JPH02153035A - Ni-base alloy for hot working tool - Google Patents

Ni-base alloy for hot working tool

Info

Publication number
JPH02153035A
JPH02153035A JP30626788A JP30626788A JPH02153035A JP H02153035 A JPH02153035 A JP H02153035A JP 30626788 A JP30626788 A JP 30626788A JP 30626788 A JP30626788 A JP 30626788A JP H02153035 A JPH02153035 A JP H02153035A
Authority
JP
Japan
Prior art keywords
less
temperature
alloy
melting point
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30626788A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30626788A priority Critical patent/JPH02153035A/en
Publication of JPH02153035A publication Critical patent/JPH02153035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To manufacture the title Ni-base alloy having excellent strength and toughness by incorporating specific ratios of C, N, Si, Mn, Al, Mo, W, P and S into Ni. CONSTITUTION:An Ni-base alloy contg., by weight, 0.001 to 0.1% C+N, <=3% Si, 0.01 to 2% Mn, <=3% Al, <=40% Mo, <15% W and >=15% Mo+W, contg., as impurities, <=0.02% P and <=0.01% S and the balance Ni with inevitable impurities is prepd. In this way, the Ni-base alloy having less wear, errosion and cracking even if used at a high temp., having excellent strength, toughness, etc., and having high m.p. which is formed into a stock of a hot working tool having prolonged service life can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温で使用される熱間工具、例えば、継目無
鋼管の製造に用いる穿孔プラグや鍛造用金。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to hot tools used at high temperatures, such as piercing plugs and forging metals used in the production of seamless steel pipes.

型等に好適な強度および靭性に優れた熱間工具用NL基
合金に関する。
The present invention relates to an NL-based alloy for hot work tools that has excellent strength and toughness and is suitable for molds and the like.

(従来の技術) 金属の熱間加工に使用される工具(熱間工具)、例えば
、高温の中実ビレットを継目無鋼管に熱間加工するため
の穿孔プラグや鍛造用金型には、−般には次のような特
性が必要であるとされている。
(Prior art) Tools used for hot working metals (hot working tools), such as drilling plugs and forging dies for hot working high temperature solid billets into seamless steel pipes, include - Generally, the following characteristics are considered necessary.

即ち、■高温強度、■高温での延性、■室温での靭性、
■耐熱亀裂性および■耐高温酸化性、である、この中で
■の耐熱亀裂性は、■の高温での延性および■の室温で
の靭性と相関が深い。
Namely, ■ high temperature strength, ■ ductility at high temperature, ■ toughness at room temperature,
(2) heat cracking resistance and (2) high temperature oxidation resistance. Among these, (2) heat cracking resistance is closely correlated with (2) ductility at high temperatures and (2) toughness at room temperature.

このような特性が必要であるとされ、ている熱間工具に
は、従来から各種の高温用材料が使用されてきた0例え
ば、1000℃程度までの温度では、3〜5重量%のC
rと3重量%以下のMoおよびWを含むFe系合金、或
いはインコネル718(商品名)などのNi基合金が使
用されている。これらの高温材料は1000°Cまでは
優れた特性を発揮するが、1000’C以上の温度にな
ると高温強度が急激に低下する欠点がある。そのために
、これらの材料からなる工具でステンレス鋼やNi基合
金などの高級材を熱間加工した場合、工具寿命が極端に
悪化するという問題がある。
Various high-temperature materials have traditionally been used for hot tools that require such properties.
Fe-based alloys containing R and 3% by weight or less of Mo and W, or Ni-based alloys such as Inconel 718 (trade name) are used. Although these high-temperature materials exhibit excellent properties up to 1000°C, they have the drawback that their high-temperature strength rapidly decreases at temperatures above 1000'C. Therefore, when high-grade materials such as stainless steel and Ni-based alloys are hot-worked using tools made of these materials, there is a problem in that the tool life is extremely shortened.

例えば、前記製管や鍛造において、被加工材が炭素鋼や
低合金鋼であれば、前記のFe系合金でも十分であるが
、変形抵抗が著しく大きく、且つ加工条件も厳しいステ
ンレス鋼やNi基合金であれば、Fe系合金の工具では
1000’C以上での高温強度に劣るので寿命が極端に
短い。特に、マンネスマン穿孔法で継目無鋼管を製造す
るときに使用する穿孔プラグでは、高温の被加工材との
摩擦によりその表面温度は1200’C以上になるばか
りか、1回の加工時間も1〜20秒程度である鍛造より
も長い30秒以上であるから、激しい摩耗および溶損が
起きる。
For example, in pipe manufacturing and forging, if the workpiece is carbon steel or low-alloy steel, the Fe-based alloys described above are sufficient, but stainless steel or Ni-based alloys have extremely high deformation resistance and harsh processing conditions. In the case of alloys, tools made of Fe-based alloys have poor high-temperature strength at temperatures above 1000'C, and therefore have an extremely short life. In particular, in the case of the perforated plug used when manufacturing seamless steel pipes using the Mannesmann perforation method, not only does the surface temperature reach over 1200'C due to friction with the high-temperature workpiece, but also the machining time for one process is 1 to 100°C. Since the time is 30 seconds or more, which is longer than forging, which is about 20 seconds, severe wear and erosion occur.

そのために、ステンレス鋼やNi基合金のような被加工
材を加工するための工具については、より高強度のもの
が必要であるとされている。
For this reason, tools with higher strength are required for processing workpiece materials such as stainless steel and Ni-based alloys.

一方、高温でも優れた強度を有する材料として、酸化ア
ルミニウム、窒化アルミニウム等の各種セラミックス、
Mo、或いはPlo合金、例えば、Mo −0,2%C
−1,0%Ti−0,09%Zrの化学組成からなるい
わゆるTZMと称するMo合金が知られている。これら
の材料はいずれも十分な高温強度を有しているが、前者
のセラミックスは高温延性に乏しく、工具製造時に容易
に割れが発生する。後者のMoおよび−G合金は高温延
性は十分にあるが、室温での靭性に乏しく、そのために
室温に置かれた工具で熱間加工を開始すると割れが発生
しやすいだけではなく、Moは耐酸化性に乏しく、酸化
すると気化するために減耗が著しい、また、Moは酸素
との親和力が強いので、通常の真空溶解法では溶製する
ことができず、そのために、電子ビーム溶解法のような
特殊な溶製手段を用いて製造しなければならないので、
コスト高となる。
On the other hand, various ceramics such as aluminum oxide and aluminum nitride are used as materials that have excellent strength even at high temperatures.
Mo or Plo alloy, e.g. Mo-0.2%C
A Mo alloy called TZM having a chemical composition of -1.0% Ti-0.09% Zr is known. All of these materials have sufficient high-temperature strength, but the former ceramic has poor high-temperature ductility and easily cracks during tool manufacturing. Although the latter Mo and -G alloys have sufficient high-temperature ductility, they lack toughness at room temperature, and as a result, not only are they prone to cracking when hot working is started with a tool placed at room temperature, but Mo also has poor acid resistance. Mo has poor oxidation properties and vaporizes when oxidized, resulting in significant depletion.Also, Mo has a strong affinity with oxygen, so it cannot be melted using normal vacuum melting methods. Because it must be manufactured using special melting methods,
The cost will be high.

(発明が解決しようとする課題) 本発明の課題は、高温で使用されても摩耗、溶損および
割れが少な(、寿命の長い熱間工具の素材となる強度、
靭性等に優れた融点の高いNi基合金を提供することに
ある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a material that is strong enough to be used as a material for hot-working tools with a long life, with little wear, erosion, and cracking even when used at high temperatures.
The object of the present invention is to provide a Ni-based alloy with excellent toughness and a high melting point.

特に、本発明は1ooo″C以上、場合によっては12
00°C以上の温度で加工され、高温での変形抵抗が著
しく大きいステンレス鋼やNi基合金などの被加工材を
加工する工具材料に好適なNi基合金を提供することを
目的とする。
In particular, the present invention provides a
The purpose of the present invention is to provide a Ni-based alloy suitable for use as a tool material for machining workpieces such as stainless steel and Ni-based alloys, which are processed at temperatures of 00° C. or higher and have significantly high deformation resistance at high temperatures.

(課題を解決するための手段) 本発明者は、従来知られている各種の高温材料で穿孔プ
ラグを作り、実際にこれを使用して継目無鋼管を製造し
たところ、いずれのものも寿命は極めて短かった。その
原因は主に下記の点にあると考えられる。
(Means for Solving the Problems) The present inventor made perforated plugs from various conventionally known high-temperature materials and actually used them to manufacture seamless steel pipes. It was extremely short. The reason for this is thought to be mainly due to the following points.

(111200°C以上では十分な変形抵抗がなく摩耗
が著しいこと、 (2)プラグ表面は、場合によっては1350°Cを超
えることがあるが、既存材料の大部分は融点が1350
°C以下であるので、プラグ表面が局部的に溶損を起こ
すこと、 (3)溶損に至らなくとも高温で延性が0%となる温度
(以下、この温度を零延性温度という)が低いために容
易に割れが発生すること、 (4)Crを15%以上含む合金では、表面に酸化皮膜
ができて耐酸化性は良好であるが、プラグ表面に生成す
るクロム酸化物は20μ11厚以下と薄く、且つ緻密な
ものとなるため、かえって被加工材からプラグへの熱伝
達が大きくなって、プラグ表面の温度を上昇させるとと
もに、この酸化皮膜に潤滑効果がないこと。
(At temperatures above 111200°C, there is insufficient deformation resistance and wear is significant. (2) The plug surface may exceed 1350°C in some cases, but most existing materials have a melting point of 1350°C.
(3) The temperature at which ductility becomes 0% even if melting does not occur (hereinafter referred to as zero ductility temperature) is low. (4) Alloys containing 15% or more of Cr form an oxide film on the surface and have good oxidation resistance, but the chromium oxide formed on the plug surface has a thickness of less than 20μ11. As the plug becomes thin and dense, heat transfer from the workpiece to the plug increases, raising the temperature of the plug surface, and this oxide film has no lubricating effect.

これらの知見を基に本発明者は、高温で高い変形抵抗を
有する被加工材を加工する工具材料として、具体的にど
のような条件を具備しておればよいか検討した結果、次
のような結論に達した。
Based on these findings, the inventor investigated what specific conditions should be met for a tool material for machining workpieces that have high deformation resistance at high temperatures, and found the following. I came to a conclusion.

即ち、■1250’Cで15Kgf/ma+”以上の高
い変形抵抗、■1250°Cでの絞りが30%以上の優
れた延性、および■1350’C以上の融点を持ち、■
零延性温度が1250°C以上で、かつ■断熱および潤
滑効果のある酸化皮膜を形成できること、である。
That is, ■ has high deformation resistance of 15 Kgf/ma+'' at 1250'C or more, ■ excellent ductility with a reduction of 30% or more at 1250°C, and ■ has a melting point of 1350'C or more.
The zero ductility temperature is 1250°C or higher, and (2) it is capable of forming an oxide film with heat insulation and lubricating effects.

少なくともこのような条件を満足する工具材料であれば
、高温で高い変形抵抗を有する被加工材を加工しても優
れた耐久性が得られる。
As long as the tool material satisfies at least these conditions, excellent durability can be obtained even when processing workpieces that have high deformation resistance at high temperatures.

本発明者は、かかる観点から、熱間工具材料の選定を試
みたが、既存の合金には、前記の条件を全て満足するも
のが見当たらない、特に、Feベースの合金では高温強
度と融点の両方を同時に満足するものがなく、少なくと
も、Ni基の合金でなければならないことが判明した。
The present inventor has attempted to select a hot tool material from this perspective, but none of the existing alloys has been found that satisfies all of the above conditions.In particular, Fe-based alloys have poor high-temperature strength and melting point. It has been found that there is no material that satisfies both requirements at the same time, and that it must be at least a Ni-based alloy.

そして、Ni基合金に添加する合金元素としては、合金
の融点を下げるような成分は含有量を抑制する必要があ
ることも明らかになった。
It has also become clear that, as alloying elements added to Ni-based alloys, it is necessary to suppress the content of components that lower the melting point of the alloy.

ここに、本発明は、下記のとおりの組成をもつ熱間工具
用Ni合金を要旨とするものである。なお、合金成分に
ついての「%」は全て「重量%」である。
Here, the gist of the present invention is a Ni alloy for hot tools having the following composition. Note that all "%" regarding alloy components are "% by weight".

rC+Nが0.001〜O,1%、Siが3%以下、M
nが0.01〜2%以下、八〇が3%以下、門Oが40
%以下、Wが15%未満、Mo+Wが15%以上で、不
純物としてのPが0.02%以下、Sが0.01%以下
、残部がNiおよび不可避不純物である熱間工具用Ni
基合金1上記本発明の合金は、更に次の第1群の元素、
または/および第2群の元素の1種以上を含有すること
ができる。
rC+N 0.001~O, 1%, Si 3% or less, M
n is 0.01 to 2% or less, 80 is 3% or less, gate O is 40
% or less, W is less than 15%, Mo+W is 15% or more, P as impurities is 0.02% or less, S is 0.01% or less, the balance is Ni and unavoidable impurities.
Base Alloy 1 The above alloy of the present invention further contains the following elements of the first group,
or/and may contain one or more of the elements of the second group.

第1群元素: 10%以下、望ましくは2%以上lO%以下のCr。Group 1 elements: Cr of 10% or less, preferably 2% or more and 1O% or less.

20%以下、望ましくは2%以上20%以下のFe、1
0%以下、望ましくは2%以上10%以下のCo、第2
群の元素: 総量で0,05%以下、望ましくはo、 ooos%以
上0.05%以下のY、 Mg、 La、 Ce、 Z
rおよびCaの中から1種以上。
20% or less, preferably 2% or more and 20% or less of Fe, 1
0% or less, preferably 2% or more and 10% or less of Co, secondary
Group elements: Y, Mg, La, Ce, Z in a total amount of 0.05% or less, preferably o,oos% or more and 0.05% or less
One or more types from r and Ca.

なお、上記の本発明合金において、CとNの総量を0.
001〜0.05%、SiをOat%以下、Alを0.
25%以下、Moを15〜40%、不純物としてのPを
0.01%以下、Sをo、oos%以下、およびY、 
Mg、 La、Ce、 ZrおよびCaの1種又は2種
以上の総量を0.01%以下にすれば、融点および1延
性温度が一層高くなる。このような合金は、特に苛酷な
条件で使用される熱間工具の材料にふされしい。
In addition, in the above-mentioned alloy of the present invention, the total amount of C and N is 0.
001-0.05%, Si at Oat% or less, Al at 0.001-0.05%.
25% or less, Mo 15 to 40%, P as an impurity 0.01% or less, S o, oos% or less, and Y,
If the total amount of one or more of Mg, La, Ce, Zr and Ca is 0.01% or less, the melting point and 1 ductility temperature will become higher. Such alloys are particularly suitable as materials for hot-working tools used under harsh conditions.

本発明の合金の特徴は、合金を構成する元素の種類とそ
の含有量を適正に選んだところにあるが、なかでも、従
来の熱間工具では必須成分として多量に添加されている
Crが、合金の融点を大きく低下させることから、その
含有量を抑制し、同じく融点を下げる不純物のPとSを
低減し、一方、高温での変形抵抗を高める効果の著しい
MO(!:Wの少な(とも1種を特定量含有させたこと
を大きな特徴とする。 Crの含有量を下げると合金の
融点が高くなるだけではなく、合金表面に20μm厚以
上の酸化皮膜が形成され、その酸化皮膜は断熱効果が大
きく、しかも潤滑効果も存するところから、かかる合金
で製造した工具は、熱間加工用として極めて優れた性能
を持つに到る。
The characteristics of the alloy of the present invention are that the types and contents of the elements constituting the alloy are appropriately selected, and in particular, Cr, which is added in large amounts as an essential component in conventional hot tools, is Since it greatly lowers the melting point of the alloy, its content is suppressed, and the impurities P and S, which also lower the melting point, are reduced. On the other hand, MO (!: W) content is significantly reduced, which has a remarkable effect of increasing deformation resistance at high temperatures. The major feature is that it contains a specific amount of one kind of Cr.Reducing the content of Cr not only increases the melting point of the alloy, but also forms an oxide film with a thickness of 20 μm or more on the alloy surface. Tools made of such alloys have extremely excellent performance for hot working because they have a large heat insulating effect and also have a lubricating effect.

(作用) 以下、本発明の熱間工具用Ni基合金の化学組成を前記
のように限定する理由を、その作用効果とともに説明す
る。
(Function) Hereinafter, the reason for limiting the chemical composition of the Ni-based alloy for hot working tools of the present invention as described above will be explained together with its function and effect.

CおよびN: CおよびNは共に固溶強化元素であり、高温での変形抵
抗を高くする効果がある。このような効果を得るには、
C十Nで0.001%以上含有させる必要がある。しか
し、一方においてCおよびNは合金の融点を太き(下げ
、また、1延性温度をも低下させる元素である。その含
有量がC+Nで0゜1%を超えると1延性温度が125
0°C以上とならない、1延性温度が低いと高温での割
れが発生しやすくなる。この1延性温度はCおよびNの
含有量が少なくなる程高くなる。1延性温度を1300
“C以上とするにはC+Nで0.05%以下とするのが
よい。
C and N: Both C and N are solid solution strengthening elements and have the effect of increasing deformation resistance at high temperatures. To achieve this effect,
It is necessary to contain 0.001% or more of C1N. However, on the other hand, C and N are elements that increase (lower) the melting point of the alloy and also lower the 1 ductility temperature.
If the ductility temperature is low, which is not 0°C or higher, cracking is likely to occur at high temperatures. This ductility temperature becomes higher as the content of C and N decreases. 1 ductility temperature 1300
“To achieve C or higher, C+N should be 0.05% or lower.

Si: SLは、脱酸作用を有するとともに高温で酸化物を形成
して工具表面の潤滑性および断熱性を改善する効果があ
る。しかし、含有量の増大とともに融点および本紙性温
度が低下するので3%以下にとどめるのがよい、3%を
超えると融点は1350“C未満となる。特に1200
°C以上の環境で使用する工具の場合には、Si含有量
を0.1%以下にするのがよい、Si含有量を0.1%
以下にすれば、本紙性温度が1300°C以上、125
0℃での絞りが30%以上となる。含有量の下限は、前
記の効果が現れる0、01%程度にするのが望ましい。
Si: SL has a deoxidizing effect and forms an oxide at high temperatures to improve the lubricity and heat insulation properties of the tool surface. However, as the content increases, the melting point and paper temperature decrease, so it is best to keep it below 3%.If it exceeds 3%, the melting point will be less than 1350"C.
For tools used in environments above °C, it is better to keep the Si content below 0.1%.
If the temperature is below, the paper temperature will be 1300°C or higher, 125°C.
The aperture at 0°C is 30% or more. The lower limit of the content is desirably about 0.01% at which the above-mentioned effects appear.

阿れ : Mnは、後述するPを固定して本紙性温度を上げる効果
があり、この効果を充分に得るには0.01%以上含有
させる必要がある。しかし、その含有量が2%を超える
と融点が著しく下がる。
Ale: Mn has the effect of fixing P, which will be described later, and increasing the temperature of the paper, and must be contained in an amount of 0.01% or more to fully obtain this effect. However, if its content exceeds 2%, the melting point will drop significantly.

^J2: AeもSiと同じく脱酸作用を有し、高温で酸化物を形
成して工具表面の潤滑性および断熱性を改善する効果が
ある。このような効果を得るためには0.01%以上含
有させるのが望ましい。しかし、A!は融点および本紙
性温度を低下させるので、その含有量を3%以下とする
^J2: Like Si, Ae also has a deoxidizing effect, forms oxides at high temperatures, and has the effect of improving the lubricity and heat insulation properties of the tool surface. In order to obtain such an effect, it is desirable to contain 0.01% or more. But A! Because it lowers the melting point and paper temperature, its content is set to 3% or less.

1200°C以上の環境で使用する工具に必要な130
0°C以上の本紙性温度、および1250°Cでの30
%以上の絞りを確保するにはAl含有量を0.25%以
下にするのがよい。
130 required for tools used in environments above 1200°C
Paper temperature above 0°C and 30°C at 1250°C
% or more, the Al content is preferably 0.25% or less.

MO: Moは、次のWと同じ高融点金属でありNi基合金に添
加されて高温での変形抵抗を上昇させる効果がある。
MO: Mo is a high melting point metal like W, and when added to a Ni-based alloy, it has the effect of increasing deformation resistance at high temperatures.

しかし、過度に添加してもその効果が飽和するとともに
合金の高融点および高温での高い絞りを確保するのが困
難となる。特にWが添加されていない場合には、Moが
40%を超えると融点が1350°C未満、1250°
C以上での絞りが30%未満となる。
However, even if it is added excessively, its effect will be saturated and it will become difficult to ensure a high melting point of the alloy and a high reduction of area at high temperatures. Especially when W is not added, if Mo exceeds 40%, the melting point will be lower than 1350°C, 1250°C.
The aperture at C or higher is less than 30%.

第1図は、Wを添加していないものと添加したものとに
おける、Mo含有量と融点との関係を調べた結果であり
、第2図および第3図は同じ< 1250゛Cでの変形
抵抗の変化と、絞りの変化を澗べた結果をそれぞれ示し
たものである。
Figure 1 shows the results of investigating the relationship between the Mo content and the melting point in those without and with W added, and Figures 2 and 3 show the same deformation at < 1250°C. This figure shows the results of changes in resistance and changes in aperture.

図中、O印で示すものはW無添加、・印で示すものは1
0%のWを含有するものである。
In the figure, those marked with O are W-free, and those marked with 1 are marked with 1.
It contains 0% W.

第1図および第3図から、Wを添加していないものでは
Moが40%を超えると融点が1350”c以下になる
とともに、絞りが急激に低下し、1250°Cでの絞り
が30%を下回っていることがわかる。また、第2図か
らMo含有量の増加により変形抵抗が上昇するが、40
%を超えるとその効果が飽和していることがわかる。
From Figures 1 and 3, it can be seen that when Mo content exceeds 40%, the melting point decreases to below 1350"C and the reduction of area rapidly decreases to 30% at 1250°C. It can be seen that the deformation resistance increases with the increase in Mo content from Fig. 2.
%, it can be seen that the effect is saturated.

従って、本発明では望ましくはWを添加しない場合には
Moを15%以上、40%の範囲内で含有させるのがよ
い。
Therefore, in the present invention, when W is not added, Mo is preferably contained in a range of 15% or more to 40%.

なお、前記第2図および第3図における変形抵抗および
絞りは、10m+mφの試験片を作り、グリ−プル試験
機で、歪速度(e ):1.O/secの条件で引張り
および圧l1iI試験したときの、絞りおよび圧縮強さ
を測定して評価したものである。
The deformation resistance and aperture shown in FIGS. 2 and 3 are as follows: A test piece of 10 m+mφ was prepared, and strain rate (e): 1. The evaluation was made by measuring the drawing strength and compressive strength when tensile and pressure l1iI tests were carried out under the conditions of O/sec.

W: Wは、Moと同じく変形抵抗を高める効果があるので、
本発明ではWは一〇を補完する意味で添加する。しかし
、Wは高価であるのでその含有量を15%未満とする。
W: Like Mo, W has the effect of increasing deformation resistance, so
In the present invention, W is added to complement 10. However, since W is expensive, its content is set to less than 15%.

Wが15%未満でもMoで補完して融点、絞りおよび変
形抵抗を高めることができる。
Even if W is less than 15%, it can be supplemented with Mo to increase the melting point, drawing resistance, and deformation resistance.

本発明では、上記のようにMoおよびWはそれぞれ40
%以下、15%未満の範囲内で含有させるが、その総量
は15%以上とする必要がある。
In the present invention, as mentioned above, Mo and W are each 40
% or less and less than 15%, but the total amount must be 15% or more.

これは、Moが15%未満の領域においてもWとの合計
量で15%以上あれば、この範囲の合金でも所望の融点
、絞りおよび変形抵抗を確保することができるからであ
る。
This is because even in a region where Mo is less than 15%, as long as the total amount with W is 15% or more, the desired melting point, reduction of area, and deformation resistance can be ensured even in alloys within this range.

PおよびS: 不純物としてのPおよびSは、ともに本紙性温度を下げ
るから、その含有量は少ない方が望ましい。それぞれの
含有量が、Pについては0.02%以下、Sについては
0.01%以下であれば、本紙性温度を1250°C以
上とすることができる。更に、その含有量を少なくすれ
ば、−層雲延性温度を高くすることができる、具体的に
はPを0.01%以下、Sをo、oos%以下とすれば
、本通性温度を1300°C以上にすることができる。
P and S: Since P and S as impurities both lower the paper temperature, it is desirable that their content be small. If the respective contents are 0.02% or less for P and 0.01% or less for S, the paper temperature can be set to 1250°C or higher. Furthermore, if the content is reduced, the stratus ductility temperature can be increased. Specifically, if P is 0.01% or less and S is 0,00% or less, the stratus ductility temperature can be increased to 1300%. °C or higher.

本発明の熱間工具用Ni基合金は、以上の元素の他、残
部は実質的にNiから成るものである。しかし、その性
質を更に改善するために、上記元素に加えて、更に下記
のCr、 FeおよびCOの1種以上および/またはY
、 Mg、 La、、Ce、 ZrおよびCaの1種以
上を含有させることができる。
In addition to the above-mentioned elements, the Ni-based alloy for hot work tools of the present invention consists essentially of Ni. However, in order to further improve its properties, in addition to the above elements, one or more of the following Cr, Fe and CO and/or Y
, Mg, La, , Ce, Zr, and Ca.

これらの元素の作用効果は、次の通りである。The effects of these elements are as follows.

Cr、、FeおよびCo: これらの元素は、1種以上Ni基合金に添加されて工具
表面に断熱性と潤滑性を兼ね備えた酸化皮膜を形成する
効果がある。しかし、その含有量がCrについては、1
0%を超えると合金の融点が著しく低下する他、形成さ
れる酸化皮膜が20μ■以下と薄くなり、断熱および潤
滑効果が著しく低下する。Feについては、20%を超
えると1350°C以上の融点を確保することができな
い、また、COについては、10%を超えると酸化を抑
制するので酸化皮膜が薄くなるとともに高価となる。
Cr, Fe, and Co: One or more of these elements are added to the Ni-based alloy and have the effect of forming an oxide film having both heat insulation and lubricity on the tool surface. However, for Cr, the content is 1
If it exceeds 0%, not only will the melting point of the alloy drop significantly, but the oxide film formed will be as thin as 20μ or less, and the heat insulation and lubrication effects will drop significantly. For Fe, if it exceeds 20%, it is impossible to ensure a melting point of 1350° C. or higher, and for CO, if it exceeds 10%, oxidation is suppressed, so the oxide film becomes thinner and becomes expensive.

なお、これらの元素の望ましい下限値は、Cr。Note that the desirable lower limit of these elements is Cr.

FeおよびCoのそれぞれについて2%である。2% for each of Fe and Co.

Y、、Mg、 La、、Ce、 ZrおよびCa:これ
らの元素は、高温で形成される酸化皮膜に入り、酸化皮
膜を緻密化させて加工中での割れや剥離を防止して工具
の摩耗等を防止する効果がある。さらには、これら元素
はいずれも強力な脱酸剤であって、合金の室温における
靭性を向上させるとともに本通性温度を高める効果も有
している。
Y, Mg, La, Ce, Zr and Ca: These elements enter the oxide film formed at high temperatures and make the oxide film denser, preventing cracking and peeling during machining and reducing tool wear. It has the effect of preventing such things. Furthermore, all of these elements are strong deoxidizing agents, and have the effect of improving the toughness of the alloy at room temperature and increasing the permeability temperature.

このような効果を期待する場合、合計含有量で0゜00
05%以上添加するのが望ましい、しかし、その含有量
が1種または2種以上の合計で0.05%を超えると反
対に本通性温度が低くなる。
If you expect such an effect, the total content should be 0゜00
It is desirable to add 0.05% or more, but if the total content of one or more of them exceeds 0.05%, on the contrary, the permeability temperature becomes low.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

(実施例) 真空誘導溶解炉で第1表に示す化学組成の合金を溶製し
、熱間鍛造により粗型材を製造した9次いで、これを1
200〜1250°Cの温度で1〜10時間の固溶化熱
処理を施した後、機械加工して50m−径の穿孔プラグ
を作製した。
(Example) An alloy having the chemical composition shown in Table 1 was melted in a vacuum induction melting furnace, and a rough mold material was produced by hot forging.
After solution heat treatment for 1 to 10 hours at a temperature of 200 to 1250°C, a perforated plug with a diameter of 50 m was fabricated by machining.

なお符号T、Uの比較合金については、溶解後、鋳造ま
まのものを機械加工で穿孔プラグに加工した。従来材と
いうのはいずれも市販材であり、符号Xは低合金鋳造材
、符号Yはアロイ718で、前者からはそのまま(鋳造
のまま)穿孔プラグを作製し、後者は丸棒に鍛造してか
ら、機械加工で穿孔プラグを作製した。
As for comparative alloys T and U, after melting, the as-cast alloys were machined into perforated plugs. The conventional materials are all commercially available materials, the symbol X is a low-alloy cast material, and the symbol Y is alloy 718. The former is used to make a perforated plug as it is (as cast), and the latter is forged into a round bar. A perforated plug was fabricated by machining.

穿孔プラグ作製に際し、各合金から試験片を採取して、
融点、本通性温度、変形抵抗、絞りおよび靭性を調べた
。その結果を第2表に示す。
When making the perforated plug, a test piece was taken from each alloy,
The melting point, intrinsic temperature, deformation resistance, reduction of area and toughness were investigated. The results are shown in Table 2.

一方、8011II径X 300s−長さ(7)SO3
304(変形抵抗:1200’Cで10にg/細鵬りを
被加工材とし、これを1200°Cに加熱後、前記穿孔
プラグを用いて80■−径×7m11肉厚の継目無鋼管
に穿孔を行い、穿孔不能となるまでの回数を調べた。そ
の結果も第2表に示す。
On the other hand, 8011II diameter x 300s - length (7) SO3
304 (deformation resistance: 10 g/thickness at 1200'C was used as the workpiece material, and after heating it to 1200°C, it was made into a seamless steel pipe of 80mm diameter x 7m11 wall thickness using the above-mentioned perforation plug. The number of perforations until it became impossible to perforate was determined.The results are also shown in Table 2.

なお、前記融点は液相線で評価した。また、本通性温度
は、引張試験において絞りが0%となる最低温度を測定
することにより、更に高温における変形抵抗および絞り
は、1〇−儒φの試験片を作り、グリ−プル試験機で、
歪速度(ε):1.0/seeの条件で引張および圧縮
試験したときの、1250°Cでの絞りおよび圧縮強さ
を測定することにより、靭性はフルサイズ(10+am
 X lkm)のシャルピー衝撃試験片(2+++II
Uノツチ)を作り、20’Cにおける吸収エネルギを測
定することにより、それぞれ評価した。
Note that the melting point was evaluated using the liquidus line. In addition, the normal temperature can be determined by measuring the lowest temperature at which the reduction of area becomes 0% in a tensile test, and the deformation resistance and reduction of area at even higher temperatures can be determined by making a test piece of 10-Fφ and using a Grieple test machine. in,
The toughness can be determined by measuring the drawing strength and compressive strength at 1250°C during tensile and compression tests under the condition of strain rate (ε): 1.0/see.
Charpy impact test piece (2+++II
Each was evaluated by making a U-notch (U-notch) and measuring the absorbed energy at 20'C.

(以下、余白) 第2表から明らかなように、本発明のNi基合金(符号
A−Q)はいずれも1350°C以上の融点、1250
°C以上の本通性温度、1250’cでの30%以上の
絞りと15Kgf/mm”以上の変形抵抗、さらには5
Kg−m以上の靭性、であるので、これらから作製した
穿孔プラグを使用した場合、変形抵抗の大きいオーステ
ナイト系のステンレス鋼でも4回以上の穿孔ができた。
(Hereinafter, blank space) As is clear from Table 2, the Ni-based alloys of the present invention (symbols A-Q) all have a melting point of 1350°C or higher, a melting point of 1250°C or higher,
The normal temperature is more than 1250'C, the reduction is more than 30% and the deformation resistance is more than 15Kgf/mm'', and even 5
Since the toughness is more than Kg-m, when a perforated plug made from these materials was used, even austenitic stainless steel with high deformation resistance could be perforated four times or more.

これに対して、比較合金(符号R−W)および従来合金
(符号X、 Y)は、融点が低いか、変形抵抗が小さい
か、本通性温度が1250’C以下であるかで、いずれ
かの特性に劣るために1回の穿孔中に割れが発生し、最
早穿孔を継続することができなかった。或いは、損耗が
大きく次の穿孔に使用することができなかった。
On the other hand, the comparative alloys (symbols R-W) and conventional alloys (symbols X, Y) have low melting points, low deformation resistance, and permeability temperatures of 1250'C or less. Due to these poor characteristics, cracks occurred during one drilling, and drilling could no longer be continued. Or, it was so worn that it could not be used for the next drilling.

(発明の効果) 以上説明した如く、本発明のNi基合金は融点が高く、
且つ高温での変形抵抗、延性および室温での靭性も優れ
ているので、この合金からなる工具は溶損や摩耗が少な
く寿命が長い。
(Effects of the invention) As explained above, the Ni-based alloy of the present invention has a high melting point,
In addition, it has excellent deformation resistance at high temperatures, ductility, and toughness at room temperature, so tools made of this alloy have little melting damage and wear, and have a long life.

そのために、本発明のNi基合金は特に高温で加工され
、且つ高温での変形抵抗が高いステンレス鋼やNi基合
金を加工する熱間工具の材料として最適である。
For this reason, the Ni-based alloy of the present invention is particularly suitable as a material for hot tools that are processed at high temperatures and that process stainless steel and Ni-based alloys that have high deformation resistance at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、Ni基合金においてWを添加しない
場合と、10%のWを添加した場合における、Mo含有
量と融点、1250°Cにおける変形抵抗および同温度
における絞りとの関係を調べた結果を示すグラフ、であ
る。
Figures 1 to 3 show the relationship between Mo content, melting point, deformation resistance at 1250°C, and reduction of area at the same temperature in Ni-based alloys when no W is added and when 10% W is added. This is a graph showing the results of investigating.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、C+Nが0.001〜0.1%、Si
が3%以下、Mnが0.01〜2%、Alが3%以下、
Moが40%以下、Wが15%未満、且つ、Mo+Wが
15%以上で、不純物としてのPが0.02%以下、S
が0.01%以下、残部がNiおよび不可避不純物であ
る熱間工具用Ni基合金。
(1) C+N 0.001-0.1% by weight, Si
is 3% or less, Mn is 0.01 to 2%, Al is 3% or less,
Mo is 40% or less, W is less than 15%, and Mo+W is 15% or more, P as an impurity is 0.02% or less, S
0.01% or less, the balance being Ni and unavoidable impurities.
(2)重量%で、C+Nが0.001〜0.1%、Si
が3%以下、Mnが0.01〜2%、Alが3%以下、
Moが40%以下、Wが15%未満、且つ、Mo+Wが
15%以上で、更に、10%以下のCr、20%以下の
Feおよび10%以下のCoの1種以上を含み、不純物
としてのPが0.02%以下、Sが0.01%以下、残
部がNiおよび不可避不純物である熱間工具用Ni基合
金。
(2) In weight%, C+N is 0.001-0.1%, Si
is 3% or less, Mn is 0.01 to 2%, Al is 3% or less,
Mo is 40% or less, W is less than 15%, and Mo+W is 15% or more, and further contains one or more of 10% or less Cr, 20% or less Fe, and 10% or less Co, and contains impurities. A Ni-based alloy for hot working tools, containing 0.02% or less of P, 0.01% or less of S, and the balance being Ni and unavoidable impurities.
(3)重量%で、C+Nが0.001〜0.1%、Si
が3%以下、Mnが0.01〜2%、Alが3%以下、
Moが40%以下、Wが15%未満、且つ、Mo+Wが
15%以上で、更に、総量で0.05%以下のY、Mg
、La、Ce、ZrおよびCaの1種以上を含み、不純
物としてのPが0.02%以下、Sが0.01%以下、
残部がNiおよび不可避不純物である熱間工具用Ni基
合金。
(3) In weight%, C+N is 0.001-0.1%, Si
is 3% or less, Mn is 0.01 to 2%, Al is 3% or less,
Mo is 40% or less, W is less than 15%, and Mo+W is 15% or more, and Y and Mg have a total amount of 0.05% or less
, containing one or more of La, Ce, Zr and Ca, P as an impurity is 0.02% or less, S is 0.01% or less,
A Ni-based alloy for hot tools, the balance being Ni and unavoidable impurities.
(4)重量%で、C+Nが0.001〜0.1%、Si
が3%以下、Mnが0.01〜2%、Alが3%以下、
Moが40%以下、Wが15%未満、且つ、Mo+Wが
15%以上で、更に、10%以下のCr、20%以下の
Feおよび10%以下のCoの1種以上と総量で0.0
5以下のY、Mg、La、Ce、ZrおよびCaの1種
以上を含み、不純物としてのPが0.02%以下、Sが
0.01%以下、残部がNiおよび不可避不純物である
熱間工具用Ni基合金。
(4) C+N is 0.001 to 0.1% by weight, Si
is 3% or less, Mn is 0.01 to 2%, Al is 3% or less,
Mo is 40% or less, W is less than 15%, and Mo+W is 15% or more, and furthermore, one or more of 10% or less Cr, 20% or less Fe, and 10% or less Co, and a total amount of 0.0
5 or less of Y, Mg, La, Ce, Zr, and Ca, P as impurities is 0.02% or less, S is 0.01% or less, and the balance is Ni and inevitable impurities. Ni-based alloy for tools.
JP30626788A 1988-12-02 1988-12-02 Ni-base alloy for hot working tool Pending JPH02153035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30626788A JPH02153035A (en) 1988-12-02 1988-12-02 Ni-base alloy for hot working tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30626788A JPH02153035A (en) 1988-12-02 1988-12-02 Ni-base alloy for hot working tool

Publications (1)

Publication Number Publication Date
JPH02153035A true JPH02153035A (en) 1990-06-12

Family

ID=17955025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30626788A Pending JPH02153035A (en) 1988-12-02 1988-12-02 Ni-base alloy for hot working tool

Country Status (1)

Country Link
JP (1) JPH02153035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
US7803237B2 (en) * 2005-07-20 2010-09-28 Damascus Steel Casting Company Nickel-base alloy and articles made therefrom
WO2014187137A1 (en) * 2013-05-23 2014-11-27 苏州贝思特金属制品有限公司 Nickel-copper alloy seamless tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798645A (en) * 1980-12-10 1982-06-18 Hitachi Zosen Corp Material for metallic mold for molding glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798645A (en) * 1980-12-10 1982-06-18 Hitachi Zosen Corp Material for metallic mold for molding glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
US7803237B2 (en) * 2005-07-20 2010-09-28 Damascus Steel Casting Company Nickel-base alloy and articles made therefrom
WO2014187137A1 (en) * 2013-05-23 2014-11-27 苏州贝思特金属制品有限公司 Nickel-copper alloy seamless tube

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
JP3838216B2 (en) Austenitic stainless steel
JP3853100B2 (en) Copper alloy with excellent wear resistance
US3663215A (en) Wear-resistant stainless steel
WO2014126086A1 (en) Metal powder, tool for hot working and method for manufacturing tool for hot working
US4711761A (en) Ductile aluminide alloys for high temperature applications
JPH0885838A (en) Ni-base superalloy
JPS645100B2 (en)
JPH0555585B2 (en)
CA1063838A (en) Nickel-chromium filler metal
JPH02153035A (en) Ni-base alloy for hot working tool
JP2778140B2 (en) Ni-base alloy hot tool and post-processing method of the hot tool
US3759705A (en) Chromium containing alloy steel and articles
JPH0474848A (en) Steel for hot tube making tool and hot tube making tool
JPS60231591A (en) Wire for submerged arc welding of cr-mo group low alloy steel
JPH03204106A (en) Plug for manufacturing hot seamless tube
JPS5945752B2 (en) Strong precipitation hardening austenitic heat resistant steel
JPH0547611B2 (en)
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
US5361968A (en) Method of manufacturing metallic press die
JP2508862B2 (en) Hot seamless pipe manufacturing plug
US2200545A (en) Rustless iron manufacture
JPS5842743A (en) Cast ni alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe
US2677610A (en) High temperature alloy steel and articles made therefrom
JPH03173749A (en) Soft magnetic stainless steel for cold forging and its manufacture