EP2178661A1 - Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs - Google Patents

Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs

Info

Publication number
EP2178661A1
EP2178661A1 EP08801099A EP08801099A EP2178661A1 EP 2178661 A1 EP2178661 A1 EP 2178661A1 EP 08801099 A EP08801099 A EP 08801099A EP 08801099 A EP08801099 A EP 08801099A EP 2178661 A1 EP2178661 A1 EP 2178661A1
Authority
EP
European Patent Office
Prior art keywords
rmf
wmf
magnetic field
container
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08801099A
Other languages
German (de)
English (en)
Inventor
Petr A. Nikrityuk
Sven Eckert
Dirk RÄBIGER
Bernd Willers
Kerstin Eckert
Roger Grundmann
Gunter Gerbeth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Helmholtz Zentrum Dresden Rossendorf eV
Original Assignee
Technische Universitaet Dresden
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden, Forschungszentrum Dresden Rossendorf eV filed Critical Technische Universitaet Dresden
Publication of EP2178661A1 publication Critical patent/EP2178661A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • the invention relates to a method and a device for the electromagnetic stirring of electrically conductive liquids using a magnetic field rotating in a horizontal plane and a magnetic field traveling in the vertical direction. Due to their contactless interaction with electrically conductive liquids, time-dependent electromagnetic fields provide an attractive possibility for stirring hot molten metals or semiconductor melts. Using the parameters magnetic field amplitude and magnetic field frequency, the electromagnetic force field can be controlled directly and accurately in a simple manner.
  • the electromagnetic stirring is used on an industrial scale i.a. used in the directional solidification of metallic alloys or semiconductor melts.
  • a significant problem is that flows in the immediate vicinity of a progressing solidification front can lead to segregation in the solidified material, which deteriorate the mechanical properties of the resulting solid significantly.
  • Due to the different solubility of individual components in the liquid or solid phase a concentration boundary layer is formed on the solidification front. Due to the convective transport of the enriched melt away from the solidification front, a flow counteracts the build-up of an extended concentration boundary layer. If the melt flows exclusively in one direction, segregation zones occur in other volume areas.
  • Rotating or migrating magnetic fields are already used in metallurgical processes, such as the continuous casting of steel.
  • metallurgical processes such as the continuous casting of steel.
  • an arrangement of a polyphase electromagnetic winding for generating a traveling field perpendicular to the casting direction at a continuous casting plant in the publication DE AS 1 962 341 is described.
  • JP2003220323 An apparatus and a method for intensively stirring a melt contained in a cylindrical container in which a rotating magnetic field and a traveling magnetic field are simultaneously used are described in JP2003220323.
  • the rotating magnetic field is from a radial coil surrounding the container, the turns of which are annular, generates the traveling magnetic field by a longitudinal coil, the turns of which extend in an axial direction in a jacketed section and annularly surround the container shell, wherein the longitudinal coil between the container shell and the radial coil arranged is.
  • the radial coil generates a rotational movement and the longitudinal coil generates an axial movement of the liquid melt in the container.
  • the invention has for its object to provide a method and a device for electromagnetic stirring of electrically conductive liquids, which are designed so suitable 'that asymmetrical flow structures are avoided in containers filled with melts, especially at the beginning and during the course of solidification.
  • an effective mixing of the liquid and / or a controlled solidification of metallic alloys while avoiding the formation of segregation zones in the solidification structure should be achieved.
  • both the rotating magnetic field RMF and the traveling magnetic field WMF discontinuous Form of time-limited and adjustable periods Tp 1RMF and Tp 1WMF and alternately connected in chronological succession.
  • the duration Tp 1 RM F of the periods of the rotating magnetic field RMF and the duration Tp 1 WMF of the periods of the traveling magnetic field WMF can be determined in a time interval
  • In the container can be filled as electrically conductive liquid metallic or semiconductor melt.
  • the amplitude Bo RMF of the rotating magnetic field RMF is to be increased so that at least the maximum of the two values
  • Bi RMF and B 2 RMF are the lower limits of the amplitudes of the rotating magnetic field, which can change in the course of solidification depending on the parameters v, Vsoi and Ho.
  • the amplitude B 0 WMF of the traveling magnetic field WMF can be set to be as large or up to four times greater than the amplitude Bo RMF of the rotating magnetic field RMF, ie
  • the course and the maximum value of the magnetic field RMF or WMF are set so that for the different pulse forms an identical energy input results.
  • the amplitudes B 0 RMF , B 0 WMF of the magnetic fields RMF or WMF can be adjusted continuously during the stirring in accordance with the requirements derived from the process to be considered.
  • the individual periods T PI RMF and T P , W MF, in which one of the magnetic fields RMF or WMF is switched on, can be interrupted by a pause duration Tp ause , in which neither of the two magnetic fields RMF or WMF acts on the liquid, wherein Tp aU se ⁇ O.5-TP, RMF or T PaU se ⁇ O.5-TP, WMF can be set.
  • the direction of the rotating magnetic field RMF and / or WMF can be inverted between two pulses.
  • the device for electromagnetic stirring of electrically conductive liquids contains at least
  • the container with the liquid or liquid melt can be arranged concentrically within the induction coils.
  • the container may be provided with a heating device and / or cooling device.
  • the bottom plate of the container can be in direct contact with a solid metal body, which is flowed through by a cooling medium in the interior.
  • the side walls of the container may be thermally insulated.
  • the heat sink can communicate with a thermostat.
  • Between the heat sink and the container may be a liquid metal film to achieve a stable heat transfer with low contact resistance.
  • the liquid metal film may be made of a gallium alloy.
  • At least one temperature sensor may be positioned in the form of a thermocouple, which provides information about the time of onset of solidification and with the control unit connected to the temperature control of the liquid.
  • a use of the device for electro-magnetic stirring of electrically conductive liquids according to claims 10 to 18 can in the form of metallic melts in metallurgical processes or in the form of semiconductor melts in the crystal growth, for the purification of molten metal, in continuous casting or in the process of solidification of metallic materials of the method according to claim 1 to 9 take place.
  • both the rotating and the vertically migrating magnetic field RMF and WMF are switched on discontinuously in the form of pulses of limited duration, wherein both magnetic fields RMF and WMF are switched on alternately and in succession.
  • the induction coil pairs fed with a three-phase alternating current are thus controlled such that a magnetic field RMF or WMF acts on the melt at any time.
  • the period T P is WMF of the traveling magnetic field
  • the amplitude B P> WMF of the vertically traveling magnetic field WMF can be at least as great as the amplitude B pjmr of the rotating magnetic field RMF 1, preferably it is a multiple (maximum 4 times) larger.
  • Fig. 3a2 is a snapshot of the meridional velocity as a vector diagram when the rotating magnetic field
  • 3b1 is a snapshot of the azimuthal flow when the traveling magnetic field WMF is turned on and at the same time the rotating magnetic field RMF is turned off,
  • FIG. 3b2 shows a snapshot of the meridional velocity as a vector diagram, when the traveling magnetic field WMF is switched on and, at the same time, the rotating magnetic field RMF is switched off
  • Fig. 4a1 is a snapshot of the azimuthal flow, when the rotating magnetic field RMF is turned on and at the same time the wandering magnetic field WMF is turned off
  • Fig. 4a2 is a snapshot of the meridional velocity as a vector diagram when the rotating magnetic field RMF is turned on and at the same time the wandering
  • 4b1 is a snapshot of the azimuthal flow when the traveling magnetic field WMF is turned on and at the same time the rotating magnetic field RMF is turned off,
  • FIG. 4b2 shows a snapshot of the meridional velocity as a vector diagram, when the traveling magnetic field WMF is switched on and at the same time the rotating magnetic field RMF is switched off, FIG.
  • FIG. 5 a shows a macrostructure under the influence of a continuously acting traveling magnetic field WMF at 6 mT
  • FIG. 5 b shows a macrostructure under the influence of a continuously acting rotating magnetic field RMF at 6.5 mT
  • FIG. 5 a shows a macrostructure under the influence of a continuously acting traveling magnetic field WMF at 6 mT
  • FIG. 5 b shows a macrostructure under the influence of a continuously acting rotating magnetic field RMF at 6.5 mT
  • FIG. 5 a shows a macrostructure under the influence of a continuously acting traveling magnetic field WMF at 6 mT
  • FIG. 5 b shows a macrostructure under the influence of a continuously acting rotating magnetic field RMF at 6.5 mT
  • FIG. 5 a shows a macrostructure under the influence of a continuously acting traveling magnetic field WMF at 6 mT
  • FIG. 5 b shows a macrostructure under the influence of a continuously acting rotating magnetic field RMF at 6.5 mT
  • FIG. 5 a shows a macrostructure
  • 5c shows a macrostructure under the influence of the discontinuously and alternately acting magnetic fields RMF and WMF, each with 6mT. demonstrate.
  • FIG. 1 shows, in a schematic representation, a device 1 for the electromagnetic stirring of electrically conductive liquids 2, which contains at least
  • the power supply unit 9 is connected to the respectively associated induction coils 31, 32, 33; 41, 42, 43, 44, 45, 46 with the control unit 10, a current supply to the induction coils 31, 32, 33; 41, 42, 43, 44, 45, 46 with the given conditions
  • the container 14 is located centrally symmetrically in the middle of an arrangement 3 of pairs 31, 32, 33 of induction coils for generating a rotating magnetic field RMF 34 and an arrangement 4 of induction coils 41, 42, 43, 44, 45, 46 of a traveling magnetic field WMF 47
  • Induction coil pairs 31, 32, 33 and the induction coils 41, 42, 43, 44, 46 stacked coaxially with respect to the axis of symmetry 15 are each connected to the power supply unit 9 and are supplied from there with a current I 0 fed in the form of a 3-PhasenwechseIstroms and generate a rotating about the symmetry axis 15 of the device 1, horizontally oriented magnetic field RMF 34 and a along the axis of symmetry 15 aligned, in the vertical direction migrating magnetic field WMF 47.
  • the power supply unit 9 is connected to the electronic control / Control unit 10 connected, which causes at predetermined intervals, a connection and disconnection of the 3-phase alternating current ID.
  • the switching on and off of the magnetic fields RMF 34 and WMF 47 is controlled in the control / regulating unit 10 so that at most a maximum of only one magnetic field RMF 34 or WMF 47 acts on the melt 2.
  • the device 1 of the filled with the electrically conductive melt 2 cylindrical container 14 may be supplemented with a cooling device 11 for the solidification of metallic melts 2.
  • the cooling device 11 contains a metal block 5, in the interior of which cooling channels 6 are present.
  • the container 14 is with its bottom plate 12 on the metal block 5.
  • the located inside the metal block 5 cooling channels 6 are flowed through during the solidification process of a coolant.
  • the cooling device 11 of the melt 2 By means of the cooling device 11 of the melt 2, the heat is withdrawn down.
  • a thermal insulation 7 of the container 14 prevents heat losses in the radial direction.
  • On the bottom plate 12 and / or in / on the side walls 13 of the container 14 at least one temperature sensor 8, for example in the form of a thermocouple for temperature control is mounted.
  • the temperature measurements enable a monitoring of the liquid state, the beginning and the course of the state of solidification and allow a timely adjustment of the magnetic field parameters, eg B 0 RMF , B 0 WMF and the period T P , controlled by the control unit 10 Power supply unit 9 to the individual stages of the solidification process.
  • the container 14 with the melt 2 is arranged concentrically within the induction coils 31, 32, 33, 41, 42, 43, 44, 45, 46.
  • the container 14 may be provided with a heater and / or cooling device 11.
  • the bottom plate 12 is in direct contact with a solid metal body 5, which is traversed in the interior of a cooling medium.
  • the side walls 13 of the container 14 are thermally insulated by an insulating jacket 7.
  • the heat sink 5 is connected to a thermostat (not shown) in connection.
  • the liquid metal film may be made of a gallium alloy.
  • a temperature sensor 8 is positioned in the form of a thermocouple, which provides information about the time of onset of solidification and with the control - / control unit 10 is connected.
  • the time sequence of RMF and WMF is shown in each case, wherein the amplitude of the traveling magnetic field B 0 WMF is three times the amplitude of the rotating magnetic field B 0 RMF and the same period ends T P
  • both the rotating magnetic field RMF 34 and FIG the wandering magnetic field WMF 47 dis- continuously in the form of time-limited and adjustable periods Tp 1 RMF and Tp 1WMF and alternately generated in chronological succession.
  • the duration TP.RMF of the periods of rotating magnetic field RMF 34 and the duration TP, WMF of the periods of traveling magnetic field WMF 47 may be in a time interval
  • the amplitude B 0 RMF of the rotating magnetic field RMF 34 is to be increased so that at least the maximum of the two values
  • the amplitude Bo WMF of the traveling magnetic field WMF 47 can be set to be equal to or up to four times greater than the amplitude B 0 RMF of the rotating magnetic field RMF 34, ie
  • the amplitudes B 0 RMF , B 0 WMF of the magnetic fields RMF 34 and WMF 47 can be continuously adjusted during the stirring in accordance with the requirements derived from the process to be considered.
  • the individual period durations TP.RMF and TP, WMF, in which one of the magnetic fields RMF 34 or WMF 47 is switched on, can be interrupted by a pause duration Tpausei in which neither of the two magnetic fields acts on the liquid 2, where Tp out ⁇ 0.5TP, RMF or TpoutU ⁇ O.5-TP, WMF.
  • the direction of the rotating magnetic field RMF 34 and / or the traveling magnetic field WMF 47 can be inverted between two pulses.
  • 3a is a snapshot of the azimuthal flow when the rotating magnetic field RMF 34 is turned on and at the same time the traveling magnetic field WMF 47 is turned off,
  • 3a2 shows a snapshot of the meridional velocity as a vector diagram, when the rotating magnetic field RMF 34 is switched on and at the same time the traveling magnetic field WMF 47 is switched off,
  • Fig. 3b1 is a snapshot of the azimuthal flow when the wandering magnetic field WMF 47 is turned on and at the same time the rotating magnetic field RMF 34 is turned off and Fig. 3b2 is a snapshot of the meridional velocity as a vector diagram when the traveling magnetic field WMF 47 is turned on and the rotating magnetic field RMF 34 is turned off.
  • FIG. 4 a shows a snapshot of the azimuthal flow when the rotating magnetic field RMF 34 is switched on and at the same time the traveling magnetic field WMF 47 is switched off.
  • FIG. 4 a shows a snapshot of the meridional velocity as a vector diagram when the rotating magnetic field RMF 34 is switched on and simultaneously
  • Fig. 4b1 is a snapshot of the azimuthal flow when the traveling magnetic field WMF 47 is turned on and at the same time the rotating magnetic field RMF 34 is turned off
  • Fig. 4b2 is a snapshot of the meridional velocity as a vector diagram when the traveling magnetic field WMF 47 is turned on and at the same time the rotating magnetic field RMF 34 is turned off, show.
  • FIG. 5 shows a plurality of schematic representations of the solidification of an Al-Si alloy under the influence of magnetic fields in the form of the macrostructure in vertical section, in which:
  • 5b shows a microstructure under the influence of a continuously acting rotating magnetic field RMF 34 at 6.5 mT and
  • FIG. 5c shows a microstructure under the influence of the discontinuously and alternately acting magnetic fields RMF 34 and WMF 47 with 6mT each.
  • the corresponding magnetic fields RMF 34 and WMF 47 are each switched on 30 seconds after the start of solidification at the container bottom.
  • a coarse columnar structure grows parallel to the symmetry axis of the container.
  • the wandering magnetic field WMF 47 in FIG. 5a a very coarse microstructure can be recognized.
  • the columnar grains continue to grow almost unchanged until the transition from columnar to equiaxial growth occurs approximately in the middle of the sample.
  • a modified columnar structure initially forms, ie the columnar grains become finer and grow inclined to the side.
  • a morphology transition from columnar to equiaxial grain growth can be observed.
  • the secondary flow transports Si-rich melt towards the symmetry axis 15. This leads to typical segregation patterns, which have a depletion of eutectic phase in the edge zones and a concentration in the region of the axis of symmetry 15. If the rotating magnetic field RMF 34 and the traveling magnetic field WMF 47, as shown in Fig. 5c, applied discontinuously one after the other, a transition from coarse-grained columnar to fine-grained equiaxial growth is observed immediately with activation of the electromagnetic stirring. Dismissals are undetectable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

L'invention concerne un procédé et un module d'agitation électromagnétique de liquides (2) électriquement conducteurs au moyen d'un champ magnétique RMF (34) rotatif dans le plan horizontal et d'un champ magnétique migrant WMF (47) dans la direction verticale. L'objet de l'invention consiste à éviter des structures de circulation asymétriques dans des récipients remplis de coulées, en particulier au début ou pendant le déroulement de la solidification. Un mélange efficace du liquide et/ou une solidification contrôlée d'alliages métalliques doivent en outre être atteints au moyen de la formation de zones de dissociation dans le produit de solidification. La solution consiste à activer aussi bien le champ magnétique rotatif RMF (34) que le champ magnétique migrant WMF (47) de façon discontinue sous la forme de durées périodiques limitées et réglables (TP,RMF, TP,WMF) et l'un après l'autre alternativement au moyen de bobines d'induction (31, 32, 33 ; 41, 42, 43, 44, 45, 46).
EP08801099A 2007-08-03 2008-08-01 Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs Withdrawn EP2178661A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038281A DE102007038281B4 (de) 2007-08-03 2007-08-03 Verfahren und Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten
PCT/DE2008/001261 WO2009018810A1 (fr) 2007-08-03 2008-08-01 Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs

Publications (1)

Publication Number Publication Date
EP2178661A1 true EP2178661A1 (fr) 2010-04-28

Family

ID=40139950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08801099A Withdrawn EP2178661A1 (fr) 2007-08-03 2008-08-01 Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs

Country Status (5)

Country Link
US (1) US20100163207A1 (fr)
EP (1) EP2178661A1 (fr)
JP (1) JP2010535106A (fr)
DE (1) DE102007038281B4 (fr)
WO (1) WO2009018810A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980415A (zh) * 2012-11-20 2013-03-20 中国科学院研究生院 基于通电线圈螺旋磁场驱动金属熔体周期性流动的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870446B2 (en) * 2006-06-21 2014-10-28 Spinomix S.A. Device and method for manipulating and mixing magnetic particles in a liquid medium
DE102007037340B4 (de) 2007-08-03 2010-02-25 Forschungszentrum Dresden - Rossendorf E.V. Verfahren und Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten
US8608370B1 (en) * 2009-04-02 2013-12-17 Inductotherm Corp. Combination holding furnace and electromagnetic stirring vessel for high temperature and electrically conductive fluid materials
DE102010041061B4 (de) 2010-09-20 2013-10-24 Forschungsverbund Berlin E.V. Kristallisationsanlage und Kristallisationsverfahren zur Herstellung eines Blocks aus einem Material, dessen Schmelze elektrisch leitend ist
IN2014CN04488A (fr) 2011-12-22 2015-09-11 Abb Ab
US20130277007A1 (en) * 2012-04-20 2013-10-24 Fs Precision Tech Single piece casting of reactive alloys
FR3051698B1 (fr) * 2016-05-30 2020-12-25 Constellium Issoire Procede de fabrication de lingots de laminage par coulee verticale d'un alliage d'aluminium
EP3354367B1 (fr) * 2017-01-30 2019-07-17 Hydro Aluminium Rolled Products GmbH Dispositif et procédé destiné à retirer les impuretés non conductrices dans un liquide électroconducteur
CN111151182A (zh) * 2018-11-07 2020-05-15 中国科学院大学 利用高频行波磁场驱动和输运低电导率液体的方法和装置
CN113061741B (zh) * 2021-03-18 2022-05-03 东北大学 外加磁场改善渣池温度分布的电渣重熔复合装置及方法
CN114932206B (zh) * 2022-06-08 2023-05-16 沈阳工程学院 控制结晶器内金属液流动的独立可控复合磁场装置及方法
TWI834515B (zh) * 2023-03-08 2024-03-01 鑫科材料科技股份有限公司 金屬鑄件之鑄造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962341B2 (de) 1969-12-12 1971-06-24 Aeg Elotherm Gmbh Anordnung einer mehrphasigen elektromagnetischen wicklung am strangfuehrungsgeruest einer stranggiessanlage
JPS5252895Y2 (fr) 1973-04-18 1977-12-01
JPS5093229A (fr) * 1973-12-22 1975-07-25
DE3730300A1 (de) 1987-09-10 1989-03-23 Aeg Elotherm Gmbh Verfahren und vorrichtung zum elektromagnetischen ruehren von metallschmelzen in einer stranggiesskokille
US4969501A (en) * 1989-11-09 1990-11-13 Pcc Airfoils, Inc. Method and apparatus for use during casting
JP3247265B2 (ja) * 1994-12-06 2002-01-15 昭和電工株式会社 金属の鋳造法及びその装置
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
US6402367B1 (en) * 2000-06-01 2002-06-11 Aemp Corporation Method and apparatus for magnetically stirring a thixotropic metal slurry
SE519840C2 (sv) 2000-06-27 2003-04-15 Abb Ab Förfarande och anordning för kontinuerlig gjutning av metaller
JP4134310B2 (ja) 2002-01-31 2008-08-20 国立大学法人東北大学 電磁撹拌装置及び電磁撹拌方法
DE102004017443B3 (de) * 2004-04-02 2005-04-21 Technische Universität Dresden Verfahren und Vorrichtung zum Rühren von elektrisch leitenden Flüssigkeiten in Behältern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009018810A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980415A (zh) * 2012-11-20 2013-03-20 中国科学院研究生院 基于通电线圈螺旋磁场驱动金属熔体周期性流动的方法

Also Published As

Publication number Publication date
DE102007038281A1 (de) 2009-02-19
WO2009018810A1 (fr) 2009-02-12
US20100163207A1 (en) 2010-07-01
DE102007038281B4 (de) 2009-06-18
JP2010535106A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
DE102007038281B4 (de) Verfahren und Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten
EP2190612B1 (fr) Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs
DE60111943T2 (de) Vorrichtung zum magnetischen rühren einer thixotropen metallschmelze
DE3018290C2 (de) Verfahren und Vorrichtung zum Herstellen feinkörniger Gußstücke
DE69931141T2 (de) Schmelzverfahren in einer Induktion-Kalt-Schmelz-Tiegelanlage
DE2853202A1 (de) Verbessertes verfahren zur herstellung thixotroper aufschlaemmungen
DE2544137A1 (de) Verfahren und vorrichtung zur waermebehandlung
JP2010535106A5 (fr)
DE4320766A1 (de) Vorrichtung zum Einschmelzen einer festen Schicht aus elektrisch leitfähigem Material
DE4207694A1 (de) Vorrichtung fuer die herstellung von metallen und metall-legierungen hoher reinheit
EP1004374A1 (fr) Procédé de coulée sous pression pour la fabrication de pièces coulées en alliages avec propriétés Thixotropes
EP0174004B1 (fr) Procédé de fabrication d'un corps cristallin à partir d'un bain de fusion
EP0786531A1 (fr) Procédé et dispositif pour la refusion de métaux sous forme de barres
DE102008059521A1 (de) Verfahren zum Erstarren einer Nichtmetall-Schmelze
DE102005009326B4 (de) Verfahren und Gießeinrichtung zur Herstellung von Mikrogussteilen
DE102010041061B4 (de) Kristallisationsanlage und Kristallisationsverfahren zur Herstellung eines Blocks aus einem Material, dessen Schmelze elektrisch leitend ist
EP1427553B1 (fr) Procede et dispositif de production d'une bande metallique dans une machine de coulee en bande a rouleaux
DE102004017443B3 (de) Verfahren und Vorrichtung zum Rühren von elektrisch leitenden Flüssigkeiten in Behältern
DE102008011008B4 (de) Vorrichtung und Verfahren zur Beeinflussung von elektrisch leitfähigen Fluiden mit Hilfe der Lorentzkraft
DE102008011048B4 (de) Vorrichtung zur Erzeugung von Bewegungen in Glasschmelzen mit Hilfe der Lorentzkraft und Verwendung der Vorrichtung
DE102004044539B4 (de) Einrichtung zum Bewegen von elektrisch leitenden flüssigen Medien
DE3116792C2 (de) Verfahren zur Gewinnung von Granalien aus einer Legierungsschmelze und Vorrichtung zur Durchführung desselben
DE102004044635B4 (de) Elektrisch-magnetische Rühranlage für elektrisch leitende flüssige Medien
DE102004044637B3 (de) Anlage zur gesteuerten Erstarrung von Schmelzen elektrisch leitender Medien
DE112021008084T5 (de) Vorrichtung zur berührungslosen induktion von strömungen in elektrisch leitenden flüssigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET DRESDEN

Owner name: HELMHOLTZ-ZENTRUM DRESDEN - ROSSENDORF E.V.

17Q First examination report despatched

Effective date: 20120724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130522