JPS6225746B2 - - Google Patents
Info
- Publication number
- JPS6225746B2 JPS6225746B2 JP58016261A JP1626183A JPS6225746B2 JP S6225746 B2 JPS6225746 B2 JP S6225746B2 JP 58016261 A JP58016261 A JP 58016261A JP 1626183 A JP1626183 A JP 1626183A JP S6225746 B2 JPS6225746 B2 JP S6225746B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- weight
- nitriding
- treatment
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000011282 treatment Methods 0.000 claims description 25
- 238000005121 nitriding Methods 0.000 claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910001208 Crucible steel Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- -1 Cr and Nb Chemical class 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
この発明は、造管用工具材料の製造方法に関
し、とくに継目無鋼管の製造の際に使用する工具
材料中でもプラグミル圧延用のプラグの製造にと
りわけ有利に適合し、該工具材料の高温における
耐摩耗性の有利な改善を図ろうとするものであ
る。
継目無鋼管の製造法としては、丸鋼片または角
鋼片をマンネスマン方式あるいはプレス方式によ
り穿孔して中空素材としたのち、この中空素材を
エロンゲータやプラグミルまたはマンドレルミル
などの圧延機によつて伸延加工する方法が一般的
である。
かような継目無鋼管製造の各工程において、と
くに成形用プラグおよびガイドシユーなどの工具
材料は、高温下のか酷な摩耗環境にさらされる。
中でもプラグミル圧延工程においては、素管の
温度が通常950〜1150℃と高く、しかもかような
高温雰囲気中で圧延荷重:100〜250トン程度、圧
延速度:3m/s程度の条件で圧延を行うことが
必要とされるため、プラグミル圧延用のプラグは
素管内面と高温高圧下で接触することを余儀なく
されるほか、プラグ自体は回転しないのでプラグ
は完全なすべり摩耗を受けるという、とりわけ厳
しい条件下にある。
従つてかような工具材料の高温における耐摩耗
性を向上させてその寿命延長を図ることは、上記
の如き工程による継目無鋼管の製造において、こ
とに重要な課題の一つであり、とくに油井用継目
無鋼管の生産性の増大や高合金化が望まれている
昨今、その重要性はますます大きなものになつて
きている。
この発明は、上記の要請に有利に応えるもの
で、高温下においてもすぐれた耐摩耗性をそなえ
る造管用工具材料の有利な製造方法を提案するこ
とを目的とする。
ところで、高温における材料の耐摩耗性を向上
させる手段としてもつとも一般なことは、材料の
高温強度を高めることであり、そのためにはC、
Cr、Mo、W、Ni、Co、NbおよびVなどの合金
元素の添加が有効であることが知られていて、プ
ラグミル圧延用プラグ材においてもかような合金
元素を添加した(1.3〜1.5)%C−17%Cr−2%
W鋼や(1.3〜1.8)%C−24%Cr−3%Ni鋼など
の高炭素、高Cr鋳鋼が主に使用されている。
しかしながらかような材質のプラグではもは
や、最近の油井用継目無鋼管の生産量増大に伴う
圧延間隔の短縮ならびに該鋼管の高合金化に伴う
圧延負荷の増大などには対処することができず、
プラグの損耗が製造上の大きな問題になつてい
る。
この点、プラグの高温強度を上げる手段とし
て、Ni、W、CoおよびMoなどの添加量の増大
や、Al、Tiを加えてNi−Al、Ni−Tiの金属間化
合物による析出硬化の利用、さらにはNi基合金
の採用などが考えられる。しかしかような元素の
大量添加は、熱伝導性の著しい低下をもたらし、
従つてこの種プラグによりプラグミル圧延を行つ
た場合には、素管自体の持つ熱さらには圧延によ
つて生じた熱がプラグに流入しようとしても、こ
の熱はプラグ内部には伝達し難いので、表層部の
みの温度上昇をもたらし、結局は強度の低下を招
く。また高合金化鉄基合金やNi基合金において
は、素管からの熱の流入のしや断に有効に寄与す
るプラグ表面の酸化スケールが、酸化雰囲気中で
の高温加熱によつても満足いく程度には生成しな
いという不利も加わる。
このためたとえ上掲したような各手段を講じた
としても、プラグの損耗度は従来よりもむしろ大
きくなつていたのである。
そこで発明者らは上記の問題を解決すべく鋭意
研究を重ねた結果、所定量のC、Si、Mn、Cr、
NiおよびNbに加え、さらにMo、WおよびCoのう
ちから選んだ少くとも一種を適当量添加した鋳鋼
を、所定の形状に仕上げたのち、窒化処理+酸化
処理ついで硬化処理を施すことにより、従来材に
比べて高温強度が高く、しかもち密で密着性にす
ぐれた酸化スケールをそなえる工具材料が得られ
ることを新たに究明し、かくしてこの発明を完成
させるに至つたのである。
すなわちこの発明は、
C:0.60〜2.0重量%、
Si:0.10〜2.0重量%、
Mn:0.30〜2.0重量%、
Cr:9.0〜22.0重量%、
Ni:0.60〜8.0重量%および、
Nb:0.020〜2.0重量%
を含みかつ、
Mo:0.20〜5.0重量%、
W:0.20〜5.0重量%および
Co:0.20〜5.0重量%
のうちから選んだ少くとも一種を含有する溶鋼を
鋳造し、ついで所定の形状に仕上げたのち、500
〜1100℃の温度範囲において窒化深度が10μm以
上となる表面窒化処理を施し、引続き1000〜1250
℃の温度範囲で酸化処理して仕上げ表面上に酸化
スケールを形成させ、しかるのち加熱温度が800
〜1000℃の範囲になる硬化処理を施すことを特徴
とする造管用工具材料の製造方法である。
以下この発明を具体的に説明する。
まずこの発明において基本成分を上記の範囲に
限定した理由について説明する。
C:0.60〜2.0重量%(以下単に%で示す)
Cは、炭化物を形成して高温耐摩耗性を向上さ
せる元素として有用であるが、0.60%未満ではそ
の効果が小さく、一方2.0%を超えると熱衝撃に
よる割れが生じ易くなるので、0.60〜2.0%の範
囲とした。
Si:0.10〜2.0%
Siは、基地合金との密着性がよいスケールを生
成させるのに有用な元素であるが、0.10%未満で
はその効果は小さく、一方2.0%を超えると高温
強度を低下させるので、0.10〜2.0%の範囲とし
た。
Mn:0.30〜2.0%
Mnは、高温強度を高めるのに有効に寄与する
が、0.30%未満ではその効果は小さく、一方2.0
%を超えると熱伝導性を悪化させて高温耐摩耗性
を劣化させるので、0.30〜2.0%の範囲とした。
Cr:9.0〜22%
Crは、表面に基地合金との密着性がよくかつ
断熱性のよいスケールを生成させると共にCrの
炭化物を形成することによつて高温強度を高める
有用な元素であるが、9.0%未満ではその効果が
小さく、一方22%を超えるとスケール付着量の減
少および高温強度の低下が生じ、高温耐摩耗性が
劣化するので9.0〜22%の範囲とした。
Ni:0.60〜8.0%
Niは、スケール付着熱処理時にスケールと基
地合金との境界にNiの富化した合金粒を生成さ
せてスケールと基地合金の密着性を高め、かつ高
温強度を高める有用な元素である。0.60%未満で
はその効果に乏しく、一方8.0%を超えるとスケ
ールの生成量が減少しまた熱伝導性が悪化して高
温耐摩耗性を劣化させるので、0.60〜8.0%の範
囲とした。
Nb:0.020〜2.0%
Nbは、炭化物を形成して高温強度を高めると
ともに酸化スケールの生成量を増しかつその密着
性を高めて高温耐摩耗性を改善するのでこの発明
においてとくに重要な元素であるが、0.020%未
満ではその効果が小さいので下限を0.020%と
し、一方2.0%を超えるとその効果は飽和に達し
また高価でもあるので上限を2.0%とした。
Mo、W、またはCo:0.20〜5.0%
Mo、W、またはCoはいずれも、高温強度を高
めかつスケールのち密性と密着性を増加させて高
温耐摩耗性を向上させるので、これらのうちの1
種または2種以上を添加することがこの発明では
とくに重要な点であるが、それぞれ0.20%以下で
はその効果が小さいので下限を0.20%とし、一方
5.0%を超えるとその効果は飽和に達しまた高価
でもあるので上限を2.0%とした。
なお上記したC、Si、Mn、Cr、Ni、Nb、なら
びにMo、WおよびCoのうちの1種または2種以
上の各基本成分の他、この発明では必要に応じて
さらにZrとCa、Mg、Yのうちの1種または2種
以上との複合、またさらにはV、Cu、Al、Bお
よびSのうちから選ばれる1種または2種以上を
下記範囲内において含有させることもできる。こ
れらの添加元素の限定理由は以下のとおりであ
る。
Zr:0.050〜5.0%
Zrは、次に示すCa、MgおよびYのうちから選
ばれる1種または2種以上との複合添加によつて
地鉄との密着性がよくかつ断熱性、耐摩耗性にす
ぐれた安定化ジルコニアを含む酸化スケールを生
成させる元素として有用であるが、その添加量が
0.050%未満ではその効果が小さく、一方5.0%を
超えるとスケール生成量が著しく少して高温耐摩
耗性を劣化させるので、0.050〜5.0%の範囲に限
定した。
Ca、Mg、Y:0.003Ca/Zr0.06、
0.002Mg/Zr0.04
0.005Y/Zr0.10
Ca、Mg、Yは、上述したようにZrとの複合添
加により、地鉄との密着性がよくかつ断熱性、耐
摩耗性にすぐれた酸化スケールを生成させる元素
として有用であるが、これらの添加量がZr含有量
に対する比でそれぞれCa/Zr<0.003、Mg/Zr<
0.002、Y/Zr<0.005の場合には地鉄との密着性
のよいスケールは得難く、一方Ca/Zr>0.06、
Mg/Zr>0.04、Y/Zr>0.10になると密着性が
低下する傾向を示し、またこれらは高価でもある
ので、それぞれ0.003≦Ca/Zr≦0.006、0.002≦
Mg/Zr≦0.04、0.005≦Y/Zr≦0.10の範囲に限
定した。
V:0.020〜2.0%
Vは、炭化物を形成して高温強度を高めるのに
有効に寄与するが、0.20%未満ではその効果が小
さく、一方2.0%を超えるとその効果は飽和に達
し、また高価でもあるので、0.020〜2.0%の範囲
に限定した。
Cu:0.10〜3.0%
Cuは、スケールと地鉄との密着性を向上させ
るのに有効に寄与するが、0.10%未満ではその効
果に乏しく、一方3.0%を超えると表層にCu濃化
層が生じ、この部分の融点が低下して高温耐摩耗
性を劣化させるので、0.10〜3.0%の範囲に限定
した。
Al:0.020〜2.0%
Alは、地鉄との密着性がよくかつ断熱性にす
ぐれたスケールを生成させるのに有効に寄与する
が、0.020%未満ではその効果が小さく、一方2.0
%を超えるとスケール生成量が著しく減少して高
温耐摩耗性を劣化させるので、0.020〜2.0%の範
囲に限定した。
B:0.0020〜0.50%
Bは、高温強度を高めるとともに、仕上げ成形
後の窒化処理においてBNを形成し表面潤滑性を
改善する有用な元素であるが、0.0020%未満では
その効果が小さく、一方0.50%を超えると熱衝撃
割れが発生するので、0.0020〜0.50%の範囲に限
定した。
S:0.020〜0.30%
Sは、硫化物の形成により表面潤滑性を高める
のに有効に寄与するが、0.020%未満ではその効
果が小さく、一方0.30%を超えると熱衝撃割れが
発生し易くなるので、0.020〜0.30%の範囲に限
定した。
次に、適正な成分組成に調整した鋳鋼を所定の
形状に仕上げたのち施す熱処理について説明す
る。
まずこの発明では表面窒化処理を施す。
というのはかかる窒化処理により、Nの固溶硬
化およびCr、Nbなどの窒化物の生成によつて表
層の高温強度が一層高まり、とくにBを添加した
材料においてはBNが形成される結果表面潤滑性
も高まることも相まつて、高温耐摩耗性が著しく
改善されるからである。
しかしながら窒化処理によつて得られる窒化層
厚みすなわち窒化深度が、10μmに満たない場合
にはその改善効果に乏しいので窒化深度は10μm
以上とする必要があり、そのためには窒化処理は
500〜1100℃の温度範囲で行う必要がある。なお
窒化法としては、ガス窒化法、ガス軟窒化法、液
体窒化法およびイオン窒化法などいずれもが使用
できる。
ついでかかる窒化処理に引続き酸化処理を施
す。
酸化処理を施すのは、工具材料の仕上げ表面に
酸化スケールを被成させて、高温の被処理材から
の入熱を効果的にしや断するためであるが、加熱
温度が1000℃未満では十分な断熱性を呈する厚み
(20μm以上)で、Crを含有し地鉄との密着性の
良好な酸化スケール層が得難く、一方1250℃を超
えると、スケール層内に多くの空隙が生じて地鉄
合金との密着性が低下し、いずれも高温耐摩耗性
を劣化させるので、酸化処理は1000〜1250℃の温
度範囲で行う必要がある。
上記の酸化処理に引続き、またはその後に施す
硬化処理は、残留オーステナイト量を低減してマ
ルテンサイト化を図ると共に、オーステナイトへ
のC固溶量を増大させて高温硬さを高めるために
行うものであるが、処理温度が800℃未満の場合
にはオーステナイトへのC固溶量が少いので満足
いく高温硬さが得難く、一方1000℃を超えると残
留オーステナイト量が増加して高温硬さの低下を
招くので、処理温度は800〜1000℃の温度範囲に
限定した。なお上記の加熱温度範囲からの冷却速
度は、高温での硬さにほとんど影響を及ぼさない
ので、所定の温度に加熱して0.5〜5時間程度保
持したのち、常法に従つてたとえば空冷すればよ
い。
かような窒化処理、酸化処理および硬化処理を
順次に施すことによつて、高温硬さは勿論のこと
高温耐摩耗性が著しく向上し、かくしてより一層
の工具寿命の延長が実現されるのである。
以下この発明の実施例について説明する。
表1に符号A〜Pで示した成分組成になる各鋳
鋼を、プラグミル用プラグに成形したのち、表2
に示した処理条件下に
窒化処理(NH3雰囲気中)、酸化処理(雰囲気
CO:3%、CO2:10%、O2:4%、残りN2)、
引続いて硬化処理を施した。なお窒化処理材の窒
化深度は40〜160μm、またCrを含有する地鉄と
の密着性のよい酸化スケール層の厚みは200〜250
μmであつた。
ついで得られた各プラグを用いて、C:0.23
%、Si:0.24%、Mn:1.33%、Ti:0.017%、
B:0.0018%、残部Feの組成になる直径249mm、
肉厚12.9mmの炭素鋼素管を、プラグミルにおいて
直径244mm、肉厚9.9mmに連続して圧延したとき
の、各プラグの穿孔寿命について調査した。結果
を、比較例(符号P)の寿命を1とした場合の寿
命比で表2に併せて示す。
The present invention relates to a method for producing a tool material for pipe making, and is particularly advantageous for producing plugs for plug mill rolling among tool materials used in the production of seamless steel pipes, and has high wear resistance at high temperatures. The aim is to achieve advantageous improvements. Seamless steel pipes are manufactured by drilling round or square steel pieces using the Mannesmann method or press method to create a hollow material, and then elongating this hollow material using a rolling mill such as an elongator, plug mill, or mandrel mill. The most common method is to In each step of manufacturing such seamless steel pipes, tool materials such as forming plugs and guide shoes are exposed to severe abrasive environments at high temperatures. Among these, in the plug mill rolling process, the temperature of the raw tube is usually as high as 950 to 1150°C, and rolling is performed in such a high temperature atmosphere at a rolling load of about 100 to 250 tons and a rolling speed of about 3 m/s. As a result, plugs for plug mill rolling are forced to come into contact with the inner surface of the raw tube under high temperature and pressure, and the plugs themselves do not rotate, so they are subject to complete sliding wear, making them subject to especially severe conditions. It's below. Therefore, improving the wear resistance of such tool materials at high temperatures and extending their service life is one of the most important issues in the production of seamless steel pipes using the process described above, especially in oil wells. In recent years, the importance of seamless steel pipes has become even greater, as increased productivity and higher alloying of seamless steel pipes are desired. The present invention advantageously satisfies the above-mentioned demands, and aims to propose an advantageous method for manufacturing a pipe-making tool material that has excellent wear resistance even at high temperatures. By the way, the most common means of improving the wear resistance of materials at high temperatures is to increase the high temperature strength of the materials, and for that purpose C,
It is known that the addition of alloying elements such as Cr, Mo, W, Ni, Co, Nb, and V is effective, and such alloying elements are also added to plug materials for plug mill rolling (1.3 to 1.5). %C-17%Cr-2%
High carbon, high Cr cast steels such as W steel and (1.3-1.8)%C-24%Cr-3%Ni steel are mainly used. However, plugs made of such materials are no longer able to cope with the shortening of rolling intervals due to the recent increase in production of seamless steel pipes for oil wells, as well as the increase in rolling load due to the high alloying of such steel pipes.
Plug wear has become a major manufacturing problem. In this regard, as a means to increase the high-temperature strength of the plug, increasing the amount of Ni, W, Co, and Mo added, adding Al and Ti and using precipitation hardening by Ni-Al and Ni-Ti intermetallic compounds, Furthermore, the use of Ni-based alloys may be considered. However, the addition of large amounts of such elements causes a significant decrease in thermal conductivity.
Therefore, when plug mill rolling is performed using this type of plug, even if the heat of the raw tube itself or the heat generated by rolling tries to flow into the plug, this heat is difficult to transfer into the inside of the plug. This causes a temperature rise only in the surface layer, which ultimately leads to a decrease in strength. In addition, in highly alloyed iron-based alloys and Ni-based alloys, the oxidized scale on the plug surface, which effectively contributes to cutting off the flow of heat from the raw pipe, remains satisfactory even when heated at high temperatures in an oxidizing atmosphere. There is also the added disadvantage of not being generated to a certain extent. For this reason, even if the above-mentioned measures were taken, the degree of wear and tear on the plug would be greater than in the past. Therefore, the inventors conducted intensive research to solve the above problem, and found that a predetermined amount of C, Si, Mn, Cr,
In addition to Ni and Nb, a suitable amount of at least one selected from Mo, W, and Co is added to the cast steel, which is then finished into a predetermined shape and then subjected to nitriding, oxidation, and hardening. It was newly discovered that it was possible to obtain a tool material that has higher high-temperature strength than other materials, and also has an oxide scale that is dense and has excellent adhesion, and thus completed this invention. That is, this invention includes: C: 0.60 to 2.0% by weight, Si: 0.10 to 2.0% by weight, Mn: 0.30 to 2.0% by weight, Cr: 9.0 to 22.0% by weight, Ni: 0.60 to 8.0% by weight, and Nb: 0.020 to 2.0% by weight. Molten steel containing 2.0% by weight and at least one selected from Mo: 0.20 to 5.0% by weight, W: 0.20 to 5.0% by weight, and Co: 0.20 to 5.0% by weight is cast, and then cast into a predetermined shape. After finishing it, 500
Surface nitriding treatment with a nitriding depth of 10 μm or more in the temperature range of ~1100℃, followed by 1000 ~ 1250℃
Oxidation treatment is performed at a temperature range of 800 °C to form oxide scale on the finished surface, and then the heating temperature is 800 °C.
This is a method for manufacturing a pipe-making tool material, which is characterized by performing a hardening treatment at a temperature in the range of ~1000°C. This invention will be explained in detail below. First, the reason why the basic components are limited to the above range in this invention will be explained. C: 0.60 to 2.0% by weight (hereinafter simply expressed as %) C is useful as an element that forms carbides and improves high-temperature wear resistance, but if it is less than 0.60%, its effect is small, while if it exceeds 2.0% Since cracking is likely to occur due to thermal shock, the content was set in the range of 0.60 to 2.0%. Si: 0.10-2.0% Si is a useful element for creating scale with good adhesion to the base alloy, but if it is less than 0.10%, its effect is small, while if it exceeds 2.0%, it reduces high-temperature strength. Therefore, it was set in the range of 0.10 to 2.0%. Mn: 0.30-2.0% Mn effectively contributes to increasing high-temperature strength, but below 0.30%, the effect is small;
%, the thermal conductivity deteriorates and high temperature wear resistance deteriorates, so the range was set to 0.30 to 2.0%. Cr: 9.0-22% Cr is a useful element that increases high-temperature strength by forming scales on the surface that have good adhesion to the base alloy and good heat insulation properties, as well as forming Cr carbides. If the content is less than 9.0%, the effect will be small, while if it exceeds 22%, the amount of scale deposited will decrease, the high temperature strength will decrease, and the high temperature wear resistance will deteriorate, so the content was set in the range of 9.0 to 22%. Ni: 0.60-8.0% Ni is a useful element that generates Ni-enriched alloy grains at the boundary between scale and base alloy during scale adhesion heat treatment, increases the adhesion between scale and base alloy, and increases high-temperature strength. It is. If it is less than 0.60%, the effect will be poor, while if it exceeds 8.0%, the amount of scale produced will decrease, thermal conductivity will deteriorate, and high-temperature wear resistance will deteriorate. Nb: 0.020-2.0% Nb is a particularly important element in this invention because it forms carbides and increases high-temperature strength, increases the amount of oxide scale produced, and improves its adhesion and high-temperature wear resistance. However, if it is less than 0.020%, the effect is small, so the lower limit is set to 0.020%, while if it exceeds 2.0%, the effect reaches saturation and is also expensive, so the upper limit is set to 2.0%. Mo, W, or Co: 0.20-5.0% Mo, W, or Co increases high-temperature strength and increases scale compactness and adhesion to improve high-temperature wear resistance, so Mo, W, or Co is one of these. 1
It is particularly important in this invention to add a species or two or more species, but the effect is small if each species is less than 0.20%, so the lower limit is set at 0.20%.
If it exceeds 5.0%, the effect reaches saturation and it is also expensive, so the upper limit was set at 2.0%. In addition to the above-mentioned basic components of C, Si, Mn, Cr, Ni, Nb, and one or more of Mo, W, and Co, in this invention, Zr, Ca, Mg , Y, or one or more selected from V, Cu, Al, B, and S within the following range. The reasons for limiting these additive elements are as follows. Zr: 0.050-5.0% Zr has good adhesion to the steel base, heat insulation, and wear resistance due to the combined addition of one or more selected from the following Ca, Mg, and Y. It is useful as an element that generates oxide scale containing stabilized zirconia, which has excellent stability, but the amount added is
If it is less than 0.050%, the effect will be small, while if it exceeds 5.0%, the amount of scale produced will be extremely small and the high-temperature wear resistance will deteriorate, so it was limited to a range of 0.050 to 5.0%. Ca, Mg, Y: 0.003Ca/Zr0.06, 0.002Mg/Zr0.04 0.005Y/Zr0.10 As mentioned above, Ca, Mg, and Y improve their adhesion to the base steel due to their combined addition with Zr. It is useful as an element that generates oxide scale with good heat insulation and wear resistance, but the amount of these additions is in the ratio of Ca/Zr<0.003 and Mg/Zr<0.003 to Zr content, respectively.
0.002, when Y/Zr<0.005, it is difficult to obtain a scale with good adhesion to the base metal, while on the other hand, when Ca/Zr>0.06,
Adhesion tends to decrease when Mg/Zr>0.04 and Y/Zr>0.10, and these are also expensive, so 0.003≦Ca/Zr≦0.006 and 0.002≦, respectively.
The range was limited to Mg/Zr≦0.04 and 0.005≦Y/Zr≦0.10. V: 0.020-2.0% V effectively contributes to forming carbides and increasing high-temperature strength, but if it is less than 0.20%, the effect is small, while if it exceeds 2.0%, the effect reaches saturation and is expensive. Therefore, it was limited to the range of 0.020 to 2.0%. Cu: 0.10-3.0% Cu effectively contributes to improving the adhesion between scale and steel base, but less than 0.10% the effect is poor, while more than 3.0% a Cu-enriched layer forms on the surface. The content was limited to 0.10 to 3.0% because the melting point of this part decreases and the high-temperature wear resistance deteriorates. Al: 0.020-2.0% Al contributes effectively to the generation of scale that has good adhesion to the steel base and has excellent heat insulation properties, but if it is less than 0.020%, the effect is small;
%, the amount of scale formed will significantly decrease and high temperature wear resistance will deteriorate, so it was limited to a range of 0.020 to 2.0%. B: 0.0020-0.50% B is a useful element that increases high-temperature strength and improves surface lubricity by forming BN in the nitriding treatment after final forming, but if it is less than 0.0020%, the effect is small; %, thermal shock cracking will occur, so it was limited to a range of 0.0020 to 0.50%. S: 0.020-0.30% S effectively contributes to increasing surface lubricity through the formation of sulfides, but if it is less than 0.020%, the effect is small, while if it exceeds 0.30%, thermal shock cracking is likely to occur. Therefore, it was limited to the range of 0.020 to 0.30%. Next, a description will be given of the heat treatment that is applied to cast steel that has been adjusted to have an appropriate composition and is finished into a predetermined shape. First, in this invention, surface nitriding treatment is performed. This is because such nitriding treatment further increases the high-temperature strength of the surface layer due to solid solution hardening of N and the formation of nitrides such as Cr and Nb, and especially in materials containing B, the formation of BN results in surface lubrication. This is because, together with the increased properties, the high-temperature wear resistance is significantly improved. However, if the nitriding layer thickness obtained by nitriding treatment, that is, the nitriding depth, is less than 10 μm, the improvement effect is poor, so the nitriding depth is limited to 10 μm.
In order to achieve this, nitriding treatment is necessary.
It is necessary to carry out in the temperature range of 500-1100℃. Note that as the nitriding method, any of gas nitriding, gas soft nitriding, liquid nitriding, and ion nitriding can be used. Then, following the nitriding treatment, an oxidation treatment is performed. The purpose of oxidation treatment is to form an oxide scale on the finished surface of the tool material to effectively cut off heat input from the high-temperature material to be treated, but heating temperatures below 1000℃ are sufficient. It is difficult to obtain an oxide scale layer with a thickness (20 μm or more) that exhibits good thermal insulation properties, contains Cr, and has good adhesion to the base steel.On the other hand, when the temperature exceeds 1250℃, many voids occur in the scale layer, causing the scale layer to deteriorate. The oxidation treatment must be carried out in a temperature range of 1000 to 1250°C, since the adhesion with the iron alloy decreases and both deteriorate the high temperature wear resistance. The hardening treatment that is performed following or after the above oxidation treatment is performed to reduce the amount of retained austenite and convert it to martensite, and to increase the amount of solid solution of C in austenite to increase high-temperature hardness. However, if the treatment temperature is less than 800℃, the amount of solid solution of C in austenite is small, making it difficult to obtain satisfactory high-temperature hardness.On the other hand, if the treatment temperature exceeds 1000℃, the amount of retained austenite increases and the high-temperature hardness decreases. The treatment temperature was limited to a temperature range of 800 to 1000°C. The cooling rate from the above heating temperature range has almost no effect on the hardness at high temperatures, so if you heat it to a predetermined temperature and hold it for about 0.5 to 5 hours, then cool it in the usual manner, for example by air. good. By performing such nitriding, oxidation, and hardening treatments in sequence, not only high-temperature hardness but also high-temperature wear resistance is significantly improved, thus further extending tool life. . Examples of the present invention will be described below. After forming each cast steel having the chemical compositions shown by symbols A to P in Table 1 into plugs for plug mills,
Nitriding treatment (in NH3 atmosphere), oxidation treatment (atmosphere) under the treatment conditions shown in
CO: 3%, CO2 : 10%, O2 : 4%, remaining N2 ),
Subsequently, a hardening treatment was performed. The nitriding depth of the nitrided material is 40 to 160 μm, and the thickness of the oxide scale layer, which has good adhesion to the Cr-containing steel, is 200 to 250 μm.
It was μm. Then, using each plug obtained, C: 0.23
%, Si: 0.24%, Mn: 1.33%, Ti: 0.017%,
B: 0.0018%, balance 249mm in diameter, with a composition of Fe;
The perforation life of each plug was investigated when a raw carbon steel pipe with a wall thickness of 12.9 mm was continuously rolled in a plug mill to a diameter of 244 mm and a wall thickness of 9.9 mm. The results are also shown in Table 2 as a lifespan ratio when the lifespan of the comparative example (symbol P) is set to 1.
【表】【table】
【表】
表2に示した結果から明らかなように、この発
明に従い得られたプラグミル用プラグ(符号A〜
O)はいずれも、比較例(符号P)として示した
従来プラグに較べて、穿孔寿命が2.3〜3.5倍も勝
つていた。
以上実施例では、この発明をプラグミル用プラ
グの製造に適用した場合について主に説明した
が、その他ピアサーまたはエロンゲータガイドシ
ユーあるいはエロンゲータ用プラグなどの製造に
も広く適用でき、同等の効果が得られるのはいう
までもない。
かくしてこの発明によれば、造管用工具材料の
高温耐摩耗性ならびに高温強度を、熱伝導性を劣
化させることなしに著しく向上させることがで
き、従つて工具材料の耐用寿命の大幅な延長を実
現でき、有利である。[Table] As is clear from the results shown in Table 2, the plugs for plug mills (symbols A to
All of O) had a piercing life 2.3 to 3.5 times longer than the conventional plug shown as a comparative example (symbol P). In the above embodiments, the present invention was mainly explained in the case where it was applied to the production of plugs for plug mills, but it can also be widely applied to the production of other piercers, elongator guide shoes, elongator plugs, etc., and the same effects can be obtained. Needless to say, it is possible. Thus, according to the present invention, the high-temperature wear resistance and high-temperature strength of the pipe-making tool material can be significantly improved without deteriorating the thermal conductivity, and the useful life of the tool material can therefore be significantly extended. It is possible and advantageous.
Claims (1)
鋳造し、ついで所定の形状に仕上げたのち、500
〜1100℃の温度範囲において窒化深度が10μm以
上となる表面窒化処理を施し、引続き1000〜1250
℃の温度範囲で酸化処理して仕上げ表面上に酸化
スケールを形成させ、しかるのち加熱温度が800
〜1000℃の範囲になる硬化処理を施すことを特徴
とする造管用工具材料の製造方法。[Claims] 1 C: 0.60 to 2.0% by weight, Si: 0.10 to 2.0% by weight, Mn: 0.30 to 2.0% by weight, Cr: 9.0 to 22.0% by weight, Ni: 0.60 to 8.0% by weight, and Nb: Molten steel containing 0.020 to 2.0% by weight and at least one selected from Mo: 0.20 to 5.0% by weight, W: 0.20 to 5.0% by weight, and Co: 0.20 to 5.0% by weight is cast, and then After finishing the specified shape, 500
Surface nitriding treatment with a nitriding depth of 10 μm or more in the temperature range of ~1100℃, followed by 1000 ~ 1250℃
Oxidation treatment is performed at a temperature range of 800 °C to form oxide scale on the finished surface, and then the heating temperature is 800 °C.
A method for manufacturing a pipe-making tool material, which comprises performing a hardening treatment at a temperature in the range of ~1000°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1626183A JPS59143078A (en) | 1983-02-04 | 1983-02-04 | Production of tool material for making pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1626183A JPS59143078A (en) | 1983-02-04 | 1983-02-04 | Production of tool material for making pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59143078A JPS59143078A (en) | 1984-08-16 |
JPS6225746B2 true JPS6225746B2 (en) | 1987-06-04 |
Family
ID=11911611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1626183A Granted JPS59143078A (en) | 1983-02-04 | 1983-02-04 | Production of tool material for making pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59143078A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132241U (en) * | 1987-02-20 | 1988-08-30 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9715345D0 (en) * | 1997-07-21 | 1997-09-24 | Rhp Bearings Ltd | Case hardening of steels |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658963A (en) * | 1979-10-20 | 1981-05-22 | Kiyoichi Ogawa | Method and device for nitrified-layer stabilizing vapor coating processing |
JPS57126956A (en) * | 1981-01-30 | 1982-08-06 | Kawasaki Steel Corp | Heat resistant and abrasion resistant tool material |
-
1983
- 1983-02-04 JP JP1626183A patent/JPS59143078A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658963A (en) * | 1979-10-20 | 1981-05-22 | Kiyoichi Ogawa | Method and device for nitrified-layer stabilizing vapor coating processing |
JPS57126956A (en) * | 1981-01-30 | 1982-08-06 | Kawasaki Steel Corp | Heat resistant and abrasion resistant tool material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132241U (en) * | 1987-02-20 | 1988-08-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS59143078A (en) | 1984-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013133076A1 (en) | Method for producing high-strength steel material having excellent sulfide stress cracking resistance | |
WO2017150252A1 (en) | Steel material and steel pipe for use in oil well | |
JP2020501027A (en) | Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material | |
WO2017150251A1 (en) | Steel material and steel pipe for use in oil well | |
JP3292122B2 (en) | Seamless steel pipe manufacturing tools | |
JPH0474848A (en) | Steel for hot tube making tool and hot tube making tool | |
JPH04270003A (en) | Hot tube making tool and its production | |
JPS599154A (en) | Material for tool for manufacturing seamless steel pipe | |
JPH048498B2 (en) | ||
JP2778140B2 (en) | Ni-base alloy hot tool and post-processing method of the hot tool | |
JPS6225746B2 (en) | ||
JPH0426739A (en) | Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof | |
JP2705416B2 (en) | Martensitic stainless steel and manufacturing method | |
JPS5831066A (en) | Punch for cold working | |
KR890001446B1 (en) | Cast alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe | |
JPH03204106A (en) | Plug for manufacturing hot seamless tube | |
JP2005187900A (en) | Cold tool steel having excellent surface treatability, component for die, and die | |
JP5399000B2 (en) | Heat-resistant cast steel jig material for vacuum carburizing heat treatment | |
JPS6214632B2 (en) | ||
JP3849296B2 (en) | Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel | |
JPS59143076A (en) | Manufacture of material for pipe forming tool | |
JPS59143079A (en) | Manufacture of material for pipe forming tool | |
JPS59143077A (en) | Manufacture of material for pipe forming tool | |
JPS647147B2 (en) | ||
JPS5920463A (en) | Manufacture of material for tool for manufacturing seamless steel pipe |