JPS5920463A - Manufacture of material for tool for manufacturing seamless steel pipe - Google Patents

Manufacture of material for tool for manufacturing seamless steel pipe

Info

Publication number
JPS5920463A
JPS5920463A JP12800582A JP12800582A JPS5920463A JP S5920463 A JPS5920463 A JP S5920463A JP 12800582 A JP12800582 A JP 12800582A JP 12800582 A JP12800582 A JP 12800582A JP S5920463 A JPS5920463 A JP S5920463A
Authority
JP
Japan
Prior art keywords
thickness
seamless steel
layer
plug
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12800582A
Other languages
Japanese (ja)
Inventor
Isao Takada
高田 庸
Hiroshi Otsubo
宏 大坪
Tatsuo Kawasaki
川崎 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12800582A priority Critical patent/JPS5920463A/en
Publication of JPS5920463A publication Critical patent/JPS5920463A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain a material for the titled tool having superior wear resistance at high temp. and a remarkably long life, by forming a BN layer on the surface of a worked product of an alloy having a specified composition consisting of C, Si, Mn, Cr, Ni, Mo and Fe. CONSTITUTION:A cast alloy consisting of, by weight, 1.0-2.0% C, 0.10-1.5% Si, 0.30-2.0% Mn, 11-22% Cr, 0.60-8.0% Ni, 0.50-5.0% Mo and the balance Fe with inevitable impurities or further contg. one or more among 0.70-4.0% W, 0.50-5.0% Co, 0.10-2.0% V, 0.10-2.0% Nb, 0.020-2.0% Zr, 0.50-2.0% Al and 0.010-1.0% B is worked and borided to form a borided layer of >=100mum thickness. A nitrogen enriched layer of >=100mum thickness is then formed by surface nitriding to obtain a material for the titled tool having high heat conductivity, high strength at high temp. and surface self-lubricity.

Description

【発明の詳細な説明】 本発明は継目無鋼管製造用工具材料の製造方法に係り、
特に高温における耐摩耗性にすぐれ著しく長い寿命を有
する工具材料の製造方法に関する。
[Detailed description of the invention] The present invention relates to a method for manufacturing a tool material for manufacturing seamless steel pipes,
In particular, the present invention relates to a method for manufacturing a tool material that has excellent wear resistance at high temperatures and has an extremely long life.

継目無鋼管の製造方法としては、丸鋼片もしくは角鋼片
をマンネスマン方式あるいはプレス方式により穿孔して
中空素材とし、この中空素材をエロンゲータ、プラグミ
ルあるいけマンドレル等の圧延機により伸延加工する方
法が一般的である。
The common method for manufacturing seamless steel pipes is to punch round or square steel pieces using the Mannesmann method or press method to create a hollow material, and then stretch this hollow material using a rolling machine such as an elongator, plug mill, or ike mandrel. It is true.

この継目無鋼管製造の各工程において成形用プラグおよ
びガイドシューは高温下の苛酷な摩耗状態にさらされる
。したがって高温における耐摩耗性にすぐれた工具を製
造し工具寿命を延長させることは上記方法による継目無
鋼管製造上の重要問題の一つであり、特に最近のように
油井用継目無鋼管の生産量の増大と高合金化が望まれて
いる場合、その重要性は更に大きくなってきている。
In each step of manufacturing this seamless steel pipe, the forming plug and guide shoe are exposed to severe abrasion conditions at high temperatures. Therefore, manufacturing tools with excellent wear resistance at high temperatures and extending tool life is one of the important issues in the production of seamless steel pipes using the above method. Its importance is becoming even greater when an increase in the amount of steel and high alloying are desired.

本発明者らはこのうち−プラグミル圧延用プラグの寿命
の延長に注目して実験検討全型ねてきた。
Among these, the present inventors have focused on extending the life of plugs for rolling in plug mills and have conducted experimental studies on all types.

プラグミル圧延においては、素管温度が通常950〜1
150℃程度圧延荷重が100〜2501種度、圧延速
度が3 m / sec程度である。このときプラグ表
面は素管内面と高温高圧下で接触し、しかもプラグ自体
は回転しないのでプラグは完全なすべり摩耗を受ける。
In plug mill rolling, the raw tube temperature is usually 950 to 1
The rolling load is about 150°C, the rolling load is about 100 to 2501 degrees, and the rolling speed is about 3 m/sec. At this time, the plug surface contacts the inner surface of the raw tube under high temperature and high pressure, and since the plug itself does not rotate, the plug undergoes complete sliding wear.

このような条件下で使用されるプラグはまず高温におい
て高い強度を有することが必要とされる。
Plugs used under such conditions are first required to have high strength at high temperatures.

高温強度が比較的高く安価な材料として周知の如(C,
Cr、Mo、W、Nb、Vなどを適当量含有した鉄基合
金が代表的なものであり、従来プラグミル圧延用プラグ
材として(1,3〜1.5)%C−17%Cr −2%
W鋼や(1,3〜1.8)%C−24%Cr −3%N
i鋼々どの高炭素鋼、高Cr鋳鋼などが用いられている
。しかし、この材質のプラグでは最近の油井用継目無鋼
管の生産量増大に伴う圧延間隔の短縮および高合金化に
よる圧延負荷の増大などには対処できずプラグ損耗が製
造上の大きな問題に々っている。
It is well known as a material with relatively high high temperature strength and low cost (C,
Iron-based alloys containing appropriate amounts of Cr, Mo, W, Nb, V, etc. are typical, and are conventionally used as plug materials for plug mill rolling (1.3-1.5)%C-17%Cr-2. %
W steel or (1,3-1.8)%C-24%Cr-3%N
High carbon steel, high Cr cast steel, etc. are used. However, plugs made of this material cannot cope with the shortening of rolling intervals associated with the recent increase in production of seamless steel pipes for oil wells and the increase in rolling load due to higher alloys, and plug wear becomes a major manufacturing problem. ing.

工具材料の高温強度を上げるにはNi 、 W、 Co
Ni, W, Co to increase the high temperature strength of tool materials
.

Mo等の添加量の増加およびAt、Ti等を加えてNi
 −At、  Ni−Tiの金属間化合物による析出硬
化の利用等があり更にはNi基合金の採用等も考えられ
る。しかし、これらの元素の大量添加は熱伝導性の著し
い低下をもたらしこれらの材料で製作したプラグにより
プラグミル圧延を行うと被変形素管自体からの熱および
圧延によって発生した熱がプラグに流入してきた場合、
この熱はプラグ内部に伝達し難く表層の温度上昇が著し
くなって強度が低下する。また被変形素−管からの熱の
流入をおさえる働きをするプラグ表層の酸化スケールが
Cr、Ni%CO%MO等の高い鉄基合金またはNi基
合金においては酸化雰囲気における高温加熱によっても
十分に生成されない。従ってプラグミル圧延時における
上記のような合金で製作されたプラグの損耗は従来のプ
ラグよりもむしろ多くなる。
Ni by increasing the amount of Mo, etc., and adding At, Ti, etc.
-At, Ni-Ti intermetallic compounds may be used for precipitation hardening, and Ni-based alloys may also be used. However, the addition of large amounts of these elements causes a significant decrease in thermal conductivity, and when plugs made of these materials are rolled in a plug mill, heat from the deformed raw tube itself and heat generated by rolling flow into the plugs. case,
This heat is difficult to transfer to the inside of the plug, and the temperature of the surface layer increases significantly, resulting in a decrease in strength. In addition, for iron-based alloys or Ni-based alloys such as Cr, Ni%CO%MO, etc., which have a high oxidation scale on the plug surface layer, which works to suppress the inflow of heat from the deformed element tube, heating at high temperatures in an oxidizing atmosphere is sufficient. Not generated. Therefore, during plug mill rolling, plugs made of such alloys are subject to more wear than conventional plugs.

本発明の目的は上記従来技術の問題点を解決し。The object of the present invention is to solve the above-mentioned problems of the prior art.

高温における耐摩耗性にすぐれ長い寿命を有する継目無
鋼管製造用工具材料の製造方法を提供するにある。
It is an object of the present invention to provide a method for manufacturing a tool material for manufacturing seamless steel pipes that has excellent wear resistance at high temperatures and has a long life.

本発明者らは実験検討を重ね、プラグミル圧延用プラグ
の具備すべき特性として高温強度の高いこと、熱伝導性
がよいこと、高温における酸化スケール付着性がよいこ
とに加えてプラグ表面の良潤滑性が重要であることを見
いだし、従来材と同等の熱伝導性および同等あるいはそ
れ以上の高温強度を有する材料に表面自己潤滑性を付与
する処理を施すことによシ、従来材より著しく寿命の長
い工具材料を製造することができた。
The inventors of the present invention have repeatedly conducted experiments and found that the characteristics that a plug for plug mill rolling should have are high strength at high temperatures, good thermal conductivity, good oxide scale adhesion at high temperatures, and good lubrication on the surface of the plug. By applying a treatment that imparts surface self-lubricating properties to a material that has the same thermal conductivity and high-temperature strength as conventional materials, we have achieved a significantly longer lifespan than conventional materials. It was possible to produce long tool materials.

本発明は次の2発明から構成される。第1発明の要旨と
するところは次のとおりである。すなわち重量比にてC
:t、o〜2,0%% Si:0.10〜1.5%、M
n  :  0.30〜2.0%、Crtll 〜22
1%、Ni:0.60〜8.0%、Mo+0.50〜5
.0%を含有し残部がFeおよび不可避的不純物より成
る鋳造合金からの継目無鋼管製造用工具材料の製造方法
において、前記鋳造合金の成形後置はう層の厚さを10
0μ以上とする浸はう処理工程と。
The present invention consists of the following two inventions. The gist of the first invention is as follows. In other words, C in terms of weight ratio
: t, o~2.0%% Si: 0.10~1.5%, M
n: 0.30-2.0%, Crtll ~22
1%, Ni: 0.60-8.0%, Mo+0.50-5
.. In the method for producing a tool material for manufacturing a seamless steel pipe from a cast alloy containing 0% Fe and the remainder consisting of Fe and unavoidable impurities, the thickness of the post-forming filler layer of the cast alloy is 10%.
An immersion treatment step to make it 0 μ or more.

前記浸はう処理工程に引続いて窒素濃化層の厚さ’に、
100μ以上とする表面窒化処理工程と、を有して成る
ことを特徴とする継目無鋼管製造用工具材料の製造方法
である。
Following the immersion treatment step, the thickness of the nitrogen-enriched layer'
1. A method for producing a tool material for producing seamless steel pipes, comprising: a surface nitriding step to increase the thickness to 100μ or more.

第2発明の要旨とすると第1発明と同一の基本組成の他
に、更にvv:o、7o〜4.0%%Co +0.50
〜5.0%、V:o、to〜2,0%、Nbjo、10
〜2.0%、Zr : 0.020〜2.0%、At=
0.050〜2.0%、B:o、o1o〜1.0%のう
ちから選ばれた1種または2種以上を含み残部がFeお
よび不可避的不純物より成る鋳造合金を第1発明と同様
の方法にて浸はう処理および窒化処理を行う製造方法で
ある。
The gist of the second invention is that in addition to the same basic composition as the first invention, vv: o, 7o to 4.0%%Co +0.50
~5.0%, V:o, to ~2.0%, Nbjo, 10
~2.0%, Zr: 0.020~2.0%, At=
A cast alloy containing one or more selected from 0.050 to 2.0%, B: o, o1o to 1.0%, and the balance consisting of Fe and inevitable impurities, as in the first invention. This is a manufacturing method in which dipping treatment and nitriding treatment are performed using the method described above.

次に本発明の成分の限定理由について説明する。Next, the reasons for limiting the components of the present invention will be explained.

C: CはCr、Mo等の炭化物を形成して高温耐摩耗性を向
上させる元素として添加するが、1.0%未満ではその
効果が小さく% 2.0%を越えると熱衝撃による割れ
が生じ易くなるので1.0〜2,0%の範囲に限定した
C: C is added as an element that improves high-temperature wear resistance by forming carbides such as Cr and Mo, but if it is less than 1.0%, the effect is small, and if it exceeds 2.0%, cracking due to thermal shock may occur. Since this tends to occur, it is limited to a range of 1.0 to 2.0%.

Si: Siは高温強度を高めるために添加されるが。Si: Si is added to increase high temperature strength.

0.10%未満ではその効果が少な(,1,5%を越え
ると逆に高温強度を低下させるので0.10〜1.5%
の範囲に限定した。
If it is less than 0.10%, the effect will be small (if it exceeds 1.5%, the high temperature strength will decrease, so 0.10 to 1.5%)
limited to the range of

Mn: Mnけ高温強度を高めるために添加されるが。Mn: Mn is added to increase high temperature strength.

0.30%未満ではその効果が小さく2.0%を越える
と熱伝導性を悪化させて品温耐摩耗性を劣化させるので
下限を0.30%、上限ヲ2.0%に限定した。
If it is less than 0.30%, the effect will be small, and if it exceeds 2.0%, the thermal conductivity will deteriorate and the temperature wear resistance will deteriorate, so the lower limit was set to 0.30% and the upper limit was set to 2.0%.

Cr: Crは炭化物の形成によシ高温強度を高めるために添加
されるが、11%未満ではその効果が十分でなく、22
%を越えると逆に高温強度を低下させるので11〜22
%の範囲に限定した。
Cr: Cr is added to increase high-temperature strength by forming carbides, but if it is less than 11%, the effect is not sufficient, and 22
If it exceeds 11 to 22%, the high temperature strength will decrease.
% range.

Ni: Niは高温強度および靭性を改善するために添加するが
、0.60%未満ではその効果は小さく、S、O%を越
えると熱伝導性が悪化して高温耐摩耗性が劣化するので
0.60〜8.0%の範囲に限定した。
Ni: Ni is added to improve high-temperature strength and toughness, but if it is less than 0.60%, the effect is small, and if it exceeds S and O%, thermal conductivity deteriorates and high-temperature wear resistance deteriorates. It was limited to a range of 0.60 to 8.0%.

MO= MOは固溶硬化および炭化物形成により高温強度を高め
るδに有効であるが、0.50%未満ではその効果がな
いので下限’io、50%とし、5.0%、を越えると
高温強度に対する効果も飽和しかつ高価でもあるので上
限ヲ5.0%とした。
MO = MO is effective in increasing high temperature strength through solid solution hardening and carbide formation, but if it is less than 0.50% it has no effect, so the lower limit 'io is set at 50%, and if it exceeds 5.0%, high temperature Since the effect on strength is saturated and it is also expensive, the upper limit was set at 5.0%.

上記C,Si、 Mn、 Cr、 Ni、 Moの各限
定量をもって本発明の継目無鋼管製造用工具材料の基本
組成とするが、更にW、Co、V、Nb、Zr。
The above-mentioned limited amounts of C, Si, Mn, Cr, Ni, and Mo constitute the basic composition of the tool material for producing seamless steel pipes of the present invention, and additionally W, Co, V, Nb, and Zr.

At、Bf下記限定量内において、1稲または2種以上
を同時に含有する圧延用工具材料においても本発明の目
的をより有効に達成することができる。これらの限定理
由は次の如くである。
The object of the present invention can be more effectively achieved even in a rolling tool material containing one or more of At and Bf at the same time within the following limited amounts. The reasons for these limitations are as follows.

W: Wは固溶硬化および炭化物形成により高温強度を高める
作用を有するが% 0.70%未満ではその効果が小さ
く、4.0%を越えると粗大な炭化物を形成して靭性を
劣化させるので0.70〜4.0%の範囲に限定した。
W: W has the effect of increasing high-temperature strength through solid solution hardening and carbide formation, but if it is less than 0.70%, the effect is small, and if it exceeds 4.0%, it forms coarse carbides and deteriorates toughness. It was limited to a range of 0.70 to 4.0%.

Co  + COは高温強度を高める作用を有するが%0.50%未
満ではその効果が少なく、5.0%を越すと高温強度に
対する効果が飽和し高価でもあるので0.50〜5.0
%の範囲に限定した。
Co + CO has the effect of increasing high temperature strength, but if it is less than 0.50%, the effect is small, and if it exceeds 5.0%, the effect on high temperature strength is saturated and it is expensive, so it should be 0.50 to 5.0%.
% range.

■= ■は炭化物形成によシ高温強度を高める作用を有するが
、0.10%未満ではその効果かが< 、 2.0%を
越すとその効果は飽和し、かつ高価でもあるので0.1
0〜2.0%の範囲に限定した。
■ = ■ has the effect of increasing high temperature strength by forming carbides, but if it is less than 0.10%, the effect is saturated, and if it exceeds 2.0%, the effect is saturated and it is also expensive, so 0. 1
It was limited to a range of 0 to 2.0%.

Nb : Nbは炭化物形成により高温強度を著しく高めるのに役
立つが、0.10%未満ではその効果が小さく、0.1
0%以上を必要とするが、2.0%を越えるとその効果
は飽和しかつ高価でもあるので上限tl−2,0%とし
た。
Nb: Nb helps to significantly increase high-temperature strength through carbide formation, but its effect is small when it is less than 0.10%;
0% or more is required, but if it exceeds 2.0%, the effect will be saturated and it will be expensive, so the upper limit was set at tl-2.0%.

Zr: Zr1j高温強度を高める効果を有するが、0.020
%未満ではその効果が小さく、2.0%を越えると高温
強度に対する効果が飽和し高価でもあるので0.020
〜2.0%の範囲に限定した。
Zr: Zr1j has the effect of increasing high temperature strength, but 0.020
If it is less than 2.0%, the effect will be small, and if it exceeds 2.0%, the effect on high temperature strength will be saturated and it will be expensive.
It was limited to a range of 2.0%.

At : At#′iNi −ALの金属間化合物の析出によシ高
温強度を高める作用を有するが0.50%未満ではその
効果は小さく% 2.0%を越えると逆に高温強度を低
下させるので0.50〜2.0%の範囲に限定した。
At: Has the effect of increasing high temperature strength through the precipitation of intermetallic compounds of At#'iNi-AL, but if it is less than 0.50%, the effect is small. If it exceeds 2.0%, it will conversely reduce the high temperature strength. Therefore, it was limited to a range of 0.50 to 2.0%.

B: Bは高温強度を高めるため添加されるが0.010%未
満ではその効果が小さく、1.0%を越すと耐熱衝撃性
を著しく劣化させるので0.010〜1.0%の範囲に
限定した。
B: B is added to increase high-temperature strength, but if it is less than 0.010%, its effect will be small, and if it exceeds 1.0%, it will significantly deteriorate thermal shock resistance, so it should be in the range of 0.010 to 1.0%. Limited.

次に上記の限定成分を有する鋳造合金よυ成形した材料
の浸はう処理およびそれに引続く窒化処理について説明
する。浸はづ処理および窒化処理はプラグ表面にBN’
(z形成させ表面潤滑性を著しく向上させるものであり
本発明の主眼とするところである。
Next, a description will be given of the immersion treatment and subsequent nitriding treatment of a cast alloy having the above-mentioned limited components and molded. Immersion treatment and nitriding treatment include BN' on the plug surface.
(z formation and significantly improves surface lubricity, which is the main focus of the present invention.

第1表に示す化学組成の供試材AI’li7第1表に示
す浸はう処理および窒化処理の時間を変えて浸はう層の
厚さおよび窒化層の厚さの異なる多数のプラグミル圧延
用プラグを製造し、これらのプラグの寿命を調査した。
Test material AI'li7 with the chemical composition shown in Table 1. Plug mill rolling of a large number of samples with different soaking layer thickness and nitriding layer thickness by changing the soaking treatment and nitriding treatment times shown in Table 1. The lifespan of these plugs was investigated.

一方比較のため第1表に示した化学組成、加工処理によ
る従来材である供試材A2からもプラグを製造しその寿
命全調査した。
On the other hand, for comparison, a plug was also manufactured from sample material A2, which is a conventional material with the chemical composition and processing shown in Table 1, and its lifespan was investigated.

供試材A2のプラグの寿命を1として多数の供試材A1
の前記寿命を表示し、浸はう層の厚さと窒素濃化層の厚
さと供試材A1の寿命比との関係を添付図面に示した。
A large number of test materials A1 are used, assuming that the life of the plug of test material A2 is 1.
The relationship between the thickness of the immersion layer, the thickness of the nitrogen enriched layer, and the life ratio of sample material A1 is shown in the attached drawing.

図中の数字は寿命比を示している。The numbers in the figure indicate the life ratio.

添付図面から明らかな如く、浸はう層の厚さおよび窒素
濃化層の厚さが100μ未満のときけ。
As is clear from the accompanying drawings, when the thickness of the immersion layer and the thickness of the nitrogen enriched layer are less than 100μ.

プラグミル圧延用プラグの寿命延長の効果が々い。It is very effective in extending the life of plugs for plug mill rolling.

よって本発明においてけ浸はう層の厚嘔および窒素濃化
層の厚さをいずれも100μ以上に限定した。
Therefore, in the present invention, both the thickness of the soaking layer and the thickness of the nitrogen-concentrated layer are limited to 100 μm or more.

愈お浸はう処理はほう化物と反応促進材を用いる液体浸
はう処理または固体浸はう処理のいずれでもよく、また
ほう化物および反応促進材も特に限定しない。窒化処理
はガス窒化、液体窒化、イオン窒化のいずれの処理でも
よい。
The immersion treatment may be either a liquid immersion treatment or a solid immersion treatment using a boride and a reaction accelerator, and the boride and the reaction accelerator are not particularly limited. The nitriding treatment may be gas nitriding, liquid nitriding, or ion nitriding.

実施例 第2表に化学組成を示した本発明材を無水はう砂とカー
ボランダムの1050℃の混合溶融浴中で浸はう処理を
行い、引続いて900℃のNH,雰囲気中で窒化処理を
行ってプラグミル圧延用プラグを製造した。その没はう
層厚さと窒素濃化層厚さは第3表に示すとおりである。
EXAMPLE The material of the present invention whose chemical composition is shown in Table 2 was soaked in a mixed molten bath of anhydrous sand and carborundum at 1050°C, and then nitrided in an NH atmosphere at 900°C. The treatment was carried out to produce plugs for plug mill rolling. The thickness of the sinking layer and the thickness of the nitrogen enriched layer are shown in Table 3.

この本発明材のプラグを使用して、化学組成がC:0.
22  %、  Si+0.25  %、  Mn:1
.30  %、Ti:0.020%、Elo、oozo
%、直径249簡、肉厚12.9mの炭素鎖素管をプラ
グミル圧延機において直径244m、肉厚9.9目に連
続して第  3  表 圧延した場合の寿命を調査した。一方、第2表に示した
化学組成を有する比較材を酸化スケール付着処理および
硬化処理をしてプラグを製造し、前記の本発明材と同一
の条件の連続圧延をしてそのプラグの寿命全調査した。
Using a plug made of this invention material, the chemical composition is C:0.
22%, Si+0.25%, Mn:1
.. 30%, Ti: 0.020%, Elo, oozo
%, the lifespan was investigated when a carbon chain blank tube with a diameter of 249 mm and a wall thickness of 12.9 m was continuously rolled in a plug mill to a diameter of 244 m and a wall thickness of 9.9 mm. On the other hand, a comparative material having the chemical composition shown in Table 2 was subjected to oxide scale adhesion treatment and hardening treatment to produce a plug, and was continuously rolled under the same conditions as the above-mentioned inventive material to complete the life of the plug. investigated.

この比較材Jプラグの寿命を1として1本発明材A−1
プラグの寿命を表示し、同じく第3表にプラグ寿命比と
して記載した。
Inventive material A-1, assuming that the life of this comparison material J plug is 1.
The lifespan of the plug is shown and is also shown in Table 3 as a plug lifespan ratio.

第3表から明らかなように1本発明材のプラグ寿命は比
較材のそれと比較して著しく延長している。
As is clear from Table 3, the plug life of the material of the present invention is significantly longer than that of the comparative material.

本発明は上記実施例からも明らかな如く、継目無鋼管製
造用工具材料の成分を限定し、厚さ100μ以上の浸は
う処理と厚さ100μ以上の表面窒化処理を行うことに
よって、高温における耐摩耗性にすぐれ著しく工具寿命
の長い継目無鋼管製造用工具材料を製造することができ
た。
As is clear from the above examples, the present invention limits the components of the tool material for seamless steel pipe production, and performs a dipping treatment to a thickness of 100 μm or more and a surface nitriding treatment to a thickness of 100 μm or more. We were able to produce a tool material for seamless steel pipe manufacturing that has excellent wear resistance and a significantly long tool life.

本発明は継目無鋼管製造工程におけるプラグミル圧延用
プラグについて主として説明してきたが。
The present invention has mainly been described with respect to a plug for plug mill rolling in a seamless steel pipe manufacturing process.

同工程のピアサ−またはエロンゲータガイドシューもし
くはエロンゲータプラグにも広く適用することができる
The same process can also be widely applied to piercers, elongator guide shoes, or elongator plugs.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は浸はう層の厚さと窒素濃化層の厚さとがプラ
グ寿命比に及ぼす影響を示した相関図である。 代理人 中 路 武 雄 浸は′7)@/)月さくμ)
The attached drawing is a correlation diagram showing the influence of the thickness of the immersion layer and the thickness of the nitrogen enriched layer on the plug life ratio. Agent Takeshi Nakaji Yuichi is '7) @/) Tsukisaku μ)

Claims (1)

【特許請求の範囲】[Claims] (1)  重量比にてC:1.O〜2,0%、 Si 
: 0.10〜1,5%、Mn : 0.30〜2.0
%、Cr:11〜22%、Ni+0.60〜8.0%、
Mo+0.50〜5.0%を含有し残部がFeおよび不
可避的不純物より成る鋳造合金からの継目無鋼管製造用
工具材料の製造方法に卦いて、前記鋳造合金の成形後置
はう層の厚さ’1−100μ以上とする浸はう処理工程
と、前記浸はう処理工程に引続いて窒素濃化層の厚さ一
1100μ以上とする表面窒化処理工程と。 を有して成ることを特徴とする継目無鋼管製造用工具材
料の製造方法。 C) 重量比にてC:1.O〜2.0%、 Si : 
0.10〜1.5%、 Mn + 0.30〜2.0%
、 Cr : 11〜22%、NMo、60〜8.0%
、Mo:0.50〜5.01%を含有し、更にW+0.
70〜4.0%、 Co i O,50〜5.0%、V
F6.10〜2.0%、Nb10.10〜2.0%、Z
r  :  0.020〜2.0%、Az:o、so〜
2.0%、s:o、oto〜1.0%のうちから選ばれ
た1種または2種以上を含み残部がFeおよび不可避的
不純物よシ成る鋳造合金からの継目無鋼管製造用工具材
料の製造方法において、前記鋳造合金の成形後置はう層
の厚さを100μ以上とする浸はう処理工程と、前記浸
はう処理工程に引続いて窒素濃化層の厚さを100μ以
上とする表面窒化処理工程と、を有して成ることを特徴
とする継目無鋼管製造用工具材料の製造方法。
(1) Weight ratio: C:1. O~2.0%, Si
: 0.10~1.5%, Mn: 0.30~2.0
%, Cr: 11-22%, Ni+0.60-8.0%,
A method for producing a tool material for seamless steel pipe production from a cast alloy containing Mo + 0.50 to 5.0% and the balance consisting of Fe and unavoidable impurities, the thickness of the post-forming filler layer of the cast alloy An immersion treatment step in which the thickness of the nitrogen-concentrated layer is increased to 1-100 μm or more, and a surface nitriding step in which the nitrogen-concentrated layer is made to have a thickness of 1100 μm or more subsequent to the immersion treatment step. A method for producing a tool material for producing seamless steel pipes, comprising: C) Weight ratio: C:1. O~2.0%, Si:
0.10-1.5%, Mn + 0.30-2.0%
, Cr: 11-22%, NMo, 60-8.0%
, Mo: 0.50 to 5.01%, and W+0.
70-4.0%, Co i O, 50-5.0%, V
F6.10-2.0%, Nb10.10-2.0%, Z
r: 0.020~2.0%, Az: o, so~
A tool material for producing seamless steel pipes from a casting alloy containing one or more selected from 2.0%, s:o, and oto to 1.0%, with the balance consisting of Fe and inevitable impurities. In the manufacturing method, a dipping treatment step in which the thickness of the infiltration layer after forming the cast alloy is made to be 100μ or more, and a nitrogen enriched layer subsequent to the dipping treatment step is made to have a thickness of 100μ or more. A method for producing a tool material for producing seamless steel pipes, comprising: a surface nitriding process.
JP12800582A 1982-07-22 1982-07-22 Manufacture of material for tool for manufacturing seamless steel pipe Pending JPS5920463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12800582A JPS5920463A (en) 1982-07-22 1982-07-22 Manufacture of material for tool for manufacturing seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12800582A JPS5920463A (en) 1982-07-22 1982-07-22 Manufacture of material for tool for manufacturing seamless steel pipe

Publications (1)

Publication Number Publication Date
JPS5920463A true JPS5920463A (en) 1984-02-02

Family

ID=14974111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12800582A Pending JPS5920463A (en) 1982-07-22 1982-07-22 Manufacture of material for tool for manufacturing seamless steel pipe

Country Status (1)

Country Link
JP (1) JPS5920463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440104A (en) * 1987-08-06 1989-02-10 Kawasaki Steel Co Method for rolling seamless steel tube
KR20160022258A (en) * 2014-08-19 2016-02-29 신호코쿠 세이테츠 가부시키가이샤 Piercer plug for manufacturing a seamless pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440104A (en) * 1987-08-06 1989-02-10 Kawasaki Steel Co Method for rolling seamless steel tube
JPH0527483B2 (en) * 1987-08-06 1993-04-21 Kawasaki Steel Co
KR20160022258A (en) * 2014-08-19 2016-02-29 신호코쿠 세이테츠 가부시키가이샤 Piercer plug for manufacturing a seamless pipe

Similar Documents

Publication Publication Date Title
JP6737387B2 (en) Soft nitriding steel and parts
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
KR20130004591A (en) Steel for extrusion tools
JP6911606B2 (en) Nitriding parts and nitriding method
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JPWO2004059023A1 (en) Cold die steel with excellent size reduction characteristics
JPH0555585B2 (en)
JP5121276B2 (en) High-speed steel alloy composite products
JPS599154A (en) Material for tool for manufacturing seamless steel pipe
JPH0474848A (en) Steel for hot tube making tool and hot tube making tool
JPS5920463A (en) Manufacture of material for tool for manufacturing seamless steel pipe
JPS5831066A (en) Punch for cold working
JPS6214632B2 (en)
JPH0361345A (en) Hot-working tool made of ni-base alloy and aftertreatment for same
JPH11279702A (en) Steel for aluminum die casting die excellent in erosion-resistance
JPH0426739A (en) Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof
JPS5920453A (en) Material for tool for manufacturing seamless steel pipe
JP6583484B2 (en) Nitriding steel
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP2007063667A (en) LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JPS6225746B2 (en)
JPS59143076A (en) Manufacture of material for pipe forming tool
JP3053605B2 (en) Metal members with excellent toughness and wear resistance
KR100316342B1 (en) high speed steel produced by powder metallurgy