe à chaleur classique, soit 7,5 fois moins. Le coefficient de performance (COP), qui correspond au nombre de kWh produit pour lkwh consommé, atteint le COP des pompes à chaleur classiques à savoir un COP de l'ordre entre 3 et 4. The refrigerant used is chosen according to the intended application and the regulations in force. The volume of refrigerant necessary for the operation of a thermodynamic device developing for example 4kWh of power is of the order of 200g against 1.5kg in a conventional heat pump, 7.5 times less. The coefficient of performance (COP), which corresponds to the number of kWh produced for lkwh consumed, reaches the COP of conventional heat pumps ie a COP of between 3 and 4.
Il ressort clairement de cette description que l'invention permet d'atteindre les buts fixés, à savoir un dispositif thermodynamique autonome, compact, performant, sécurisé et silencieux, offrant une solution économique et écologique pour le chauffage et/ou la climatisation pour tout type d'application. Il peut ainsi être installé partout sans contrainte. Il peut aussi servir de chauffage d'appoint à usage domestique, mais aussi à usage professionnel tel que par exemple pour accélérer le séchage d'une dalle en béton. Le dispositif thermodynamique selon l'invention peut être proposé aussi bien neuf à la vente qu'en service après-vente pour transformer les pompes à chaleur déjà en service. A ce sujet, le dispositif thermodynamique selon l'invention peut bien entendu remplacer des pompes à chaleur classiques sans grande modification. It is clear from this description that the invention achieves the goals, namely a self-contained thermodynamic device, compact, powerful, secure and quiet, offering a cost-effective and environmentally friendly solution for heating and / or air conditioning for any type application. It can thus be installed everywhere without constraint. It can also serve as auxiliary heating for domestic use, but also for professional use such as for example to accelerate the drying of a concrete slab. The thermodynamic device according to the invention can be proposed both new for sale and after-sales service to transform the heat pumps already in service. In this regard, the thermodynamic device according to the invention can of course replace conventional heat pumps without much modification.
La présente invention n'est pas limitée aux exemples de réalisation décrits mais s'étend à toute modification et variante évidentes pour un homme du métier tout en restant dans l'étendue de la protection définie dans les revendications annexées. The present invention is not limited to the embodiments described but extends to any modification and variation obvious to a person skilled in the art while remaining within the scope of protection defined in the appended claims.

Claims

Revendications claims
1. Dispositif thermodynamique (1, 10) pour chauffer et/ou climatiser un volume comportant un circuit de fluide frigorigène principal (2) pourvu au moins d'un compresseur (3) agencé pour élever la pression et par conséquent la température dudit fluide frigorigène à l'état gazeux et d'un condenseur (4) agencé pour évacuer vers un circuit externe (5) au moins une partie de l'énergie thermique absorbée par ledit fluide frigorigène qui passe de l'état gazeux à un état liquide, caractérisé en ce que ledit dispositif thermodynamique (1, 10) est logé dans un caisson fermé et étanche et en ce qu'il comporte une chambre de détente (6) disposée entre ledit condenseur (4) 'et ledit compresseur (3) et agencée pour détendre instantanément le fluide frigorigène qui passe instantanément de l'état liquide à haute pression à un état gazeux à basse pression, ladite chambre de détente (6) étant raccordée à un orifice d'aspiration (30) dudit compresseur (3) par un conduit retour (7) dont la dimension transversale est dégressive pour comprimer progressivement ledit fluide frigorigène préalablement détendu en le réchauffant, de sorte que ledit dispositif thermodynamique (1, 10) fonctionne de manière autonome, sans source extérieure de captàge de chaleur. Thermodynamic device (1, 10) for heating and / or cooling a volume comprising a main refrigerant circuit (2) provided with at least one compressor (3) arranged to raise the pressure and consequently the temperature of said refrigerant in the gaseous state and a condenser (4) arranged to discharge to an external circuit (5) at least a portion of the thermal energy absorbed by said refrigerant which passes from the gaseous state to a liquid state, characterized in that said thermodynamic device (1, 10) is housed in a sealed and sealed box and in that it comprises an expansion chamber (6) arranged between said condenser (4) ' and said compressor (3) and arranged for instantaneously relax the refrigerant which instantly switches from the high pressure liquid state to a gaseous state at low pressure, said expansion chamber (6) being connected to a suction port (30) of said compressor (3) by a condenser uit retour (7) whose transverse dimension is degressive for progressively compressing said previously relaxed refrigerant by heating it, so that said thermodynamic device (1, 10) operates autonomously, without external source of heat capture.
2. Dispositif thermodynamique selon la revendication 1, caractérisé en ce que ladite chambre de détente (6) est pourvue d'un orifice d'entrée (60) présentant un diamètre agencé pour vaporiser instantanément ledit fluide frigorigène qui arrive à l'état liquide sous haute pression, ledit orifice d'entrée étant situé sur un premier côté de ladite chambre, et d'un orifice de sortie (61) présentant un diamètre supérieur à celui de l'orifice d'entrée (60), cet orifice de sortie étant situé sur un second côté de ladite chambre, opposé audit premier côté et plus bas que l'orifice d'entrée (60). 2. thermodynamic device according to claim 1, characterized in that said expansion chamber (6) is provided with an inlet orifice (60) having a diameter arranged to instantaneously vaporize said refrigerant which arrives in the liquid state under high pressure, said inlet port being located on a first side of said chamber, and an outlet port (61) having a diameter greater than that of the inlet port (60), said outlet port being located on a second side of said chamber, opposite said first side and lower than the inlet port (60).
3. Dispositif thermodynamique selon la revendication 2, caractérisé en ce que ladite chambre de détente (6) définit une section de détente ou dimension transversale (S ) au moins trois fois supérieure à la section ou au diamètre (S3) de l'orifice d'aspiration (30) dudit compresseur (3). 3. thermodynamic device according to claim 2, characterized in that said expansion chamber (6) defines a detent section or transverse dimension (S) at least three times greater than the section or diameter (S3) of the suction port (30) of said compressor (3).
4. Dispositif thermodynamique selon la revendication 2, caractérisé en ce que ledit conduit retour (7) est raccordé à l'orifice de sortie (61) de ladite chambre de détente4. thermodynamic device according to claim 2, characterized in that said return duct (7) is connected to the outlet orifice (61) of said expansion chamber
(6) avec une section de passage ou dimension transversale (S2) au moins deux fois supérieure à la section ou au diamètre (S3) de l'orifice d'aspiration (30) dudit compresseur (3) et à l'orifice d'aspiration (30) dudit compresseur (3) avec une section de passage ou un diamètre égal à la section ou au diamètre (S3) dudit orifice d'aspiration (30). (6) with a passage section or transverse dimension (S2) at least twice greater than the section or the diameter (S3) of the suction port (30) of said compressor (3) and the orifice of suction (30) of said compressor (3) with a passage section or a diameter equal to the section or diameter (S3) of said suction port (30).
5. Dispositif thermodynamique selon la revendication 1, caractérisé en ce que ladite chambre de détente (6) est disposée au-dessus dudit conduit retour (7) et en ce que ledit conduit retour (7) est constitué d'un serpentin disposé au dessus dudit compresseur (3). 5. thermodynamic device according to claim 1, characterized in that said expansion chamber (6) is disposed above said return duct (7) and in that said return duct (7) consists of a coil disposed above said compressor (3).
6. Dispositif thermodynamique selon la revendication 5, caractérisé en ce que ladite chambre de détente (6) est orientée selon un plan sensiblement horizontal. 6. thermodynamic device according to claim 5, characterized in that said expansion chamber (6) is oriented in a substantially horizontal plane.
7. Dispositif thermodynamique selon la revendication 6, caractérisé en ce que ladite chambre de détente (6) comporte un fond incliné (62) en direction dudit compresseur (3) permettant l'écoulement par gravité en direction dudit compresseur des éventuels résidus d'huile du compresseur contenus dans ledit fluide frigorigène. 7. thermodynamic device according to claim 6, characterized in that said expansion chamber (6) comprises an inclined bottom (62) towards said compressor (3) allowing the flow by gravity towards said compressor any oil residues compressor contained in said refrigerant.
8. Dispositif thermodynamique selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit condenseur (4) est constitué d'un échangeur de chaleur se présentant sous la forme d'un serpentin enroulé autour dudit compresseur (3) de sorte à récupérer par conduction une partie de l'énergie thermique produite par ledit compresseur. 8. thermodynamic device according to any one of the preceding claims, characterized in that said condenser (4) consists of a heat exchanger in the form of a coil wound around said compressor (3) so as to recover by conduction a portion of the thermal energy produced by said compressor.
9. Dispositif thermodynamique selon la revendication 1, caractérisé en ce qu'il comporte une vanne de régulation (8) disposée sur ledit circuit principal (2) fermé en aval dudit compresseur (3) et en amont de ladite chambre de détente (6), ladite vanne étant agencée pour contrôler la pression dudit tluide frigorigène en sortie dudit compresseur (3). 9. Thermodynamic device according to claim 1, characterized in that it comprises a control valve (8) disposed on said main circuit (2) closed downstream of said compressor (3) and upstream of said expansion chamber (6). said valve being arranged to control the pressure of said refrigerant fluid at the outlet of said compressor (3).
10. Dispositif thermodynamique selon la revendication 9, caractérisé en ce qu'il comporte un pressostat (9a) disposé en amont de ladite vanne de régulation (8) agencé pour contrôler le fonctionnement dudit compresseur (3) en fonction de . la pression dudit fluide frigorigène. 10. Thermodynamic device according to claim 9, characterized in that it comprises a pressure switch (9a) arranged upstream of said control valve (8) arranged to control the operation of said compressor (3) as a function of. the pressure of said refrigerant.
1 1. Dispositif thermodynamique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un circuit de fluide frigorigène additionnel (20) raccordé en parallèle sur le circuit de fluide frigorigène principal (2) au moyen de vannes trois voies (21, 22, 23) agencées pour inverser la circulation dudit fluide frigorigène et rendre le dispositif réversible chauffage/climatisation. Thermodynamic device according to one of the preceding claims, characterized in that it comprises an additional refrigerant circuit (20) connected in parallel to the main refrigerant circuit (2) by means of three-way valves ( 21, 22, 23) arranged to reverse the flow of said refrigerant and make the reversible heating / cooling device.
PCT/FR2012/000554 2011-12-29 2012-12-28 Thermodynamic device for heating and/or air-conditioning a space WO2013104838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/62513 2011-12-29
FR1162513A FR2985304B1 (en) 2011-12-29 2011-12-29 AUTONOMOUS THERMODYNAMIC DEVICE FOR HEATING AND / OR AIR CONDITIONING A VOLUME

Publications (1)

Publication Number Publication Date
WO2013104838A1 true WO2013104838A1 (en) 2013-07-18

Family

ID=47666410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000554 WO2013104838A1 (en) 2011-12-29 2012-12-28 Thermodynamic device for heating and/or air-conditioning a space

Country Status (2)

Country Link
FR (1) FR2985304B1 (en)
WO (1) WO2013104838A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707868A (en) 1951-06-29 1955-05-10 Goodman William Refrigerating system, including a mixing valve
US4729228A (en) * 1986-10-20 1988-03-08 American Standard Inc. Suction line flow stream separator for parallel compressor arrangements
US20070033965A1 (en) * 2005-08-09 2007-02-15 Carrier Corporation Refrigerant system with suction line restrictor for capacity correction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707868A (en) 1951-06-29 1955-05-10 Goodman William Refrigerating system, including a mixing valve
US4729228A (en) * 1986-10-20 1988-03-08 American Standard Inc. Suction line flow stream separator for parallel compressor arrangements
US20070033965A1 (en) * 2005-08-09 2007-02-15 Carrier Corporation Refrigerant system with suction line restrictor for capacity correction

Also Published As

Publication number Publication date
FR2985304A1 (en) 2013-07-05
FR2985304B1 (en) 2018-01-26

Similar Documents

Publication Publication Date Title
FR2715211A1 (en) Method of operating a refrigeration system and refrigeration system operating according to this method.
FR2940355A1 (en) DEVICE FOR GENERATING ELECTRICITY WITH SEVERAL SERIES HEAT PUMPS
FR3042857B1 (en) THERMODYNAMIC BOILER WITH THERMAL COMPRESSOR
EP3612769B1 (en) Thermodynamic co2 boiler and thermal compressor
FR2969042A1 (en) Refrigeration cycle apparatus for use in electric vehicle, has external heat exchanger used as evaporator, and gas injector returning intermediate-pressure refrigerant gas to compressor in heating mode
EP2739918B1 (en) System and method for optimising the operation of a heat pump system
WO2013104838A1 (en) Thermodynamic device for heating and/or air-conditioning a space
FR2792063A1 (en) TURBOVENTILATOR MOUSED BY THE RELAXATION OF A REFRIGERANT LIQUID OR GAS IN A REFRIGERATION OR AIR CONDITIONING SYSTEM
WO2010043829A2 (en) Heat pump
WO2016146858A1 (en) Reversible thermodynamic device for heat transfer
FR3033394A1 (en) THERMAL MANAGEMENT CIRCUIT
FR3001794A1 (en) Active subcooler device for air-conditioning system for producing cold and/or heat in cold store, has evaporator including primary circuit connected to system fluid circulation circuits, and secondary circuit connected to device circuit
WO2018211199A1 (en) Indirect reversible air-conditioning circuit for a motor vehicle, and method for managing same in heat pump mode
CH642439A5 (en) HEATING SYSTEM FOR PREMISES FOR HOUSING OR INDUSTRIAL USE COMPRISING A HEAT PUMP.
FR3072767A1 (en) THERMODYNAMIC MACHINE HAVING A DEFROSTING EXCHANGER
BE830860A (en) HEATING SYSTEM
EP1748191B1 (en) Compression unit and thermal system including such a unit
FR2692343A1 (en) Large refrigeration system with two-stage compression e.g. for use in hypermarket - uses high and low pressure circuits with heat exchanger between them to limit heating of refrigerant.
FR2933482A3 (en) Refrigeration station for e.g. super market, has mono tube circuit in series with liquid pump to cool refrigerant and defrost via hot gas, and application program interface managing condensation temperature and sub cooling of refrigerant
EP0309634A1 (en) Environment-assisted high-efficiency integrated heating and cooling system
FR2474149A1 (en) Recuperation of heat from heat pump compressor - uses heat exchanger in oil sump to heat ventilator refrigerant
FR2981144A1 (en) TURBO HEAT PUMP.
FR2974889A1 (en) Device for air conditioning, cooling and freezing space of premises, has solar collector formed by thermal circuits, where increase in number of thermal circuits introduced into solar collector causes increase in pressure
WO2021005290A1 (en) Air conditioner
KR20230115144A (en) Waste heat recovery generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821286

Country of ref document: EP

Kind code of ref document: A1