JPS59143079A - Manufacture of material for pipe forming tool - Google Patents
Manufacture of material for pipe forming toolInfo
- Publication number
- JPS59143079A JPS59143079A JP1626283A JP1626283A JPS59143079A JP S59143079 A JPS59143079 A JP S59143079A JP 1626283 A JP1626283 A JP 1626283A JP 1626283 A JP1626283 A JP 1626283A JP S59143079 A JPS59143079 A JP S59143079A
- Authority
- JP
- Japan
- Prior art keywords
- wear resistance
- temperature
- weight
- scale
- oxide scale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、造管用工具材料の製造方法に関しとくに継
目無鋼管の製造の際に使用するピアサ−、エロンゲータ
およびリーラ−などの成形用プラグならびにマンドレル
バ−やガイドシューなどの各種工具材料につき、それら
の高温における耐摩耗性の有利な改善を図ろうとするも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing tool materials for pipe making, and in particular to forming plugs such as piercers, elongators and reelers used in the manufacture of seamless steel pipes, as well as mandrel bars and guide shoes. The present invention seeks to advantageously improve the high-temperature wear resistance of various tool materials.
継目無鋼管の製造法としては、丸銅片または角鋼片をマ
ンネスマン方式あるいはプレス方式により穿孔して中墾
素材としたのち、この中空素材をエロンゲータやプラグ
ミルまたはマンドレルミルなどの圧延機によって伸延加
工する方法が一般的である。The manufacturing method for seamless steel pipes involves punching a round copper piece or square steel piece using the Mannesmann method or press method to create a hollow material, and then elongating this hollow material using a rolling machine such as an elongator, plug mill, or mandrel mill. The method is common.
かような継目無鋼管製造の各工程において、とくに成形
用プラグおよびガイドシューなどの工具材料は、高温下
のか酷な摩耗環境にさらされる。In each step of manufacturing such seamless steel pipes, tool materials such as forming plugs and guide shoes are exposed to severe abrasive environments at high temperatures.
従ってこの種工具材料の耐摩耗性を向上させてその寿命
の延長を図ることは、上記の工程による継目無鋼管の製
造において、とりわけ重要な課題の一つであり、どくに
油井用継目無鋼管の生産量の増大や高合金化が望まれて
いる昨今、その重要性はますます大きなものになってき
ている。Therefore, improving the wear resistance of this type of tool material and extending its life is one of the most important issues in the production of seamless steel pipes using the above process. In recent years, the importance of aluminum alloys has become more and more important as increased production and higher alloys are desired.
この発明は、上記の要請に応えるもので、高温下にあっ
てもすぐれた耐摩耗性をそなえる造管用工具材料の有利
な製造方法を提案することを目的とする。The present invention meets the above-mentioned requirements and aims to propose an advantageous method for manufacturing a pipe-making tool material that has excellent wear resistance even under high temperatures.
ところで、高温における材料の耐摩耗性を向上させる手
段としてもつとも一般的なものは、材料の高温強度を高
めることであり、そのためにはC1Cr、MoおよびW
などの合金元素の添加が有効であることが知られている
。しかしながらこれらの合金元素を添加すると、その添
加量が増大するにつれて一般に材料の熱伝導性が劣化す
ると共に融点が低下するため、造管用工具材料に対する
、合金元素の添加による高温強度の改善処理の適用につ
いては、自ら限界があった。By the way, the most common means to improve the wear resistance of materials at high temperatures is to increase the high temperature strength of the materials, and for this purpose C1Cr, Mo and W
It is known that addition of alloying elements such as However, when these alloying elements are added, as the amount of addition increases, the thermal conductivity of the material generally deteriorates and the melting point decreases, so it is necessary to apply a treatment to improve high-temperature strength by adding alloying elements to pipe-making tool materials. There were limits to this.
すなわちたとえば成形用プラグのように、常に高温の被
処理材と接触した状態で使用されるものにおいて、熱伝
導性が悪いと、被処理材からの入熱が表面に集中するの
で表面のみの温度上昇が著しく、しかも融点が低下して
いると表面が軟化し易いため、表面の損耗は甚しい。こ
のため合金元素の添加量は自ら制限され、従って高温強
度の上昇にも限界があったのである。In other words, if a product such as a plug for molding is used in constant contact with a high-temperature processed material and has poor thermal conductivity, the heat input from the processed material will be concentrated on the surface, causing the temperature of only the surface to decrease. If the melting point increases significantly and the melting point decreases, the surface tends to soften, resulting in severe surface wear. For this reason, the amount of alloying elements added was limited, and therefore there was a limit to the increase in high temperature strength.
とくにピアサ−およびエロンゲータにおいては、プラグ
ミルにおける伸延時に比べて圧延負荷は小さいものの、
被処理材の変形温度が高(、また7孔あるいは伸延時に
プラグに接触する被処理材の厚さがプラグ径に比して大
きいためプラグへの入熱量が太きい。In particular, in piercers and elongators, although the rolling load is smaller than that in plug mills,
The deformation temperature of the treated material is high (and the thickness of the treated material that comes into contact with the plug during 7 holes or expansion is larger than the plug diameter, so the amount of heat input to the plug is large.
従って現行のピアサ−およびエロンゲータ用プラグ材に
ついては、高温強度よりはむしろ熱伝導性を低下させな
いことに重点が置かれ、このため低合金組成となってい
る。Therefore, current plug materials for piercers and elongators are focused on not reducing thermal conductivity rather than high-temperature strength, and therefore have low alloy compositions.
しかしながらかような現行材料では、上述したとおり高
温強度が十分ではない上、表面スケールの助勢性もかん
ばしくな℃゛ため、最近の油井用継目無鋼′管の生産能
率向上や高合金化に対してもはや対処し得なくなってき
ている。However, as mentioned above, such current materials do not have sufficient high-temperature strength and also have poor surface scale supporting properties, so they are not suitable for the recent production efficiency improvement and high alloying of seamless steel pipes for oil wells. It is becoming impossible to deal with it any longer.
そこで発明者らは、上記の諸点を考慮して新しい工具材
料を開発すべく鋭意研究を重ねた結果、所定量のC,S
i、Mn、CrおよびN1に加え、さらにNbまたはV
のうちから選んだ少くとも一種を適当量添加した鋳鋼を
、所定の形状に仕上げたのち、窒化処理ついで酸化スケ
ール被成処理を施すことにより、
(1)Nによる固溶硬化ならびにCrとNbおよび/ま
たは■との析出硬化作用によって、熱伝導性を劣化させ
ることなしに表層が硬化すること、(2)窒化処理を施
すことによって、後続の酸化スケール被成処理で得られ
るスケールの密着性が、酸化スケール被成処理を単独で
施した場合よりも向上すること、
を見出した。Therefore, the inventors conducted extensive research to develop a new tool material in consideration of the above points, and found that a predetermined amount of C, S
In addition to i, Mn, Cr and N1, Nb or V
After finishing the cast steel to which an appropriate amount of at least one selected from among these is added, it is subjected to nitriding treatment and oxide scaling treatment to (1) solid solution harden with N, Cr, Nb, and (2) The surface layer is hardened without deteriorating thermal conductivity due to the precipitation hardening effect with / or We have found that this is an improvement over the case where oxide scale treatment is applied alone.
この発明は、上記の知見に由来するものである。This invention is derived from the above findings.
すなわ゛ちこの発明は、
C: 0.20〜0.60重量%、
Si : 0.10〜2.0重量%、
Mn : 0.80〜2.0重!−%、Cr : 1.
(1〜6.0重量%およびNi : 0.50〜6.0
重量%
を含みかつ、
Nb : 0.020〜2.0重量%およびV : 0
.020〜2.0重量%
のうちから選んだ少くとも一種を含有する溶鋼を鋳造し
、ついで所定の形状に仕上げたのち、500〜1100
℃の温度範囲で窒化深度が10μm以上となる表面窒化
処理を施し、引続き900〜1250℃の温度範囲で酸
化スケール被成処理を施すことをもって上記課題の解決
手段とするものである。In other words, in this invention, C: 0.20 to 0.60% by weight, Si: 0.10 to 2.0% by weight, Mn: 0.80 to 2.0% by weight! -%, Cr: 1.
(1 to 6.0% by weight and Ni: 0.50 to 6.0
Nb: 0.020 to 2.0 wt% and V: 0
.. Molten steel containing at least one selected from 0.020 to 2.0% by weight is cast, and then finished into a predetermined shape.
The above-mentioned problem is solved by performing a surface nitriding treatment to give a nitriding depth of 10 μm or more in a temperature range of 900°C to 1250°C, and then performing an oxide scale formation treatment in a temperature range of 900 to 1250°C.
以下この発明を具体的に説明する。This invention will be specifically explained below.
まずこの発明における基本成分を上記の範囲に限定した
理由について説明する。First, the reason why the basic components in this invention are limited to the above range will be explained.
C: 0.20〜0660重量%(以下単に%で示す)
Cは、炭化物を形成して高温耐摩耗性を向上させる元素
として有用であるが、0.20%未満ではその効果が小
さく、一方0.60%を超えると融点が低下して逆に耐
摩耗性を悪化させるので、0.20〜0.60%の範囲
に限定した。C: 0.20-0660% by weight (hereinafter simply expressed as %)
C is useful as an element that improves high-temperature wear resistance by forming carbides, but if it is less than 0.20%, the effect is small, while if it exceeds 0.60%, the melting point decreases and the wear resistance is adversely affected. Since it deteriorates properties, it is limited to a range of 0.20 to 0.60%.
Si : 0.10〜汎0%
Slは、地鉄合金との密着性のよいスケールを生成させ
るのに有効に寄与するが、0.lO%未満ではその効果
が小さく、一方2.0%を超えると高温強度を低下させ
るので、0゜10〜2.0%の範囲に限定した。Si: 0.10% to 0.0% Si effectively contributes to the generation of scale with good adhesion to the base metal alloy, but 0.10% to 0.0% If it is less than 10%, the effect will be small, while if it exceeds 2.0%, the high temperature strength will decrease, so it was limited to a range of 0°10 to 2.0%.
Mn : 0.80〜2.0%
Mnは、高温強度を高めるのに有効に寄与するが、0.
80%未満ではその効果が小さく、一方2.0%を超え
ると熱伝導性が悪化して高温耐摩耗性を劣化させるので
下限を0.80%、上限を2.0%に限定した。Mn: 0.80-2.0% Mn effectively contributes to increasing high temperature strength, but 0.80% to 2.0% Mn effectively contributes to increasing high temperature strength.
If it is less than 80%, the effect will be small, while if it exceeds 2.0%, the thermal conductivity will deteriorate and the high temperature wear resistance will deteriorate, so the lower limit was set to 0.80% and the upper limit was set to 2.0%.
Cr : 1.0〜6.0%
Crは、表面に地鉄合金との密着性がよくかつ断熱性の
よいスケールを生成させ、またCrの炭化物を形成して
高温強度を高めさらには窒化処理時にCrの窒化物を形
成して表層を硬化させるのに有効に寄与するが、1.0
%未満ではその効果に乏しく、一方6.0%を超えると
スケールの生成量が減少し、また熱伝導性が悪化して高
温耐摩耗性を劣化させるので、1.0〜6.0%の範囲
に限定した。Cr: 1.0 to 6.0% Cr produces scale on the surface that has good adhesion to the base metal alloy and has good heat insulation properties, and also forms Cr carbides to increase high-temperature strength and further undergo nitriding treatment. Sometimes it forms Cr nitride and contributes effectively to hardening the surface layer, but 1.0
If it is less than 1.0%, the effect will be poor, while if it exceeds 6.0%, the amount of scale generated will decrease, and the thermal conductivity will deteriorate, leading to deterioration of high-temperature wear resistance. limited to a range.
Nb 、 V : 0.020〜2.0%Nbおよび■
はいずれも、炭化物形成により高温強度を高め、かつ窒
化処理時に窒化物を形成して表層を著しく硬化させるの
に有効に寄与するのでこの発明ではとくに重要であるが
、0.020 %未満ではその効果に乏しいので0.0
20%以上を必要とするが、2.0%を超えるとその効
果は飽和し、また高価でもあるので上限を2゜0%とし
た。Nb, V: 0.020-2.0% Nb and ■
Both are particularly important in this invention because they increase high-temperature strength by forming carbides and effectively contribute to forming nitrides and significantly hardening the surface layer during nitriding treatment, but if it is less than 0.020%, the 0.0 because it is not effective
20% or more is required, but if it exceeds 2.0%, the effect is saturated and it is also expensive, so the upper limit was set at 2.0%.
なお上記したC、 Si、 Mn、、 Cr、 Ni、
に加えてNbおよび■の1種または2種の各基本成分の
他、この発明では必要に応じてさらにZrとCa。In addition, the above-mentioned C, Si, Mn, Cr, Ni,
In addition to Nb and one or two of the basic components, this invention further contains Zr and Ca as required.
Mg、Yのうちの1種または2種との複合、またさらに
はMo、W、Co、Cu1he、BおよびSのうちから
選んだ1種または2種以上を同時に下記範囲内において
含有させることができる。これらの添加元素の限定理由
は以下のどおりである。A combination with one or two of Mg and Y, or one or more selected from Mo, W, Co, Cu1he, B and S can be simultaneously contained within the following range. can. The reasons for limiting these additive elements are as follows.
Zr : 0.050〜5.0%
Zrは、次に示すCa + MgおよびYのうちから選
んだ1種または2種以上との複合添加によって地鉄との
密着性がよくかつ断熱性、耐摩耗性にすぐれた安定化ジ
ルコニアを含む酸化スケールを生成させる元素として有
用であるが、0.050%未満ではその効果が小さく、
一方5.0%を超えるとスケール生成量が著しく減少し
て高温耐摩、純性を劣化させるので0.050〜5.0
%の範囲に限定した。Zr: 0.050-5.0% Zr has good adhesion to the steel base and has good heat insulation and resistance by adding one or more selected from the following Ca + Mg and Y. It is useful as an element that generates an oxide scale containing stabilized zirconia that has excellent wear resistance, but its effect is small if it is less than 0.050%.
On the other hand, if it exceeds 5.0%, the amount of scale formed will decrease significantly and high temperature wear resistance and purity will deteriorate, so 0.050 to 5.0%
% range.
Ca 、 Mg 、 Y : 0.003<Ca/Zr
<:0.06 。Ca, Mg, Y: 0.003<Ca/Zr
<:0.06.
0.002 < Mg/Zr <0.04 、0.00
5 <y/zr <0.10Ca 、 Mg 、 Yは
1.上述したようにZrとの複合添加により、地鉄との
密着性がよくかつ断熱性、耐摩耗性にすぐれた酸化スケ
ールを生成させる元素として有効に寄与するが、これら
の添加量がZrに対する比でそれぞれca/zr (0
,00B、Mg/Zr (0,002、Y/Zr (0
,005の場合には地鉄との密着性のよいスケールは得
難く、またCa/Zr ) o、oe、Mg/Zr )
0.04、y/zr :> o、toになると密着性
が低下する傾向を示し、またこれらは高価でもあるので
、それぞれo、ooa≦Ca/Zr≦0.006.0.
002≦Mg/Zr≦0.04.0.005≦Y/Zr
≦0.10の範囲に限定した。0.002 < Mg/Zr <0.04, 0.00
5 <y/zr <0.10Ca, Mg, Y is 1. As mentioned above, when added in combination with Zr, it effectively contributes as an element that generates oxide scale that has good adhesion to the base steel and has excellent heat insulation and wear resistance, but the amount of these additions is ca/zr (0
,00B, Mg/Zr (0,002, Y/Zr (0
,005, it is difficult to obtain a scale with good adhesion to the base steel, and also Ca/Zr) o, oe, Mg/Zr)
0.04, y/zr:> o, to, the adhesion tends to decrease, and these are also expensive, so o, ooa≦Ca/Zr≦0.006.0, respectively.
002≦Mg/Zr≦0.04.0.005≦Y/Zr
The range was limited to ≦0.10.
Mo : 0.50〜5.0%
Moは、固溶硬化および炭化物形成により高温強度を高
める元素として添加されるが、0.50%未満ではその
効果に乏しいので下限を0.50%とし、一方5.0%
を超えるとスケール生成量が著しく減少して高温耐摩耗
性が劣化するので、上限を5.0%に限定した。Mo: 0.50-5.0% Mo is added as an element that increases high-temperature strength through solid solution hardening and carbide formation, but if it is less than 0.50%, the effect is poor, so the lower limit is set at 0.50%. On the other hand, 5.0%
If it exceeds 5.0%, the amount of scale formed will decrease significantly and high-temperature wear resistance will deteriorate, so the upper limit was limited to 5.0%.
W : 0.50〜5.0%
Wは、固溶硬化および炭化物形成により高温強度を高め
るのに有効に寄与するが、0.50%未満ではその効果
が小さく、一方0.0%を超えると粗大な炭化物を形成
して靭性を劣化させるので0.50〜5.0%の範囲に
限定した。W: 0.50-5.0% W effectively contributes to increasing high-temperature strength through solid solution hardening and carbide formation, but less than 0.50%, the effect is small, while more than 0.0% Since coarse carbides are formed and the toughness is deteriorated, the content is limited to 0.50 to 5.0%.
Co : 0.50〜5.0%
Coは、固溶硬化により高温強度を高めるとともにスケ
ールをち密にしかつスケールと地鉄との密着性を向上さ
せるのに有用であるが、0.50%未満ではその効果が
小さく、一方5.0%を超えるとスケール生成量が減少
してむしろ高温耐摩耗性が劣化する傾向にあり、また高
価でもあるので0.50〜5.0%の範囲に限定した。Co: 0.50-5.0% Co is useful for increasing high-temperature strength through solid solution hardening, making the scale denser, and improving the adhesion between the scale and the steel base, but less than 0.50%. However, if it exceeds 5.0%, the amount of scale generated tends to decrease and high-temperature wear resistance tends to deteriorate, and it is also expensive, so it is limited to a range of 0.50 to 5.0%. did.
Cu : 0.10〜3.0%
Cuは、スケールと地鉄との密着性を向上させるのに有
効に寄与するが、0.10%未満ではその効果がな(、
一方8.0%を超えると表層にCu濃化層が生じ、この
部分の融点が低下して高温耐摩耗性を劣化させるので0
.10〜3.0%の範囲に限定した。Cu: 0.10-3.0% Cu effectively contributes to improving the adhesion between the scale and the steel base, but if it is less than 0.10%, it has no effect (,
On the other hand, if it exceeds 8.0%, a Cu-enriched layer will form on the surface layer, lowering the melting point of this part and deteriorating high-temperature wear resistance.
.. It was limited to a range of 10 to 3.0%.
Ae: 0.020 〜2.0%
lは、地鉄との密着性がよくかつ断熱性にすぐれたスケ
ールを生成させるのに有効に寄与するが、0.020%
未満ではその効果が小さく、一方2.0%を超えるとス
ケール生成量が著しく減少して高温耐摩耗性を劣化させ
るので9.020〜2.0%の範囲に限定した。Ae: 0.020 to 2.0% l effectively contributes to producing scale that has good adhesion to the steel base and has excellent heat insulation properties, but 0.020%
If it is less than 2.0%, the effect will be small, whereas if it exceeds 2.0%, the amount of scale formed will be significantly reduced and high temperature wear resistance will be deteriorated, so the content was limited to a range of 9.020 to 2.0%.
B : 0.0020〜0.50%
Bは、高温強度を高めるとともに、仕上げ成形後の窒化
処理においてBNを形成して表面潤滑性を改善する有用
な元素であるが、0.0020%未満ではその効果が小
さく、一方0.50%を超えると熱衝撃割れが発生する
ので0.0020〜0.50%の範囲に限定した。B: 0.0020-0.50% B is a useful element that increases high-temperature strength and improves surface lubricity by forming BN in the nitriding treatment after final forming, but if it is less than 0.0020%, The effect is small, and if it exceeds 0.50%, thermal shock cracking will occur, so the content was limited to a range of 0.0020 to 0.50%.
S : 0.020〜0.80%
Sは、硫化物の形成により表面潤滑性を高めるのに有効
に寄与するが、0.020%未満ではその効果に乏しく
、一方0.80%を超えると熱衝撃割れが発生し易くな
るので、0.020〜0.80%の範囲に限定した。S: 0.020-0.80% S contributes effectively to increasing surface lubricity through the formation of sulfides, but less than 0.020%, the effect is poor, while more than 0.80% Since thermal shock cracking is likely to occur, it is limited to a range of 0.020 to 0.80%.
次に、上記の適正成分組成に調整した鋳鋼を所定の形状
に仕上げたのちに施す、窒化処理および酸化スケール被
成処理について説明する。Next, a description will be given of the nitriding treatment and the oxide scale formation treatment, which are performed after the cast steel adjusted to the above-mentioned appropriate component composition is finished into a predetermined shape.
この発明では、Nbおよび/または■含有鋼に窒化処理
、引続いて酸化スケール被成処理を施すことにより、N
の固溶硬化ならびにCr%NbおよびVなどの析出硬化
によって表層を硬化させ、またNが濃化している表面に
ち密で密着性の良い酸化スケールを形成させて、高温に
おける耐摩耗性の改善ひいては工具寿命の延長を達成し
ようとするものであるが、窒化処理による窒化層厚みす
なわち窒化深度が10μm未満ではその改善効果に乏し
いので窒化深度は10μm以上とする必要がある。かよ
うな望化法としては、ガス窒化法、ガ′ス軟窒化法、液
体窒化法およびイオン窒化法などいずれもが使用できる
が、良好な窒化を行うために、処理温度は500〜11
00℃の範囲に限定した。In this invention, Nb and/or 1-containing steel is subjected to nitriding treatment, followed by oxide scale formation treatment.
The surface layer is hardened by solid solution hardening and precipitation hardening of Cr%Nb and V, and a dense and adhesive oxide scale is formed on the N-enriched surface to improve wear resistance at high temperatures. Although the purpose is to extend tool life, if the thickness of the nitrided layer by nitriding treatment, that is, the nitriding depth, is less than 10 μm, the improvement effect is poor, so the nitriding depth needs to be 10 μm or more. Any of the gas nitriding methods, gas soft nitriding methods, liquid nitriding methods, and ion nitriding methods can be used as such desaturation methods, but in order to perform good nitriding, the treatment temperature should be 500 to 11
The temperature was limited to 00°C.
窒化処理に引続(酸化スケール破戒処理において、加熱
温度が90[1℃未満ではスクールの生成量が少く、一
方1250℃を超えるとスケール内に多(の空隙が発生
して基地合金との密着性が低下するので、処理温度は9
00〜1250℃の範囲に限定した。Following nitriding treatment (in oxide scale breaking treatment, if the heating temperature is less than 90°C, the amount of school produced is small, while if it exceeds 1250°C, many voids are generated in the scale, resulting in poor adhesion to the base alloy). decreases, so the processing temperature is 9
The temperature was limited to a range of 00 to 1250°C.
なお十分満足のい(断熱性を維持するためには、地鉄と
の密着性に富むCrを含有する酸化スケール層厚みを2
0μm以上とすることが有利であり、そのためには適正
温度に80分間以上保持することが望ましい。In addition, the thickness of the oxide scale layer containing Cr, which has good adhesion to the steel base, must be reduced to 2 to maintain satisfactory insulation properties.
It is advantageous to set the thickness to 0 μm or more, and for this purpose, it is desirable to maintain the temperature at an appropriate temperature for 80 minutes or more.
以下この“発明の実施例について説明する。Embodiments of this invention will be described below.
表1に符号A −Pで示した成分組成になる各鋳鋼を、
ピアザープラグに成形したのち、NH3g囲気中におい
て表1に示した条件で窒化処理を施し、引続いてCo
: 3%、CO2:10%、02:4%、残部N2の伴
囲気中で同じく表1に示した条件下に酸化スケール被成
処理を施した。どれらの窒化深度は、40〜160μm
、また地鉄近傍のCrを含有するち密な酸化スケール層
厚みは200〜250μmであった。Each cast steel having the chemical composition shown by symbols A-P in Table 1,
After being formed into a piercer plug, it was nitrided in an atmosphere of 3 g of NH under the conditions shown in Table 1, and then Co
3% CO2, 10% CO2, 4% CO2, and the balance N2, the oxide scale treatment was carried out under the same conditions shown in Table 1. Which nitriding depth is 40-160μm
Moreover, the thickness of the dense oxide scale layer containing Cr near the base iron was 200 to 250 μm.
ついで得られた各プラグを用いて、c : 0.25%
、Si : 0.25%、Mn: 1.28%、Ti
: tl、020%、B : 0.0028%、残部F
eの組成になる直径207mmの炭素鋼ビレットを連続
して穿孔したときの各プラグの穿孔寿命について調青し
、その結果を、比較例(符号P)の寿命を1とした場合
に対する寿命比で表1に併記した。Then, using each plug obtained, c: 0.25%
, Si: 0.25%, Mn: 1.28%, Ti
: tl, 020%, B: 0.0028%, remainder F
The drilling life of each plug when continuously drilling a carbon steel billet with a diameter of 207 mm with a composition of It is also listed in Table 1.
表1に示した結果から明らかなように、この発゛明に従
って得られたピアサ−プラグ(符号A〜O)はいずれも
、比較例(符号P)として示、した従来プラグに比べて
、8〜4倍ものすぐれた穿孔寿命を有していた。As is clear from the results shown in Table 1, all of the piercer plugs (coded A to O) obtained according to the present invention had an improvement of 8. It had ~4 times better drilling life.
以上実施例では主に、この発明をピアサ−プラグの製造
に適用した場合について説明したが、その他、エロンゲ
ータグラブならびにマンドレルバ−などの製造に適用し
た場合にも、同等の効果が得られることが確められてい
る。In the above embodiments, the present invention was mainly applied to the manufacture of piercer plugs, but the same effects can be obtained when the present invention is applied to the manufacture of elongator gloves, mandrel bars, etc. It's confirmed.
かくしてこの発明によれば、造営用工具材料の製造につ
き、材料の底面硬度を高め、かつ断熱性および密着性に
すぐれた酸化スケールを被成することにより、高温での
耐摩耗性を著しく向上させることができ、工具材料の大
幅な寿命延長を実現できる。Thus, according to the present invention, in the production of construction tool materials, wear resistance at high temperatures is significantly improved by increasing the hardness of the bottom surface of the material and forming an oxide scale with excellent heat insulation and adhesion. This can significantly extend the life of tool materials.
Claims (1)
0.10〜2゜0重量%、 Mn : 0.30〜2.0 g 吋%、Cr : 1
.0〜6.0重jt%および、Ni : 0.50〜6
..0重量% を含みかつ、 Nb : (1,020〜2゜0重量%および、V :
0.020〜2.0重量% のうちから選んだ少くとも一種を含有する溶鋼を鋳造し
、ついで所定の形状に仕上げたのち、500〜1100
°Cの温度範囲で望化深度が10μm以上となる表面窒
化処理を施し、引続き900〜1250℃の温度範囲で
酸化スケール被成処理を施すことを特徴とする造管用工
具材料の製造方法。[Claims] LC: 0.20 to 0.60% by weight, Si:
0.10-2.0% by weight, Mn: 0.30-2.0g%, Cr: 1
.. 0 to 6.0 wt% and Ni: 0.50 to 6
.. .. 0% by weight, Nb: (1,020-2.0% by weight, and V:
Molten steel containing at least one selected from 0.020 to 2.0% by weight is cast, then finished into a predetermined shape, and then
1. A method for manufacturing a pipe-making tool material, which comprises performing a surface nitriding treatment to give a desired depth of 10 μm or more in a temperature range of 900 to 1250°C, and subsequently performing an oxide scale formation treatment in a temperature range of 900 to 1250°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1626283A JPS59143079A (en) | 1983-02-04 | 1983-02-04 | Manufacture of material for pipe forming tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1626283A JPS59143079A (en) | 1983-02-04 | 1983-02-04 | Manufacture of material for pipe forming tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59143079A true JPS59143079A (en) | 1984-08-16 |
Family
ID=11911636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1626283A Pending JPS59143079A (en) | 1983-02-04 | 1983-02-04 | Manufacture of material for pipe forming tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59143079A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369948A (en) * | 1986-09-09 | 1988-03-30 | Kawasaki Steel Corp | Tool material for manufacturing seamless steel pipe |
WO2010098256A1 (en) * | 2009-02-24 | 2010-09-02 | 山形県 | Martensitic-steel casting material and process for producing martensitic cast steel product |
-
1983
- 1983-02-04 JP JP1626283A patent/JPS59143079A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369948A (en) * | 1986-09-09 | 1988-03-30 | Kawasaki Steel Corp | Tool material for manufacturing seamless steel pipe |
WO2010098256A1 (en) * | 2009-02-24 | 2010-09-02 | 山形県 | Martensitic-steel casting material and process for producing martensitic cast steel product |
US8394319B2 (en) | 2009-02-24 | 2013-03-12 | Yamagataken | Martensitic-steel casting material and process for producing martensitic cast steel product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276330B2 (en) | Cold mold steel and cold press mold | |
JP6073167B2 (en) | Case-hardening steel with excellent surface fatigue strength and cold forgeability | |
KR20220097991A (en) | Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and manufacturing method therefor | |
JPH1096048A (en) | Steel capable of welding repair used in production of die for plastic | |
JPH01268846A (en) | Hot pressing tool steel | |
CN115279932B (en) | Steel for hot working die, and method for producing same | |
JP2631262B2 (en) | Manufacturing method of cold die steel | |
JPS599154A (en) | Material for tool for manufacturing seamless steel pipe | |
JPH0555585B2 (en) | ||
JP5618500B2 (en) | Mechanical member of high rigidity and high damping capacity cast iron and method for manufacturing the same | |
JPS59143079A (en) | Manufacture of material for pipe forming tool | |
KR20020001933A (en) | A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof | |
JPS5831066A (en) | Punch for cold working | |
JP2778140B2 (en) | Ni-base alloy hot tool and post-processing method of the hot tool | |
JPH11279702A (en) | Steel for aluminum die casting die excellent in erosion-resistance | |
JPH09316601A (en) | Cold tool steel suitable for surface treatment, die and tool for the same | |
JPS59143076A (en) | Manufacture of material for pipe forming tool | |
EP0902094B1 (en) | Process for manufacturing a mechanical workpiece with at least one part surface hardened by induction and workpiece obtained | |
JPS6225746B2 (en) | ||
JP2002088450A (en) | Hot work tool steel | |
JP2001214238A (en) | Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die | |
JPS6214632B2 (en) | ||
JPS5920453A (en) | Material for tool for manufacturing seamless steel pipe | |
JP2655840B2 (en) | Plastic forming pre-hardened steel for mold | |
JPS5920463A (en) | Manufacture of material for tool for manufacturing seamless steel pipe |