JPH0361345A - Hot-working tool made of ni-base alloy and aftertreatment for same - Google Patents

Hot-working tool made of ni-base alloy and aftertreatment for same

Info

Publication number
JPH0361345A
JPH0361345A JP19708189A JP19708189A JPH0361345A JP H0361345 A JPH0361345 A JP H0361345A JP 19708189 A JP19708189 A JP 19708189A JP 19708189 A JP19708189 A JP 19708189A JP H0361345 A JPH0361345 A JP H0361345A
Authority
JP
Japan
Prior art keywords
less
treatment
hot
temperature
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19708189A
Other languages
Japanese (ja)
Other versions
JP2778140B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19708189A priority Critical patent/JP2778140B2/en
Publication of JPH0361345A publication Critical patent/JPH0361345A/en
Application granted granted Critical
Publication of JP2778140B2 publication Critical patent/JP2778140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To increase deformation resistance and to improve durability by applying carburizing treatment to a tool made of Ni-base alloy having a specific composition containing W and further subjecting the tool to diffusion annealing treatment and to oxidation treatment. CONSTITUTION:A hot-working tool has a composition consisting of, by weight, <=0.1% (C+N), <=3% Si, 0.01-2.0% Mn, <=0.02% P, <=0.01% S, 20-60% W, and the balance essentially Ni. The above tool is subjected to carburizing treatment consisting of heating at 800-1250 deg.C for 1-20hr. Subsequently, the tool is subjected to diffusion annealing treatment at 800-1250 deg.C for 1-10hr and further to oxidation treatment consisting of heating up to 800-1400 deg.C for 0.1-10hr under a partial pressure of oxygen not higher than atmospheric pressure. If necessary, proper amounts of Mo, one or more elements among Fe, Co, Ti, Al, V, and Cr, and one or more elements among rare earths, Mg, Zr, and Ca are incorporated to the above Ni-base alloy. This hot-working tool has high melting point and superior toughness at high temp., ductility at high temp., and toughness at room temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温での変形、溶損、焼き付き、割れ等が生
じ難く、耐久性に優れたNi基合金でつくられた熱間工
具、例えば、継目無鋼管の製造に用いる穿孔プラグ、マ
ンドレル等の熱間工具、およびその工具の耐久性を一層
改善する後処理方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a hot tool made of a Ni-based alloy that is resistant to deformation, melting damage, seizure, cracking, etc. at high temperatures and has excellent durability. For example, the present invention relates to hot tools such as perforation plugs and mandrels used in the production of seamless steel pipes, and post-treatment methods for further improving the durability of the tools.

(従来の技術) 例えば、マンネスマンプラグミル又はマンドレルミル方
式による継目無鋼管の製造では、高温の中実丸鋼片は穿
孔プラグやガイドシュー等の製管用工具を備えるピアサ
−で中空素管に加工される。
(Prior art) For example, in the production of seamless steel pipes using Mannesmann plug mills or mandrel mills, high-temperature solid round steel pieces are processed into hollow pipes by a piercer equipped with pipe-making tools such as drilling plugs and guide shoes. be done.

或いは、ユジーンセジュルネ方式による継目無鋼管の製
造では、高温の中実丸鋼片はマンドレルおよびダイスを
備える押出プレスで中空素管に加工される。
Alternatively, in the production of seamless steel pipes using the Eugene-Séjournet method, a hot solid round piece of steel is processed into a hollow mother pipe using an extrusion press equipped with a mandrel and a die.

そして、これら熱間工具は使用中は高温で非常に高い圧
力を受けるので、次のような特性が必要である。
Since these hot tools are subjected to high temperatures and extremely high pressures during use, they require the following characteristics.

■高温での高い強度(変形防止)、■高温での優れた延
性(加工時の割れ防止)、■室温での優れた靭性(取り
扱い時および加工初期の割れ防止)、■良好な耐熱亀裂
性(昇温および降温の繰り返しによる割れ防止)、■優
れた表面潤滑性(焼き付きおよび表面温度上昇の抑制)
、■高融点(表面温度上昇による溶損防止)、等である
■High strength at high temperatures (prevention of deformation), ■Excellent ductility at high temperatures (prevention of cracking during processing), ■Excellent toughness at room temperature (prevention of cracking during handling and early processing), ■Good heat cracking resistance (Prevention of cracking due to repeated temperature rise and fall), ■Excellent surface lubricity (suppression of seizure and surface temperature rise)
, ■High melting point (prevention of melting damage due to rise in surface temperature), etc.

熱間工具には、このような特性が求められるので、従来
、その素材にはいわゆる高温用材料が使われている0例
えば、3〜5重量%のCrと、)IO又はWの1種以上
を総量で3重量%以下含むFe系合金、或いはNi基合
金のインコネル718(商品名)などの高温材料である
Hot tools are required to have such properties, so conventionally, so-called high-temperature materials have been used for their materials. These are high-temperature materials such as Fe-based alloys containing 3% by weight or less in total, or Inconel 718 (trade name), which is a Ni-based alloy.

これら高温材料は、1000℃程度の温度までは優れた
特性を有するので、被加工材が普通鋼のような変形抵抗
の小さいものであれば、これらの高温材料からなる熱間
工具で十分である。
These high-temperature materials have excellent properties up to temperatures of about 1000°C, so if the workpiece is a material with low deformation resistance, such as ordinary steel, hot tools made of these high-temperature materials are sufficient. .

ところが、近年、継目無鋼管の使用環境が益々過酷化す
る傾向にあり、それに伴いステンレス鋼のような合金鋼
管やNi基合金、Ti、 Ti合金、Zr、Zr合金等
のようないわゆる高合金管の必要性が高まっている。こ
れら合金鋼や高合金は普通鋼より変形抵抗が高いので、
熱間工具はより高い応力や摩擦を受けるようになってき
た。
However, in recent years, the environment in which seamless steel pipes are used has become increasingly harsh, and as a result, alloy steel pipes such as stainless steel, so-called high alloy pipes such as Ni-based alloys, Ti, Ti alloys, Zr, and Zr alloys, etc. The need for this is increasing. These alloy steels and high alloys have higher deformation resistance than ordinary steel, so
Hot work tools have become subject to higher stresses and friction.

例えば、被加工材の中実丸鋼片がステンレス鋼の場合、
ピアサ−では摩擦熱により穿孔プラグやガイドシューの
表面は1200℃以上、製管条件によっては1300℃
以上の温度に上昇する。特に、表面の潤滑性に何ら対策
を講じない場合には、最表面層は摩擦熱により1400
″C以上に上昇することもある。しかも、穿孔プラグや
ガイドシューには平均で20kgf/vua”以上、場
合によっては30kgf102以上の応力がかかる。そ
して、このような過酷な状態が1回の穿孔で30秒以上
も継続する場合がある。
For example, if the solid round piece of workpiece is stainless steel,
In a piercer, the surface of the piercing plug and guide shoe can reach temperatures of over 1200°C due to frictional heat, and up to 1300°C depending on pipe manufacturing conditions.
The temperature rises to above. In particular, if no measures are taken to improve the lubricity of the surface, the outermost layer will be heated to 1400
In addition, stress of 20 kgf/vua or more on average, and in some cases 30 kgf102 or more, is applied to the perforated plug and guide shoe. In some cases, such severe conditions continue for 30 seconds or more for one punch.

ユジーンセジュルネ方式の場合も、押出しに要する時間
は短いがダイスおよびマンドレルの表面は前記と同様の
厳しい条件となる。そして、このユジーンセジュルネ方
式では、被加工材はスーパアロイ或いはTi、 Ti合
金、Zr−、Zr合金まで含まれるので、工具には40
kgf/srs”を超える応力がかかる場合がある。
In the case of the Eugene-Sejournet method, the time required for extrusion is short, but the surfaces of the die and mandrel are subject to the same severe conditions as described above. In this Eugene-Séjournet method, the workpiece materials include super alloys, Ti, Ti alloys, Zr-, and Zr alloys, so the tool contains 40
In some cases, stress exceeding "kgf/srs" may be applied.

このように、合金鋼或いは高合金の加工では、工具は高
温で高い応力および摩擦を受ける。このため従来の高温
材料からなる熱間工具で、合金鋼又は高合金を加工する
と、工具は変形、摩耗、焼き付き、溶損等を起こし、後
述する実施例で示すように寿命が極端に短いか、−本の
加工途中でこのような問題が発生して加工そのものがで
きなくなる。
Thus, when machining alloyed steels or high alloys, the tools are subjected to high temperatures and high stresses and friction. For this reason, when machining alloy steel or high alloys with conventional hot tools made of high-temperature materials, the tools may suffer deformation, wear, seizure, melting damage, etc., and as shown in the examples below, the tool life may be extremely short. , - Such a problem occurs during the processing of a book, and the processing itself becomes impossible.

そこで、熱間工具の耐久性を改善するために酸化アルミ
ニウム、窒化アルミニウム等の各種セラミックスを工具
表面に被覆するか、高温強度に優れたMoやNb又はこ
れらの合金を工具材料に使用することが検討されている
。しかしながら、セラミックスを被覆する方法は、工具
の変形抵抗、耐熱性および潤滑性を改善することができ
るものの、セラQ 7クスは剥離しやすいので耐久性が
さほど大きく向上しない、一方、工具材料にMo、 N
b又はこれらの合金を使用する方法は、MoおよびNb
が高価であるとともにこれら元素は昇華を起こし且つ酸
素を吸収するので、昇華による損耗および酸素吸収によ
る脆化が発生し、高価な割に寿命が短い。
Therefore, in order to improve the durability of hot-working tools, it is recommended to coat the tool surface with various ceramics such as aluminum oxide or aluminum nitride, or to use Mo, Nb, or their alloys, which have excellent high-temperature strength, as tool materials. It is being considered. However, although the method of coating ceramics can improve the deformation resistance, heat resistance, and lubricity of the tool, it does not greatly improve the durability because CeraQ7 easily peels off. , N
b or a method using these alloys, Mo and Nb
In addition to being expensive, these elements sublimate and absorb oxygen, resulting in wear due to sublimation and embrittlement due to oxygen absorption, resulting in a short lifespan despite their high cost.

(発明が解決しようとする課題) 本発明の課題は、合金鋼や高合金のような変形抵抗が高
く、しかも加工条件の厳しい被加工材を熱間加工しても
、変形、溶損、焼き付き、割れ等が生じ難い、耐久性に
優れたNi基合金製熱間工具と、その工具表面に断熱性
或いは潤滑性を有する皮膜を形成させて、耐久性を一層
改善することができる後処理方法を提供することにある
(Problems to be Solved by the Invention) The problems of the present invention are that even if workpiece materials such as alloy steel and high alloys have high deformation resistance and are subjected to severe processing conditions are hot-processed, deformation, melting loss, and seizure may occur. , a highly durable hot-working tool made of a Ni-based alloy that does not easily cause cracks, etc., and a post-treatment method that can further improve durability by forming a film with heat insulation or lubricity on the tool surface. Our goal is to provide the following.

具体的には、本発明は(a)融点が1400℃以上、(
+))1200℃での高温強度が少なくとも20kgf
/am”以上、望ましくは1300″Cでの高温強度が
30kgf/sin”以上、(C)1200℃での高温
延性が少なくとも40%以上、望ましくは1300℃で
の高温延性が40%以上、(d)室温での靭性が2kg
−m/c−以上、の特性を有する熱間工具と、(e)厚
さ10〜150μ喝の潤滑性および断熱性を有する酸化
皮膜、(f)潤滑性のある厚さlO〜150μ謡の表面
硬化層、を工具表面に形成することができる後処理方法
を提供することを目的とする。
Specifically, the present invention provides (a) a melting point of 1400°C or higher, (
+)) High temperature strength at 1200℃ is at least 20kgf
/am" or more, preferably the high temperature strength at 1300"C is 30 kgf/sin" or more, (C) the high temperature ductility at 1200 °C is at least 40% or more, preferably the high temperature ductility at 1300 °C is 40% or more, ( d) Toughness at room temperature is 2 kg
-m/c- or more, (e) an oxide film with a thickness of 10 to 150 μm that has lubricating and heat insulating properties, and (f) a lubricating film with a thickness of lO to 150 μm. An object of the present invention is to provide a post-treatment method that can form a hardened surface layer on the surface of a tool.

(課題を解決するための手段) 本発明者は、融点、高温強度および高温延性が上記条件
を満たす材料ついて鋭意検討を行った。
(Means for Solving the Problems) The present inventors have conducted extensive studies on materials whose melting point, high-temperature strength, and high-temperature ductility satisfy the above conditions.

高温強度に優れた材料として、高Crフェライト鋼、)
ii基合金、Co基合金、或いは炭化物、酸化物。
High Cr ferritic steel, as a material with excellent high temperature strength)
ii-based alloy, Co-based alloy, carbide, or oxide.

窒化物等の高融点物質と金属との焼結複合材料であるサ
ーメット等の超強力耐熱合金が知られている。しかし、
Crを15重量%以上含む高Crフェライト鋼は、耐酸
化性に優れたCrの酸化物が表面に生成するが、その酸
化皮膜は8μ−以下と薄いので、潤滑および断熱効果に
乏しく、また、融点が1400゛C以下のため容易に焼
き付きを起こす、 Ni基合金およびCo基合金は、高
温強度が前記(b)の条件を満たさない、また、Co%
合金は高価である。サーメットは、室温および高温での
延性と靭性に乏しく、加工時に容易に割れが発生する。
Ultra-strong heat-resistant alloys such as cermets, which are sintered composite materials of metals and high-melting-point substances such as nitrides, are known. but,
High Cr ferritic steel containing 15% by weight or more of Cr produces Cr oxides with excellent oxidation resistance on the surface, but the oxide film is as thin as 8μ or less, so it has poor lubrication and heat insulation effects, and Ni-based alloys and Co-based alloys, which easily cause seizure because their melting points are below 1400°C, do not have high-temperature strength that satisfies the condition (b) above, and Co%
Alloys are expensive. Cermet has poor ductility and toughness at room and high temperatures, and easily cracks during processing.

このため、従来の耐熱合金では、合金鋼および高合金の
工具用材料には適さない。
For this reason, conventional heat-resistant alloys are not suitable for alloy steel and high-alloy tool materials.

ところが、本発明者は前記Ni基合金の組成を工夫する
ことで高温強度、高温延性および室温靭性が向上するこ
と、およびこの工夫したNi1合金からなる熱間工具に
適正な後処理を施せば、潤滑性、耐熱性等が改善される
ことを見出した。このような知見をまとめれば下記の通
りである。
However, the present inventor discovered that by devising the composition of the Ni-based alloy, high-temperature strength, high-temperature ductility, and room-temperature toughness can be improved, and if a hot work tool made of this devised Ni1 alloy is subjected to appropriate post-treatment, It has been found that lubricity, heat resistance, etc. are improved. This knowledge can be summarized as follows.

(])NiにWを合金すると融点が1400℃以上とな
る。
(]) When Ni is alloyed with W, the melting point becomes 1400°C or higher.

そして、この中でもWを20〜60重量%含むものは、
高温強度が高く、しかも高温延性および室温靭性が良好
である。特に、Wを35重量%以上含有するものは、α
−前が分散し高温強度が最も高い。
Among these, those containing 20 to 60% by weight of W are
It has high high temperature strength, as well as good high temperature ductility and room temperature toughness. In particular, those containing 35% by weight or more of W are α
- The former is dispersed and has the highest high temperature strength.

(2)Wを20〜6帽1%含有するN1〜W合金に、更
に適量のMoを添加すれば一層高温強度が向上する。
(2) If an appropriate amount of Mo is further added to the N1 to W alloy containing 20 to 1% of W, the high temperature strength is further improved.

(3)Fe、 Go、 Tt、  ^乏、V、(:rは
潤滑性のある酸化皮膜の生成に有効である。また、希土
類元素、Mg、Zr、 Caは、熱間延性および酸化皮
膜の耐剥離性の改善に有効である。
(3) Fe, Go, Tt, ^poor, V, (:r are effective in forming an oxide film with lubricating properties. In addition, rare earth elements, Mg, Zr, and Ca improve hot ductility and oxide film formation. Effective in improving peeling resistance.

(4)このN1〜W合金からなる熱間工具に酸化、浸炭
、拡散焼鈍等の処理を施せば、工具の耐久性が一層向上
する。
(4) If a hot tool made of this N1-W alloy is subjected to treatments such as oxidation, carburization, and diffusion annealing, the durability of the tool will be further improved.

本発明は、このような知見を基に完成したちのであって
、その要旨は、下記の(i)および(ii)にある。
The present invention was completed based on such knowledge, and its gist is in (i) and (ii) below.

(i)重量%で、C+N:0.1%以下、Si:3%以
下、Mn : 0.01〜2.0%、P : 0.02
%以下、S:0.01%以下、W:20〜60%を含み
、更に、必要に応して下記のA群、B群、0群の内から
選ばれた少なくとも1種以上の成分を含有し、残部が実
質的にNiからなるNi基合金製熱間工具。
(i) In weight%, C+N: 0.1% or less, Si: 3% or less, Mn: 0.01 to 2.0%, P: 0.02
% or less, S: 0.01% or less, W: 20 to 60%, and further contains at least one component selected from the following groups A, B, and 0 as necessary. A hot work tool made of a Ni-based alloy, the remainder of which is substantially composed of Ni.

〔A群] 1〜10%のMo。[Group A] 1-10% Mo.

〔B群〕[Group B]

IO%以下のFe、 20%以下のCo、 3%以下の
Ti、3%以下の^乏、3%以下のV、10%以下のC
r。
Fe below IO%, Co below 20%, Ti below 3%, ^poor below 3%, V below 3%, C below 10%
r.

〔C群〕[Group C]

0.05%以下の希土類元素、0.05%以下のMg、
0.05%以下のZr、 0.05%以下のCa。
0.05% or less of rare earth elements, 0.05% or less of Mg,
Zr of 0.05% or less, Ca of 0.05% or less.

(11)前記(1)記載のNi基合金製熱間工具に、下
記の■〜■の処理を施すことを特徴とするNi1合金製
熱間工具の後処理方法。
(11) A post-treatment method for a hot-work tool made of a Ni1 alloy, which comprises subjecting the hot-work tool made of a Ni-based alloy described in (1) above to the following treatments.

■800〜1250℃の温度に1〜20時間加熱する浸
灰処理。
■ Ash soaking treatment by heating at a temperature of 800 to 1250°C for 1 to 20 hours.

■800〜1250℃の温度に1〜20時間加熱する浸
炭処理と800〜1250℃の温度に1〜10時間加熱
する拡散焼鈍処理。
(2) Carburizing treatment that is heated to a temperature of 800 to 1250°C for 1 to 20 hours, and diffusion annealing treatment that is heated to a temperature of 800 to 1250°C for 1 to 10 hours.

■大気以下の酸素分圧下で800〜1400℃の温度に
0.1〜10時間加熱する酸化処理。
(2) Oxidation treatment by heating at a temperature of 800 to 1400°C for 0.1 to 10 hours under an oxygen partial pressure below atmospheric pressure.

■800〜1250℃の温度に1〜20時間加熱する浸
炭処理と大気以下の酸素分圧下で800〜1400℃の
温度に0.1〜lO時間加熱する酸化処理。
(2) Carburizing treatment by heating at a temperature of 800-1250°C for 1-20 hours and oxidation treatment by heating at a temperature of 800-1400°C for 0.1-10 hours under an oxygen partial pressure below atmospheric pressure.

■800〜1250℃の温度に1〜20時間加熱する浸
炭処理、800〜1250℃の温度に1〜10時間加熱
する拡散焼鈍処理および大気以下の酸素分圧下で800
〜1400℃の温度に0.1〜IO時間加熱する酸化処
理。
■ Carburizing treatment heated to a temperature of 800 to 1250℃ for 1 to 20 hours, diffusion annealing treatment heated to a temperature of 800 to 1250℃ for 1 to 10 hours, and 800℃ heated to a temperature of 800 to 1250℃ for 1 to 10 hours under an oxygen partial pressure below atmospheric pressure.
Oxidation treatment by heating to a temperature of ~1400°C for 0.1~IO hours.

上記熱間工具としては、例えばプラグ、ガイドシュー、
マンドレル、ダイス等の製管用工具、鍛造用金型、熱間
圧延用ロール等が代表的である。
Examples of the above-mentioned hot tools include plugs, guide shoes,
Typical examples include pipe-making tools such as mandrels and dies, forging dies, and hot rolling rolls.

(作用) 以下、本発明について詳細に説明する。(effect) The present invention will be explained in detail below.

まず、本発明のML基合金製熱間工具における母材のN
i基合金の化学&II戒を前記のように限定する理由を
作用効果とともに説明する。
First, N of the base material in the ML-based alloy hot tool of the present invention
The reason for limiting the chemistry and II precepts of I-based alloys as described above will be explained together with the effects.

CおよびN:合計で0.1%以下 CおよびNは共に固溶強化により高温強度を高める作用
がある。しかし、その一方で融点を大きく下げるので、
CおよびNの含有量は合計で0.1%以下とする。
C and N: 0.1% or less in total Both C and N have the effect of increasing high temperature strength through solid solution strengthening. However, on the other hand, it greatly lowers the melting point,
The total content of C and N is 0.1% or less.

Si:3%以下 Siは脱酸のために添加するが、融点を下げるので、そ
の含有量を3%以下とする。3%を超えると合金の融点
が1400℃未満となる。特に、Si含有量を0.05
%以下にすると、高温延性の改善効果が大きくなる。
Si: 3% or less Si is added for deoxidation, but since it lowers the melting point, its content is set to 3% or less. If it exceeds 3%, the melting point of the alloy will be less than 1400°C. In particular, the Si content is 0.05
% or less, the effect of improving high-temperature ductility becomes greater.

Mn : 0.01〜2.0% Mnは脱酸のために添加する。また、Mnは後述するS
を固定し高温延性を改善する作用がある。
Mn: 0.01-2.0% Mn is added for deoxidation. In addition, Mn is S, which will be described later.
It has the effect of fixing and improving high-temperature ductility.

0.01%未満の含有量ではこの作用が小さく、2.0
%を超えると合金の融点が1400℃未満となる。
This effect is small when the content is less than 0.01%, and 2.0
%, the melting point of the alloy will be less than 1400°C.

p:o、o2%以下 Pは高温延性を劣化させ、且つ融点を下げる元素である
。 0.02%を越えて含有すると目標とする高温延性
および融点を確保することができなくなる。
p: o, o2% or less P is an element that deteriorates high temperature ductility and lowers the melting point. If the content exceeds 0.02%, it becomes impossible to secure the target high temperature ductility and melting point.

S:0.01%以下 Sは前記Pに比べてより顕著に高温延性を劣化させ、且
つ融点を下げる元素である。 0.01%を越えて含有
すると目標とする高温延性および融点を確保することが
できなくなる。 1400℃以上での40%以上の高温
延性を確保しようとすれば、Pは0゜005%以下にす
るのが望ましい。
S: 0.01% or less S is an element that more significantly deteriorates high-temperature ductility and lowers the melting point than P. If the content exceeds 0.01%, it becomes impossible to secure the target high temperature ductility and melting point. In order to ensure high-temperature ductility of 40% or more at 1400°C or higher, it is desirable that P be 0°005% or less.

W:20〜60% Wは本発明において特に重要な元素である。NiにWを
添加すると、含有量の増加とともに合金の融点および高
温強度が向上する。これは、他の添加元素にないW特有
の効果である。
W: 20-60% W is a particularly important element in the present invention. When W is added to Ni, the melting point and high temperature strength of the alloy improve as the content increases. This is an effect unique to W that is not found in other additive elements.

W含有量が20%未満であっても、1400℃以上の融
点を確保することができるが、高温強度の向上が大きく
ないので、所望の高温強度が得られない。
Even if the W content is less than 20%, it is possible to ensure a melting point of 1400° C. or higher, but the improvement in high temperature strength is not large, so the desired high temperature strength cannot be obtained.

一方、W含有量が60%を超え、例えば65%でも合金
は40%以上の高温延性を有しているので、鍛造で工具
を作ることができる。しかし、60%を超えてWを含有
させると固相温度(液体から固体が生成開始する温度)
が高くなり、真空誘導溶解、AOD、VOD等の通常の
溶解法では製造が困難となるので、上限を60%とする
。望ましいW含有量は30%以上、より望ましいのは3
5%以上である。
On the other hand, even if the W content exceeds 60%, for example 65%, the alloy has hot ductility of 40% or more, so tools can be made by forging. However, if W is contained in excess of 60%, the solidus temperature (temperature at which a solid starts to form from a liquid)
The upper limit is set at 60%, as production becomes difficult using normal melting methods such as vacuum induction melting, AOD, and VOD. The desirable W content is 30% or more, more preferably 3
It is 5% or more.

W含有量が30%以上でα−前(純粋に近いW)が分散
し、高温強度が一段と改善される。35%以上でα−前
量がさらに増し、特に浸炭処理を行った場合にWCが増
加し、高温強度と潤滑性がより一段と改善される。
When the W content is 30% or more, α-mae (almost pure W) is dispersed, and the high temperature strength is further improved. When it is 35% or more, the α-pre content increases further, and especially when carburizing treatment is performed, WC increases, and high temperature strength and lubricity are further improved.

残部は実質的にNiである。 Il+は融点、室温靭性
および高温延性に冨み、且つ、比較的安価である。
The remainder is substantially Ni. Il+ has a good melting point, room temperature toughness, and high temperature ductility, and is relatively inexpensive.

なお、「実質的に」とはNiの他に不可避不純物を含む
場合もあることを意味する。
Note that "substantially" means that it may contain unavoidable impurities in addition to Ni.

本発明の熱間工具は、以上述べた化学組成のNi基合金
からなるものである。この他に、上記元素に加えて下記
のA群、B群およびC群の中から選ばれた少なくとも1
種以上の成分を含むNi基合金からなる熱間工具であっ
てもよい。
The hot tool of the present invention is made of a Ni-based alloy having the chemical composition described above. In addition to the above elements, at least one selected from the following groups A, B, and C.
The hot tool may be made of a Ni-based alloy containing more than one component.

A群=1〜10%の阿0 Moは高温強度を高める効果がある。しかし、1%未満
の含有量ではその効果が小さく、10%を超えて含有す
ると融点が大きく低下する。
Group A = 1 to 10% of A0 Mo has the effect of increasing high temperature strength. However, if the content is less than 1%, the effect will be small, and if the content exceeds 10%, the melting point will decrease significantly.

B群;10%以下のFe、20%以下のCo、3%以下
のTi、3%以下のAl、3%以下のV、10%以下の
Cr。
Group B: 10% or less Fe, 20% or less Co, 3% or less Ti, 3% or less Al, 3% or less V, 10% or less Cr.

これらの元素は、1種以上添加されて熱間加工後の冷却
途中、或いは後述する酸化処理で工具表面にこれらの酸
化皮膜を形成し、断熱性および潤滑性を改善する効果が
ある。しかし、Coを除く他の元素は融点を下げるので
、Feは10%以下、Tiは3%以下、Alは3%以下
、■は3%以下、Crは10%以下、の含有量とする。
When one or more of these elements are added, an oxide film is formed on the tool surface during cooling after hot working or during oxidation treatment described below, which has the effect of improving heat insulation and lubricity. However, since other elements other than Co lower the melting point, the content of Fe is 10% or less, Ti is 3% or less, Al is 3% or less, ■ is 3% or less, and Cr is 10% or less.

 Goは高価であるので20%を超えて含有させると経
済的に不利となる。
Since Go is expensive, it is economically disadvantageous to include it in excess of 20%.

なお、前記元素の中でFe、 Co、 Vからは低融点
の酸化皮膜が形成され、AjLTiからは高融点の酸化
皮膜が形成される。これら酸化皮膜はともに断熱性と潤
滑性の両方を改善する効果を有しているが、どちらかと
いえば前者の低融点の酸化皮膜は潤滑性を改善する効果
の方が大きく、後者の高融点の酸化皮膜は断熱性を改善
する効果の方が大きい。
Note that among the above elements, Fe, Co, and V form a low melting point oxide film, and AjLTi forms a high melting point oxide film. Both of these oxide films have the effect of improving both heat insulation and lubricity, but if anything, the former low melting point oxide film has a greater effect on improving lubricity, while the latter high melting point oxide film has a greater effect on improving lubricity. The oxide film has a greater effect on improving heat insulation.

C群F 0.05%以下の希土類元素、0.05%以下
のI’1g、0.05%以下のZr、 0.05%以下
のCa。
Group C: 0.05% or less of rare earth elements, 0.05% or less of I'1g, 0.05% or less of Zr, 0.05% or less of Ca.

これらの元素は1種以上添加されて高温延性を改善する
効果がある。また、これらの元素は高温で形成される前
記の酸化皮膜に入り、酸化皮膜を緻密化させて加工時に
おける剥離、割れ、損耗等を抑制する効果がある。しか
し、各々0.05%を超えて含有させると低融点化合物
を形成し、また、融点および高温延性を低下させる。
Adding one or more of these elements has the effect of improving high-temperature ductility. In addition, these elements enter the oxide film formed at high temperatures, densify the oxide film, and have the effect of suppressing peeling, cracking, wear, etc. during processing. However, if each content exceeds 0.05%, a low melting point compound is formed and the melting point and high temperature ductility are lowered.

本発明において、前記希土類元素とはY、La、Ce、
或いはこれらの混合物である。
In the present invention, the rare earth elements include Y, La, Ce,
Or a mixture thereof.

以上述べた化学組成からなるNi基合金で作られたもの
が本発明の熱間工具である。このNi基合金は、融点が
高く、高温強度、高温延性および室温靭性に優れ、且つ
、適度の潤滑性と断熱性を有しているので、通常の製造
方法で工具にしても合金鋼或いは高合金の加工に十分使
用することができて、しかも、その寿命は従来の熱間工
具よりも長い、しかし、この熱間工具に更に下記の浸炭
処理、拡散焼鈍処理或いは酸化処理の後処理を施すと、
工具の寿命を一層向上させることができる。
The hot tool of the present invention is made of a Ni-based alloy having the chemical composition described above. This Ni-based alloy has a high melting point, excellent high-temperature strength, high-temperature ductility, and room-temperature toughness, and has appropriate lubricity and heat insulation properties, so even if it is made into tools using normal manufacturing methods, it cannot be made with alloy steel or high-temperature steel. It can be fully used for processing alloys, and its service life is longer than that of conventional hot tools. and,
The tool life can be further improved.

これら後処理の適正な条件は下記の通りである。Appropriate conditions for these post-treatments are as follows.

〔浸炭処理=800〜1250℃で1〜20時間加熱]
前記のNi基合金製熱間工具に浸炭処理を施し、表面に
適正な厚みの硬化層を形成させれば、潤滑性および耐摩
耗性が向上する。
[Carburizing treatment = heating at 800 to 1250°C for 1 to 20 hours]
If the hot tool made of the Ni-based alloy is carburized to form a hardened layer with an appropriate thickness on the surface, the lubricity and wear resistance will be improved.

しかし、800℃未満の処理温度又は1時間未満の処理
時間では、形成される浸炭層が10μm以下と薄く、且
つ表面硬度もビッカース硬度(Hv)で900以下と低
いため潤滑性および耐摩耗性の向上が小さい、一方、1
250℃を超える処理温度又は20時間を超える処理時
間では、表面硬度はHvで1100以上と十分高いが、
硬化層が150μ薄を越えて厚すぎるので加工中に割れ
や剥離が発生する。そのため工具寿命は浸炭処理してい
ないものより悪い、即ち、浸炭処理することにより逆に
寿命が損なわれるのである。
However, if the treatment temperature is less than 800°C or the treatment time is less than 1 hour, the carburized layer formed will be as thin as 10 μm or less, and the surface hardness will be as low as 900 or less on the Vickers hardness (Hv), resulting in poor lubricity and wear resistance. The improvement is small, while 1
At a treatment temperature exceeding 250°C or a treatment time exceeding 20 hours, the surface hardness is sufficiently high as 1100 or more in Hv.
Since the hardened layer is too thick (more than 150μ), cracking and peeling occur during processing. Therefore, the life of the tool is worse than that of a tool that is not carburized, that is, the life of the tool is shortened by carburizing.

浸炭処理は、α−前が生成するWを35%以上含むNi
基合金製熱間工具に施すのが有効である。
In the carburizing process, Ni containing 35% or more of W generated before α-
It is effective to apply it to hot tools made of base alloys.

このものを浸炭処理すると、浸炭によりα−前が硬質で
高温強度の高いWCに変化するので、潤滑性、耐熱性お
よび耐摩耗性が著しく向上する。なかでも潤滑性の向上
が大きい。
When this material is carburized, the α-front becomes hard and has high high-temperature strength WC due to carburization, so the lubricity, heat resistance, and wear resistance are significantly improved. Among these, the improvement in lubricity is significant.

〔拡散焼鈍処理: 800〜1250℃でl〜10時間
加時間加熱燐拡散焼鈍処理炭処理の後に必要に応して実
施する。
[Diffusion annealing treatment: Heat phosphorus diffusion annealing treatment at 800 to 1250° C. for 1 to 10 hours. Performed as necessary after carbon treatment.

硬質で高温強度の高いWCは、浸炭処理のみでも形成さ
せることができるが、さらに浸炭処理後に拡散焼鈍処理
を施せば、WCは増加し基地の炭素量が減少するので、
摩耗によるWCの!lI離を防止することができるとと
もにWCの増加により、高温強度、潤滑性並びに耐摩耗
性が改善される。
WC, which is hard and has high high-temperature strength, can be formed by carburizing alone, but if diffusion annealing is further performed after carburizing, WC increases and the carbon content of the matrix decreases.
WC due to wear! The high temperature strength, lubricity, and wear resistance are improved by preventing lI separation and increasing WC.

拡散焼鈍処理は、800“C未満の処理温度又は1時間
未満の処理時間では、WCの増加が期待できず、寧ろ浸
炭処理で得られた潤滑性および耐摩耗性を低下させるた
め、工具寿命は後処理を行っていないものよりは長いが
、浸炭処理を行ったものより短い、一方、1250℃を
超える処理温度又は20時間より長い処理時間で拡散焼
鈍しても、効果が飽和し、経済的に不利を招くことにな
る。
In diffusion annealing, if the treatment temperature is less than 800"C or the treatment time is less than 1 hour, no increase in WC can be expected, but rather the lubricity and wear resistance obtained by carburizing treatment will be reduced, so the tool life will be shortened. Although it is longer than that without post-treatment, it is shorter than that with carburizing treatment.On the other hand, even if diffusion annealing is performed at a treatment temperature exceeding 1250°C or a treatment time longer than 20 hours, the effect is saturated and it is economical. This will result in a disadvantage.

〔酸化処理:大気以下の酸素分圧下で800〜1400
℃の温度に0.1〜10時間加熱〕 酸化処理は、これのみを単独で実施してもよく、或いは
、浸炭処理した後、又は浸炭処理して拡散焼鈍処理した
後に実施してもよい。
[Oxidation treatment: 800-1400 under oxygen partial pressure below atmospheric pressure
heating at a temperature of 0.1 to 10 hours] The oxidation treatment may be performed alone, or after carburization treatment, or after carburization treatment and diffusion annealing treatment.

浸炭処理した後或いは浸炭処理して拡散焼鈍処理した後
に酸化処理を行えば、潤滑性および断熱性が更に向上す
るので、工具寿命は浸炭処理のみのもの、浸炭処理と拡
散焼鈍処理したものよりも長くなる。
If oxidation treatment is performed after carburizing or after carburizing and diffusion annealing, the lubricity and heat insulation properties will be further improved, so the tool life will be longer than that of carburizing alone or carburizing and diffusion annealing. become longer.

熱論、酸化処理のみでもNi基合金製熱間工具に潤滑性
と断熱性を有した酸化皮膜を形成することができて、工
具寿命を向上させることができる。
Even by thermal theory and oxidation treatment alone, an oxide film having lubricating and heat insulating properties can be formed on a hot tool made of a Ni-based alloy, and the tool life can be improved.

酸化処理は、800℃未満の処理温度又は0.1時間未
満の処理時間では、十分な厚さ(10μ−以上)の酸化
皮膜が得られないので、潤滑性および断熱性の向上が小
さい。
In the oxidation treatment, if the treatment temperature is less than 800° C. or the treatment time is less than 0.1 hour, an oxide film with a sufficient thickness (10 μm or more) cannot be obtained, so that the improvement in lubricity and heat insulation properties is small.

一方、1400℃を超える処理温度又は10時間を超え
る処理時間では、生成する酸化層が厚くなり過ぎ、例え
ば150μmを超える厚さとなるため、逆に加工中に割
れや剥離が発生し、工具寿命の向上が望めず、場合によ
っては無処理のものより悪くなる場合がある。
On the other hand, if the processing temperature exceeds 1400°C or the processing time exceeds 10 hours, the oxide layer that is formed will become too thick, for example, over 150 μm, which will result in cracking and peeling during processing, which will shorten the tool life. No improvement can be expected, and in some cases, the condition may become worse than that without treatment.

また、この酸化処理のみを本発明で規定する条件範囲内
で施したものの、浸炭処理或いは浸炭処理と拡散焼鈍処
理を本発明で規定する条件範囲内で施したものに比べる
と、断熱性と潤滑性に優れるが高温強度と耐摩耗性に劣
るため、工具寿命は長くならない、しかし、当然のこと
ながら無処理のものよりは長い。
Furthermore, although only this oxidation treatment was performed within the condition range specified by the present invention, compared to carburizing treatment or carburization treatment and diffusion annealing treatment performed within the condition range specified by the present invention, the insulation and lubrication properties were Although it has excellent properties, it has poor high-temperature strength and wear resistance, so the tool life will not be long, but it will naturally be longer than the untreated one.

この酸化処理は大気以下の酸素分圧下で行うのがよい、
即ち、Fe、 Co、 Ti、、Affi、 V、Cr
等の酸化皮膜のうち、前述したようにどちらかといえば
、高融点で断熱性に優れるTi、  Aj!の酸化皮膜
は、低融点で潤滑性に優れるFe、 co、 Vさらに
はSiの酸化皮膜の下方(地金側)に形成される。しか
し、大気圧を越える酸素分圧下ではFe、 Go、 V
、 Siの酸化皮膜が優先的に形成されて、その下方の
Ti、AIlの酸化皮膜が充分な厚さにまで成長せず、
潤滑性と断熱性をともに備える酸化皮膜を形成させるこ
とができない、ところが、酸素分圧が大気圧以下である
と、Fe、 Co、 Si等の酸化が抑制される結果、
Ti、  AI!、の酸化皮膜が充分な厚さにまで戒長
し、潤滑性と断熱性をともに備える酸化皮膜を形成させ
ることができるのである。
It is best to perform this oxidation treatment under an oxygen partial pressure below atmospheric pressure.
That is, Fe, Co, Ti, Affi, V, Cr
Among the oxide films such as Ti and Aj!, which have a high melting point and excellent heat insulation properties, as mentioned above, Ti and Aj! The oxide film is formed below (on the base metal side) the oxide film of Fe, Co, V, and even Si, which have a low melting point and excellent lubricity. However, under oxygen partial pressure exceeding atmospheric pressure, Fe, Go, V
, the Si oxide film is preferentially formed, and the Ti and Al oxide films below it do not grow to a sufficient thickness,
It is not possible to form an oxide film that has both lubricity and heat insulation properties. However, if the oxygen partial pressure is below atmospheric pressure, the oxidation of Fe, Co, Si, etc. is suppressed.
Ti, AI! The oxide film can be grown to a sufficient thickness to form an oxide film that has both lubricity and heat insulation properties.

なお、この酸化処理を施して顕著な寿命延長を図れる工
具は、その鋼組成が前記A〜C群の内、酸化皮膜形成を
目的に添加されるB群から選ばれる元素を含有する鋼で
あり、その他の群から選ばれる元素を含有する鋼の場合
、その効果は少ない。
Note that the tool whose service life can be significantly extended by applying this oxidation treatment is a steel whose steel composition contains an element selected from Group B, which is added for the purpose of forming an oxide film, from Groups A to C. , in the case of steels containing elements selected from other groups, the effect is small.

以下、実施例により本発明の効果を示す。Hereinafter, the effects of the present invention will be illustrated by examples.

(実施例1) 第1表に示す化学AIl威の合金からなるインゴットを
溶製し、これらから二つのサイズのプラグを次のように
して作製した。
(Example 1) Ingots made of alloys having the chemical properties shown in Table 1 were melted, and plugs of two sizes were made from these ingots in the following manner.

10トンの電気炉で合金1および2のインゴット(16
0m−径X 2000s+m長さ)を溶製し、これを1
50−一径X 400m−長さのプラグに切削加工、 
17kgの真空誘導溶解炉で合金3〜27のインボッ)
 (90m+i径×300−長さ)を溶製し、これを1
200”cで熱間鍛造して551111径の丸棒とした
後、50問径X 701I+w長さのプラグに切削加工
Alloys 1 and 2 ingots (16
0m-diameter x 2000s+m length), and then
Cutting into a 50-diameter x 400m-long plug,
Invoking alloys 3 to 27 in a 17 kg vacuum induction melting furnace)
(90 m + i diameter x 300 - length) and melted this into 1
After hot forging at 200"c to make a round bar with a diameter of 551111, it was cut into a plug with a diameter of 50 mm and a length of 701I + w.

このようにして作製したプラグを用いて、1180〜1
230℃に加熱された5tlS 304(変形抵抗: 
1200℃で8kg/ms+”)の中実丸鋼片を継目無
鋼管に穿孔加工した。穿孔はプラグの使用が不能となる
まで行った。
Using the plug prepared in this way, 1180-1
5tlS 304 heated to 230°C (deformation resistance:
A seamless steel pipe was drilled using a solid round steel piece of 8 kg/ms+'' at 1200°C.Drilling was continued until the plug could no longer be used.

なお、150mm径のプラグでは、187*a+径×2
Mの5IIS304丸鋼片を、50m−径のプラグでは
、70m■径×2閣のSO3304丸鋼片をいずれも穿
孔比3(穿孔比とは「穿孔後の長さJ/’穿孔穿孔長さ
」である)にとって穿孔加工した。
In addition, for a 150mm diameter plug, 187*a+diameter*2
M 5IIS304 round steel piece, 50m-diameter plug, 70m diameter x 2 SO3304 round steel piece, both with a drilling ratio of 3 (perforation ratio is ``length after drilling J/' drilling length) ”) was perforated.

第2表にプラグの使用が不能となるまでの穿孔回数(製
管可能本数)とプラグ材料の特性を調べた結果を示す。
Table 2 shows the number of perforations until the plug becomes unusable (the number of pipes that can be made) and the results of investigating the characteristics of the plug material.

(以下、余白) 第2表より明らかなように、合金15〜24からなるプ
ラグ(比較例)および合金25〜27からなるプラグ(
従来例)は、融点、高温強度、室温延性のいずれかが劣
り、その結果穿孔寿命が短いか穿孔が不可能である。
(Hereinafter, blank space) As is clear from Table 2, plugs made of alloys 15 to 24 (comparative example) and plugs made of alloys 25 to 27 (
The conventional example) is inferior in melting point, high temperature strength, and room temperature ductility, and as a result, the drilling life is short or drilling is impossible.

これに対して、合金1〜14からなるプラグ(本発明例
)は、いずれのものも融点、高温強度および室温延性が
高く、比較例および従来例に比べて穿孔回数が多く、工
具寿命が向上している。
On the other hand, plugs made of alloys 1 to 14 (examples of the present invention) all have high melting points, high-temperature strength, and room-temperature ductility, and can be drilled more often than comparative and conventional examples, resulting in improved tool life. are doing.

(実施例2) 実施例1で使用したのと同し合金1〜3および合金6〜
14からなるプラグに、第3表に示す条件で浸炭処理、
拡散焼鈍処理、酸化処理の何れかの後処理を単独或いは
複合して施した後、SO3304丸鋼片を継目無鋼管に
穿孔するのに供した。穿孔はプラグが使用不能となるま
で行った。
(Example 2) The same alloys 1 to 3 and alloys 6 to 3 used in Example 1
A plug consisting of 14 was carburized under the conditions shown in Table 3.
After being subjected to post-treatment of diffusion annealing treatment and oxidation treatment, either alone or in combination, the SO3304 round steel pieces were used for drilling seamless steel pipes. Drilling was continued until the plug became unusable.

なお、穿孔条件、プラグサイズ、丸鋼片サイズは実施例
Iと同じである。
Note that the drilling conditions, plug size, and round steel billet size are the same as in Example I.

第3表に、その結果と各処理の条件を示す。Table 3 shows the results and conditions for each treatment.

穿孔回数は、後処理を施していない実施例°1で使用し
た同じ合金からなるプラグの穿孔回数からの増減で示し
た。
The number of perforations was expressed as an increase or decrease from the number of perforations of a plug made of the same alloy used in Example 1, which was not subjected to post-treatment.

即ち、表中において例えば「−5」は後処理を施してい
ない同じ合金製プラグの穿孔回数より5回少ないこと意
味し、「5」は5回多いことを意味する。
That is, in the table, for example, "-5" means that the number of holes is 5 fewer than that of the same alloy plug without post-treatment, and "5" means that the number of holes is 5 more.

(以下、余白) 第3表から明らかなように、適正な条件で浸炭処理、酸
化処理をそれぞれ単独、或いは浸炭処理、拡散焼鈍処理
、酸化処理を複合して行ったものは、穿孔回数が向上し
ている(本発明例〉、これに対して、適正でない条件で
拡散処理のみを行ったもの(比較例のN113.4)お
よび適正でない条件で酸化処理のみを行ったもの(比較
例の狙11.12.42.43)は、これらの処理を行
っていないものより穿孔回数が大幅に減るか、全く増え
ていない。
(Hereafter, blank space) As is clear from Table 3, the number of holes perforation increases when carburizing treatment and oxidation treatment are performed individually under appropriate conditions, or when carburization treatment, diffusion annealing treatment, and oxidation treatment are performed in combination. (Example of the present invention), in contrast, an example where only diffusion treatment was performed under inappropriate conditions (N113.4 of the comparative example) and an example where only oxidation treatment was performed under inappropriate conditions (the aim of the comparative example) 11, 12, 42, and 43), the number of perforations is significantly reduced or not increased at all compared to those not subjected to these treatments.

また、比較例のぬ7〜N[L9のように、適正な条件で
浸炭処理しても、拡散焼鈍が不適当であると同し条件で
拡散処理のみを行ったものより穿孔回数が少ないか、拡
散焼鈍の効果が飽和している。
In addition, as in Comparative Example 7 to N [L9, even if carburized under appropriate conditions, diffusion annealing is inappropriate and the number of holes perforated is lower than when only diffusion treatment is performed under the same conditions. , the effect of diffusion annealing is saturated.

即ち、拡散処理温度の低い咀7および処理時間の短いN
119は、同じ条件で拡散処理した阻5より穿孔回数が
少なく、処理時間の長い馳8はN[L6と比べて向上し
ていない、また、適正でない条件で浸炭処理を行った後
、適正でない条件で酸化処理を行ったもの(比較側石1
5)の穿孔回数は無処理のものに比べて大幅に少ない、
しかし、その後の酸化処理を適正な条件で行ったもの(
比較例Na14)の穿孔回数の低下は酸化処理の効果に
よって抑制されるが無処理のものより少ない。
That is, the diffusion treatment temperature is low, and the treatment time is short, N.
No. 119 has fewer holes perforated than No. 5 which was subjected to diffusion treatment under the same conditions, and No. 8, which has a long treatment time, has no improvement compared to No. Those subjected to oxidation treatment under the following conditions (comparison side stone 1)
5) The number of perforations is significantly lower than that without treatment.
However, if the subsequent oxidation treatment is carried out under appropriate conditions (
Although the decrease in the number of perforations in Comparative Example Na14) is suppressed by the effect of the oxidation treatment, it is smaller than that in the case without treatment.

また、比較例のNa17および咀18は、適正な条件で
浸炭処理を行った後、適正でない条件で拡散焼鈍処理を
行い、次いで、阻17については適正な条件の酸化処理
を、N1118については不通性な条件の酸化処理を行
ったものであり、両者共に穿孔回数は無処理のものより
増えている。しかし、浸炭処理、拡散焼鈍処理および酸
化処理の全てを適正な条件で行った本発明例の阻16に
比べると穿孔回数の増加は少ない。
In addition, Comparative Examples Na17 and 18 were carburized under appropriate conditions and then diffusion annealed under inappropriate conditions. The number of holes perforated in both cases is greater than that without treatment. However, compared to Example 16 of the present invention in which all of the carburizing treatment, diffusion annealing treatment, and oxidation treatment were performed under appropriate conditions, the increase in the number of perforations is small.

(発明の効果) 実施例で示したように、本発明のNi基合金製熱間工具
は、融点が高く、高a靭性、高温延性および室温靭性に
優れているで、変形抵抗の高いステンレス鋼ような合金
鋼やNi1合金、Tiおよびその合金、Zrおよびその
合金等の高合金を加工しても、変形、焼き付き、溶損等
が少なく、工具寿命が長い。
(Effects of the Invention) As shown in the examples, the Ni-based alloy hot work tool of the present invention has a high melting point, high a toughness, high temperature ductility, and room temperature toughness, and is superior to stainless steel with high deformation resistance. Even when machining alloy steels such as Ni1 alloy, Ti and its alloys, Zr and its alloys, etc., there is little deformation, seizure, melting loss, etc., and the tool life is long.

なお、 本発明のNi基合金製熱間工具は普通鋼、低合金鋼の加
工にも勿論使用可能である。
Note that the Ni-based alloy hot work tool of the present invention can of course be used for machining ordinary steel and low alloy steel.

Claims (1)

【特許請求の範囲】 (1)重量%で、C+N:0.1%以下、Si:3%以
下、Mn:0.01〜2.0%、P:0.02%以下、
S:0.01%以下、W:20〜60%を含み、残部が
実質的にNiからなるNi基合金製熱間工具。 (2)重量%で、C+N:0.1%以下、Si:3%以
下、Mn:0.01〜2.0%、P:0.02%以下、
S:0.01%以下、W:20〜60%を含み、更に下
記のA群、B群およびC群の内から選ばれた少なくとも
1種以上の成分を含有し、残部が実質的にNiからなる
Ni基合金製熱間工具。 〔A群〕 1〜10%のMo。 〔B群〕 10%以下のFe、20%以下のCo、3%以下のTi
、3%以下のAl、3%以下のV、10%以下のCr。 〔C群〕 0.05%以下の希土類元素、0.05%以下のMg、
0.05%以下のZr、0.05%以下のCa。 (3)請求項(1)又は(2)記載のNi基合金製熱間
工具を、800〜1250℃の温度に1〜20時間加熱
して浸炭処理することを特徴とするNi基合金製熱間工
具の後処理方法。 (4)請求項(1)又は(2)記載のNi基合金製熱間
工具を、800〜1250℃の温度に1〜20時間加熱
して浸炭処理した後、800〜1250℃の温度に1〜
10時間加熱して拡散焼鈍処理することを特徴とするN
i基合金製熱間工具の後処理方法。 (5)請求項(1)又は(2)記載のNi基合金製熱間
工具を、大気以下の酸素分圧下で800〜1400℃の
温度に0.1〜10時間加熱して酸化処理することを特
徴とするNi基合金製熱間工具の後処理方法。 (6)請求項(3)の800〜1250℃の温度に1〜
20時間加熱する浸炭処理後又は請求項(4)の800
〜1250℃の温度に1〜10時間加熱する拡散焼鈍処
理後、大気以下の酸素分圧下で800〜1400℃の温
度に0.1〜10時間加熱する酸化処理を行うことを特
徴とするNi基合金製熱間工具の後処理方法。
[Claims] (1) In weight%, C+N: 0.1% or less, Si: 3% or less, Mn: 0.01 to 2.0%, P: 0.02% or less,
A hot work tool made of a Ni-based alloy, containing S: 0.01% or less, W: 20 to 60%, and the remainder substantially consisting of Ni. (2) In weight%, C+N: 0.1% or less, Si: 3% or less, Mn: 0.01 to 2.0%, P: 0.02% or less,
Contains S: 0.01% or less, W: 20 to 60%, and further contains at least one component selected from the following groups A, B, and C, with the remainder being substantially Ni. A hot work tool made of a Ni-based alloy. [Group A] 1-10% Mo. [Group B] 10% or less Fe, 20% or less Co, 3% or less Ti
, 3% or less Al, 3% or less V, 10% or less Cr. [Group C] 0.05% or less of rare earth elements, 0.05% or less of Mg,
Zr of 0.05% or less, Ca of 0.05% or less. (3) The Ni-based alloy hot tool according to claim (1) or (2) is carburized by heating it to a temperature of 800 to 1250°C for 1 to 20 hours. Post-processing method for intermediate tools. (4) The Ni-based alloy hot work tool according to claim (1) or (2) is carburized by heating to a temperature of 800 to 1250°C for 1 to 20 hours, and then heated to a temperature of 800 to 1250°C for 1 to 20 hours. ~
N characterized by being heated for 10 hours and subjected to diffusion annealing treatment.
Post-treatment method for hot tools made of i-based alloys. (5) The Ni-based alloy hot work tool according to claim (1) or (2) is oxidized by heating it to a temperature of 800 to 1400°C for 0.1 to 10 hours under an oxygen partial pressure below atmospheric pressure. A method for post-processing a hot tool made of a Ni-based alloy, characterized by: (6) 1 to 1 at a temperature of 800 to 1250°C according to claim (3)
After carburizing treatment by heating for 20 hours or 800 of claim (4)
After diffusion annealing treatment of heating to a temperature of ~1250°C for 1 to 10 hours, an oxidation treatment of heating to a temperature of 800 to 1400°C for 0.1 to 10 hours under an oxygen partial pressure below atmospheric pressure. Post-treatment method for hot alloy tools.
JP19708189A 1989-07-28 1989-07-28 Ni-base alloy hot tool and post-processing method of the hot tool Expired - Fee Related JP2778140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19708189A JP2778140B2 (en) 1989-07-28 1989-07-28 Ni-base alloy hot tool and post-processing method of the hot tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19708189A JP2778140B2 (en) 1989-07-28 1989-07-28 Ni-base alloy hot tool and post-processing method of the hot tool

Publications (2)

Publication Number Publication Date
JPH0361345A true JPH0361345A (en) 1991-03-18
JP2778140B2 JP2778140B2 (en) 1998-07-23

Family

ID=16368405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19708189A Expired - Fee Related JP2778140B2 (en) 1989-07-28 1989-07-28 Ni-base alloy hot tool and post-processing method of the hot tool

Country Status (1)

Country Link
JP (1) JP2778140B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164886A (en) * 1991-12-13 1993-06-29 Toshiba Corp Manufacture of members for nuclear power plant
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
US5334263A (en) * 1991-12-05 1994-08-02 General Electric Company Substrate stabilization of diffusion aluminide coated nickel-based superalloys
US5593510A (en) * 1994-04-18 1997-01-14 Daido Hoxan, Inc. Method of carburizing austenitic metal
US5792282A (en) * 1995-04-17 1998-08-11 Daido Hoxan, Inc. Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
CN115992326A (en) * 2021-10-20 2023-04-21 中国科学院上海应用物理研究所 Cr-free nickel-based alloy for high-temperature molten salt environment and preparation method thereof
CN115992326B (en) * 2021-10-20 2024-06-25 中国科学院上海应用物理研究所 Cr-free nickel-based alloy for high-temperature molten salt environment and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315906A (en) 2017-11-02 2020-06-19 日本制铁株式会社 Piercing-rolling machine plug and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334263A (en) * 1991-12-05 1994-08-02 General Electric Company Substrate stabilization of diffusion aluminide coated nickel-based superalloys
JPH05164886A (en) * 1991-12-13 1993-06-29 Toshiba Corp Manufacture of members for nuclear power plant
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
US5593510A (en) * 1994-04-18 1997-01-14 Daido Hoxan, Inc. Method of carburizing austenitic metal
CN1070538C (en) * 1994-04-18 2001-09-05 空气及水株式会社 Method of carburizing austenitic metal and austentitic metal products obtained thereby
US5792282A (en) * 1995-04-17 1998-08-11 Daido Hoxan, Inc. Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
CN115992326A (en) * 2021-10-20 2023-04-21 中国科学院上海应用物理研究所 Cr-free nickel-based alloy for high-temperature molten salt environment and preparation method thereof
CN115992326B (en) * 2021-10-20 2024-06-25 中国科学院上海应用物理研究所 Cr-free nickel-based alloy for high-temperature molten salt environment and preparation method thereof

Also Published As

Publication number Publication date
JP2778140B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
JP2683861B2 (en) Hot pipe making tool and method of manufacturing the same
EP1632583A1 (en) Tool steel for hot working, tool for hot working and plug for producing seamless pipe
JPH0361345A (en) Hot-working tool made of ni-base alloy and aftertreatment for same
JPH04270003A (en) Hot tube making tool and its production
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JPS63282241A (en) Tool material for borine on high cr seamless steel pipe
JPH0474848A (en) Steel for hot tube making tool and hot tube making tool
JPH03204106A (en) Plug for manufacturing hot seamless tube
JPH0426739A (en) Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof
JPS599154A (en) Material for tool for manufacturing seamless steel pipe
JP2005187900A (en) Cold tool steel having excellent surface treatability, component for die, and die
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JPH06172943A (en) Die for hot working excellent in wear resistance
JPH10291008A (en) Tool for hot making tube and its manufacture
JP2508862B2 (en) Hot seamless pipe manufacturing plug
JPS5930770B2 (en) Method for manufacturing heat-resistant and wear-resistant tool materials
JP7310723B2 (en) Steel part and its manufacturing method
JPH02153035A (en) Ni-base alloy for hot working tool
JPS6225746B2 (en)
CN112501522B (en) High-temperature-resistant piercing plug and preparation method thereof
JPH0426738A (en) Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof
JPH08225887A (en) Plug for producing seamless pipe
JPS6214632B2 (en)
JPH0375385A (en) Parts for machine sliding part made of tial-base alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees