JPH03173749A - Soft magnetic stainless steel for cold forging and its manufacture - Google Patents

Soft magnetic stainless steel for cold forging and its manufacture

Info

Publication number
JPH03173749A
JPH03173749A JP31388589A JP31388589A JPH03173749A JP H03173749 A JPH03173749 A JP H03173749A JP 31388589 A JP31388589 A JP 31388589A JP 31388589 A JP31388589 A JP 31388589A JP H03173749 A JPH03173749 A JP H03173749A
Authority
JP
Japan
Prior art keywords
less
stainless steel
cold forging
soft magnetic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31388589A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Nagayoshi Kikuchi
永喜 菊池
Hitokatsu Usami
宇佐美 仁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP31388589A priority Critical patent/JPH03173749A/en
Publication of JPH03173749A publication Critical patent/JPH03173749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture the soft magnetic stainless steel excellent in magnetic characteristics and corrosion resistance by extremely reducing the content of Si as well as C, N, O, etc., in the compsn. of a ferritic stainless steel, subjecting a billet to hot rolling and annealing, thereafter executing wire drawing at a specified draft and regulating its grain size. CONSTITUTION:A ferritic stainless billet having a compsn. constituted of, by weight, <0.010% C, <0.20% Si, <0.35% Mn, <0.010% S, 11 to 13% Cr, 0.05 to 0.20% A, <0.0070% O and <0.0100% N, furthermore satisfying <0.015% (C+N) and the balance Fe, or instead of S in the above compsn., contg. one or 2 kinds among 0.002 to 0.02% Ca, <0.30% Bi, <0.30% Pb, <0.04% S and <0.04% Se, and when S and Se are included, contg. at least one kind among 0.002 to 0.040% Te and 0.02 to 0.15% Zr or furthermore contg. one or >=2 kinds among <4.0% Mo, <0.5% Cu, <2.5% Ni, <0.20% Nb and <0.20% V is hot- rolled at 850 to 1100 deg.C, is thereafter annealed at 650 to 900 deg.C and is furthermore subjected to 15 to 40% wire drawing to regulate its grain size number to 3 to 6, by which the soft magnetic stainless steel for cold forging can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟磁性鉄鋼材料に関し、詳しくは電子燃料噴射
装置、電磁弁、磁気センサ等の磁芯材料に用いられる冷
間鍛造性、シャー切断性、磁気特性、電気特性、耐食性
および被削性に優れた冷間鍛造用軟磁性ステンレス鋼お
よびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to soft magnetic steel materials, and more specifically to cold forgeability and shear cutting properties used in magnetic core materials for electronic fuel injection devices, solenoid valves, magnetic sensors, etc. The present invention relates to a soft magnetic stainless steel for cold forging that has excellent properties, magnetic properties, electrical properties, corrosion resistance, and machinability, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、電子燃料噴射装置、電磁弁、磁気センサ等の磁芯
材料には、大部分鉄が使用されていた。
Conventionally, iron has been used mostly for magnetic core materials such as electronic fuel injection devices, solenoid valves, and magnetic sensors.

なぜなら、鉄はある程度の軟磁性を持っている上、上記
用途の部品のような複雑形状にも、容易に冷間鍛造でき
る優れた冷鍛性を持ち、製造コストが安く、素材自体も
安価であるからである。
This is because iron has a certain degree of soft magnetism, and has excellent cold forging properties that allow it to be easily cold forged into complex shapes such as the parts used in the above applications, and the manufacturing cost is low, and the material itself is inexpensive. Because there is.

これに対して近年、鉄を使用している現用の製造ライン
で製造できる、つまり鉄並の冷鍛性、シャー切断性を具
備する製造性を有し、耐食性が優れ、さらに高性能化の
ニーズから、磁気応答性の向上という、三つの特性を合
わせ持つ軟磁性鋼が要求されてきた。
On the other hand, in recent years, there has been a need for products that can be manufactured on current manufacturing lines that use iron, that is, have the same cold forging properties and shear cutting properties as iron, have excellent corrosion resistance, and have even higher performance. Therefore, there has been a demand for soft magnetic steel that has three properties: improved magnetic response.

しかしながら、現在の技術は次のようなところに止まっ
ている。
However, the current technology is stuck at the following points.

一つは、鉄に冷鍛後N1−Pメツキを施し、耐食性を付
加したものである。この材料は、磁束密度と、冷鍛性は
非常に優れている(引張強さ32kgf/+w+m” 
)ものの、部品として組み込まれた場合、作動中にメツ
キが剥がれ弁が目詰まりするという欠点があった。さら
に電気抵抗が15μΩcmと低く、応答性が非常に低い
。また、ステンレス鋼をベースとした軟磁性鋼として、
現在、昭和50年初めに開発されたPe−13Cr−I
Si−0,25Al鋼が冷鍛用として10余年の間使わ
れている。この材料は、耐食性に優れ、電気抵抗が高く
応答性に優れるものの、引張強さが45kgf/+am
”と高く、冷鍛性においては、とても鉄(引張強さ32
 kgf/mm!、限界加工率70%)に及ぶものでは
なかった。そのため、鉄用の製造工程では冷鍛できなか
った。
One type is steel that is cold-forged and then plated with N1-P to add corrosion resistance. This material has excellent magnetic flux density and cold forgeability (tensile strength 32 kgf/+w+m"
) However, when it was assembled as a component, the plating peeled off during operation, causing the valve to become clogged. Furthermore, the electrical resistance is as low as 15 μΩcm, and the responsiveness is extremely low. In addition, as a soft magnetic steel based on stainless steel,
Currently, Pe-13Cr-I developed in early 1975
Si-0,25Al steel has been used for cold forging for over 10 years. This material has excellent corrosion resistance, high electrical resistance, and excellent responsiveness, but has a tensile strength of 45 kgf/+am.
”, and in terms of cold forging properties, it has a very high tensile strength of 32
kgf/mm! , the limit machining rate of 70%) was not reached. Therefore, cold forging was not possible in the manufacturing process for steel.

その後、Fe−13Cr−ISi−0,25AI鋼の冷
鍛性と電磁特性の改善は試みられたものの、Fe−13
Cr−ISi−0,25AI鋼を上回る冷鍛性を有する
材料は開発されていない。
After that, although attempts were made to improve the cold forgeability and electromagnetic properties of Fe-13Cr-ISi-0,25AI steel,
No material has been developed that has better cold forgeability than Cr-ISi-0,25AI steel.

また、最近、高冷鍛用として開発された13Cr−0,
1Siは引張強さが38 kgf/i+m”と冷鍛性が
やや不十分であり、かつ、ステンレス鋼特有のねばさの
ため、シャー切断性が悪く、鉄用製造ラインでの製造性
に問題がある。
In addition, 13Cr-0, which was recently developed for high-cold forging,
1Si has a tensile strength of 38 kgf/i+m, which is somewhat insufficient in cold forging properties, and due to the stickiness characteristic of stainless steel, it has poor shear cutting properties and has problems with manufacturability on iron production lines. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は電子燃料噴射装置等の磁芯材料として使用され
る従来鋼の前記のごとき欠点を解決すべくなされたもの
で、電子燃料噴射装置、電磁弁、磁気センサ等の磁芯材
料に要求される引張強さが36kgf/Imm”以下、
限界加工率75%以上であって優れた冷間鍛造性と優れ
たシャー切断性という鉄並の製造性を有し、電気抵抗が
45μΩcm以上であって優れた応答性を示し、さらに
耐食性、磁気特性、被削性に優れた冷間鍛造用軟磁性ス
テンレス鋼およびその製造方法を提供することを目的と
する。
The present invention was made to solve the above-mentioned drawbacks of conventional steel used as magnetic core materials for electronic fuel injection devices, etc., and is required for magnetic core materials for electronic fuel injection devices, solenoid valves, magnetic sensors, etc. tensile strength of 36kgf/Imm" or less,
It has a limit processing rate of 75% or more and has excellent cold forging property and excellent shear cutting performance, which is comparable to that of steel.It also has an electrical resistance of 45 μΩcm or more, exhibiting excellent responsiveness, and has excellent corrosion resistance and magnetic properties. The purpose of the present invention is to provide a soft magnetic stainless steel for cold forging with excellent properties and machinability, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、従来鋼の前記のごとき欠点に鑑み、従来
鋼の冷間鍛造性、磁気特性、電気抵抗、耐食性に及ぼす
各種合金元素の影響について鋭意研究を重ねた結果、本
発明を完成するに至ったものであり、本発明は次に述べ
るような新たな知見に基づくものである。
In view of the above-mentioned drawbacks of conventional steel, the present inventors have completed the present invention as a result of extensive research into the effects of various alloying elements on the cold forgeability, magnetic properties, electrical resistance, and corrosion resistance of conventional steel. The present invention is based on the following new findings.

鉄並の冷鍛性を得る手段は従来の冶金的手法では本合金
の組成範囲では、マルテンサイト組織になるが、今回、
従来法では冶金的に達し得なかった極低CfN化するこ
とによりフェライト単相を得ることを発見した。さらに
、この極低C+Nフェライト鋼において、Si、 Mn
その他の元素を製造上必要量は保って極限レベルまで下
げて、清浄化することにより、従来予想された冷鍛性を
遥かに上回る冷鍛性を得ることができた。
With conventional metallurgical methods, the means to obtain cold forgeability comparable to that of iron results in a martensitic structure within the composition range of this alloy, but this time,
It was discovered that a single ferrite phase could be obtained by achieving extremely low CfN, which could not be achieved metallurgically using conventional methods. Furthermore, in this ultra-low C+N ferrite steel, Si, Mn
By reducing the amount of other elements required for manufacturing to the minimum level and cleaning them, we were able to obtain cold forgeability that far exceeds that previously expected.

本発明では、従来、脱酸のためSiを0.5%程度添加
しており、そのため固溶硬化が大きく、また介在物が多
く生成するため、冷鍛性および磁気特性がかなり劣化し
ていることに着目した。即ち、脱酸剤としてSiの代わ
りにAIを用いると、 AIの方が脱酸力が強いため0
.05〜0.20%の少量の添加で充分に脱酸でき、そ
のため固溶硬化が小さくてすみ、なおかつ介在物も少な
いため、従来予想されなかった優れた冷鍛性を得ること
に成功した。さらに詳述すれば、13Cr系ステンレス
鋼におよぼす合金の影響を徹底的に調査した結果、単位
重量%当たりの固溶硬化は、AIよりSiの方が大きい
ことを見出した。従って前述のA1とSiの脱酸力の差
と、この固溶硬化能の差の相乗効果により、従来予想さ
れなかった優れた冷鍛性が得られたのである。
Conventionally, in the present invention, approximately 0.5% Si has been added for deoxidation, resulting in large solid solution hardening and generation of many inclusions, resulting in considerable deterioration of cold forgeability and magnetic properties. I focused on this. In other words, if AI is used instead of Si as a deoxidizing agent, the deoxidizing power of AI is stronger, so the
.. The addition of a small amount of 0.05 to 0.20% can sufficiently deoxidize, resulting in small solid solution hardening and fewer inclusions, making it possible to successfully obtain excellent cold forgeability that was previously unanticipated. More specifically, as a result of thorough investigation into the influence of alloys on 13Cr stainless steel, it was found that the solid solution hardening per unit weight % is greater in Si than in AI. Therefore, due to the synergistic effect of the above-mentioned difference in deoxidizing power between A1 and Si and this difference in solid solution hardenability, excellent cold forging property that was previously not expected was obtained.

本発明は、上述のように優れた冷鍛性を持つ軟磁性ステ
ンレス鋼を得たが、実際の冷鍛工程においては、コイル
状の素材をシャー切断して冷鍛母材とし、それを冷鍛機
へ送る。その際、本発明鋼の圧延コイルを焼鈍(900
℃X2Hr相当)のままでシャー切断すると、素材がね
ば過ぎて切断端面にだれを生じ、冷鍛母材形状が変形し
冷鍛できなくなるという問題が生じた。そこで本発明者
等は切断性に及ぼす組成、素材の硬さ(予備加工)、結
晶粒径(熱処理)の影響を綿密に調査した結果、次の様
な新規な知見を得た。
The present invention has obtained a soft magnetic stainless steel with excellent cold forging properties as described above, but in the actual cold forging process, a coiled material is shear cut to form a cold forging base material, and then the cold forging base material is Send it to the forging machine. At that time, the rolled coil of the steel of the present invention was annealed (900
If the material was shear cut at the same temperature (equivalent to ℃ x 2 hours), the material would become too sticky and sag would occur on the cut end surface, causing the shape of the cold forging base material to deform and making it impossible to cold forge. Therefore, the present inventors carefully investigated the influence of composition, material hardness (preliminary processing), and crystal grain size (heat treatment) on cuttability, and as a result, obtained the following new knowledge.

即ち、化学組成を変化させてシャー切断性を改善すると
、冷鍛性が劣化することが判明した。
That is, it has been found that when the chemical composition is changed to improve shear cuttability, the cold forgeability deteriorates.

次に、予備加工として、15〜40χの伸線加工を施し
て素材硬さを上昇させると、切断性が向上し、かつ冷鍛
性が損なわれないことを発見した。図は、圧延後焼鈍ま
ま■の素材と、25%伸線加工後■の素材の拘束圧縮試
験における、加工歪に対するパンチ面圧のグラフである
。図に示されるように、伸線加工後の素材は、加工歪が
小さいうちは、予備加工である伸線加工硬化の影響が残
っているため、圧延後焼鈍ままの素材よりパンチ面圧が
高いが、加工歪が大きくなるとパンチ面圧は、伸線加工
しないものと全く同じになる。即ち、伸線加工を施し素
材硬さを上昇させることによって、冷鍛性を損なわずに
切断性を向上させることが可能になった。
Next, it was discovered that when the wire drawing process of 15 to 40 x was performed as a preliminary process to increase the material hardness, the cuttability was improved and the cold forgeability was not impaired. The figure is a graph of punch surface pressure against processing strain in a restrained compression test of the material (2) as annealed after rolling and the material (2) after 25% wire drawing. As shown in the figure, while the processing strain is small, the punch surface pressure of the material after wire drawing is higher than that of the material that has been annealed after rolling because the influence of the wire drawing hardening that is the preliminary processing remains. However, when the processing strain increases, the punch surface pressure becomes exactly the same as that without wire drawing. That is, by increasing the hardness of the material by wire drawing, it has become possible to improve the cuttability without impairing cold forgeability.

さらに、結晶粒径については、粒径が大きい程切断性が
良いことを知見した。しかし、粒度番号が3以下では整
粒が得られにくく、混粒となり、冷鍛時に正確な形状が
得られず、また冷鍛品表面肌が粗くなる。また粒度番号
が6以上では、冷鍛時に焼きつきが発生することも発見
した。そこで、冷鍛性と切断性の両特性を兼ね備えた粒
度番号を3〜6の範囲とし、最適粒径は3という新規な
知見を得た。
Furthermore, regarding the crystal grain size, it was found that the larger the grain size, the better the cutting performance. However, if the grain size number is 3 or less, it is difficult to obtain uniform grain size, resulting in mixed grains, which makes it impossible to obtain an accurate shape during cold forging, and the surface texture of the cold forged product becomes rough. It was also discovered that when the grain size number is 6 or more, seizure occurs during cold forging. Therefore, we set the grain size number in the range of 3 to 6, which has both properties of cold forgeability and cuttability, and obtained a new finding that the optimum grain size is 3.

本発明の冷間鍛造用軟磁性ステンレス鋼は、第1発明と
して、c o、otoz以下、Si 0.20%以下、
Mn0135%以下、S 0.010%以下、Cr 1
1〜13X 、AI 0゜05〜0.20% 、00.
0070X以下、N 0.0100%以下、C十N 0
.015%以下を含有し、残部Feならびに不純物元素
からなることを要旨とする。
The soft magnetic stainless steel for cold forging of the present invention has, as the first invention, co, otoz or less, Si 0.20% or less,
Mn0135% or less, S 0.010% or less, Cr1
1~13X, AI 0°05~0.20%, 00.
0070X or less, N 0.0100% or less, C1N 0
.. 0.015% or less, with the remainder consisting of Fe and impurity elements.

第2発明は、第1発明にさらに切削性を改善するために
、Ca 0.002〜0.020χ、Bi 0.30X
以下、pbO030%以下、S 0.040%以下、S
e 0.040%以下のうち1種または2種以上を含有
し、さらに、S 、 Seを1種以上含有させる場合は
、Te 0.002〜0.040χ、Zr 0.02〜
0.15χのうち1種または2種を含有させたものであ
る。
In the second invention, in order to further improve the machinability of the first invention, Ca 0.002 to 0.020χ, Bi 0.30X
Below, pbO0 30% or less, S 0.040% or less, S
When containing one or more of e 0.040% or less, and further containing one or more of S and Se, Te 0.002 to 0.040χ, Zr 0.02 to
It contains one or two of 0.15χ.

第3発明は、第1発明にさらに耐食性を改善するため、
Mo 4.0%以下、Cu 0.50X以下、Ni 2
.5%以下、Nb 0.20%以下、V 0.20%以
下のうち1種または2種以上を含有させたものである。
The third invention further improves the corrosion resistance of the first invention,
Mo 4.0% or less, Cu 0.50X or less, Ni 2
.. 5% or less, Nb 0.20% or less, and V 0.20% or less.

第4発明は、第2発明にさらに耐食性を改善するために
Mo 4.0X以下、Cu 0.50X以下、Ni 2
.5%以下、Nb 0.20%以下、V 0.20%以
下のうち1種または2種以上を含有させたものである。
The fourth invention further improves the corrosion resistance of the second invention by adding Mo 4.0X or less, Cu 0.50X or less, Ni 2
.. 5% or less, Nb 0.20% or less, and V 0.20% or less.

第5〜第8発明は、第1〜第4発明鋼を850〜110
0℃で熱間圧延後、650〜900℃での焼鈍と15〜
40χの伸線加工を少なくとも1回行い、結晶粒度番号
を3〜6として、シャー切断性の向上を図ったものであ
る。
The fifth to eighth inventions include the first to fourth invention steels having 850 to 110
After hot rolling at 0℃, annealing at 650~900℃ and 15~
40χ wire drawing is performed at least once, and the grain size number is set to 3 to 6 to improve shear cutting performance.

次に、本発明において成分組成を限定する理由について
説明する。
Next, the reason for limiting the component composition in the present invention will be explained.

Ci 0.010X以下 Cは固溶強化によって冷間鍛造性を害するとともに磁気
特性にも悪影響を与える元素であり、本発明においては
できるだけ低下させることが望ましく、その上限を0.
010χとした。なお、冷間鍛造性および磁気特性をさ
らに向上させるためには0゜005%以下にすることが
望ましい。
Ci 0.010X or less Carbon is an element that impairs cold forgeability through solid solution strengthening and also has a negative effect on magnetic properties.In the present invention, it is desirable to reduce the amount as much as possible, and the upper limit is set to 0.010X or less.
010χ. In addition, in order to further improve cold forgeability and magnetic properties, it is desirable that the content be 0°005% or less.

Si ; 0.20%以下 Siは、固溶強化作用によって冷間鍛造性を害する元素
であり、また介在物が多(生成するため、冷鍛性および
磁気特性が劣化する。本発明は冷間鍛造性を最重視する
ものであるので、その上限を0.20χとした。
Si: 0.20% or less Si is an element that impairs cold forgeability due to its solid solution strengthening effect, and also generates a large number of inclusions, resulting in deterioration of cold forgeability and magnetic properties. Since the most important thing is forgeability, the upper limit was set to 0.20χ.

Mn ; 0.35X以下 Mnは耐食性、磁気特性、冷間鍛造性を著しく損なうの
で、0.10%以下が望ましいが、実際の製造性を考慮
して、その上限を0.35χとした。
Mn: 0.35X or less Mn significantly impairs corrosion resistance, magnetic properties, and cold forgeability, so it is preferably 0.10% or less, but in consideration of actual manufacturability, the upper limit was set to 0.35X.

S 、 0.010X以下 Sは鋼中の不純物として含有されるが、冷間鍛造性を害
する元素であるので、その上限を0.010χとした。
S, 0.010X or less S is contained as an impurity in steel, but since it is an element that impairs cold forgeability, its upper limit was set to 0.010X.

Cr ; 11〜132 Crは、耐食性、電気抵抗、磁気特性を改善する基本的
な元素であり、少なくとも11%以上含有されないと、
その効果は充分でなく、優れた耐食性、電気抵抗が得ら
れないので、下限を11χとした。
Cr; 11-132 Cr is a basic element that improves corrosion resistance, electrical resistance, and magnetic properties, and if it is not contained at least 11% or more,
Since the effect was not sufficient and excellent corrosion resistance and electrical resistance could not be obtained, the lower limit was set to 11χ.

しかし、13χを越えて含有させると、磁気特性を損な
うと共に冷間鍛造性をも損なうのでその上限を13χと
した。
However, if the content exceeds 13χ, the magnetic properties and cold forgeability will be impaired, so the upper limit was set at 13χ.

Al ; 0.05〜0.20! AIは固溶強化元素で冷間鍛造性を害すると共に溶接性
をも阻害する元素である。しかし、脱酸剤としてはSi
より有効であり、かつ単位重量%当りの固溶硬化はSi
より小さい。この効果を得るためには0.05%以上の
含有が必要であり、その下限を0.05χとした。しか
し、0.202を越えて含有させても脱酸効果が飽和し
、冷間鍛造性を損なうので、その上限を0.20χとし
た。
Al; 0.05-0.20! AI is a solid solution strengthening element that impairs cold forgeability and also inhibits weldability. However, as a deoxidizing agent, Si
more effective and solid solution hardening per unit weight % than Si
smaller. In order to obtain this effect, it is necessary to contain 0.05% or more, and the lower limit is set to 0.05χ. However, even if the content exceeds 0.202, the deoxidizing effect is saturated and cold forgeability is impaired, so the upper limit was set at 0.20χ.

0 、0.0070%以下 0は浸入型固溶体を形成し冷間鍛造性を著しく劣化させ
るので、できるだけ少ない方が望ましいが、実際の製造
性を考慮して上限を0.0070χとした。
0, 0.0070% or less Since 0 forms an intrusive solid solution and significantly deteriorates cold forgeability, it is desirable to have as little as possible, but in consideration of actual manufacturability, the upper limit was set to 0.0070χ.

N ; 0.0100%以下 Nは鋼中に不純物として含まれるが、0.0100%以
下に規制することにより、冷間鍛造性および磁気特性の
改善に効果的なので、上限をo、oiooχとした。
N: 0.0100% or less N is contained in steel as an impurity, but by regulating it to 0.0100% or less, it is effective in improving cold forgeability and magnetic properties, so the upper limit was set as o, oiooχ. .

C+ N ; 0.015%以下 CおよびNは、磁気特性、耐食性を著しく損ない、かつ
固溶強化作用により冷間鍛−造性を損なう元素である。
C+N: 0.015% or less C and N are elements that significantly impair magnetic properties and corrosion resistance, and impair cold forgeability due to solid solution strengthening.

本発明においては、C+Nを0.015%以下とし、S
iを極低レベルとし、さらに、AIを微量添加してもフ
ェライト単相となり、引張強さ36kgf/mm”以下
、限界加工率75%以上と優れた冷間鍛造性を得ること
を目的とするものであり、C十Nをできるだけ低下させ
ることが必要であり、上限を0.015χとした。
In the present invention, C+N is 0.015% or less, and S
The purpose is to set i to an extremely low level, and even if a small amount of AI is added, it becomes a single ferrite phase, has a tensile strength of 36 kgf/mm" or less, and has excellent cold forgeability with a limit working rate of 75% or more. Therefore, it is necessary to reduce C1N as much as possible, and the upper limit is set to 0.015χ.

S ; 0.040X以下、Se ; 0.040X以
下S 、 Seは切削性を改善するために添加するが、
多量の含有は冷間鍛造性を損なうので、上限を0゜04
0χとした。
S: 0.040X or less, Se: 0.040X or less S, Se is added to improve machinability, but
Since a large amount of content impairs cold forgeability, the upper limit should be set at 0°04.
It was set to 0χ.

Pb 、 0.30%以下、Bi ; 0.30%以下
Pb、 Biは切削性を改善する元素であるが、多量の
含有は冷間鍛造性を損なうので、上限を0.30χとし
た。
Pb: 0.30% or less, Bi: 0.30% or less Pb and Bi are elements that improve machinability, but their inclusion in large amounts impairs cold forgeability, so the upper limit was set to 0.30χ.

Ca H0.002〜0.020χ Caは切削性を改善するために添加するが、前記効果を
得るためには0.002%以上の含有が必要である。し
かし、0.020χを越えて含有させると冷間鍛造性を
損なうので、上限を0.020χとした。
Ca H0.002-0.020χ Ca is added to improve machinability, but in order to obtain the above effect, the content must be 0.002% or more. However, if the content exceeds 0.020χ, cold forgeability will be impaired, so the upper limit was set at 0.020χ.

Te 30.002〜0.040χ Teは冷間鍛造性に及ぼすS、 Seの影響を無害化す
る作用を有しており、この効果を得るには0.002%
以上含有させる必要がある。しかし、多量の含有はかえ
って冷間鍛造性を損なうので上限を0゜040χとした
Te 30.002~0.040χ Te has the effect of neutralizing the effects of S and Se on cold forgeability, and to obtain this effect, 0.002% is required.
It is necessary to contain the above amount. However, the upper limit was set at 0°040χ because a large amount of Ni would actually impair cold forgeability.

Zr ; 0.02〜0.15χ ZrはMnS 、 MnSeを球状化して、冷間鍛造性
を改善する元素であり、少なくとも0.02%以上含有
させる必要がある。しかし、多量の含有は逆に冷間鍛造
性を損なうので、上限を0.15χとした。
Zr; 0.02 to 0.15χ Zr is an element that spheroidizes MnS and MnSe and improves cold forgeability, and must be contained in an amount of at least 0.02%. However, since a large amount of content impairs cold forgeability, the upper limit was set to 0.15χ.

Mo ; 4.0%以下、Cu ; 0.502以下、
Ni H2,5%以下、Nb 、 0.20X以下、V
 、 0.20%以下Mo5Cu、 Ni5Nb、 V
は耐食性を改善する元素である。しかしMoは4.0χ
、Cuは0.50χ、Niは2.5χ、NbおよびVは
0.20χを越えて含有させるといずれも磁気特性、冷
間鍛造性をそこなうので、その上限をMoは4.0XS
Cuは0.50χ、Niは2.5χ、Nb、 Vは0.
20χとした。
Mo: 4.0% or less, Cu: 0.502 or less,
Ni H2, 5% or less, Nb, 0.20X or less, V
, 0.20% or less Mo5Cu, Ni5Nb, V
is an element that improves corrosion resistance. However, Mo is 4.0χ
If the content exceeds 0.50χ for Cu, 2.5χ for Ni, and 0.20χ for Nb and V, the magnetic properties and cold forgeability will be impaired, so the upper limit for Mo is 4.0XS.
Cu is 0.50χ, Ni is 2.5χ, Nb, and V is 0.
It was set to 20χ.

次に本発明において、製造条件を限定する理由について
説明する。
Next, the reason for limiting the manufacturing conditions in the present invention will be explained.

熱間圧延温度を850〜1100℃としたのは、850
℃未満での圧延では疵の発生が多くなり、また、結晶粒
が小さくなりすぎるめであり、1100℃を越えた温度
で圧延すると結晶粒が大きくなりすぎたり、鋼片が曲が
ってしまう等の製造上の問題が発生するからである。
The hot rolling temperature was 850 to 1100°C.
Rolling at temperatures below 1100°C will result in more defects and the crystal grains will become too small, while rolling at temperatures above 1100°C will result in production problems such as grains becoming too large and the billet becoming bent. This is because the above problem occurs.

焼鈍温度を650〜900℃としたのは、良好な冷間鍛
造性およびシャー切断性を確保するためであり、650
℃未満では歪取りの効果が無く、900℃を越えると結
晶粒が粗大化し整粒が得られなくなるからである。
The annealing temperature was set at 650 to 900°C in order to ensure good cold forgeability and shear cuttability.
This is because if the temperature is lower than 900°C, there is no strain relief effect, and if the temperature exceeds 900°C, the crystal grains become coarse and grain size cannot be obtained.

伸線加工を15〜40χとしたのは冷間鍛造性を損なう
ことなくシャー切断性を向上させるためであり、15χ
未満では素材硬さの上昇が少なく、素材がねば過ぎてシ
ャー切断性があまり向上しなく、かつ、40χを越える
と素材硬さが高くなり過ぎ、かえってシャー切断性が損
なわれ、冷鍛割れ等が発生する危険があり、上限を40
χとした。
The wire drawing process was set to 15 to 40χ in order to improve shear cutting properties without impairing cold forging properties.
If it is less than 40χ, the increase in material hardness will be small and the material will be too sticky, and the shear cutting properties will not improve much.If it exceeds 40χ, the material hardness will become too high, and the shear cutting properties will be impaired, resulting in cold forging cracking, etc. There is a risk that
It was set as χ.

〔実施例〕〔Example〕

次に本発明の特徴を従来鋼、比較鋼と比べて実施例でも
って明らかにする。
Next, the features of the present invention will be clarified by comparing them with conventional steel and comparative steel through examples.

第1表はこれら供試 鋼の化学成分を示すものである。Table 1 shows these samples. It shows the chemical composition of steel.

(以下余白) 第1表において、No1〜8鋼は第1.5発明鋼、No
9〜15鋼は第2.6発明鋼、No16〜25tlij
lは第3.7発明鋼、No26〜29綱は第4.8発明
鋼である。No30〜34綱は比較鋼であり、N035
.36鋼は従来鋼で、No35はFe 、 No36は
Pe−13Cr−ISi−0,25AIである。
(Left below) In Table 1, No. 1 to No. 8 steels are No. 1.5 invention steels, No.
9-15 steel is the 2.6th invention steel, No. 16-25tlij
1 is the 3.7th invention steel, and Nos. 26 to 29 are the 4.8th invention steel. No. 30 to 34 steels are comparative steels, and N035
.. Steel No. 36 is conventional steel, No. 35 is Fe, and No. 36 is Pe-13Cr-ISi-0,25AI.

第1表の供試鋼について、900℃で2時間保持し、つ
いで冷却速度100”C/時間という熱処理を施して、
引張強さ、限界加工率、磁束密度、保磁力、耐食性、電
気抵抗、被削性を測定した。
The test steels in Table 1 were held at 900°C for 2 hours and then subjected to heat treatment at a cooling rate of 100"C/hour.
Tensile strength, limit processing rate, magnetic flux density, coercive force, corrosion resistance, electrical resistance, and machinability were measured.

引張強さについては、JIS d号試験片を用いて測定
したものであり、限界加工率については、日本塑性加工
学会冷間鍛造分科会基準、冷間据込み性試験方法(暫定
基準)に基づいて、試験片として直径14mmφ、高さ
211、ノツチ付きを用い圧縮試験を行い割れ発生率5
0%の据込率を測定したものである。
The tensile strength was measured using a JIS No. d test piece, and the limit workability was determined based on the Cold Forging Subcommittee Standards of the Japan Society for the Working of Plastics and the cold upsetting test method (temporary standard). Then, a compression test was conducted using a test piece with a diameter of 14 mmφ, a height of 211 mm, and a notch, and the crack incidence rate was 5.
The upsetting rate was measured at 0%.

磁気特性については、直流型BH)レーザを用いて、試
験片として外径24膳画一、内径16a−φ厚さ160
111のリングを製作し、磁束密度、保磁力を測定した
ものである。
Regarding magnetic properties, a DC type BH) laser was used to test specimens with an outer diameter of 24 pieces and an inner diameter of 16 mm and a thickness of 16 mm.
111 rings were manufactured and the magnetic flux density and coercive force were measured.

また、耐食性については、5%NaC1水溶液にて塩水
噴霧試験を行いその発語率を測定し、発語率が5%以下
のものを◎、5超〜25%のものを025超〜50%の
ものをΔ、50%超のものを×とした。
Regarding corrosion resistance, we conducted a salt spray test using a 5% NaCl aqueous solution and measured the speech rate.Those with a speech rate of 5% or less are ◎, and those with a speech rate of over 5% to 25% are 0.25% to 50%. Those with a score of Δ and those exceeding 50% with a score of ×.

電気抵抗については、ホイートストンブリッジ法により
試験片として1.2mmφX500mm線を用いて測定
したものである。
The electrical resistance was measured by the Wheatstone bridge method using a 1.2 mmφ x 500 mm wire as a test piece.

被削性については、10mm厚さの試験片を用いて回転
数725r、p、m、、ドリルSKH5mmφ、荷重4
kgで穿孔試験を行い、孔明けに要する時間を測定した
ものである。
Regarding machinability, using a 10 mm thick test piece, rotation speed 725 r, p, m, drill SKH 5 mmφ, load 4.
A drilling test was carried out using 1 kg, and the time required to drill the hole was measured.

測定した引張強さ、限界加工率、磁束密度、保磁力、耐
食性、電気抵抗、被削性を第2表に示した。
The measured tensile strength, limit processing rate, magnetic flux density, coercive force, corrosion resistance, electrical resistance, and machinability are shown in Table 2.

(以下余白) 第2表から明らかなように、比較鋼であるNo30鋼は
、Cr含有量が高いため、耐食性は優れているものの、
引張強さ、限界加工率が劣り、従って冷間鍛造性が劣る
ものであり、No31鋼はCr含有量が低いため、耐食
性が非常に劣り、No32鋼はAI含有量が高いため、
引張強さが劣り、従って冷間鍛造性も劣るものであり、
No33鋼はSi含有量が高いため、引張強さ、限界加
工率が劣り、冷間鍛造性が非常に劣るものであり、No
34鋼はC十N含有量が高いため、引張強さ、限界加工
率が劣り、従って冷間鍛造性が非常に低く、耐食性、保
磁力も劣るものである。
(Left below) As is clear from Table 2, the comparison steel No. 30 has a high Cr content, so although it has excellent corrosion resistance,
The tensile strength and limit working rate are inferior, and therefore the cold forgeability is inferior. No. 31 steel has a low Cr content, so its corrosion resistance is very poor, and No. 32 steel has a high AI content, so
It has poor tensile strength and therefore poor cold forgeability.
Because No. 33 steel has a high Si content, it has poor tensile strength, limited workability, and very poor cold forgeability, and is
Since steel No. 34 has a high C1N content, it has poor tensile strength and limited working rate, and therefore has very low cold forgeability and poor corrosion resistance and coercive force.

一方、従来鋼であるNo35鋼は純鉄に相当し、冷間鍛
造性は比較的良いものの、耐食性、保磁力において劣り
、Fe−13Cr−I 5i−0,25AIに相当する
No36鋼は、引張強さが高く、限界加工率が低く、従
って冷間鍛造性が劣り、磁束密度も低い。
On the other hand, the conventional steel No. 35 steel corresponds to pure iron and has relatively good cold forgeability, but is inferior in corrosion resistance and coercive force. It has high strength, low limit processing rate, therefore poor cold forgeability, and low magnetic flux density.

これらに対して、本発明鋼であるNo1〜29鋼は、引
張強さが36kgf/mm”以下であり、限界加工率も
75%以上が確保されて、冷間鍛造性に優れ、かつ、磁
束密度、保磁力等の磁気特性においても満足すべきもの
であり、耐食性にも優れ、電気抵抗も高いもので磁気応
答性に優れたものであって、本発明の効果が確認された
In contrast, No. 1 to No. 29 steels, which are the steels of the present invention, have a tensile strength of 36 kgf/mm" or less, a limit workability of 75% or more, excellent cold forgeability, and magnetic flux. It had satisfactory magnetic properties such as density and coercive force, was excellent in corrosion resistance, had high electrical resistance, and had excellent magnetic response, confirming the effects of the present invention.

次に、シャー切断性については、970℃で熱間圧延を
施した材料を720℃で焼鈍を行い、さらに、伸線加工
については第3表に示した加工率を施した材料について
評価した。即ち、シャー切断後、切断面がだれずに通常
の冷鍛ラインで送り込めるものは○、切断面がだれて通
常の冷鍛ラインに送り込めないものを×として評価した
。その結果を第3表に示した。
Next, regarding the shear cutting properties, materials hot rolled at 970° C. were annealed at 720° C., and materials subjected to wire drawing at the processing rates shown in Table 3 were evaluated. That is, after shear cutting, those that could be fed through a normal cold forging line without sagging on the cut surface were evaluated as ○, and those that could not be fed on a normal cold forging line due to sagging on the cut surface were evaluated as x. The results are shown in Table 3.

(以下余白) 第3表 第3表から明らかなように、本発明鋼のうち、伸線加工
率が15%未満のものは、いずれも加工硬化が小さく、
パンチ面圧が低いため切断時、端面にだれが生じシャー
切断性が劣り、伸線加工率が40%を超えるものは、か
えって加工硬化が大きすぎてシャー切断性は優れている
ものの、冷鍛により割れが発生する。これに対して本発
明鋼のうち伸線加工率が15〜40%のもののシャー切
断性は優れたものであって、本発明の効果が確認された
(Left below) Table 3 As is clear from Table 3, among the steels of the present invention, those with a wire drawing rate of less than 15% all have small work hardening.
Due to the low punch surface pressure, sagging occurs on the end face during cutting, resulting in poor shear cutting performance.Those with a wire drawing rate of over 40% have too much work hardening, and although they have excellent shear cutting performance, cold forging Cracks occur due to this. On the other hand, among the steels of the present invention, those having a wire drawing rate of 15 to 40% had excellent shear cutting properties, confirming the effects of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の冷間鍛造用軟磁性ステンレス鋼およびその製造
方法は、以上詳述したように、Siを極低レベルまで下
げ、AIを微量添加し、かつC,N、0等の固溶強化元
素を極力低減し、優れた磁気特性、電気抵抗、耐食性を
保持しつつ、冷間鍛造性を向上させ、さらに伸線加工、
結晶粒制御により鉄並に優れた製造性(シャー切断性)
を付与したものである。
As detailed above, the soft magnetic stainless steel for cold forging and the manufacturing method thereof of the present invention reduce Si to an extremely low level, add a small amount of AI, and solid solution strengthening elements such as C, N, and O. While maintaining excellent magnetic properties, electrical resistance, and corrosion resistance, it improves cold forgeability, and further improves wire drawing processing.
Excellent manufacturability (shear cutting performance) comparable to that of iron due to grain control
is given.

さらにCa、 Bi、 Pb、 S SSe、 Te、
 Zrを必要に応じて複合添加することによって冷間鍛
造性を損なうことなく、被削性を改善したものである。
Furthermore, Ca, Bi, Pb, SSSe, Te,
By adding Zr in combination as necessary, machinability is improved without impairing cold forgeability.

本発明は、パルス作動型の電子燃料噴射装置、電磁弁等
の冷間鍛造によって製造される磁芯部品に適した耐食軟
磁性鋼であり、高い実用性を有するものである。
The present invention is a corrosion-resistant soft magnetic steel suitable for magnetic core parts manufactured by cold forging such as pulse-operated electronic fuel injection devices and solenoid valves, and has high practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

図は据込み加工歪とパンチ面圧との関係を示すもので、
■は圧延後焼鈍しビーリングしたもの、■は圧延後焼鈍
しピーリングしたものに25%の引抜き加工を施したも
のである。なお試験は拘束圧縮試験で、圧縮速度は10
mm/win、無潤滑で行った。
The figure shows the relationship between upsetting strain and punch surface pressure.
(2) is a product that has been annealed and peeled after rolling, and (2) is a product that has been annealed and peeled after rolling, and then subjected to a 25% drawing process. The test was a restrained compression test, and the compression speed was 10
mm/win, without lubrication.

Claims (8)

【特許請求の範囲】[Claims] (1)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、S0.010%以下、C
r11〜13%、Al0.05〜0.20%、O0.0
070%以下、N0.0100%以下、C+N0.01
5%以下を含有し、残部Feならびに不純物元素からな
ることを特徴とする冷間鍛造用軟磁性ステンレス鋼。
(1) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, S 0.010% or less, C
r11-13%, Al0.05-0.20%, O0.0
070% or less, N0.0100% or less, C+N0.01
A soft magnetic stainless steel for cold forging, characterized in that it contains 5% or less, and the remainder consists of Fe and impurity elements.
(2)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、Cr11〜13%、Al
0.05〜0.20%、O0.0070%以下、N0.
0100%以下、C+N0.015%以下を含有し、さ
らにCa0.002〜0.020%、Bi0.30%以
下、Pb0.30%以下、S0.040%以下、Se0
.040%以下のうち1種または2種以上を含有し、さ
らに、S、Seを1種以上含有させる場合にはTe0.
002〜0.040%、Zr0.02〜0.15%のう
ち1種または2種を含有し、残部Feならびに不純物元
素からなることを特徴とする冷間鍛造用軟磁性ステンレ
ス鋼。
(2) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, Cr 11-13%, Al
0.05-0.20%, O0.0070% or less, N0.
Contains 0.0100% or less, C + N 0.015% or less, and further Ca 0.002 to 0.020%, Bi 0.30% or less, Pb 0.30% or less, S 0.040% or less, Se0
.. 040% or less, and further contains one or more of S and Se, Te0.
A soft magnetic stainless steel for cold forging, characterized in that it contains one or two of 0.002% to 0.040% and 0.02% to 0.15% of Zr, with the remainder consisting of Fe and impurity elements.
(3)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、S0.010%以下、C
r11〜13%、Al0.05〜0.20%、O0.0
070%以下、N0.0100%以下、C+N0.01
5%以下を含有し、さらにMo4.0%以下、Cu0.
50%以下、Ni2.5%以下、Nb0.20%以下、
V0.20%以下のうち1種または2種以上を含有し、
残部Feならびに不純物元素からなることを特徴とする
冷間鍛造用軟磁性ステンレス鋼。
(3) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, S 0.010% or less, C
r11-13%, Al0.05-0.20%, O0.0
070% or less, N0.0100% or less, C+N0.01
5% or less, and further contains Mo4.0% or less, Cu0.
50% or less, Ni 2.5% or less, Nb 0.20% or less,
Contains one or more of V0.20% or less,
A soft magnetic stainless steel for cold forging, characterized in that the remainder consists of Fe and impurity elements.
(4)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、Cr11〜13%、Al
0.05〜0.20%O0.0070%以下、N0.0
100%以下、C+N0.015%以下を含有し、さら
にCa0.002〜0.020%、Bi0.30%以下
、Pb0.30%以下、S0.040%以下、Se0.
040%以下のうち1種または2種以上を含有し、さら
に、S、Seを1種以上含有させる場合にはTe0.0
02〜0.040%、Zr0.02〜0.15%のうち
1種または2種を含有し、さらにMo4.0%以下、C
u0.50%以下、Ni2.5%以下、Nb0.20%
以下、V0.20%以下のうち1種または2種以上を含
有し、残部Feならびに不純物元素からなることを特徴
とする冷間鍛造用軟磁性ステンレス鋼。
(4) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, Cr 11-13%, Al
0.05-0.20%O0.0070% or less, N0.0
100% or less, C+N 0.015% or less, and further contains Ca 0.002 to 0.020%, Bi 0.30% or less, Pb 0.30% or less, S 0.040% or less, Se 0.
0.040% or less, and further contains one or more of S and Se, Te0.0
02 to 0.040%, Zr0.02 to 0.15%, and further contains Mo4.0% or less, C
u0.50% or less, Ni2.5% or less, Nb0.20%
A soft magnetic stainless steel for cold forging, characterized in that it contains one or more of the following V0.20% or less, with the remainder consisting of Fe and impurity elements.
(5)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、S0.010%以下、C
r11〜13%、Al0.05〜0.20%、O0.0
070%以下、N0.0100%以下、C+N0.01
5%以下を含有し、残部Feならびに不純物元素からな
る鋼を、850〜1100℃で熱間圧延後、650〜9
00℃での焼鈍と15〜40%の伸線加工を少なくとも
1回行い、結晶粒度番号を3〜6としたことを特徴とす
る冷間鍛造用軟磁性ステンレス鋼の製造方法。
(5) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, S 0.010% or less, C
r11-13%, Al0.05-0.20%, O0.0
070% or less, N0.0100% or less, C+N0.01
After hot rolling at 850 to 1100°C, steel containing 5% or less and the remainder consisting of Fe and impurity elements has a temperature of 650 to 9
A method for producing soft magnetic stainless steel for cold forging, characterized in that annealing at 00°C and wire drawing at 15 to 40% are performed at least once to give a grain size number of 3 to 6.
(6)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、Cr11〜13%、Al
0.05〜0.20%、O0.0070%以下、N0.
0100%以下、C+N0.015%以下を含有し、さ
らにCa0.002〜0.020%、Bi0.30%以
下、Pb0.30%以下、S0.040%以下、Se0
.040%以下のうち1種または2種以上を含有し、さ
らに、S、Seを1種以上含有させる場合にはTe0.
002〜0.040%、Zr0.02〜0.15%のう
ち1種または2種を含有し、残部Feならびに不純物元
素からなる綱を、850〜1100℃で熱間圧延後、6
50〜900℃での焼鈍と15〜40%の伸線加工を少
なくとも1回行い、結晶粒度番号を3〜6としたことを
特徴とする冷間鍛造用軟磁性ステンレス鋼の製造方法。
(6) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, Cr 11-13%, Al
0.05-0.20%, O0.0070% or less, N0.
Contains 0.0100% or less, C + N 0.015% or less, and further Ca 0.002 to 0.020%, Bi 0.30% or less, Pb 0.30% or less, S 0.040% or less, Se0
.. 040% or less, and further contains one or more of S and Se, Te0.
After hot rolling at 850 to 1,100°C,
A method for producing soft magnetic stainless steel for cold forging, characterized in that annealing at 50 to 900°C and wire drawing at 15 to 40% are performed at least once to give a grain size number of 3 to 6.
(7)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、S0.010%以下、C
r11〜13%、Al0.05〜0.20%、O0.0
070%以下、N0.0100%以下、C+N0.01
5%以下を含有し、さらにMo4.0%以下、Cu0.
50%以下、Ni2.5%以下、Nb0.20%以下、
V0.20%以下のうち1種または2種以上を含有し、
残部Feならびに不純物元素からなる鋼を、850〜1
100℃で熱間圧延後、650〜900℃での焼鈍と1
5〜40%の伸線加工を少なくとも1回行い、結晶粒度
番号を3〜6としたことを特徴とする冷間鍛造用軟磁性
ステンレス鋼の製造方法。
(7) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, S 0.010% or less, C
r11-13%, Al0.05-0.20%, O0.0
070% or less, N0.0100% or less, C+N0.01
5% or less, and further contains Mo4.0% or less, Cu0.
50% or less, Ni 2.5% or less, Nb 0.20% or less,
Contains one or more of V0.20% or less,
Steel consisting of the balance Fe and impurity elements is heated to 850~1
After hot rolling at 100℃, annealing at 650~900℃ and 1
A method for producing soft magnetic stainless steel for cold forging, characterized in that the wire drawing process is performed at least once at a rate of 5 to 40%, and the grain size number is set to 3 to 6.
(8)重量比にしてC0.010%以下、Si0.20
%以下、Mn0.35%以下、Cr11〜13%、Al
0.05〜0.20%O0.0070%以下、N0.0
100%以下、C+N0.015%以下を含有し、さら
にCa0.002〜0.020%、Bi0.30%以下
、Pb0.30%以下、S0.040%以下、Se0.
040%以下のうち1種または2種以上を含有し、さら
に、S、Seを1種以上含有させる場合にはTe0.0
02〜0.040%、Zr0.02〜0.15%のうち
1種または2種を含有し、さらにMo4.0%以下、C
u0.50%以下、Ni2.5%以下、Nb0.20%
以下、V0.20%以下のうち1種または2種以上を含
有し、残部Feならびに不純物元素からなる鋼を、85
0〜1100℃で熱間圧延後、650〜900℃での焼
鈍とで15〜40%の伸線加工を少なくとも1回行い、
結晶粒度番号を3〜6としたことを特徴とする冷間鍛造
用軟磁性ステンレス鋼の製造方法。
(8) C0.010% or less by weight, Si0.20
% or less, Mn 0.35% or less, Cr 11-13%, Al
0.05-0.20%O0.0070% or less, N0.0
100% or less, C+N 0.015% or less, and further contains Ca 0.002 to 0.020%, Bi 0.30% or less, Pb 0.30% or less, S 0.040% or less, Se 0.
0.040% or less, and further contains one or more of S and Se, Te0.0
02 to 0.040%, Zr0.02 to 0.15%, and further contains Mo4.0% or less, C
u0.50% or less, Ni2.5% or less, Nb0.20%
Hereinafter, steel containing one or more of V0.20% or less and the balance consisting of Fe and impurity elements will be used as 85
After hot rolling at 0 to 1100°C, annealing at 650 to 900°C and wire drawing by 15 to 40% at least once,
A method for producing soft magnetic stainless steel for cold forging, characterized in that the grain size number is 3 to 6.
JP31388589A 1989-12-01 1989-12-01 Soft magnetic stainless steel for cold forging and its manufacture Pending JPH03173749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31388589A JPH03173749A (en) 1989-12-01 1989-12-01 Soft magnetic stainless steel for cold forging and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31388589A JPH03173749A (en) 1989-12-01 1989-12-01 Soft magnetic stainless steel for cold forging and its manufacture

Publications (1)

Publication Number Publication Date
JPH03173749A true JPH03173749A (en) 1991-07-29

Family

ID=18046686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31388589A Pending JPH03173749A (en) 1989-12-01 1989-12-01 Soft magnetic stainless steel for cold forging and its manufacture

Country Status (1)

Country Link
JP (1) JPH03173749A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118816A (en) * 1993-10-20 1995-05-09 Tohoku Tokushuko Kk Powder-sintered magnetic stainless steel
WO1998033944A1 (en) * 1997-02-03 1998-08-06 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
JP2001140034A (en) * 1999-09-03 2001-05-22 Kiyohito Ishida Free-cutting alloy material
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118816A (en) * 1993-10-20 1995-05-09 Tohoku Tokushuko Kk Powder-sintered magnetic stainless steel
WO1998033944A1 (en) * 1997-02-03 1998-08-06 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
JP2001140034A (en) * 1999-09-03 2001-05-22 Kiyohito Ishida Free-cutting alloy material
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
JP4519543B2 (en) * 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 Low cost stainless steel wire having magnetism with excellent corrosion resistance, cold workability and toughness, and method for producing the same

Similar Documents

Publication Publication Date Title
JP6286540B2 (en) High-strength duplex stainless steel wire, high-strength duplex stainless steel wire and its manufacturing method, and spring parts
JP3288497B2 (en) Austenitic stainless steel
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
EP1236809B1 (en) High-hardness martensitic stainless steel excellent in corrosion resistance
US20080210344A1 (en) Precipitation Hardenable Martensitic Stainless Steel
EP1396552B1 (en) Double phase stainless steel strip for steel belt
JP6126881B2 (en) Stainless steel wire excellent in torsion workability and manufacturing method thereof, and stainless steel wire rod and manufacturing method thereof
US6756011B2 (en) High-strength, high corrosion-resistant and non-magnetic stainless steel
JPH0215143A (en) Soft magnetic stainless steel for cold forging
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
JP3340225B2 (en) High strength martensitic stainless steel with excellent rust resistance and drilling tapping screw
JPH10237603A (en) Free cutting ferritic stainless steel excellent in corrosion resistance
JPH03173749A (en) Soft magnetic stainless steel for cold forging and its manufacture
JPH11293405A (en) High hardness high corrosion resistance stainless steel
JP2001098352A (en) High corrosion resistant free-cutting stainless steel excellent in surface finish characteristic
JPH05112850A (en) Precipitation hardening martensitic stainless steel excellent in workability
JPH08269639A (en) High strength non-magnetic stainless steel sheet for fastener and its production
JP2002038241A (en) Free cutting stainless steel
JP2003082445A (en) Nonmagnetic stainless steel having excellent workability
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JP2721192B2 (en) Corrosion resistant soft magnetic material
JPH06235049A (en) High strength nonmagnetic stainless steel and its production
JP2001040456A (en) Electromagnetic material having excellent cold forgeability and weat resistance
JPH11279717A (en) Free cutting corrosion resistant soft magnetic material
JP2611992B2 (en) Corrosion resistant soft magnetic material