EP2154264A1 - Shaped body - Google Patents
Shaped body Download PDFInfo
- Publication number
- EP2154264A1 EP2154264A1 EP09164616A EP09164616A EP2154264A1 EP 2154264 A1 EP2154264 A1 EP 2154264A1 EP 09164616 A EP09164616 A EP 09164616A EP 09164616 A EP09164616 A EP 09164616A EP 2154264 A1 EP2154264 A1 EP 2154264A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spraying
- layer
- oxidation protection
- protection layer
- blank according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12229—Intermediate article [e.g., blank, etc.]
Definitions
- Refractory metals have the properties to maintain their strength up to the highest temperatures. The problem, however, is that these metals and alloys have little resistance to oxidation when exposed to air or other oxidizing media at high temperatures in excess of 400 ° C.
- CrFe silicide layers are described as an oxidation protection layer for a base material of niobium or niobium-based alloys.
- Such coatings are melted after application by a diffusion annealing.
- this overmelting is an essential prerequisite for homogenizing the layer components and for producing the required barrier of the layer to oxygen permeation.
- the object of the present invention is therefore to provide a blank having a base body of a refractory metal and an oxidation protective layer, wherein the layer reduces the oxidation when heated to the temperature required during hot working as well as the losses by sublimation of the oxide (evaporation losses), a better Surface quality allows, serves as thermal insulation, is harmless in the heating for the coating of the furnaces and also adheres to the refractory metal blank during hot forming and this protects.
- a molding blank made of a base body which consists of at least one refractory metal and an oxidation protection layer of at least one metal layer.
- the oxidation protection layer is advantageously free of silicides and aluminides, that is to say the content of silicides is not more than 1% by weight.
- Silicides include, in particular, silicon-based alloys having at least 60 at% Si and 5-40 at% of one or more elements from the group consisting of Cr, Fe, Ti, Zr, Hf, B and C, and aluminides, in particular aluminum-based alloys having at least 60 at% Al and 5-40 at% of one or more elements from the group Si, Cr, Ti, Zr, Hf, Pt, B and C.
- the refractory metal is selected from the group consisting of molybdenum, tungsten, tantalum, niobium and their alloys. These may be alloys of refractory metals with each other or with other metals, but the content of refractory metal according to the invention must be 50% or more.
- the oxidation layer can be applied according to the invention by plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying or cold gas spraying.
- the oxidation protection layer consists of iron or an iron alloy, such as steels, in particular austenitic steels are well suited. Particularly advantageous is stainless steel.
- Suitable materials for the oxidation protection layer are, for example, AlCro from Praxair with a composition of 23.5% by weight of chromium, 5.3% by weight of aluminum, 0.65% by weight of silicon and ad 100% iron. Also suitable is wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1Si 0.08C 0.045P 0.030S (ie 17 wt% chromium, 12 wt% nickel, 2.5 wt% molybdenum, 2 Wt% manganese, 1 wt% silicon, 0.08 wt% carbon, 0.045 wt% phosphorus, 0.030 wt% sulfur and ad 100% iron).
- the iron contents of suitable alloys are generally 3% or more, advantageously 5% or more, usually 10% to 85%, in particular 20% to 80%, or 25% to 71%, or 30 to 80%, in particular 50 to 70%. or 60 to 65%. Most iron contents are 60 to 80%, in particular 60 to 70%.
- Suitable iron alloys also contain chromium in amounts of 10% to 30%, in particular 15% to 25%, advantageously 17 to 24% or 15 to 20%.
- suitable iron alloys for the oxidation protection layer often contain nickel in amounts of 3 to 70%, in particular 4 to 65%, advantageously 12 to 60%, but also 3 to 12 or 4 to 11, or 55 to 65 or 59 to 61%.
- the suitable alloys may also contain silicon in amounts of 0.5 to 5%, preferably 0.6 to 1.6%, in particular 1 to 1.5%.
- Some alloys may also contain aluminum in amounts of from 0.6 to 6%, preferably from 1 to 5.5% or from 0.8 to 1.7%, or from 4.4 to 5.3%.
- the oxidation protection layer can also be alloyed with one or more metals from the group molybdenum, manganese, niobium, tantalum and hafnium in a proportion of 1 to 5%, preferably 2 to 3% or 2 to 2.5%.
- the data relate to percent by weight.
- the oxidation protection layer has a thickness of usually less than 5 mm, in particular 50 .mu.m to 1 mm, advantageously from 100 .mu.m to 900 .mu.m, in particular from 300 .mu.m to 500 .mu.m.
- At least one intermediate layer may be present between the oxidation protection layer and the refractory metal main body.
- the intermediate layer may be an oxide or nitride layer, or a composite layer, in particular an oxide or nitride layer of the refractory metal or a composite layer of a refractory metal and a non-refractory metal, in particular iron.
- the intermediate layer may consist of the oxides and / or nitrides of the refractory metals used in each case for the main body.
- intermediate layers are also oxide layers such as Y 2 0 3 , HfO 2 , ZrO 2 , La 2 O 3 , TiO 2 , Al 2 O 3 , but also carbidic or nitridic layers such as HfC, TaC, NbC or Mo 2 C or TiN , HfN or ZrN.
- oxide layers such as Y 2 0 3 , HfO 2 , ZrO 2 , La 2 O 3 , TiO 2 , Al 2 O 3
- carbidic or nitridic layers such as HfC, TaC, NbC or Mo 2 C or TiN , HfN or ZrN.
- the intermediate layers can also be selected according to their influence on the crystallization of the refractory metal.
- the intermediate layer, but also the oxidation protection layer can be selected so that the refractory metal is microalloyed.
- all known coating processes for the deposition of the intermediate layer may be considered, e.g. Chemical vapor deposition, physical vapor deposition or plasma spraying of powder.
- the atmospheric plasma spraying of, for example, HfO 2 or ZrO 2 is advantageous.
- the Interlayer can also be implemented by a reaction of pre-applied components, such as carbon, with the base material to, for example, carbides). Hydrocarbons, nitrogen or oxygen or gas mixtures containing these gases are suitable as reactive gas phases, in order to bring about a conversion of the surface of the refractory metal to its carbide, oxide or nitride.
- the intermediate layer is an oxide or nitride of the refractory metal used in each case, the intermediate layer can also be effected by targeted oxidation or nitriding of the surface. In this case, oxides, suboxides or mixtures thereof can be obtained.
- nitrides salt-like nitrides or metal-like nitrides (solid solutions of nitrogen in the refractory metal) are possible, with metal-type nitrides being advantageous.
- an oxide layer by an electrochemical reaction such as electrolytic oxidation
- niobium or tantalum may be used.
- an acid such as phosphoric acid and applying a certain voltage targeted oxide layers of a certain thickness can be applied.
- the oxidation protection layer itself can also be deposited by means of coating methods otherwise customary for this purpose, with the exception of pack cementing. Process advantages are offered by the thermal spraying of reaction barrier layer and oxidation protection layer in immediately successive operations.
- the preform blank according to the invention can be used for the production of shaped bodies from refractory metals or their alloys, which are heated one or more times to the temperature required for hot working and then formed by forging or rolling.
- the step of providing includes the production of refractory metal and the production of a blank by powder metallurgy or melt metallurgy.
- the provision also includes trimming, which may include sawing, breaking edges, and incorporating a picking centering.
- the provision also comprises surface activation, which is effected, for example, by blasting the surface to a minimum roughness of Rz> 40 ⁇ m, advantageously> 60 ⁇ m, determined in accordance with DIN EN 4287
- an oxidation protection layer is applied again before the heat treatment.
- the heat treatment is generally carried out at a temperature of 500 ° C to 1500 ° C, preferably from 1000 ° C to 1250 ° C and a period of 1 to 5 hours.
- the mechanical processing according to the invention forging, rolling or extruding.
- the removal of the oxidation protection layer may be effected by machining, thermal vacuum treatment, or blasting with sand or metal particles, either singly or in combination with each other.
- the oxidation protection layer can first be removed by, for example, sandblasting and then by twisting on a Lathe the surface to be further cleaned.
- the resulting chips can be recycled or sold, for example, to the steel industry.
- the methods of plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying or cold gas spraying can thus be used for applying oxidation protection layers to refractory metals prior to their thermal treatment of mechanical processing.
- a molybdenum blank weighing about 0.7 tons, about 2 meters long and about 20 cm in diameter was heated to a temperature of about 1150 ° C in a gas fired oven for a period of 3 hours.
- a strong surface oxidation and smoke development occurred due to sublimation of the molybdenum oxide.
- Radial forging reduced the diameter of the blank until further hot forming by cooling was no longer possible.
- the blank was heated and forged two more times as described to a temperature of 1154 ° C until the diameter was about 50 mm.
- a weight loss of molybdenum of about 21 kg (corresponding to 3%) was found.
- a molybdenum blank weighing about 0.7 tons, about 2 meters long and about 20 cm in diameter was made by blasting the surface with metal balls (chilled granules) of 1.2-1.6 mm grain size on a 5 bar pressure blast machine Pressure up to a surface roughness (determined as Rz by tactile roughness measurement with stylus to DIN EN 4286) Rz roughened by about 60 microns and then by arc spraying with stainless steel (wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1 Si 0, 08C 0.045P 0.030S) until a thickness of about half a millimeter is reached.
- the molding blank thus obtained was heated in a gas-heated oven for a time of about 180 minutes to a temperature of about 1150 ° C.
- the oxidation protection layer was removed by blasting the surface with metal balls (chilled cast granules) of a pressure jet apparatus at 5 bar as above. It was found that the required diameter of the blank of about 50 mm was reached. A weight loss of molybdenum of less than 7 kg (corresponding to less than 1%) was found.
- a molybdenum blank weighing about 3 kg, about 200 mm in length and about 20 mm in diameter was roughened by blasting the surface with metal balls (chilled granules) of a blast machine at 5 bar to a surface roughness of about 60 ⁇ m, followed by arc spraying with stainless steel Steel (wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1Si 0.08C 0.045P 0.030S) until a thickness of about half a millimeter was reached.
- the molding blank thus obtained was heated in a muffle furnace for a period of 6 hours in the air to a temperature of 1300 ° C. There was no oxidation or sublimation effect.
- Example 2 By comparing Example 2 with the Comparative Example, it can be seen that, on the one hand, the sublimation loss due to the processing is significantly reduced and, moreover, a heat treatment step could be saved, which was brought about by the insulating effect of the oxidation protection layer.
- Example 3 shows a significantly improved oxidation resistance.
- Example 2 The procedure was as in Example 2 and assessed the suitability of various coating materials.
- the examples are summarized in Table 1.
- Table 1 material spraying method Schichticke Porosdmaschine glow Forge
- Example 4 Fe18Cr1AllSi APS ⁇ 250 ⁇ m medium Good Good Good
- Example 5 X 12 CrNi 25.4 LBS ⁇ 250 ⁇ m low Good Good
- Example 6 NiFe25Cr15 LBS ⁇ 600 ⁇ m medium Good Good NiFeCr Ni 60.5%
- Example 7 Fe 22% LBS ⁇ 500 ⁇ m low Good medium Cr 16% Si 1.5% (Metco 4538)
- Example 8 Fe 23.5Cr 5.3Al 0.65Si ( ALCRO ) LBS ⁇ 500 ⁇ m low Good Good Comparative
- Example 2 Titanium (pure) APS ⁇ 250 ⁇ m high medium bad Comparative example 3 stellite ⁇ 250 ⁇ m Co 42-53% Cr 24-33% APS medium bad bad W 11-22% C 1.8-3% Comparative example 4
- APS Atmospheric plasma spraying
- HVOF High-speed flame spraying
- LBS Arc spraying.
- the titanium coating embrittles very quickly in the air and dissolves during forging.
- the stellite layer had a poor adhesion, burst even on annealing over a large area and brought no improvement.
- the coatings used in Comparative Examples 4 and 5 harden very quickly and strongly during forging, as a result of which the blank can no longer be forged quickly.
- the zirconium dioxide layer in Comparative Example 6, however, are very brittle and burst.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
Refraktärmetalle besitzen die Eigenschaften bis zu höchsten Temperaturen ihre Festigkeit beizubehalten. Problematisch ist jedoch, dass diese Metalle und Legierungen eine nur geringe Widerstandsfähigkeit gegenüber Oxidation aufweisen, wenn sie bei hohen Temperaturen von über 400°C Luft oder anderen oxidierenden Medien ausgesetzt sind.Refractory metals have the properties to maintain their strength up to the highest temperatures. The problem, however, is that these metals and alloys have little resistance to oxidation when exposed to air or other oxidizing media at high temperatures in excess of 400 ° C.
Dies ist problematisch, weil bei einer der Temperaturbehandlung und folgender mechanischer Bearbeitung durch die Hitze des Refraktärmetalls das Oxid sublimiert. Der dabei entstehende Rauch ist nicht nur reizend und gesundheitsschädlich und muss daher z.B. durch Absaugen entfernt werden, sondern es tritt dadurch auch ein signifikanter Verlust an wertvollem Refraktärmetall auf, der ca. 3-6 Gew.-% betragen kann.This is problematic because at one of the temperature treatment and subsequent mechanical processing by the heat of the refractory metal, the oxide sublimes. The resulting smoke is not only irritating and injurious to health and therefore must be e.g. be removed by suction, but it also occurs by a significant loss of valuable refractory metal, which may be about 3-6 wt .-%.
Um diese starke Oxidationsanfälligkeit zu verbessern ist es bekannt, die Oberfläche der hochschmelzenden Metalle mit entsprechenden Schutzschichten zu versehen. Für viele Anwendungen hat sich die Aufbringung von Beschichtungen aus Siliziden oder Aluminiden bewährt, was in der der
In
Derartige Beschichtungen werden nach dem Aufbringen durch eine Diffusionsglühbehandlung aufgeschmolzen. Dieses Überschmelzen ist bei diesen Silizid- bzw. Aluminidschichten, die heute fast ausschliesslich durch Schlickerbeschichtung bzw. Plasmaspritzen aufgebracht werden, zwingende Voraussetzung zur Homogenisierung der Schichtkomponenten sowie zur Herstellung der erforderlichen Sperre der Schicht gegenüber Sauerstoffpermeation.Such coatings are melted after application by a diffusion annealing. In the case of these silicide or aluminide layers, which today are applied almost exclusively by slip coating or plasma spraying, this overmelting is an essential prerequisite for homogenizing the layer components and for producing the required barrier of the layer to oxygen permeation.
Diese bekannten Schichten sind jedoch alle hart und spröde, so dass sie zwar bei einer Wärmebehandlung die Oxidation des Refraktärmetalls an der Luft und die Sublimation des Oxides verringern, allerdings werden bei einer mechanischen Bearbeitung so stark beschädigt, dass dieser vorteilhafte Effekt nicht mehr auftritt.However, these known layers are all hard and brittle, so that although they reduce the oxidation of the refractory metal in the air and the sublimation of the oxide in a heat treatment, but so heavily damaged in a mechanical processing, that this beneficial effect no longer occurs.
Die Aufgabe der vorliegenden Erfindung ist es daher, einen Rohling mit einem Grundkörper aus einem Refraktärmetall und einer Oxidationsschutzschicht bereitzustellen, wobei die Schicht die Oxidation beim Erhitzen auf die beim Warmumformen notwendige Temperatur ebenso reduziert wie die Verluste durch Sublimation des Oxides (Abdampfverluste), eine bessere Oberflächenqualität ermöglicht, als Wärmeisolierung dient, bei der Erwärmung für die Beschichtung der Öfen unschädlich ist und auch bei der Warmumformung auf dem Refraktärmetallrohling haftet und diesen schützt.The object of the present invention is therefore to provide a blank having a base body of a refractory metal and an oxidation protective layer, wherein the layer reduces the oxidation when heated to the temperature required during hot working as well as the losses by sublimation of the oxide (evaporation losses), a better Surface quality allows, serves as thermal insulation, is harmless in the heating for the coating of the furnaces and also adheres to the refractory metal blank during hot forming and this protects.
Diese Aufgabe wird gelöst durch einen Formteilrohling aus einem Grundkörper, der aus mindestens einem Refraktärmetall und einer Oxidationsschutzschicht aus mindestens einer Metallschicht besteht.This object is achieved by a molding blank made of a base body which consists of at least one refractory metal and an oxidation protection layer of at least one metal layer.
Es wurde überraschend gefunden, dass hierbei nicht nur die Abdampfverluste auf 1 Gew.-% oder weniger reduziert werden konnten, sondern durch den isolierenden Effekt der Oxidationsschutzschicht der Formteilrohling länger warmumgeformt werden konnte, da die hierfür benötigte Temperatur länger gehalten wurde, wodurch ein Wärmebehandlungsschritt weniger durchgeführt werden musste.It was surprisingly found that in this case not only the evaporation losses could be reduced to 1 wt .-% or less, but could be hot-formed by the insulating effect of the oxidation protective layer of the molding blank longer because the temperature required for this was kept longer, making a heat treatment step less had to be carried out.
Die Oxidationsschutzschicht ist vorteilhaft frei von Siliziden und Aluminiden, das heißt der Gehalt an Siliziden beträgt nicht mehr als 1 Gew.-%The oxidation protection layer is advantageously free of silicides and aluminides, that is to say the content of silicides is not more than 1% by weight.
Unter Siliziden sind insbesondere Legierungen auf Siliziumbasis mit mindestens 60 at% Si und 5 - 40 at% von einem oder mehreren Elementen aus der Gruppe Cr, Fe, Ti, Zr, Hf, B und C und unter Aluminiden insbesondere Legierungen auf Aluminiumbasis mit mindestens 60 at% Al und 5 - 40 at% von einem oder mehreren Elementen aus der Gruppe Si, Cr, Ti, Zr, Hf, Pt, B und C zu verstehen.Silicides include, in particular, silicon-based alloys having at least 60 at% Si and 5-40 at% of one or more elements from the group consisting of Cr, Fe, Ti, Zr, Hf, B and C, and aluminides, in particular aluminum-based alloys having at least 60 at% Al and 5-40 at% of one or more elements from the group Si, Cr, Ti, Zr, Hf, Pt, B and C.
In der Regel wird eine optimale Anpassung der thermischen Ausdehnungskoeffizienten von Grundmaterial, Reaktionssperrschicht und Oxidationsschutzschicht die Temperaturwechselbeständigkeit des Formteilrohlings wesentlich erhöhen.In general, an optimal adaptation of the thermal expansion coefficients of base material, reaction barrier layer and oxidation protection layer will significantly increase the thermal shock resistance of the molding blank.
Gemäß der Erfindung ist das Refraktärmetall ausgewählt ist aus der Gruppe bestehend aus Molybdän, Wolfram, Tantal, Niob und deren Legierungen. Es kann sich hierbei um Legierungen von Refraktärmetallen miteinander oder mit anderen Metallen handeln, wobei jedoch der Gehalt an Refraktärmetall gemäß der Erfindung 50% oder mehr betragen muß.According to the invention, the refractory metal is selected from the group consisting of molybdenum, tungsten, tantalum, niobium and their alloys. These may be alloys of refractory metals with each other or with other metals, but the content of refractory metal according to the invention must be 50% or more.
Die Oxidationsschicht kann gemäß der Erfindung durch Plasmaspritzen, atmosphärisches Plasmaspritzen, Lichtbogenspritzen, Flammspritzen oder Kaltgasspritzen aufgebracht werden.The oxidation layer can be applied according to the invention by plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying or cold gas spraying.
Gemäß der Erfindung besteht die Oxidationsschutzschicht aus Eisen oder einer Eisenlegierung, wie Stählen, insbesondere austenitische Stähle sind gut geeignet. Besonders vorteilhaft ist rostfreier Stahl.According to the invention, the oxidation protection layer consists of iron or an iron alloy, such as steels, in particular austenitic steels are well suited. Particularly advantageous is stainless steel.
Geeignete Materialien für die Oxidationsschutzschicht sind beispielsweise AlCro von Praxair mit einer Zusammensetzung von 23,5 Gew.-% Chrom, 5,3 Gew.-% Aluminium, 0,65 Gew.-% Silizium und ad 100% Eisen. Ebenfalls geeignet ist Draht Typ Metco 4, Zusammensetzung Fe 17Cr 12Ni 2,5Mo 2Mn 1Si 0,08C 0,045P 0,030S (also 17 Gew.-% Chrom, 12 Gew.-% Nickel, 2,5 Gew.-% Molybdän, 2 Gew.-% Mangan, 1 Gew.-% Silizium, 0,08 Gew.-% Kohlenstoff, 0,045 Gew.-% Phosphor, 0,030 Gew.-% Schwefel und ad 100% Eisen).Suitable materials for the oxidation protection layer are, for example, AlCro from Praxair with a composition of 23.5% by weight of chromium, 5.3% by weight of aluminum, 0.65% by weight of silicon and ad 100% iron. Also suitable is wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1Si 0.08C 0.045P 0.030S (ie 17 wt% chromium, 12 wt% nickel, 2.5 wt% molybdenum, 2 Wt% manganese, 1 wt% silicon, 0.08 wt% carbon, 0.045 wt% phosphorus, 0.030 wt% sulfur and ad 100% iron).
Die Eisengehalte geeigneter Legierungen betragen in der Regel 3 % oder mehr, vorteilhaft 5 % oder mehr, meist 10% bis 85 % insbesondere 20% bis 80 %, oder 25% bis 71%, oder 30 bis 80 %, insbesondere 50 bis 70 % oder 60 bis 65%. Meist liegen die Eisengehalte bei 60 bis 80%, insbesondere 60 bis 70 %.The iron contents of suitable alloys are generally 3% or more, advantageously 5% or more, usually 10% to 85%, in particular 20% to 80%, or 25% to 71%, or 30 to 80%, in particular 50 to 70%. or 60 to 65%. Most iron contents are 60 to 80%, in particular 60 to 70%.
Geeignete Eisenlegierungen enthalten außerdem Chrom in Mengen von 10% bis 30 %, insbesondere 15 % bis 25 %, vorteilhaft 17 bis 24 % oder 15 bis 20 %.Suitable iron alloys also contain chromium in amounts of 10% to 30%, in particular 15% to 25%, advantageously 17 to 24% or 15 to 20%.
Geeignete Eisenlegierungen für die Oxidationsschutzschicht enthalten außerdem oft Nickel in Mengen von 3 bis 70 %, insbesondere 4 bis 65 %, vorteilhaft 12 bis 60%, aber auch 3 bis 12 oder 4 bis 11, oder 55 bis 65 oder 59 bis 61 %.In addition, suitable iron alloys for the oxidation protection layer often contain nickel in amounts of 3 to 70%, in particular 4 to 65%, advantageously 12 to 60%, but also 3 to 12 or 4 to 11, or 55 to 65 or 59 to 61%.
Die geeigneten Legierungen können auch Silizium in Mengen von 0,5 bis 5 %, vorteilhaft 0,6 bis 1,6 %, insbesondere 1 bis 1,5 % enthalten.The suitable alloys may also contain silicon in amounts of 0.5 to 5%, preferably 0.6 to 1.6%, in particular 1 to 1.5%.
Einige Legierungen können auch Aluminium in Mengen von 0,6 bis 6 % enthalten, vorteilhaft von 1 bis 5,5 % oder von 0,8 bis 1,7%, oder 4,4 bis 5,3 %.Some alloys may also contain aluminum in amounts of from 0.6 to 6%, preferably from 1 to 5.5% or from 0.8 to 1.7%, or from 4.4 to 5.3%.
Die Oxidationsschutzschicht kann außerdem mit einem oder mehreren Metallen aus der Gruppe Molybdän, Mangan, Niob, Tantal und Hafnium in einem Anteil von je 1 bis 5%, vorteilhaft 2 bis 3 % oder 2 bis 2,5% legiert sein. Die Angaben beziehen sich jeweils auf Gewichtsprozent.The oxidation protection layer can also be alloyed with one or more metals from the group molybdenum, manganese, niobium, tantalum and hafnium in a proportion of 1 to 5%, preferably 2 to 3% or 2 to 2.5%. The data relate to percent by weight.
Insbesondere sind austenitische, eisenhaltige Legierungen geeignet, welche enthalten:
- 20 bis 80 Gew.-% Fe;
- 14 bis 24 Gew.-% Cr;
- 0 bis 60 Gew.-% Ni;
- bis 1,5 Gew.-% Si;
- bis 6 Gew.-% Al;
- bis 3 Gew.-% Mo;
- bis 3 Gew.-% Mn;
weniger als je 0,1 Gew.-% C, P oder S,
wobei sich die Komponenten zu 100 Gew.-% ergänzen;
oder - 20 bis 80 Gew.-% Fe;
- 14 bis 24 Gew.-% Cr;
- 0 bis 60 Gew.-% Ni;
- bis 1,5 Gew.-% Si;
- 1 bis 5,5 Gew.-% Al;
wobei sich die Komponenten zu 100 Gew.-% ergänzen;
oder - 70 bis 80 Gew.-% Fe;
- 17 bis 24 Gew.-% Cr;
- 0 bis 1,5 Gew.-% Si;
- 1 bis 5,5 Gew.-% Al;
wobei sich die Komponenten zu 100 Gew.-% ergänzen;
oder - 70 bis 80 Gew.-% Fe;
- 17 bis 24 Gew.-% Cr;
- 1 bis 1,5 Gew.-% Si;
- 0,9 bis 1,2 Gew.-% oder 4,5 bis 5,5 Gew.-% Al;
wobei sich die Komponenten zu 100 Gew.-% ergänzen;
oder - 20 bis 75 Gew.-% Fe;
- 15 bis 25 Gew.-% Cr;
- 4 bis 61 Gew.-% Ni;
- 0 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen;
oder - 70 bis 75 Gew.-% Fe;
- 15 bis 25 Gew.-% Cr;
- 3 bis 15 Gew.-% Ni;
- 0 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 20 bis 75 Gew.-% Fe;
- 15 bis 25 Gew.-% Cr;
- 4 bis 61 Gew.-% Ni;
- 1 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 70 bis 75 Gew.-% Fe;
- 15 bis 25 Gew.-% Cr;
- 3 bis 15 Gew.-% Ni;
- 1 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 18 bis 28 Gew.-% Fe;
- 12 bis 20 Gew.-% Cr;
- 50 bis 65 Gew.-% Ni;
- 0 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 20 bis 25 Gew.-% Fe;
- 15 bis 18 Gew.-% Cr;
- 58 bis 63 Gew.-% Ni;
- 0 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 18 bis 28 Gew.-% Fe;
- 12 bis 20 Gew.-% Cr;
- 50 bis 65 Gew.-% Ni;
- 1 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen; oder - 20 bis 25 Gew.-% Fe;
- 15 bis 18 Gew.-% Cr;
- 58 bis 63 Gew.-% Ni;
- 1 bis 1,5 Gew.-% Si;
wobei sich die Komponenten zu 100 Gew.-% ergänzen,
und wobei diese Legierungen noch unvermeidbare Verunreinigungen enthalten können.
- From 20 to 80% by weight of Fe;
- 14 to 24% by weight Cr;
- 0 to 60% by weight of Ni;
- to 1.5% by weight of Si;
- to 6% by weight of Al;
- up to 3% by weight of Mo;
- up to 3% by weight of Mn;
less than 0.1% by weight each of C, P or S,
wherein the components add up to 100% by weight;
or - From 20 to 80% by weight of Fe;
- 14 to 24% by weight Cr;
- 0 to 60% by weight of Ni;
- to 1.5% by weight of Si;
- 1 to 5.5% by weight of Al;
wherein the components add up to 100% by weight;
or - 70 to 80% by weight of Fe;
- 17 to 24% by weight Cr;
- 0 to 1.5% by weight of Si;
- 1 to 5.5% by weight of Al;
wherein the components add up to 100% by weight;
or - 70 to 80% by weight of Fe;
- 17 to 24% by weight Cr;
- 1 to 1.5% by weight of Si;
- 0.9 to 1.2 wt% or 4.5 to 5.5 wt% Al;
wherein the components add up to 100% by weight;
or - From 20 to 75% by weight of Fe;
- 15 to 25% by weight Cr;
- 4 to 61% by weight of Ni;
- 0 to 1.5% by weight of Si;
wherein the components add up to 100% by weight;
or - 70 to 75% by weight of Fe;
- 15 to 25% by weight Cr;
- 3 to 15% by weight of Ni;
- 0 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - From 20 to 75% by weight of Fe;
- 15 to 25% by weight Cr;
- 4 to 61% by weight of Ni;
- 1 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - 70 to 75% by weight of Fe;
- 15 to 25% by weight Cr;
- 3 to 15% by weight of Ni;
- 1 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - 18 to 28% by weight of Fe;
- 12 to 20% by weight of Cr;
- 50 to 65% by weight of Ni;
- 0 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - 20 to 25% by weight of Fe;
- 15 to 18% by weight of Cr;
- 58 to 63% by weight of Ni;
- 0 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - 18 to 28% by weight of Fe;
- 12 to 20% by weight of Cr;
- 50 to 65% by weight of Ni;
- 1 to 1.5% by weight of Si;
wherein the components add up to 100% by weight; or - 20 to 25% by weight of Fe;
- 15 to 18% by weight of Cr;
- 58 to 63% by weight of Ni;
- 1 to 1.5% by weight of Si;
wherein the components add up to 100% by weight,
and these alloys may still contain unavoidable impurities.
Die Oxidationsschutzschicht hat eine Dicke von meist weniger als 5 mm, insbesondere 50 µm bis 1 mm, vorteilhaft von 100 µm bis 900 µm, insbesondere von 300 µm bis 500 µm.The oxidation protection layer has a thickness of usually less than 5 mm, in particular 50 .mu.m to 1 mm, advantageously from 100 .mu.m to 900 .mu.m, in particular from 300 .mu.m to 500 .mu.m.
Zwischen der Oxidationsschutzschicht und dem Grundkörper aus dem Refraktärmetall kann sich mindestens eine Zwischenschicht befinden.At least one intermediate layer may be present between the oxidation protection layer and the refractory metal main body.
Die Zwischenschicht kann eine Oxid- oder Nitridschicht, oder eine Verbundwerkstoffschicht sein, insbesondere eine Oxid- oder Nitridschicht des Refraktärmetalls oder eine Verbundwerkstoffschicht aus einem Refraktärmetall und einem Nichtrefraktärmetall, insbesondere Eisen. Insbesondere kann die Zwischenschicht aus den Oxiden und/oder Nitriden der jeweils für den Grundkörper eingesetzten Refraktärmetalle bestehen.The intermediate layer may be an oxide or nitride layer, or a composite layer, in particular an oxide or nitride layer of the refractory metal or a composite layer of a refractory metal and a non-refractory metal, in particular iron. In particular, the intermediate layer may consist of the oxides and / or nitrides of the refractory metals used in each case for the main body.
Als Zwischenschichten sind auch oxidische Schichten wie Y203, HfO2, ZrO2, La2O3, TiO2,Al2O3, aber auch karbidische oder nitridische Schichten wie HfC, TaC, NbC oder Mo2C bzw. TiN, HfN oder ZrN geeignet. Die Auswahl des Schichtsystems, der Schichtstärke sowie des Beschichtungsverfahrens richtet sich hiebei nach Werkstoff und Abmessungen der zu schützenden Komponente einerseits und den Einsatzbedingungen andererseits.As intermediate layers are also oxide layers such as Y 2 0 3 , HfO 2 , ZrO 2 , La 2 O 3 , TiO 2 , Al 2 O 3 , but also carbidic or nitridic layers such as HfC, TaC, NbC or Mo 2 C or TiN , HfN or ZrN. The choice of the layer system, the layer thickness and the coating method depends hiebei on material and dimensions of the component to be protected on the one hand and the operating conditions on the other.
Die Zwischenschichten können aber auch nach ihrem Einfluß auf die Kristallisation des Refraktärmetalls ausgewählt werden. Die Zwischenschicht, aber auch die Oxidationsschutzschicht kann so ausgewählt werden, dass das Refraktärmetall mikrolegiert wird.However, the intermediate layers can also be selected according to their influence on the crystallization of the refractory metal. The intermediate layer, but also the oxidation protection layer can be selected so that the refractory metal is microalloyed.
Grundsätzlich kommen sämtliche bekannte Beschichtungsverfahren für die Abscheidung der Zwischenschicht in Betracht, wie z.B. Chemische Dampfabscheidung, Physikalische Dampfabscheidung oder Plasmaspritzen von Pulver.In principle, all known coating processes for the deposition of the intermediate layer may be considered, e.g. Chemical vapor deposition, physical vapor deposition or plasma spraying of powder.
Vorteilhaft ist das Atmosphärische Plasmaspritzen z.B. von HfO2 oder ZrO2. Die Zwischenschicht kann aber auch durch eine Reaktion von vorab aufgebrachten Komponenten, wie beispielsweise Kohlenstoff, mit dem Grundwerkstoff zu beispielsweise Karbiden) umgesetzt werden. Als reaktive Gasphasen sind insbesondere Kohlenwasserstoffe, Stickstoff oder Sauerstoff bzw. Gasgemische, die diese Gase enthalten, geeignet, um eine Umsetzung der Oberfläche des Refraktärmetalls zu dessen Karbid, Oxid oder Nitrid zu bewirken.The atmospheric plasma spraying of, for example, HfO 2 or ZrO 2 is advantageous. The Interlayer can also be implemented by a reaction of pre-applied components, such as carbon, with the base material to, for example, carbides). Hydrocarbons, nitrogen or oxygen or gas mixtures containing these gases are suitable as reactive gas phases, in order to bring about a conversion of the surface of the refractory metal to its carbide, oxide or nitride.
Wenn es sich bei der Zwischenschicht um Oxide oder Nitride des jeweils verwendeten Refraktärmetalls handelt, so kann die Zwischenschicht auch durch gezielte Oxidation oder Nitridierung der Oberfläche bewirkt werden. Dabei können Oxide, Suboxide oder deren Gemische erhalten werden. Als Nitride sind salzartige Nitride oder auch metallartige Nitride (feste Lösungen von Stickstoff in dem Refraktärmetall) möglich, wobei metallartige Nitride vorteilhaft sind.If the intermediate layer is an oxide or nitride of the refractory metal used in each case, the intermediate layer can also be effected by targeted oxidation or nitriding of the surface. In this case, oxides, suboxides or mixtures thereof can be obtained. As nitrides, salt-like nitrides or metal-like nitrides (solid solutions of nitrogen in the refractory metal) are possible, with metal-type nitrides being advantageous.
Auch das Aufbringen eine Oxidschicht durch eine elektrochemische Reaktion, wie elektrolytische Oxidation, ist möglich: so können auf Niob oder Tantal z.B. in einer Säure wie Phosphorsäure und Anlegen einer bestimmten Spannung gezielt Oxidschichten einer bestimmten Dicke aufgebracht werden.Also, the application of an oxide layer by an electrochemical reaction, such as electrolytic oxidation, is possible: for example, niobium or tantalum may be used. In an acid such as phosphoric acid and applying a certain voltage targeted oxide layers of a certain thickness can be applied.
Die Oxidationsschutzschicht selbst kann ebenfalls mit allen hiefür sonst üblichen Beschichtungsverfahren abgeschieden werden, mit Ausnahme des Packzementierens. Verfahrenstechnische Vorteile bietet das thermische Spritzen von Reaktionssperrschicht und Oxidationsschutzschicht in unmittelbar aufeinander folgenden Arbeitsgängen.The oxidation protection layer itself can also be deposited by means of coating methods otherwise customary for this purpose, with the exception of pack cementing. Process advantages are offered by the thermal spraying of reaction barrier layer and oxidation protection layer in immediately successive operations.
Der Formteilrohlings gemäß der Erfindung kann zur Herstellung von Formkörpern aus Refraktärmetallen oder deren Legierungen verwendet werden, wobei dieser ein- oder mehrfach auf die zum Warmumformen erforderliche Temperatur erhitzt und anschließend durch Schmieden oder Walzen umgeformt werden.The preform blank according to the invention can be used for the production of shaped bodies from refractory metals or their alloys, which are heated one or more times to the temperature required for hot working and then formed by forging or rolling.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Formteilrohlings enthaltend die Schritte:
- Bereitstellen eines Rohlings aus Refraktärmetall;
- Aufbringen der Oxidationsschutzschicht durch Plasmaspritzen, atmosphärisches Plasmaspritzen, Lichtbogenspritzen, Flammspritzen, Hochgeschwindigkeits-Flammspritzen (HVOF) oder Kaltgasspritzen.
- Providing a blank of refractory metal;
- Application of the oxidation protection layer by plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying, high-speed flame spraying (HVOF) or cold gas spraying.
Der Schritt des Bereitstellens umfasst die Herstellung von Refraktärmetall und die Herstellung eines Rohlings durch Pulvermetallurgie oder Schmelzmetallurgie. Das Bereitstellen umfasst außerdem das Zurichten, welches das Sägen, Kanten brechen und das Einbringen einer Aufnahmezentrierung umfassen kann. Vorteilhaft umfasst das Bereitstellen außerdem die Oberflächenaktivierung, welche beispielsweise durch ein Strahlen der Oberfläche auf eine Mindestrauhigkeit von Rz > 40 µm, vorteilhaft > 60 µm, bestimmt nach DIN EN 4287, bewirkt wirdThe step of providing includes the production of refractory metal and the production of a blank by powder metallurgy or melt metallurgy. The provision also includes trimming, which may include sawing, breaking edges, and incorporating a picking centering. Advantageously, the provision also comprises surface activation, which is effected, for example, by blasting the surface to a minimum roughness of Rz> 40 μm, advantageously> 60 μm, determined in accordance with DIN EN 4287
Somit betrifft die vorliegende Erfindung auch ein Verfahren zur Herstellung eines Formteilrohlings enthaltend die Schritte:
- Bereitstellen eines Rohlings aus Refraktärmetall;
- Aktivieren der Oberfläche, vorteilhaft durch Strahlen auf eine Mindestrauhigkeit von Rz > 40 µm, vorteilhaft > 60 µm, bestimmt nach DIN EN 4287
- Aufbringen der Oxidationsschutzschicht durch Plasmaspritzen, atmosphärisches Plasmaspritzen, Lichtbogenspritzen, Flammspritzen, Hochgeschwindigkeits-Flammspritzen (HVOF) oder Kaltgasspritzen.
- Providing a blank of refractory metal;
- Activation of the surface, advantageously by blasting to a minimum roughness of Rz> 40 microns, advantageously> 60 microns, determined according to DIN EN 4287
- Application of the oxidation protection layer by plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying, high-speed flame spraying (HVOF) or cold gas spraying.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Formteilrohlings enthaltend die Schritte:
- Bereitstellen eines Formteilrohlings wie oben beschrieben;
- Wärmebehandeln des Formteilrohlings;
- mechanische Bearbeitung des Formteilrohlings;
- gegebenenfalls Wiederholung von Wärmebehandlung und mechanischer Bearbeitung;
- Entfernen der Oxidationsschutzschicht.
- Providing a molding blank as described above;
- Heat treating the molding blank;
- mechanical processing of the molding blank;
- if necessary repetition of heat treatment and mechanical processing;
- Removing the oxidation protection layer.
Vorteilhaft wird bei der Wiederholung von Wärmebehandlung und mechanischer Bearbeitung wird vor der Wärmebehandlung erneut eine Oxidationsschutzschicht aufgebracht.Advantageously, in the repetition of heat treatment and mechanical processing, an oxidation protection layer is applied again before the heat treatment.
Die Wärmebehandlung erfolgt im Allgemeinen bei einer Temperatur von 500°C bis 1500°C, vorteilhaft von 1000°C bis 1250°C und einer Zeitdauer von 1 bis 5 Stunden.The heat treatment is generally carried out at a temperature of 500 ° C to 1500 ° C, preferably from 1000 ° C to 1250 ° C and a period of 1 to 5 hours.
Die mechanische Bearbeitung ist gemäß der Erfindung Schmieden, Walzen oder Extrudieren. Das Entfernen der Oxidationsschutzschicht kann durch spanende Bearbeitung, thermische Vakuumbehandlung oder Strahlen mit Sand oder Metallpartikeln, entweder einzeln oder in Kombination miteinander bewirkt werden. Hierbei kann also die Oxidationsschutzschicht zunächst durch z.B. Sandstrahlen entfernt und anschließend durch Abdrehen auf einer Drehbank die Oberfläche weiter gereinigt werden. Die so entstehenden Späne lassen sich rezyklieren oder z.B. an die Stahlindustrie verkauft werden.The mechanical processing according to the invention forging, rolling or extruding. The removal of the oxidation protection layer may be effected by machining, thermal vacuum treatment, or blasting with sand or metal particles, either singly or in combination with each other. Here, therefore, the oxidation protection layer can first be removed by, for example, sandblasting and then by twisting on a Lathe the surface to be further cleaned. The resulting chips can be recycled or sold, for example, to the steel industry.
Die Verfahren des Plasmaspritzen, atmosphärischen Plasmaspritzen, Lichtbogenspritzen, Flammspritzen oder Kaltgasspritzens lassen sich also zum Aufbringen von Oxidationsschutzschichten auf Refraktärmetalle vor deren thermischer Behandlung mechanischer Bearbeitung verwenden.The methods of plasma spraying, atmospheric plasma spraying, arc spraying, flame spraying or cold gas spraying can thus be used for applying oxidation protection layers to refractory metals prior to their thermal treatment of mechanical processing.
Ein Molybdänrohling mit einem Gewicht von etwa 0,7 t, einer Länge von etwa 2 Metern und einem Durchmesser von etwa 20 cm wurde in einem gasbeheizten Ofen für eine Zeit von 3 Stunden auf eine Temperatur von ca. 1150°C erhitzt. Beim Transport vom Ofen zur Schmiedevorrichtung und beim Schmieden selbst trat eine starke Oberflächenoxidation und Rauchentwicklung durch Sublimation des Molybdänoxids auf. Durch Radialschmieden wurde der Durchmesser des Rohlings verringert bis eine weitere Warmumformung durch die Abkühlung nicht mehr möglich war. Der Rohling wurde noch zwei weitere Male wie beschrieben auf eine Temperatur von 1154°C erwärmt und geschmiedet, bis der Durchmesser etwa 50 mm betrug. Es wurde ein Gewichtsverlust an Molybdän von etwa 21 kg (entsprechend 3 %) festgestellt.A molybdenum blank weighing about 0.7 tons, about 2 meters long and about 20 cm in diameter was heated to a temperature of about 1150 ° C in a gas fired oven for a period of 3 hours. During transport from the furnace to the forging device and during the forging itself, a strong surface oxidation and smoke development occurred due to sublimation of the molybdenum oxide. Radial forging reduced the diameter of the blank until further hot forming by cooling was no longer possible. The blank was heated and forged two more times as described to a temperature of 1154 ° C until the diameter was about 50 mm. A weight loss of molybdenum of about 21 kg (corresponding to 3%) was found.
Ein Molybdänrohling mit einem Gewicht von etwa 0,7 t, einer Länge von etwa 2 Metern und einem Durchmesser von etwa 20 cm wurde durch Strahlen der Oberfläche mit Metallkugeln (Hartgussgranulat) einer Körnung von 1,2-1,6mm eines Druckstrahlgeräts mit 5 bar Druck bis zu einer Oberflächenrauhigkeit (bestimmt als Rz durch taktile Rauhigkeitsmessung mit Tastnadel nach DIN EN 4286) Rz von etwa 60 µm aufgeraut und anschließend durch Lichtbogenspritzen mit rostfreiem Stahl (Draht Typ Metco 4, Zusammensetzung Fe 17Cr 12Ni 2,5Mo 2Mn 1 Si 0,08C 0,045P 0,030S) beschichtet, bis eine Dicke von etwa einem halben Millimeter erreicht wurde. Der so erhaltene Formteilrohling wurde in einem gasbeheizten Ofen für eine Zeit von ca. 180 Minuten auf eine Temperatur von ca. 1150°C erhitzt. Beim Transport vom Ofen zur Schmiedevorrichtung konnte praktisch keine Oberflächenoxidation und nur eine minimale Rauchentwicklung beobachtet werden. Durch Radialschmieden wurde der Durchmesser des Rohlings verringert bis eine weitere Warmumformung durch die Abkühlung nicht mehr möglich war. Während des Radialschmiedens wurde ein Abfallen von Schichtclustern der aufgebrachten Oxidationsschutzschicht aus rostfreiem Stahl beobachtet, wobei es zu einer geringen bis moderaten Rauchentwicklung und Oberflächenoxidation kam. Um den angestrebten Durchmesser des Rohlings von ca. 50 mm zu erreichen wurde nach dem Abkühlen auf etwa Raumtemperatur durch Lichtbogenspritzen die Oxidationsschutzschicht mit dem gleichen rostfreien Stahl beschichtet. Anschließend wurde erneut auf 1150°C erhitzt und durch Radialschmieden der angestrebte Durchmesser erreicht. Nach dem Abkühlen auf Raumtemperatur wurde durch Strahlen der Oberfläche mit Metallkugeln (Hartgussgranulat) eines Druckstrahlgerätes bei 5 bar wie oben die Oxidationsschutzschicht entfernt. Es wurde festgestellt, dass der erforderliche Durchmesser des Rohlings von ca. 50 mm erreicht wurde. Es wurde ein Gewichtsverlust an Molybdän von weniger als 7 kg (entsprechend kleiner 1 %) festgestellt.A molybdenum blank weighing about 0.7 tons, about 2 meters long and about 20 cm in diameter was made by blasting the surface with metal balls (chilled granules) of 1.2-1.6 mm grain size on a 5 bar pressure blast machine Pressure up to a surface roughness (determined as Rz by tactile roughness measurement with stylus to DIN EN 4286) Rz roughened by about 60 microns and then by arc spraying with stainless steel (wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1 Si 0, 08C 0.045P 0.030S) until a thickness of about half a millimeter is reached. The molding blank thus obtained was heated in a gas-heated oven for a time of about 180 minutes to a temperature of about 1150 ° C. During transport from the furnace to the forging device, virtually no surface oxidation and only minimal smoke formation were observed. Radial forging reduced the diameter of the blank until further hot forming by cooling was no longer possible. During the Radial forging was observed to fall off layer clusters of the applied stainless steel anti-oxidation layer, with little to moderate fuming and surface oxidation. In order to achieve the desired diameter of the blank of about 50 mm, after cooling to about room temperature by arc spraying, the oxidation protective layer was coated with the same stainless steel. It was then heated again to 1150 ° C and reached by radial forging the desired diameter. After cooling to room temperature, the oxidation protection layer was removed by blasting the surface with metal balls (chilled cast granules) of a pressure jet apparatus at 5 bar as above. It was found that the required diameter of the blank of about 50 mm was reached. A weight loss of molybdenum of less than 7 kg (corresponding to less than 1%) was found.
Ein Molybdänrohling mit einem Gewicht von etwa 3kg, einer Länge von etwa 200mm und einem Durchmesser von etwa 20 mm wurde durch Strahlen der Oberfläche mit Metallkugeln (Hartgussgranulat) eines Druckstrahlgerätes bei 5bar bis zu einer Oberflächenrauhigkeit von etwa 60 µm aufgeraut und anschließend durch Lichtbogenspritzen mit rostfreiem Stahl (Draht Typ Metco 4, Zusammensetzung Fe 17Cr 12Ni 2,5Mo 2Mn 1Si 0,08C 0,045P 0,030S) beschichtet, bis eine Dicke von etwa einem halben Millimeter erreicht wurde. Der so erhaltene Formteilrohling wurde in einem Muffel-Ofen für eine Zeit von 6 Stunden an der Luft auf eine Temperatur von 1300°C erhitzt. Es zeigte sich keinerlei Oxidations- oder Sublimationseffekt.A molybdenum blank weighing about 3 kg, about 200 mm in length and about 20 mm in diameter was roughened by blasting the surface with metal balls (chilled granules) of a blast machine at 5 bar to a surface roughness of about 60 μm, followed by arc spraying with stainless steel Steel (wire type Metco 4, composition Fe 17Cr 12Ni 2.5Mo 2Mn 1Si 0.08C 0.045P 0.030S) until a thickness of about half a millimeter was reached. The molding blank thus obtained was heated in a muffle furnace for a period of 6 hours in the air to a temperature of 1300 ° C. There was no oxidation or sublimation effect.
Durch Vergleich des Beispiels 2 mit dem Vergleichsbeispiel ist ersichtlich dass einerseits der Sublimationsverlust durch die Bearbeitung signifikant reduziert ist und außerdem ein Wärmebehandlungsschritt eingespart werden konnte, was durch die Isolationswirkung der Oxidationsschutzschicht bewirkt wurde. Beispiel 3 zeigt eine deutlich verbesserte Oxidationsbeständigkeit.By comparing Example 2 with the Comparative Example, it can be seen that, on the one hand, the sublimation loss due to the processing is significantly reduced and, moreover, a heat treatment step could be saved, which was brought about by the insulating effect of the oxidation protection layer. Example 3 shows a significantly improved oxidation resistance.
Es wurde wie in Beispiel 2 verfahren und die Eignung verschiedener Beschichtungsmaterialien beurteilt. Die Beispiele sind in Tabelle 1 zusammengefasst.
Spritzverfahren: APS: Atmosphärisches Plasmaspritzen, HVOF: Hochgeschwindigkeits-Flammspritzen, LBS: Lichtbogenspritzen.Spray method: APS: Atmospheric plasma spraying, HVOF: High-speed flame spraying, LBS: Arc spraying.
Die Titanbeschichtung versprödet an der Luft sofort sehr stark und löst sich beim Schmieden ab. Die Stellitschicht wies eine schlechte Haftung auf, platzte schon beim Glühen großflächig ab und brachte keine Verbesserung. Die in Vergleichsbeispielen 4 und 5 verwendeten Beschichtungen härten beim Schmieden sehr schnell und stark auf, wodurch der Rohling rasch nicht mehr schmiedbar ist. Die Zirkondioxidschicht im Vergleichsbeispiel 6 sind dagegen sehr spröde und platzen ab.The titanium coating embrittles very quickly in the air and dissolves during forging. The stellite layer had a poor adhesion, burst even on annealing over a large area and brought no improvement. The coatings used in Comparative Examples 4 and 5 harden very quickly and strongly during forging, as a result of which the blank can no longer be forged quickly. The zirconium dioxide layer in Comparative Example 6, however, are very brittle and burst.
In Beispiel 5 wurde eine eisenhaltige Legierung der folgenden Zusammensetzung verwendet:
- Cr 25%
- Nickel 4%
- Fe ad 100%
- Cr 25%
- Nickel 4%
- Fe ad 100%
In Beispiel 6 wurde eine eisenhaltige Legierung der folgenden Zusammensetzung verwendet:
- Fe 25%
- Cr 15%
- Ni ad 100%
- Fe 25%
- Cr 15%
- Ni ad 100%
In Beispiel 7 wurde eine eisenhaltige Legierung der folgenden Zusammensetzung verwendet:
- Ni 60,5%
- Fe 22%
- Cr 16%
- Si 1,5%
(Metco 4538)
- Ni 60.5%
- Fe 22%
- Cr 16%
- Si 1.5%
(Metco 4538)
In Vergleichsbeispiel 3 wurde eine eisenfreie Legierung der folgenden Zusammensetzung verwendet:
- Co 42-53%
- Cr 24-33%
- W 11-22%
- C 1,8-3%
- Co 42-53%
- Cr 24-33%
- W 11-22%
- C 1.8-3%
In Vergleichsbeispiel 4 wurde eine eisenfreie Legierung der folgenden Zusammensetzung verwendet:
- Cr 28%
- Mo 4%
- Nb 2% .
- Ni ad 100%
- Cr 28%
- Mo 4%
- Nb 2%.
- Ni ad 100%
In Vergleichsbeispiel 5 wurde eine eisenfreie Legierung der folgenden Zusammensetzung verwendet:
- Ni 76,5%
- Cr 17%
- Al 6%
- Y 0,5%
(AMDRY 96 1)
- Ni 76.5%
- Cr 17%
- Al 6%
- Y 0.5%
(AMDRY 96 1)
Claims (22)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008036070A DE102008036070A1 (en) | 2008-08-04 | 2008-08-04 | moldings |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2154264A1 true EP2154264A1 (en) | 2010-02-17 |
Family
ID=41064592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09164616A Withdrawn EP2154264A1 (en) | 2008-08-04 | 2009-07-06 | Shaped body |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100028706A1 (en) |
EP (1) | EP2154264A1 (en) |
DE (1) | DE102008036070A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT14202U1 (en) * | 2013-09-06 | 2015-05-15 | Plansee Se | Process for surface treatment by means of cold gas spraying |
US11662300B2 (en) | 2019-09-19 | 2023-05-30 | Westinghouse Electric Company Llc | Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing |
US11898986B2 (en) | 2012-10-10 | 2024-02-13 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009014774A1 (en) | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | hearing aid |
WO2013101561A1 (en) * | 2011-12-30 | 2013-07-04 | Scoperta, Inc. | Coating compositions |
CN103205751B (en) * | 2013-03-20 | 2016-06-22 | 鹤山市鸿图铁艺实业有限公司 | A kind of iron art products surface anti-corrosion treatment process |
US9802387B2 (en) | 2013-11-26 | 2017-10-31 | Scoperta, Inc. | Corrosion resistant hardfacing alloy |
CN106661702B (en) | 2014-06-09 | 2019-06-04 | 斯克皮尔塔公司 | Cracking resistance hard-facing alloys |
CN104166709B (en) * | 2014-08-11 | 2018-10-19 | 百度在线网络技术(北京)有限公司 | Information recommendation method and device |
CN107532265B (en) | 2014-12-16 | 2020-04-21 | 思高博塔公司 | Ductile and wear resistant iron alloy containing multiple hard phases |
JP6999081B2 (en) | 2015-09-04 | 2022-01-18 | エリコン メテコ(ユーエス)インコーポレイテッド | Non-chromium and low chrome wear resistant alloys |
US10851444B2 (en) | 2015-09-08 | 2020-12-01 | Oerlikon Metco (Us) Inc. | Non-magnetic, strong carbide forming alloys for powder manufacture |
WO2017083419A1 (en) | 2015-11-10 | 2017-05-18 | Scoperta, Inc. | Oxidation controlled twin wire arc spray materials |
JP7217150B2 (en) | 2016-03-22 | 2023-02-02 | エリコン メテコ(ユーエス)インコーポレイテッド | Fully readable thermal spray coating |
CN113195759B (en) | 2018-10-26 | 2023-09-19 | 欧瑞康美科(美国)公司 | Corrosion and wear resistant nickel base alloy |
EP3962693A1 (en) | 2019-05-03 | 2022-03-09 | Oerlikon Metco (US) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540863A (en) | 1968-01-22 | 1970-11-17 | Sylvania Electric Prod | Art of protectively metal coating columbium and columbium - alloy structures |
EP0098085A1 (en) * | 1982-06-25 | 1984-01-11 | United Kingdom Atomic Energy Authority | Low porosity metallic coatings |
EP0244458A1 (en) * | 1985-10-18 | 1987-11-11 | Union Carbide Corp | High volume fraction refractory oxide, thermal shock resistant coatings. |
WO1998023790A1 (en) | 1996-11-22 | 1998-06-04 | Plansee Aktiengesellschaft | Oxidation protective coating for refractory metals |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB831786A (en) * | 1956-05-28 | 1960-03-30 | Gen Electric | Method of coating molybdenum and its alloys for protection against oxidation at elevated temperatures |
GB837349A (en) * | 1957-01-15 | 1960-06-15 | Westinghouse Electric Corp | Improvements in or relating to coating molybdenum and molybdenum alloys |
JPS54131534A (en) * | 1978-04-05 | 1979-10-12 | Hitachi Ltd | Refractory metallic parts having coating layer and process for coating |
DE102007016411B4 (en) * | 2007-04-02 | 2015-11-19 | Gfe Fremat Gmbh | Molybdenum semi-finished product provided with a protective layer and method for its production |
-
2008
- 2008-08-04 DE DE102008036070A patent/DE102008036070A1/en not_active Ceased
-
2009
- 2009-07-06 EP EP09164616A patent/EP2154264A1/en not_active Withdrawn
- 2009-08-04 US US12/535,278 patent/US20100028706A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540863A (en) | 1968-01-22 | 1970-11-17 | Sylvania Electric Prod | Art of protectively metal coating columbium and columbium - alloy structures |
EP0098085A1 (en) * | 1982-06-25 | 1984-01-11 | United Kingdom Atomic Energy Authority | Low porosity metallic coatings |
EP0244458A1 (en) * | 1985-10-18 | 1987-11-11 | Union Carbide Corp | High volume fraction refractory oxide, thermal shock resistant coatings. |
WO1998023790A1 (en) | 1996-11-22 | 1998-06-04 | Plansee Aktiengesellschaft | Oxidation protective coating for refractory metals |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11898986B2 (en) | 2012-10-10 | 2024-02-13 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
AT14202U1 (en) * | 2013-09-06 | 2015-05-15 | Plansee Se | Process for surface treatment by means of cold gas spraying |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
US11662300B2 (en) | 2019-09-19 | 2023-05-30 | Westinghouse Electric Company Llc | Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing |
Also Published As
Publication number | Publication date |
---|---|
US20100028706A1 (en) | 2010-02-04 |
DE102008036070A1 (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2154264A1 (en) | Shaped body | |
EP2746613B1 (en) | Brake disc for a vehicle | |
US11819954B2 (en) | Systems and methods for wire deposited additive manufacturing using titanium | |
EP1951923B1 (en) | Steel compositions, methods of forming the same, and articles formed therefrom | |
EP1726687B1 (en) | Coated tool | |
EP0880607B1 (en) | Oxidation protective coating for refractory metals | |
EP0911426B1 (en) | Production of mouldings | |
EP3994289B1 (en) | Nickel based alloy for powder and method to produce such powder | |
WO2020048994A1 (en) | Aluminium alloy, semi-finished product, can, method for producing a slug, method for producing a can, and use of an aluminium alloy | |
EP2401419B1 (en) | Coating system and method for making it | |
EP2944706B1 (en) | Method for manufacturing a steel component by means of thermoforming from a steel sheet having a metallic coating | |
AT392929B (en) | METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS | |
EP3354361B1 (en) | Piercer plug and manufacturing method therefor | |
DE102007016411B4 (en) | Molybdenum semi-finished product provided with a protective layer and method for its production | |
EP0911423B1 (en) | Method for joining workpieces | |
EP3411516B1 (en) | Crucible | |
EP2630270B1 (en) | Target for arc processes | |
EP3347505A1 (en) | Method for connecting workpieces and connecting pieces produced by this method | |
DE3726073C1 (en) | Process for the production of thin-walled semi-finished products and their uses | |
JPH0361345A (en) | Hot-working tool made of ni-base alloy and aftertreatment for same | |
WO2016071423A1 (en) | Hot forming tool | |
EP1406850B1 (en) | Method for the capsuleless deformation of gamma-tial materials | |
DE10354434B4 (en) | Tool for the production of workpieces | |
WO2017059467A1 (en) | Component of a metal processing machine | |
EP1230429B1 (en) | Method for producing a component with layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20100817 |
|
17Q | First examination report despatched |
Effective date: 20100914 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110325 |