EP2152226A2 - Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel - Google Patents
Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittelInfo
- Publication number
- EP2152226A2 EP2152226A2 EP08718225A EP08718225A EP2152226A2 EP 2152226 A2 EP2152226 A2 EP 2152226A2 EP 08718225 A EP08718225 A EP 08718225A EP 08718225 A EP08718225 A EP 08718225A EP 2152226 A2 EP2152226 A2 EP 2152226A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- amino
- acid
- compounds
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
- A61K8/447—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof containing sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
- A61K8/466—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4906—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
- A61K8/4913—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having five membered rings, e.g. pyrrolidone carboxylic acid
- A61K8/492—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having five membered rings, e.g. pyrrolidone carboxylic acid having condensed rings, e.g. indol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/10—Preparations for permanently dyeing the hair
Definitions
- the present invention relates to agents for coloring keratin fibers and their use and a corresponding hair dyeing process.
- the compositions contain at least one dye precursor for a nature-analogous dye selected from the group of indole or indoline derivatives, at least one organic compound which carries at least one thiol group in the molecule and at least one alkalizing agent, are free of additional oxidizing agents and do not contain the oxidation the color-forming components catalyzing enzyme.
- oxidation colorants For permanent, intensive colorations with corresponding fastness properties, so-called oxidation colorants are used. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components.
- the developer components form the actual dyes under the influence of oxidizing agents or of atmospheric oxygen with one another or with coupling with one or more coupler components.
- the oxidation dyes are characterized by excellent, long-lasting dyeing results. For naturally acting dyeings, however, usually a mixture of a larger number of oxidation dye precursors must be used; In many cases, direct dyes are still used for shading.
- the developer components used are usually primary aromatic amines having a further, in the para or ortho position, free or substituted hydroxy or amino group, heterocyclic hydrazones, diaminopyrazole derivatives and 2,4,5,6-tetraaminopyrimidine and its derivatives.
- Coupler substances are 1-naphthol, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 5-amino-2-methylphenol, m-aminophenol, resorcinol, resorcinomonomethyl ether, m-phenylenediamine, 1-phenyl 3-methyl-pyrazol-5-one, 2,4-dichloro-3-aminophenol, 1, 3-bis (2,4-diaminophenoxy) -propane, 2-amino-3-hydroxypyridine, A-chlororesorcinol , 2-chloro-6-methyl-3-aminophenol, 2-methylresorcinol, 5-methylresorcinol and 2-methyl-4-chloro-5-aminophenol.
- dyeing or tinting agents which contain so-called direct drawers as a coloring component. These are dye molecules that attach directly to the substrate and do not require an oxidative process to form the paint. These dyes include, for example, the henna already known from antiquity for coloring body and hair. These dyeings are generally much more sensitive to shampooing than the oxidative dyeings, so that a much more undesirable change in shade or even a visible, homogeneous color loss occurs much more quickly.
- a first class of oxo dye precursors are compounds having at least one reactive carbonyl group. This first class is called a component (Oxo1).
- a second class of oxo dye precursors form CH-acidic compounds and compounds having primary or secondary amino groups or hydroxy groups, which in turn are selected from compounds of the group formed from primary or secondary aromatic amines, nitrogen-containing heterocyclic compounds and aromatic hydroxy compounds. This second class is called a component (Oxo2).
- the aforementioned components (oxo1) and (oxo2) are generally not themselves dyes, and therefore are not in themselves suitable for coloring keratin-containing fibers. In combination, they form dyes in a non-oxidative process of so-called oxo dyeing. The resulting dyeings have partially color fastness on the keratin-containing fiber, which are comparable to those of the oxidation dyeing.
- the Nuancenspektrum achievable with the gentle oxo staining is very broad and the color obtained often has an acceptable brilliance and color depth.
- the method of oxo staining can be readily combined with the oxidative staining system. If substrates are to be lightened or even bleached, they will stain the substrate
- Dyes usually oxidative using appropriate oxidizing agents, such as hydrogen peroxide, decolorized.
- precursors of the natural hair dye melanin are applied to the substrate, e.g. Hair, applied; These then form naturally-analogous dyes in the course of oxidative processes in the hair.
- multiple use of agents with 5,6-dihydroxyindoline it is possible to reproduce natural hair color to people with graying hair.
- the coloration can be done with atmospheric oxygen as the sole oxidant, so that no further oxidizing agents must be used.
- the indoline can be used as the sole dye precursor.
- satisfactory results can often only be achieved for use in persons with originally red and, in particular, dark to black hair color, by using other dye components, in particular special oxidation dye precursors.
- the dyeing is carried out using the precursors for nature analog dyes gently with atmospheric oxygen.
- the dye precursors on indole or indoline base usually used are incorporated for this purpose in a cosmetic carrier, which preferably has a basic pH.
- the coloration according to this method results in a natural coloration of the keratin-containing fiber, which, however, especially in the brown and blond area has a slight reddish, bluish or violet color nuance. If additional oxidizing agents are used in the colorants, these color shifts occur negligibly or even not at all.
- Dyes based on nature-analogous dyes appeal to those consumers who want to gently restore their gray hair to a natural hair color.
- the aforementioned color shift is undesirable especially for this consumer. Therefore, the coloration with natural dyes is in this respect in need of improvement.
- hair dyes based on dye precursors of the indole or indoline type are known, which additionally contain at least one amino acid or an oligopeptide to improve the colorations on grayed hair.
- the dyeings obtained on blond hair all have an undesirable red or blue cast.
- hair dyes which, in addition to a dye precursor of the indoline type, 0.05 to 5 wt.% Of at least one oxidation dye precursor of the developer type and 0.05 to 5 wt.% At least one Coupler type oxidation dye precursor. It was found that the
- Indoline derivatives improve the dyeing properties of conventional developer and coupler based oxidation colorants.
- EP-A2-1 254 650 discloses hair dyes which, in addition to indoline derivatives as
- Dye precursor at least one selected organic primary amine as
- hair colorants are disclosed as example formulations which, in addition to thioglycolic acid, also contain 5,6-dihydroxyindoline.
- the pH of these agents was adjusted with ammonia, but the indication of a pH is missing.
- the patent application WO-A2-02 / 39966 relates to hair dyes containing at least one dye precursor, at least one sugar surfactant, at least one enzyme for catalyzing the oxidation of the dye precursors and at least one reducing agent.
- the example compositions contain 5,6-DHI + enzyme as catalyst + alkanolamine + N-acetylcysteine at pH 7.
- Object of the present invention is therefore to provide a colorant based on natural dyes, which, especially after prolonged storage, with keratin fibers under air oxidation, color-intense natural blond, brown or black tones gives.
- the dyeings are preferably precipitated without unwanted reddish, bluish or violet color shifts.
- the stains should be long-lived and develop rapidly.
- a first subject of the invention are therefore agents for the atmospheric oxygen-induced coloring of keratin-containing fibers, in particular human hair, with an alkaline pH in a cosmetically acceptable carrier
- (c) contains at least one alkalizing agent, with the proviso that no additional oxidizing agent is included for the color-forming components and no enzyme catalyzing the oxidation of the color-forming components.
- keratin-containing fibers are understood to mean furs, wool, feathers and in particular human hair.
- the colorants according to the invention are primarily suitable for dyeing keratinic fibers, in principle there is no obstacle to their use also in other areas of coloration, as long as the technical problem underlying the invention is solved.
- the dyestuff precursors of naturally-analogous dyes are preferably indoles and indolines which have at least two groups selected from hydroxy and / or amino groups, preferably as a substituent on the six-membered ring. These groups may carry further substituents, e.g. Example in the form of etherification or esterification of the hydroxy group or alkylation of the amino group.
- the colorants contain at least one indole and / or indoline derivative.
- Compositions according to the invention which comprise precursors of naturally-analogous dyes are preferably used as air-oxidative colorants. Consequently, in this embodiment said compositions are not added with an additional oxidizing agent.
- Particularly suitable precursors of natural-analogous hair dyes are derivatives of 5,6-dihydroxyindoline of the formula (RN1-a),
- R 1 is hydrogen, a C 1 -C 4 alkyl group or a C 1 -C 4 hydroxyalkyl group
- R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
- R 3 is hydrogen or a C 1 -C 4 -alkyl group
- R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
- R 5 is one of the groups mentioned under R 4 , as well as physiologically acceptable salts of these compounds with an organic or inorganic acid.
- indoline Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline,
- N-butyl-5,6-dihydroxyindoline and 5,6-dihydroxyindoline-2-carboxylic acid Particularly noteworthy within this group are N-methyl-5,6-dihydroxyindoline, N-ethyl
- R 1 is hydrogen, a C 1 -C 4 alkyl group or a C 1 -C 4 hydroxyalkyl group
- R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
- R 3 is hydrogen or a C 1 -C 4 -alkyl group
- R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
- R 5 is one of the groups mentioned under R 4 , as well as physiologically acceptable salts of these compounds with an organic or inorganic acid.
- Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6- dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid.
- N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, and especially the 5,6 -Dihydroxyindol.
- indoline and indole derivatives can be used in the colorants of the invention both as free bases and in the form of their physiologically acceptable salts with inorganic or organic acids, for.
- hydrochlorides sulfates and hydrobromides are used.
- the precursors of naturally-analogous dyes are preferably present in the compositions according to the invention in an amount of from 0.01 to 10% by weight, in particular from 0.1 to 5% by weight, based in each case on the weight of the ready-to-use colorant.
- compositions according to the invention necessarily contain as component (b) at least one organic compound which carries at least one thiol group in the molecule.
- organic compounds are preferred, the (i) at least one thiol group and
- At least one compound of the formula (I) is suitable.
- X represents a saturated or unsaturated, linear or branched and aliphatic hydrocarbon skeleton which is optionally substituted by at least one of the following groups
- M is a hydrogen atom, a (Ci to C 8 ) -alkyl group or one equivalent of a mono- or polyvalent cation.
- X is a group
- alkyl radicals (also in the (C 1 to C 6 ) alkylamino and (C 1 to C 6 ) dialkylamino) are preferably (or are preferably starting from) methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, n-hexyl, 2-methylpentyl, n-butyl Heptyl, n-octyl, 6-methylheptyl, 2-ethylhexyl or 1,1,3,3-tetramethylbutyl.
- M is one equivalent of a monovalent or polyvalent cation.
- the monovalent or polyvalent cation M z + with a charge number z of one or higher serves merely to compensate for the singly negative charge of the saline-forming carboxylate fragment -COO " in formula (I), for which the equivalent cation of the corresponding cation is to be used 1 / z
- the fragment - COOM of the formula (I) in the case of salt formation stands for the group: -COO " 1 / z (M z + ).
- physiologically compatible cations are suitable as mono- or polyvalent cation M z + .
- these are metal cations of the physiologically acceptable metals from groups Ia, Ib, IIa, IIb, IIIb, VIa or VIII of the Periodic Table of the Elements, ammonium ions, as well as cationic organic compounds with quaternized nitrogen atom.
- the latter are formed for example by protonation of primary, secondary or tertiary organic amines with an acid, such as with compounds of formula (I) in their acidic form, or by permanent quaternization of said organic amines.
- these cationic organic ammonium compounds are 2-ammonioethanol and 2-trimethylammonioethanol.
- M in formula (I) preferably represents a hydrogen atom, an ammonium ion, an alkali metal ion, or a half equivalent of an alkaline earth metal ion half equivalent of a zinc ion, more preferably a hydrogen atom
- the agent according to the invention contains as component (b) at least one compound selected from at least one member of the group formed from thioglycolic acid, thiolactic acid, thiomalic acid, 1,2-mercaptoethanesulfonic acid and the salts and esters of these acids (such as isooctyl thioglycolate and isopropyl thioglycolate), cysteamine and cysteine.
- suitable are thioglycolic acid and / or cysteamine, in each case as acid or salt.
- the compounds of component (b) are preferably from 0.2 wt .-% to 3.0 wt .-%, in particular from 0.5 wt .-% to 2.0 wt .-%, each based on the total agent , contain.
- the compounds of component (a) and the compounds of component (b) of the agent according to the invention are preferably in a weight ratio range (component (a) to component (b)) of 8: 1 to 1: 2, in particular 3: 1 to 1 to 1, 25, included.
- composition according to the invention preferably has a pH in the range from 6 to 12, particularly preferably from 8 to pH 10.5, very particularly preferably from 9.5 to 10.4 pH.
- Particularly preferred is generally the application of the hair dye in an alkaline environment, that is at a pH greater than 7.
- the alkalizing agents (c) which can be used according to the invention are preferably selected from the group formed from ammonia, basic amino acids, alkali metal hydroxides, alkanolamines, alkali metal metasilicates, alkali metal phosphates and alkali metal hydrogenphosphates.
- the alkali metal ions used are preferably lithium, sodium, potassium, in particular sodium or potassium.
- the basic amino acids which can be used as alkalizing agents according to the invention are preferably selected from the group formed from L-arginine, D-arginine, D, L-arginine, L-histidine, D-histidine, D, L-histidine, L-lysine, D-lysine, D, L-lysine, more preferably L-arginine, D-arginine, D, L-arginine used as an alkalizing agent according to the invention.
- the alkali metal hydroxides which can be used as the alkalizing agent according to the invention are preferably selected from the group formed from sodium hydroxide and potassium hydroxide.
- alkanolamines which can be used as alkalizing agents according to the invention are preferably selected from primary amines having a C 2 -C 6 -alkyl basic body which carries at least one hydroxyl group.
- Particularly preferred alkanolamines are selected from the group formed from 2-aminoethan-1-ol (monoethanolamine), 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 1 -Aminopropan-2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol , 1-amino-2-methylpropane 2-ol, 3-aminopropane-1,2-diol, 2-amino-2-methylpropane-1,3-diol.
- Very particularly preferred alkanolamines according to the invention are selected from the group consisting of 2-aminoethane-1-ol, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropane-1,3-diol.
- the agents according to the invention preferably additionally contain at least one pH buffer system.
- the alkalizing agents (c) which can be used according to the invention are preferably different from the pH buffer system according to the invention.
- the pH buffer system is considered to be those chemical compounds or a combination of chemical compounds which, in a solution, cause the pH of the solution to change only slightly when a small amount of acid or alkali is added to a volume of the cosmetic carrier. This change is less pronounced than is the case when the same amount of acid or lye is added to an equal volume of the cosmetic carrier without the pH buffer system.
- Such pH buffer systems are preferably selected from at least one member selected from bicarbonate, carbonate, bicarbonate / carbonate, dietary acid (especially citric acid) / monohydrogenphosphate, malic acid (especially citric acid) / dihydrogenphosphate, tris (hydroxymethyl) aminomethane / maleic acid .
- Particularly preferred pH buffer systems are selected from at least one member of the group formed from bicarbonate, carbonate, bicarbonate / carbonate,
- Dihydrogen phosphate and monohydrogen phosphate / dihydrogen phosphate are Dihydrogen phosphate and monohydrogen phosphate / dihydrogen phosphate.
- bicarbonate / carbonate in particular in a molar ratio of from 0.5: 1 to 1: 0.5.
- the slotted pH buffer systems from the above list represent mixtures of these compounds separated by the slash.
- the anionic compounds listed are used in the form of their salts with a corresponding mono- or polyvalent cation.
- Preferred cations are alkali metal cations (especially sodium or potassium) and ammonium ions.
- Useful acids which can be used according to the invention are, for example, citric acid, tartaric acid or malic acid or mixtures thereof.
- the pH buffer system is preferably in an amount of 0.1 to 1, 0 wt .-%, particularly preferably from 0.2 to 0.8 wt .-%, most preferably from 0.3 to 0.7 wt. -%, in each case based on the weight of the agent, contained in the agent according to the invention.
- agents according to the invention may additionally comprise developer-type oxidation dye precursors, which are in turn preferably present in an amount of from 0.01 to 5% by weight, in particular from 0.1 to 3% by weight, based in each case on the weight of the ready-to-use colorant.
- developer components according to the invention from the group formed from p-phenylenediamine derivatives, binuclear developer components, p-aminophenol and its derivatives, pyrimidine derivatives, pyrazole derivatives and pyrazolopyrimidine derivatives and the physiologically acceptable salts of these compounds.
- preferred developer components are mentioned according to the invention.
- p-phenylenediamine derivatives of the formula (E1) it may be preferred according to the invention to use as the developer component a p-phenylenediamine derivative or one of its physiologically acceptable salts. Particular preference is given to p-phenylenediamine derivatives of the formula (E1)
- G 1 represents a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) -alkoxy - (C 1 -C 4 ) -alkyl radical, a 4'-aminophenyl radical or a (C 1 to C 4 ) -alkyl radical which is substituted by a nitrogen-containing group, a phenyl or a 4'-aminophenyl radical;
- G 2 represents a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) -alkoxy - (C 1 -C 4 ) -alkyl radical
- G 3 represents a hydrogen atom, a halogen atom such as a chlorine, bromine, iodine or fluorine atom, a (C 1 to C 4 ) alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to alkoxy Acetylaminoalkoxyrest, a Mesylamino- (C- ⁇ -C 4) or a (C 1 to C 4) - C 4) polyhydroxyalkyl radical, a (C 1 to C 4) -Hydroxyalkoxyrest, a (C 1 to C 4) - carbamoylaminoalkoxy radical;
- a halogen atom such as a chlorine, bromine, iodine or fluorine atom
- a (C 1 to C 4 ) alkyl radical such as a chlorine, bromine, iodine or fluorine atom
- a (C 1 to C 4 ) alkyl radical such as
- G 4 represents a hydrogen atom, a halogen atom or a (C 1 to C 4 ) -alkyl radical or, when G 3 and G 4 are ortho to each other, they may together form a bridging ⁇ , ⁇ -alkylenedioxo group, such as, for example, an ethylenedioxy group
- Particularly preferred p-phenylenediamines of formula (E1) are selected from one or more compounds of the group formed from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine , 2,6-dimethyl-p-phenylenediamine, 2,6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine , N
- p-phenylenediamine derivatives of the formula (E1) are selected from at least one compound of the group p-phenylenediamine, p-toluenediamine, 2- (ß-hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ß-dihydroxyethyl) - p-phenylenediamine, N, N-bis- ( ⁇ -hydroxyethyl) -p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1H-imidazol-1-yl) propyl] amine , as well as the physiologically acceptable salts of these compounds.
- developer component compounds which contain at least two aromatic nuclei which are substituted by amino and / or hydroxyl groups.
- binuclear developer components which can be used in the dyeing compositions according to the invention, mention may be made in particular of the compounds corresponding to the following formula (E2) and their physiologically tolerated salts:
- Z 1 and Z 2 independently of one another represent a hydroxyl or NH 2 radical optionally substituted by a (C 1 to C 4 ) -alkyl radical, by a (C 1 to C 4 ) -hydroxyalkyl radical and / or by a bridge Y is substituted or which is optionally part of a bridging ring system
- the bridge Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, which of one or more nitrogen-containing groups and / or one or more heteroatoms such
- Oxygen, sulfur or nitrogen atoms may be interrupted or terminated and may be substituted by one or more hydroxyl or (C 1 to C 8 ) alkoxy, or a direct bond,
- G 5 and G 6 independently of one another represent a hydrogen or halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) -
- G 7 , G 8 , G 9 , G 10 , G 11 and G 12 independently represent a hydrogen atom, a direct bond to the bridge Y or a (C 1 to C 4 ) alkyl radical, with the proviso that the compounds of the Formula (E2) contain only one bridge Y per molecule.
- Preferred binuclear developer components of the formula (E2) are in particular selected from at least one of the following compounds: N, N'-bis- ( ⁇ -hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -1,3-diamino -propan-2-ol, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) ethylenediamine, N, N'-bis (4'-aminophenyl) - tetramethylenediamine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) tetramethylenediamine, N, N'-bis (4- (methylamino) phenyl) tetramethylenediamine, N , N'-diethyl-N, N'-bis (4'-amino-3'-methylphenyl) ethylenediamine,
- Very particularly preferred binuclear developer components of the formula (E2) are selected from N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1,3-diamino-propan-2-ol , Bis (2-hydroxy-5-aminophenyl) -methane, 1, 3-bis (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminophenyl) -1, 4-diazacycloheptane, 1, 10-bis (2,5-diaminophenyl) -1, 4,7,10-tetraoxadecane or one of the physiologically acceptable salts of these compounds.
- p-aminophenol derivatives of the formula (E3) in which:
- G 13 represents a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) Alkoxy (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -aminoalkyl radical, a hydroxy (C 1 -C 4 ) -alkylamino radical, a (C 1 to C 4 ) -hydroxyalkoxy radical, a (C 1 to C 4 ) -hydroxyalkyl- (C 1 -C 4 ) -aminoalkyl radical or a (DK (C 1 to C 4 ) -alkyl] amino) - (C 1 -C 4 ) -alkyl radical
- G 14 represents a hydrogen or halogen atom, a (
- Preferred p-aminophenols of the formula (E3) are, in particular, p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylamino-4-aminophenol, 4 -Amino-3-hydroxymethylphenol, 4-amino-2- ( ⁇ -hydroxyethoxy) -phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-methoxymethyl-phenol, 4-amino -2-aminomethylphenol, 4-amino-2- ( ⁇ -hydroxyethyl-aminomethyl) phenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) phenol, 4-amino-2-fluorophenol, 4-amino-2 -chlorophenol, 4-amino-2,6-dichlorophenol, 4-amino-2- (diethyl-aminomethyl) -phenol and their physiological
- Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) -phenol and A-amino- 2- (diethylaminomethyl) -phenol.
- the developer component may be selected from o-aminophenol and its derivatives such as 2-amino-4-methylphenol, 2-amino-5-methylphenol or 2-amino-4-chlorophenol.
- the developer component may be selected from heterocyclic developer components, such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
- heterocyclic developer components such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
- Preferred pyrimidine derivatives are selected according to the invention from compounds of the formula (E4) or their physiologically tolerated salts,
- G 17 , G 18 and G 19 independently represent a hydrogen atom, a hydroxy group, a
- G 20 represents a hydroxy group or a group -NG 21 G 22 , in which G 21 and G 22 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 1 to C 4 ) -
- Particularly preferred pyrimidine derivatives are in particular the compounds 2,4,5,6-tetra-aminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2-dimethylamino-4 , 5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine and 2,5,6-triaminopyrimidine.
- Preferred pyrazole derivatives are selected according to the invention from compounds of the formula (E5),
- G 23, G 24, G 25 are each independently a hydrogen atom, a (C 1 to C 4) - alkyl group, a (C 1 to C 4) monohydroxyalkyl, a (C 2 to C 4) alkyl group -Polyhydroxy-, an optionally substituted aryl group or an optionally substituted AlyI- (C 1 to C 4 ) -alkyl group, with the proviso that when G 25 is a hydrogen atom, G 26 may additionally be a group - NH 2 in addition to the abovementioned groups,
- G 26 represents a hydrogen atom, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) monohydroxyalkyl group or a (C 2 to C 4 ) polyhydroxyalkyl group and G 27 represents a hydrogen atom, an optionally substituted aryl group, a (Ci to C 4) alkyl group or a (C 1 to C 4) -monohydroxyalkyl, especially for a hydrogen atom or a methyl group.
- the radical -NG 25 G 26 binds to the 5 position and the radical G 27 to the 3 position of the pyrazole cycle.
- Particularly preferred pyrazole derivatives are in particular the compounds which are selected from 4,5-diamino-1-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5- Diamino-1- (4'-chlorobenzyl) -pyrazole, 4,5-diamino-1,3-dimethylpyrazole, 4,5-diamino-3-methyl-1-phenylpyrazole, 4,5-diamino-1-methyl-3 phenylpyrazole, 4-amino-1,3-dimethyl-5-hydrazinopyrazole, 1-benzyl-4,5-diamino-3-methylpyrazole, 4,5-diamino-3-tert-butyl-1-methylpyrazole, 4 5-diamino-1-tert-butyl-3-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethy
- Preferred pyrazolopyrimidine derivatives are, in particular, the derivatives of the pyrazolo [1,5-a] pyrimidine of the following formula (E6) and their tautomeric forms, if a tautomeric equilibrium exists:
- G 28 , G 29 and G 30 , G 31 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, an aryl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) - Polyhydroxyalkylrest a (C 1 to C 4 ) alkoxy (C 1 -C 4 ) -alkyl radical, a (C 1 to C 4 ) - aminoalkyl radical which is optionally substituted by an acetyl-ureide or a sulfonyl Rest can be protected, a (C 1 to C 4 ) -alkylamino- (C- ⁇ to C 4 ) -alkyl radical, a DK (C 1 to C 4 ) - alkyl] - (Ci to C 4 ) -aminoalkylrest, wherein the dialkyl radicals optionally form a carbon cycle or a heterocycle having 5 or
- Sulfonic acid group i has the value 0, 1, 2 or 3
- p has the value 0 or 1
- q has the value 0 or 1
- n has the value 0 or 1, with the proviso that the sum of p + q unequal 0 is - if p + q is 2, n is 0, and the groups NG 28 G 29 and NG 30 G 31 occupy the
- Group OH occupy the positions (2,3); (5,6); (6,7); (3,5) or (3,7);
- pyrazolo [1, 5-a] pyrimidines of the above formula (E6) can be prepared as described in the literature by cyclization from an aminopyrazole or from hydrazine.
- Very particularly preferred developer components are selected from at least one compound from the group formed from p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) -p phenylenediamine, N, N-bis ( ⁇ -hydroxyethyl) -p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1 H -imidazol-1-yl) propyl] amine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1, 3-diamino-propan-2-ol, bis (2-hydroxy-5-aminophenyl) - methane, 1,3-bis- (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-amin
- (E6) mentioned radicals examples of (C 1 to C 4 ) -alkyl radicals are the groups -CH 3 ,
- a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
- halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred examples.
- nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -
- Trialkylammonium groups (C 1 to C 4 ) monohydroxyalkylamino groups, imidazolinium and
- Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,
- Examples of (C 1 to C 4 ) -dialkylamino group are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
- Examples of (C 1 to C 4 ) trialkylammonium groups are -N + (CH 3 ) 3 , -N + (CH 3 ) 2 (CH 2 CH 3 ),
- Examples of (C 1 to C 4 ) -hydroxyalkylamino radicals are -NH-CH 2 CH 2 OH, -NH-CH 2 CH 2 OH,
- Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
- hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
- Examples of (C 1 to C 4 ) -acetylaminoalkoxy radicals are -O-CH 2 NHC (O) CH 3 , -O-
- Examples of (C 1 to C 4 ) -carbamoylaminoalkoxy radicals are -O-CH 2 CH 2 -NH-C (O) -NH 2 ,
- Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
- Examples of (C 1 to C 4 ) -cyanoalkyl radicals are -CH 2 CN 1 -CH 2 CH 2 CN 1 -CH 2 CH 2 CH 2 CN.
- Examples of (C 1 to C 4) -Hydroxyalkylamino- (Ci to C 4) alkyl groups are -CH 2 CH 2 NH-CH 2 CH 2 OH 1
- aryl groups is the phenyl group.
- aryl (C 1 to C 4 ) alkyl groups are the benzyl group and the 2-phenylethyl group.
- Coupler components do not form a significant color within the framework of the oxidative dyeing alone, but always require the presence of developer components. Therefore, it is preferred according to the invention that at least one coupler component is additionally used when using at least one developer component.
- Coupler components according to the invention allow at least one substitution of a chemical residue of the coupler by the oxidized form of the developer component. This forms a covalent bond between the coupler and the developer component.
- Couplers are preferably cyclic compounds which carry on cycle at least two groups selected from (i) optionally substituted amino groups and / or (ii) hydroxy groups. When the cyclic compound is a six-membered ring (preferably aromatic), said groups are preferably in ortho position or meta position to each other.
- Coupler components according to the invention are preferably selected as at least one compound from one of the following classes:
- o-aminophenol derivatives such as o-aminophenol
- Naphthalene derivatives having at least one hydroxy group having at least one hydroxy group
- Pyrazolone derivatives such as 1-phenyl-3-methylpyrazol-5-one,
- Morpholine derivatives such as, for example, 6-hydroxybenzomorpholine or 6-aminobenzomorpholine,
- m-aminophenols or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K1) and / or from at least one physiologically tolerated salt of a compound of the formula (K1),
- G 1 and G 2 independently represent a hydrogen atom, a (Ci to C 4) - alkyl group, a (C 3 -C 6) cycloalkyl group, a (C 2 to C 4) alkenyl group, a (C 1 to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a (C 2 to C 4) -Perfluoracyl distr, an aryl (C- ⁇ -C 6) alkyl group, a AmJnO- (C 1 to C 6 ) alkyl group, a (C 1 to C 6) dialkylamino (C- ⁇ alkyl to C 6) or a (C 1 to C 6) alkoxy (C- ⁇ -C 6) alkyl group, wherein G 1 and G 2 together with the nitrogen atom can form a five-membered, six-membered or seven-membered ring,
- G 3 and G 4 independently represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) alkoxy group, a hydroxy group, a (C 1 to C 4 ) monohydroxyalkyl group , a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group, a (C 1 to C 6 ) -alkoxy (C 2 to C 6 ) alkoxy group, an aryl group or a heteroaryl.
- Particularly preferred m-aminophenol coupler components are selected from at least one compound selected from the group consisting of m-aminophenol, 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6 -methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2,6-dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4 -methoxy-2-methylphenol, 5- (2'-hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) -phenol, N-cyclopentyl-3-aminophenol, 1, 3-dihydroxy-5- (methylamino) - benzene, 3-ethylamino-4-methylphenol, 2,4-dichloro-3-aminophenol and the physiologically acceptable salts of all the abovementioned compounds.
- m-diaminobenzenes or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K2) and / or from at least one physiologically tolerated salt of a compound of the formula (K2),
- G 5, G 6, G 7 and G 8 are independently a hydrogen atom, a (Ci to C 4) - alkyl group, a (C 3 -C 6) cycloalkyl group, a (C 2 to C 4) - alkenyl , a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl group, a (Ci to C 4) alkoxy alkyl (Ci to C 4), aryl (Ci to C 4) alkyl group, a heteroaryl (Ci to C 4 ) alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
- G 9 and 10 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group, an ⁇ - (2,4-diaminophenyl) - (C 1 -C 4 ) -alkyl group, an ⁇ - (2,4-Diaminophenyloxy) - (C- 1 to C 4 ) alkoxy, a (C 1 to C 4 ) alkoxy, a hydroxy group, a (C 1 to C 4 ) alkoxy (C 2 to C 4) alkoxy group, an aryl group, a heteroaryl group, a (C 1 to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a hydroxy (C- ⁇ -C 4) alkoxy.
- Particularly preferred m-diaminobenzene coupler components are selected from at least one compound from the group formed from m-phenylenediamine, 2- (2,4-diaminophenoxy) ethanol, 1, 3-bis (2,4-diaminophenoxy) propane, 1-Methoxy-2-amino-4- (2'-hydroxyethylamino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2'-hydroxyethylamino) -1-methylbenzene, 2- ( ⁇ 3 - [(2-hydroxyethyl) amino] -4-methoxy-5-methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2- Hydroxyethyl) amino] -2-methoxy-5-methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -
- o-diaminobenzenes or their derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K3) and / or from at least one physiologically tolerated salt of a compound of the formula (K3),
- G 11 , G 12 , G 13 and G 14 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group , a (C 1 to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl group, a (C 1 to C 4) alkoxy alkyl (C- ⁇ -C 4), aryl (d to C 4 ) alkyl group, a heteroaryl (C 1 -C 4 ) -alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
- G 15 and G 16 independently represent a hydrogen atom, a
- Halogen atom a carboxyl group, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) alkoxy group, a hydroxy group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) - Polyhydroxyalkyl group, a hydroxy (C- ⁇ to C 4 ) alkoxy group.
- Particularly preferred o-diaminobenzene coupler components are selected from at least one compound selected from the group consisting of 3,4-diaminobenzoic acid and 2,3-diamino-1-methylbenzene and the physiologically acceptable salts of all of the aforementioned compounds.
- Preferred di- or trihydroxybenzenes and their derivatives are selected from at least one compound of the group formed from resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1 , 2,4-trihydroxybenzene.
- the pyridine derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K4) and / or from at least one physiologically tolerable salt of a compound of the formula (K4),
- G 17 and G 18 independently of one another represent a hydroxyl group or a group - NG 21 G 22 , in which G 21 and G 22 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) cycloalkyl group, a (C 2 to C 4) alkenyl group, an aryl group, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a (Ci-C 4) alkoxy- ( Ci to C 4) - alkyl group, an aryl (Ci to C 4) alkyl group, a heteroaryl- (Ci to C 4) - alkyl group,
- G 19 and G 20 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -alkoxy group.
- radicals G 17 and G 18 are in the ortho position or in the meta position relative to one another.
- Particularly preferred pyridine derivatives are selected from at least one compound of the group formed from 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino 6-methoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine, 3,5-diamino-2, 6-dimethoxypyridine, 3,4-diaminopyridine, 2- (2-methoxyethyl) amino-3-amino-6-methoxypyridine, 2- (4'-methoxyphenyl) amino-3-aminopyridine, and the physiologically acceptable salts of the aforementioned compounds.
- Preferred naphthalene derivatives having at least one hydroxy group are selected from at least one compound of the group formed from 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 3 Dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene.
- the indole derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K5) and / or from at least one physiologically tolerated salt of a compound of the formula (K5), wherein
- G 23 represents a hydrogen atom, a (C 1 to C 4) alkyl group, a (C 3 -C 6) - cycloalkyl group, a (C 2 to C 4) alkenyl group, a (Ci to C 4) - monohydroxyalkyl a (C 2 to C 4) -polyhydroxyalkyl group, an aryl (Ci to C 4) - alkyl group,
- G 24 represents a hydroxy group or a group -NG 26 G 27 , wherein G 26 and G 27 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group,
- G 25 is a hydrogen atom, a halogen atom or a (C 1 to C 4 ) alkyl group, with the proviso that G 24 in the meta position or ortho position to the structural fragment NG 23 of the
- Particularly preferred indole derivatives are selected from at least one compound of the group which is formed from 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole and the physiologically acceptable salts of the abovementioned compounds.
- the indoline derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K6) and / or from at least one physiologically tolerable salt of a compound of the formula (K6),
- ⁇ 28 represents a hydrogen atom, a (C 1 to C 4 ) alkyl group, a (C 3 to C 6 ) cycloalkyl group, a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group , a (C 2 to C 4) -polyhydroxyalkyl group, an aryl- (d to C4) - alkyl group,
- G 31 and G 32 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group,
- Particularly preferred indoline derivatives are selected from at least one compound of the group formed from 4-hydroxyindoline, 6-hydroxyindoline and 7-hydroxyindoline and the physiologically acceptable salts of the aforementioned compounds.
- Preferred pyrimidine derivatives are selected from at least one compound of the group formed from 4,6-diaminopyrimidine, 4-amino-2,6-dihydroxypyrimidine, 2,4-diamino-6-hydroxypyrimidine, 2,4,6-trihydroxypyrimidine, 2 -Amino-4-methylpyrimidine, 2-amino-4-hydroxy-6-methylpyrimidine and 4,6-dihydroxy-2-methylpyrimidine and the physiologically acceptable salts of the aforementioned compounds.
- coupler components according to the invention are selected from m-aminophenol, 5-amino-2-methylphenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 5-amino-4-chloro-2-methylphenol , 5- (2'-hydroxyethyl) amino-2-methylphenol, 2,4-dichloro-3-aminophenol, o-aminophenol, m-phenylenediamine, 2- (2,4-diaminophenoxy) ethanol, 1,3-bis (2,4-diaminophenoxy) propane, 1-methoxy-2-amino-4- (2'-hydroxyethylamino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2'-bis) hydroxyethylamino) -1-methylbenzene, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -4-methoxy-5-methylphenyl ⁇
- the coupler components are preferably used in an amount of 0.005 to 20 wt .-%, preferably 0.1 to 5 wt .-%, each based on the ready oxidation dye.
- developer components and coupler components are generally used in approximately molar amounts to each other.
- a certain excess of individual oxidation dye precursors is not disadvantageous, so that developer components and coupler components in a molar ratio of 1: 0.5 to 1: 3, in particular 1: 1 to 1: 2 , can stand.
- Examples of (C 1 to C 4 ) -alkyl radicals are the groups -CH 3 , -C / H2C / H3, -C / H2C / H2C / H3, -C / H (C / 1 ⁇ 3) 2, -C / H2C / H2C / ⁇ 2C / ⁇ 3, -OH 2C / H (01 ⁇ 3) 2, ⁇ C / H (C / H3) C / ⁇ 2C / ⁇ 3,
- Inventive examples of (C 3 to C 6 ) -cycloalkyl groups are the cyclopropyl, the
- Examples of (C 1 to C 4 ) -alkoxy radicals according to the invention are -OCH 3 , -OCH 2 CH 3 ,
- a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
- halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred examples.
- nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -
- Trialkylammonium groups (C 1 to C 4 ) monohydroxyalkylamino groups, imidazolinium and
- Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,
- Examples of (C 1 to C 4 ) -dialkylamino group are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
- Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
- Examples of (C 1 to C 4 ) -alkoxy (C 1 -C 4 ) -alkoxy groups are the groups -O-CH 2 CH 2 -O-CH 3 ,
- hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
- Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
- aryl groups is the phenyl group, which may also be substituted.
- aryl (C 1 -C 4 ) -alkyl groups are the benzyl group and the 2-phenylethyl group.
- the respective developer or coupler components according to Table 1 are preferably selected from their preferred individual representatives and / or their physiologically acceptable salts mentioned above in the context of the respective classes of compounds.
- the agents according to the invention comprise at least one of the following developer / coupler combinations:
- K1 from Table 1 Particularly preferred combinations according to K1 from Table 1 are: p-toluenediamine and resorcinol 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and resorcinol p-toluenediamine and 2-methylresorcinol 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and 2-methylresorcinol p-toluenediamine and 4-chlororesorcinol 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and 4-chlororesorcinol 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2-methylresorcinol and 2-amino-3-hydroxypyridine
- K2 from Table 1 Particularly preferred combinations according to K2 from Table 1 are: 4,5-diamino-1- (2-hydroxyethyl) pyrazole and resorcinol 4,5-diamino-1- (2-hydroxyethyl) pyrazole and 2-methylresorcinol 4,5-diamino- 1- (2-hydroxyethyl) pyrazole and 4-chlororesorcinol
- K3 from Table 1 Particularly preferred combinations according to K3 from Table 1 are: 2,4,5,6-tetraaminopyrimidine and resorcinol 2,4,5,6-tetraaminopyrimidine and 2-methylresorcinol 2,4,5,6-tetraaminopyrimidine and 4-chlororesorcinol 4-hydroxy -2,5,6-triaminopyrimidine and resorcinol 4-hydroxy-2,5,6-triaminopyrimidine and 2-methylresorcinol 4-hydroxy-2,5,6-triaminopyrimidine and 4-chlororesorcinol
- Particularly preferred combinations according to K5 from Table 1 are: p-aminophenol and 2,4-diaminophenoxyethanol p-aminophenol and 2-amino-1-methoxy-4- (2-hydroxyethylamino) benzene p-aminophenol and 2,6-bis ( 2'-hydroxyethylamino) -1-methylbenzene 4-amino-3-methylphenol and 2,4-diaminophenoxyethanol 4-amino-3-methylphenol and 2-amino-1-methoxy-4- (2-hydroxyethylamino) benzene 4-aminobenzene 3-methylphenol and 2,6-bis (2'-hydroxyethylamino) -1-methylbenzene
- K6 from Table 1 Particularly preferred combinations according to K6 from Table 1 are: bis (2-hydroxy-5-aminophenyl) methane and 2,4-diaminophenoxyethanol bis (2-hydroxy-5-aminophenyl) methane and 2-amino-1-methoxy -4- (2-hydroxyethylamino) benzene Bis (2-hydroxy-5-aminophenyl) methane and 2,6-bis (2'-hydroxyethylamino) -1-methylbenzene
- K7 from Table 1 Particularly preferred combinations according to K7 from Table 1 are: p-toluenediamine and 2-amino-3-hydroxypyridine 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and 2-amino-3-hydroxypyridine p-toluenediamine and 2,6-dihydroxy- 3,4-dimethylpyridine 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and 2,6-dihydroxy-3,4-dimethylpyridine 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2-amino-3-hydroxypyridine and 2- methylresorcinol
- Particularly preferred combinations according to K9 from Table 1 are: p-aminophenol and 2-amino-3-hydroxypyridine 4-amino-3-methylphenol and 2-amino-3-hydroxypyridine p-aminophenol and 3-amino-2-methylamino-6 methoxypyridine 4-amino-3-methylphenol and 3-amino-2-methylamino-6-methoxypyridine p-aminophenol and 2,6-dihydroxy-3,4-dimethylpyridine 4-amino-3-methylphenol and 2,6-dihydroxy-3 , 4-dimethylpyridine p-aminophenol and 3,5-diamino-2,6-dimethoxypyridine 4-amino-3-methylphenol and 3,5-diamino-2,6-dimethoxypyridine
- a p-phenylenediamine derivative preferably selected from compounds of the formula (E1), ii) a pyridine derivative and iii) resorcinol or a derivative thereof, in particular the combination 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- Amino-3-hydroxypyridine and 2-methylresorcinol, is very particularly preferably contained in the agents according to the invention.
- physiologically tolerated salts of the corresponding enumerated compounds can also be used.
- the coupler-type oxidation dye precursors hereinafter also referred to as the coupler component, are preferably present in an amount of from 0.01 to 5% by weight, in particular from 0.1 to 3% by weight, based in each case on the weight of the ready-to-use colorant.
- the dye precursors of naturally-analogous dyes (a) and the developer components are preferably in a molar ratio of 10: 1 to 1: 2, more preferably in a molar ratio of 8: 1 to 2: 1, most preferably in a molar ratio of 6: 1 to 3 to 1 in the inventive compositions.
- the coupler components and the developer components are preferably in a molar ratio of 8 to 1 to 1 to 2, more preferably in a molar ratio of 6 to 1 to 2 to 1, most preferably in a molar ratio of 2.5 to 1 to 4.5 1 contained in the inventive compositions.
- the dye precursors of naturally-analogous dyes (a) and the coupler components are preferably in a molar ratio of 2: 1 to 1: 2, more preferably in a molar ratio of 1.5 to 1 to 1: 1.5, most preferably in a molar ratio of 1 , 5 to 1 to 1 to 1 in the agents according to the invention.
- a cosmetically acceptable carrier is understood in particular to be an otherwise customary carrier of agents for coloring human hair.
- the colorants according to the invention may be composed with regard to the features essential to the invention according to known colorants or contain them for these conventional ingredients. Examples of further suitable and inventively preferred ingredients are given below.
- the agents according to the invention preferably contain the components according to the invention in a suitable aqueous, alcoholic or aqueous-alcoholic carrier.
- a suitable aqueous, alcoholic or aqueous-alcoholic carrier for the purpose of hair coloring such carriers are, for example, creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are suitable for use on the hair.
- a suitable aqueous, alcoholic or aqueous-alcoholic carrier for the purpose of hair coloring
- a suitable aqueous, alcoholic or aqueous-alcoholic carrier for the purpose of hair coloring
- such carriers are, for example, creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are suitable for use on the hair.
- the dye precursors in a powdered or tablet-shaped formulation.
- aqueous-alcoholic solutions are to be understood as meaning aqueous solutions containing from 3 to 70% by weight of a C 1 -C 4 -alcohol, in particular ethanol or isopropanol.
- the compositions according to the invention may additionally contain further organic solvents, for example methoxybutanol, benzyl alcohol, ethyl diglycol or 1,2-propylene glycol. Preference is given to all water-soluble organic solvents.
- the colorants according to the invention may contain one or more substantive dyes for shading.
- Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
- Preferred substantive dyes are those having the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, Acid Yellow 1, Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange Disperse Orange 3, Acid Orange 7, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57: 1, HC Blue 2, HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1, and Acid Black 52 known compounds as well as 1 , 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis ( ⁇ -hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- ( ⁇ -hydroxyethyl) aminophenol, 2 - (2'-hydroxyethyl) amino-4,6-dinitrophenol, 1- (2'-hydroxyethyl) amino-4-methyl-2
- (2'-Ureidoethyl) amino-4-nitrobenzene 4-amino-2-nitrodiphenylamine-2'-carboxylic acid, 6-nitro-1,2,3,4-tetrahydroquinoxaline, 2-hydroxy-1,4-naphthoquinone, picramic acid and their salts, 2-amino-6-chloro-4-nitrophenol, 4-ethylamino-3-nitrobenzoic acid and 2-chloro-6-ethylamino-1-hydroxy-4-nitrobenzene.
- agents according to the invention may contain a cationic substantive dye. Particularly preferred are
- Preferred cationic substantive dyes of group (c) are in particular the following compounds:
- Yellow 87, Basic Orange 31 and Basic Red 51 are very particularly preferred cationic substantive dyes of group (c).
- the cationic direct dyes which are sold under the brand Arianor® ®, are according to the invention also very particularly preferred cationic direct dyes.
- the agents according to the invention according to this embodiment preferably contain the substantive dyes in an amount of from 0.01 to 20% by weight, based on the total colorant.
- preparations of the invention may also naturally occurring dyes such as henna red, henna neutral, henna black, chamomile, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
- the compounds A or 2 or the substantive dyes each represent uniform compounds. Rather, in the hair colorants according to the invention, due to the production process for the individual dyes, in minor amounts, further components may be included, as far as they do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
- the colorants of the invention may further contain all known for such preparations active ingredients, additives and excipients.
- the colorants contain at least one surfactant, wherein in principle both anionic and zwitterionic, ampholytic, nonionic and cationic surfactants are suitable. In many cases, however, it has proved to be advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants.
- Suitable anionic surfactants in preparations according to the invention are all anionic surfactants suitable for use on the human body. These are denotes by a water-solubilizing anionic group such as, for example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 10 to 22 C atoms.
- anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as mono-, di- and T ⁇ alkanol- ammonium salts with 2 or 3 carbon atoms in the alkanol group, anionic Alkyl oligoglycosides or anionic alkenyl oligoglycoside derivatives selected from alkyl and / or alkenyl oligoglycoside carboxylates, sulfates,
- R Cs. 22 alkyl or C 6 . 22- alkenyl
- G glycoside which is composed of a sugar with 5 or 6
- Ethercarbonsauren the formula RO- (CH 2 -CH 2 O) x -CH 2 -COOH, in the R a
- Acyl isethionates having 10 to 18 carbon atoms in the acyl group sulfosuccinic acid mono- and dialkyl esters having 8 to 18 carbon atoms in the alkyl group and sulfosuccinic monoalkylpolyoxyethylester having 8 to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, linear alkanesulfonates with 12 to 18 carbon atoms, linear alpha-olefin sulfonates having 12 to 18 carbon atoms, alpha-sulfofatty acid methyl esters of fatty acids having 12 to 18 carbon atoms, alkyl sulfates and Alkylpolyglykolethersulfate of the formula
- esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms
- Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and in particular salts of saturated and in particular unsaturated C 8 -C 22 carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid.
- Nonionic surfactants contain as hydrophilic group z.
- Such compounds are, for example
- Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) x . These connections are identified by the following parameters.
- the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
- Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
- oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
- the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
- these compounds are prepared starting from natural fats and oils or mineral oils.
- the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
- sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
- Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
- Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
- alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
- the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
- this substance class as a further constituent of the preparations according to the invention in the event that an effect of the perfume oil on the hair which exceeds the duration of the hair treatment is desired.
- alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
- zwitterionic surfactants can be used, in particular as cosurfactants.
- Zwitterionic surfactants are surface-active compounds which carry at least one quaternary ammonium group and at least one -COO () or -SO 3 ' " ' group in the molecule.
- Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N , N-dimethylammonium glycinates, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinates, for example the cocoacylaminopropyl-dimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl-3-hydroxyethyl imidazolines having in each case 8 to 18 carbon atoms in the alkyl or acyl group and the coco acylaminoethylhydroxyethylcarboxymethylglycinate
- a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INCI name Cocamidopropyl Betaine.
- ampholytic surfactants are understood as meaning those surface-active compounds which contain, in addition to a C 8 -C -alkyl or acyl group in the molecule, at least one free amino group and at least one -COOH or -SO 3 H group and for the formation of internal salts are capable.
- ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
- Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethyl aminopropionate and C 12 - 18 - sarcosine.
- the cationic surfactants used may in particular be those of the quaternary ammonium compounds, esterquats and amidoamines type.
- Preferred quaternary ammonium compounds are ammonium halides, especially chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
- alkyltrimethylammonium chlorides dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
- cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
- the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
- Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
- Preferred esterquats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
- Such products are marketed under the brands Stepantex® ®, ® and Dehyquart® Armocare® ®.
- the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
- An inventively particularly suitable compound from this group of substances under the trade name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
- cationic surfactants which can be used according to the invention are the quaternized protein hydrolysates.
- cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® quat 3270 and 3272 (manufacturer: Th Goldschmidt; diquaternary polydimethylsiloxanes, quaternium-80.).
- An example of a cationic surfactant usable quaternary sugar derivative is the commercially available products Q2-7224 (manufacturer: Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM
- Glucquat ® 100 is, according to INCI nomenclature a "lauryl methyl Gluceth-10 Hydroxypropyl Dimonium Chloride”.
- the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
- both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
- "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts. The use of products with narrow homolog distribution may be preferred.
- the agents according to the invention additionally contain at least one cationic and / or at least one amphoteric polymer.
- Cationic polymers are polymers which have groups in the main and / or side chain which may be “temporary” or “permanent” cationic.
- “permanently cationic” refers to those polymers which have a cationic group independently of the pH of the agent These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group
- Preferred cationic groups are quaternary ammonium groups .
- . are bound 4 hydrocarbon group to a synthesized from acrylic acid, methacrylic acid or derivatives thereof, polymer backbone, have been found to be particularly suitable homopolymers of the general formula (III).
- R 18 -H or -CH 3
- R 19, R 20 and R 21 are independently selected from C- ⁇ - 4 -alkyl, -alkenyl or -hydroxyalkyl groups
- m 1, 2, 3 or 4
- n is a natural number
- X " is a physiologically acceptable organic or inorganic anion, as well as copolymers consisting essentially of the monomer units listed in formula (III) and nonionic monomer units, are particularly preferred cationic polymers.
- R 18 is a methyl group
- R 19 , R 20 and R 21 are methyl groups m has the value 2.
- Suitable physiologically acceptable counterions X ' are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
- a particularly suitable homopolymer is, if desired, crosslinked, poly (methacryloyloxyethyltrimethylammoniumchlorid) with the INCI name Polyquaternium- 37.
- the crosslinking if desired, using poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglycerylether, or allyl ethers of sugars or Sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
- Methylenebisacrylamide is a preferred crosslinking agent.
- the homopolymer is preferably used in the form of a nonaqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
- Such polymer dispersions are (under the names Salcare ® SC 95 about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and capric acid (INCI name: propylene glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene-polyoxyethylene-ether (INCI Designation: PPG-1-trideceth-6)) are commercially available.
- Copolymers containing monomer units according to formula (III) as a non-ionic monomer preferably acrylamide, methacrylamide, acrylic acid-C - ⁇ - alkyl ester and methacrylic acid-C- ⁇ - 4 -alkyl.
- acrylamide is particularly preferred.
- These copolymers can also be crosslinked, as described above in the case of the homopolymers.
- a copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
- Such copolymers in which the monomers are present in a weight ratio of about 20:80 are commercially available as approximately 50% non-aqueous polymer dispersion 92 under the name Salcare ® SC.
- Other preferred cationic polymers are, for example, quaternized cellulose derivatives, such as are available under the names of Celquat ® and Polymer JR ® commercially.
- the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, cationized honey, for example the commercial product Honeyquat ® 50, cationic guar derivatives, in particular under the trade name Cosmedia ® guar and Jaguar ® distributed products,
- Polysiloxanes having quaternary groups such as the commercially available products Q2-7224 (manufactured by Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning® 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® quat 3270 and 3272 (manufacturer: Th Goldschmidt; di- quaternary polydimethylsiloxanes, quaternium-80).
- Q2-7224 manufactured by Dow Corning, a stabilized trimethylsilylamodimethicone
- Dow Corning® 929 emulsion containing a hydroxylamino-modified silicone, also referred to as amodimethicones
- SM -2059 manufactured by Dow Corning, a stabilized trimethylsilylamodimethicon
- Such compounds are sold under the names Gafquat ® 734 and Gafquat ® 755 commercially,
- Vinylpyrrolidone-vinyl imidazolium copolymers such as those offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, quaternized polyvinyl alcohol,
- Polyquaternium 2 e.g., Mirapol® A-15 from Rhodia
- Polyquaternium 17 Polyquaternium 18 and
- Polyquaternium 27 known polymers with quaternary nitrogen atoms in the polymer main chain.
- cationic polymers are sold under the names Polyquaternium-24 (commercial product z. B. Quatrisoft ® LM 200), known polymers. , Gaffix ® VC 713 (manufactured by ISP): Also according to the invention can be used the copolymers of vinylpyrrolidone, such as the commercial products Copolymer 845 (ISP manufacturer) are Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370 available are. Further cationic polymers of the invention are the so-called "temporary cationic"
- Polymers These polymers usually contain an amino group which, at certain pH values, is present as a quaternary ammonium group and thus cationically.
- chitosan and its derivatives are preferred as Hydagen CMF ®, Hydagen HCMF ®, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially, for example under the trade names.
- Chitosans are deacetylated chitins, which are commercially available in different degrees of deacetylation and different degrees of degradation (molecular weights). Their preparation is described, for example, in DE 44 40 625 A1 and in DE 1 95 03 465 A1.
- Particularly suitable chitosans have a degree of deacetylation of at least 80% and a molecular weight of 5 10 5 to 5 10 6 (g / mol).
- the chitosan must be converted into the salt form. This can be done by dissolving in dilute aqueous acids.
- acids both mineral acids, e.g. Hydrochloric acid, sulfuric acid and phosphoric acid as well as organic acids, e.g. low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids suitable.
- organic acids e.g. low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids suitable.
- higher molecular weight alkyl sulfonic acids or alkyl sulfuric acids or organophosphoric acids can be used, provided that they have the required physiological compatibility.
- Suitable acids for converting the chitosan into the salt form are e.g.
- Acetic acid, glycolic acid, tartaric acid, malic acid, citric acid, lactic acid, 2-pyrrolidinone-5-carboxylic acid, benzoic acid or salicylic acid Preferred are low molecular weight hydroxycarboxylic acids such as e.g. Glycolic acid or lactic acid.
- amphoteric polymers is understood as meaning those polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, zwitterionic polymers having in the molecule quaternary ammonium groups and -COO groups or -SO 3 " groups, as well as
- the quaternary ammonium polymers mentioned in the list are preferably used according to the invention as amphoteric polymers.
- amphopolymer suitable is the acrylic resin commercially available as Amphomer ®, which is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
- Amphomer ® is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
- Further inventively usable amphoteric polymers are those in the British
- Amphoteric and / or cationic polymers preferred according to the invention are those polymers in which a cationic group is derived from at least one of the following monomers:
- R 1 -CH CR 2 -CO-Z- (C n H 2n ) -N (+) R 3 R 4 R 5 A () (IV)
- R 1 and R 2 independently of one another are hydrogen or a methyl group and R 3 , R 4 and R 5 independently of one another are alkyl groups having 1 to 4 carbon atoms, Z is an NH group or an oxygen atom, n is an integer of 2 to 5 and A () is the anion of an organic or inorganic acid,
- R 6 and R 7 independently of one another represent a (C 1 to C 4 ) -alkyl group, in particular a methyl group and A 'is the anion of an organic or inorganic acid.
- radicals R 3 , R 4 and R 5 are preferably methyl groups, Z is preferably an NH group and A is () preferably denotes a halide, methoxysulfate or ethoxysulfate ion. It is particularly preferred in this case to use acrylamidopropyltrimethylammonium chloride as the monomer (M1).
- Preferred amphoteric polymers according to the invention are polymers whose anionic group is derived from at least one monomer (M3)
- R 8 and R 9 are independently hydrogen or methyl groups.
- acrylic acid is used for the amphoteric polymers preferred according to the invention.
- amphoteric polymers are copolymers of at least one monomer (M1) or (M2) with the monomer (M3), in particular copolymers of the monomers (M2) and (M3).
- amphoteric polymers are copolymers of diallyl dimethyl ammonium chloride and acrylic acid. These copolymers are sold under the INCI name Polyquaternium-22, among others, with the trade name Merquat ® 280 (Nalco).
- amphoteric polymers according to the invention may additionally comprise a monomer (M4)
- R 10 -CH CR 11 -CNR 12 (VII) II HO in which R 10 and R 11 independently of one another are hydrogen or methyl groups and R 12 stands for a hydrogen atom or a (C 1 - to C 8 ) -alkyl group.
- comonomer based on a comonomer are terpolymers of diallyldimethylammonium chloride, acrylamide and acrylic acid. These copolymers are marketed ® under the INCI name Polyquaternium-39, among others, with the trade name Merquat Plus 3330 (Nalco).
- amphoteric polymers are those polymers which are composed essentially
- R 1 -CH CR 2 -CO-Z- (C n H 2n ) -N (+)
- R 2 R 3 R 4 A () (IV) in R 1 and R 2 independently of one another represent hydrogen or a methyl group and R 3 , R 4 and R 5 independently of one another represent alkyl groups having 1 to 4 carbon atoms, Z denotes an NH group or an oxygen atom, n denotes an integer of 2 to 5 and A () is the anion of an organic or inorganic acid and
- amphoteric polymers can generally be used both directly and in salt form, which is obtained by neutralization of the polymers, for example with an alkali metal hydroxide, according to the invention.
- the colorants according to the invention further active ingredients, auxiliaries and additives, such as nonionic polymers such as vinylpyrrolidone / vinyl acrylate copolymers, polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers and polysiloxanes, anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids, vinyl acetate / crotonic acid copolymers , Vinyl pyrrolidone / vinyl acrylate copolymers,
- nonionic polymers such as vinylpyrrolidone / vinyl acrylate copolymers, polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers and polysiloxanes
- anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids, vinyl acetate / crotonic acid copolymers , Vinyl pyrrolidone / vinyl acrylate copolymers,
- Terpolymers, amphiphilic polymers such as the polymers according to the INCI name: designations acrylates / beheneth-25 methacrylate copolymer, acrylates / C 10-30 alkyl acrylate crosspolymer, acrylates / ceteth-20 itaconate copolymer, acrylates / ceteth-20 methacrylate copolymer, Acrylates / Laureth-25 Methacrylate Copolymer, Acrylates / Palmeth-25 Acrylate Copolymer, Acrylates / Palmeth-25 Itaconate Copolymer, Acrylates / Steareth-50 Acrylate Copolymer, Acrylates / Steareth-20 Itaconate Copolymer, Acrylates / Steareth-20 Methacrylate Copolymer, Acrylates / Steareth-20 Methacrylate Copolymer, Acrylates / Steareth-20 Methacrylate Copolymer, Acrylates / Stearyl methacrylate cop
- Bentonite or fully synthetic hydrocolloids such as e.g. Polyvinyl alcohol, structurants such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins,
- Protein hydrolysates in particular elastin, collagen, keratin, milk protein, soy protein and wheat protein hydrolysates, their condensation products with fatty acids and quaternized protein hydrolysates, Perfume oils, dimethylisosorbide and cyclodextrins,
- Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, fiber-structure-improving agents, especially mono-, di- and oligosaccharides such as glucose, galactose, fructose, fructose and lactose, quaternized amines such as methyl-1-alkylamidoethyl-2 -alkylimidazolinium methosulfate defoamers such as silicones, dyes for staining the agent,
- Antidandruff active ingredients such as Piroctone Olamine, zinc Omadine and Climbazole, light stabilizers, in particular derivatized benzophenones, cinnamic acid derivatives and triazines,
- Substances for adjusting the pH such as, for example, customary acids, in particular edible acids and bases,
- Active ingredients such as allantoin, pyrrolidonecarboxylic acids and their salts, and also bisabolol, vitamins, provitamins and vitamin precursors, in particular those of groups A, B 3 , B 5 , B 6 , C, E, F and H,
- Plant extracts such as extracts of green tea, oak bark, stinging nettle, witch hazel, hops, chamomile, burdock root, horsetail, hawthorn, lime blossom, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut, mango, apricot, lime, wheat, kiwi , Melon, orange, grapefruit, sage, rosemary, birch, mallow, meadowfoam, quenelle, yarrow, thyme, lemon balm, toadstool, coltsfoot, marshmallow, meristem, ginseng and ginger root ,. Cholesterol,
- Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers, fats and waxes such as spermaceti, beeswax, montan wax and paraffins, fatty acid alkanolamides,
- Complexing agents such as EDTA, NTA, ⁇ -alaninediacetic acid and phosphonic acids, swelling and penetrating substances such as glycerol, propylene glycol monoethyl ether, carbonates, bicarbonates, guanidines, ureas and primary, secondary and tertiary phosphates,
- Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers, pearlescing agents such as ethylene glycol mono- and distearate, and PEG-3-distearate, pigments,
- Stabilizers for hydrogen peroxide and other oxidizing agents blowing agents such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air.
- the colorant can also be applied to the hair together with an oxidation activator, which activates the oxidation of the dye precursors by the atmospheric oxygen.
- the oxidation activators are preferably selected from the group formed from carbonates, hydrogencarbonates, carbamates, carboxylic acid esters or their salts, aldehydes, in particular aliphatic aldehydes, 1,3-dihydroxyacetone, imidazole and its derivatives, alkali metal and ammonium peroxydisulfates, metal ions, iodides, Quinones and enzymes.
- the oxidative dyeing is formed by atmospheric oxygen, it may be advantageous according to the invention to use metal ions as the oxidation activator.
- Suitable metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ . Particularly suitable are Zn 2+ , Cu 2+ and Mn 2+ .
- the metal ions can in principle be used in the form of any physiologically acceptable salt or in the form of a complex compound.
- Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
- the activators are preferably present in amounts of 0.01 to 5 wt.%, Based on the weight of the total colorant, in the inventive compositions.
- the application temperatures can be in a range between 15 and 40 0 C.
- the hair dye is removed by rinsing of the hair to be dyed.
- the washing with a shampoo is omitted if a strong surfactant-containing cosmetic carrier, such as a dyeing shampoo was used.
- a second subject matter of the present invention is a process for coloring keratinic fibers, in which a hair colorant according to the invention is applied to the fibers and rinsed off again after a contact time.
- the reaction time is preferably 1 to 45 minutes, more preferably 1 to 30 minutes, most preferably 2 to 20 minutes.
- the invention For gradual adaptation of grayed hair to the original natural hair color of a subject, it is preferred according to the invention to treat the gray hair repeatedly at intervals of one to several days, especially 1 to 20 days, as described above with the inventive agent of the first subject of the invention. In this continuous repetition of the process according to the invention, the reaction times of preferably 1 to 45 minutes, particularly preferably 1 to 30 minutes, very particularly preferably 2 to 20 minutes, should be maintained.
- the test person himself or a hairdresser uses an application aid, preferably in the form of a small brush or a mascara brush.
- the hair dye according to the invention is offered for commercial purposes in a sales unit.
- This sales unit contains at least one container which contains the agent according to the invention of the first subject of the invention. If the consumer is to choose the method for the gradual adjustment of the hair color, it may be preferred according to the invention that the kit for each intended application contains a separate container containing the inventive agent of the first subject of the invention. Consequently, in the latter embodiment, the kit would contain more than one container with the agent according to the invention.
- the kit may additionally contain application aids, in particular the application aids described above.
- the kit may additionally contain protective gloves.
- the kit may further contain a conditioner and / or a shampoo in a separate container.
- a third subject of the invention is the use of organic compounds which carry at least one thiol group, for color intensification of such dyeings keratin inconveniencer fibers, especially human hair, which are obtained by oxygen-induced oxidative dye formation with at least one indole and / or indoline derivative as a dye precursor of a natural analog dye.
- the following hair colorant E1 according to the invention (see Table 1) was prepared.
- the following raw materials were used:
- Plantacare ® 1200 UP C- 12 - 16 Alkylglucoside (INCI name: Lauryl Glucoside), 51% active ingredient, (Cognis Germany)
- Turpinal ® SL 1-Hydroxyethane-1, 1-diphosphonic acid (about 58 - 61% active ingredient content; Name: Etidronic Acid, Aqua (Water)) (Solutia)
- the hair dye was stored for 4 weeks in the absence of air.
- the hair dye according to Table 1 was left after storage for one strand (90% gray human hair) over a period of 15 minutes (4 g hair dye per 1 g of hair). The tresses were rinsed with an identical amount of water and dried in air.
- This dyeing step was repeated twice at intervals of about 15 hours each. It was obtained an intense color with very good gray coverage.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710027856 DE102007027856A1 (de) | 2007-06-13 | 2007-06-13 | Oxidationsfärbemittel zur Färbung keratinhaltiger Fasern mit Luftsauerstoff als einzigem Oxidationsmittel |
PCT/EP2008/053554 WO2008151858A2 (de) | 2007-06-13 | 2008-03-26 | Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2152226A2 true EP2152226A2 (de) | 2010-02-17 |
Family
ID=40030614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08718225A Ceased EP2152226A2 (de) | 2007-06-13 | 2008-03-26 | Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2152226A2 (de) |
CN (1) | CN101686920A (de) |
DE (1) | DE102007027856A1 (de) |
WO (1) | WO2008151858A2 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084625A1 (en) * | 2009-01-26 | 2010-07-29 | Hoyu Co., Ltd. | Hair dye composition, oxidation hair dye composition and method for prevention of change in color tone of hair dyeing |
FR3021532B1 (fr) * | 2014-05-27 | 2017-09-15 | Oreal | Procede de coloration capillaire a partir d'une composition comprenant au moins un compose indol(in)e et un compose aromatique ayant au moins dix atomes de carbone |
BR112017023380B1 (pt) | 2015-05-01 | 2021-10-13 | L'oreal | Sistema, composição cosmética e método para tratamento de substratos queratinosos |
BR112018010341B1 (pt) | 2015-11-24 | 2021-08-10 | L'oreal | Método para alteração da cor de cabelo |
WO2017091797A1 (en) | 2015-11-24 | 2017-06-01 | L'oreal | Compositions for treating the hair |
US11135150B2 (en) | 2016-11-21 | 2021-10-05 | L'oreal | Compositions and methods for improving the quality of chemically treated hair |
US9974725B1 (en) | 2017-05-24 | 2018-05-22 | L'oreal | Methods for treating chemically relaxed hair |
WO2019133785A1 (en) | 2017-12-29 | 2019-07-04 | L'oreal | Compositions for altering the color of hair |
US11090249B2 (en) | 2018-10-31 | 2021-08-17 | L'oreal | Hair treatment compositions, methods, and kits for treating hair |
US11419809B2 (en) | 2019-06-27 | 2022-08-23 | L'oreal | Hair treatment compositions and methods for treating hair |
DE102023202219A1 (de) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Verbessertes Indigo-basiertes Färbemittel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993009759A1 (de) * | 1991-11-19 | 1993-05-27 | Henkel Kommanditgesellschaft Auf Aktien | 5,6-dihydroxyindoline als additiv zu haarfärberezepturen |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4237253A (en) | 1977-04-21 | 1980-12-02 | L'oreal | Copolymers, their process of preparation, and cosmetic compounds containing them |
US4393886A (en) | 1980-09-05 | 1983-07-19 | Ciba-Geigy Corporation | Mixtures of quaternary, polymeric, high molecular weight ammonium salts, which are based on acrylic compounds, and surfactants, their preparation, and their use in cosmetics |
JPS5813700A (ja) | 1981-07-17 | 1983-01-26 | 花王株式会社 | 食器用洗浄剤組成物 |
EP0217274A3 (de) | 1985-09-30 | 1988-06-29 | Kao Corporation | Haarkosmetikum |
DE3708451A1 (de) | 1987-03-16 | 1988-10-06 | Henkel Kgaa | Zwitterionische polymere und deren verwendung in haarbehandlungsmitteln |
DE3723354A1 (de) | 1987-07-15 | 1989-01-26 | Henkel Kgaa | Sulfatierte hydroxy-mischether, verfahren zu ihrer herstellung und ihre verwendung |
DE3725030A1 (de) | 1987-07-29 | 1989-02-09 | Henkel Kgaa | Oberflaechenaktive hydroxysulfonate |
DE3926344A1 (de) | 1989-08-09 | 1991-02-28 | Henkel Kgaa | Verfahren zur herstellung von hellfarbigen oelsaeuresulfonaten |
DE3929973A1 (de) | 1989-09-08 | 1991-03-14 | Henkel Kgaa | Haarpflegemittel |
DE4440625A1 (de) | 1994-11-14 | 1996-05-15 | Henkel Kgaa | Verfahren zur Herstellung hellfarbiger Chitosane |
DE19503465A1 (de) | 1995-02-03 | 1996-08-08 | Henkel Kgaa | Verfahren zur Herstellung von niedrigviskosen kationischen Biopolymeren |
US5792220A (en) * | 1997-05-16 | 1998-08-11 | Bristol-Myers Squibb Company | Dyeing hair with melanin procursors in the presence of iodate and peroxide |
DE19810887A1 (de) | 1998-03-13 | 1999-09-16 | Henkel Kgaa | Verfahren zum Dauerwellen und Färben der Haare |
ES2215389T3 (es) * | 1998-06-23 | 2004-10-01 | Henkel Kommanditgesellschaft Auf Aktien | Colorante para el teñido de fibras de queratina. |
FR2785183B1 (fr) | 1998-11-04 | 2002-04-05 | Oreal | COMPOSITION TINCTORIALE CONTENANT UN COLORANT DIRECT CATIONIQUE ET UNE PYRAZOLO-[1,5-a]- PYRIMIDINE A TITRE DE BASE D'OXYDATION, ET PROCEDES DE TEINTURE |
AU2183702A (en) | 2000-11-20 | 2002-05-27 | Henkel Kgaa | Enzymatic coloring agents |
DE60221179T2 (de) | 2001-04-23 | 2008-03-20 | Kao Corp. | Haarfärbemittel |
-
2007
- 2007-06-13 DE DE200710027856 patent/DE102007027856A1/de not_active Withdrawn
-
2008
- 2008-03-26 CN CN200880020119A patent/CN101686920A/zh active Pending
- 2008-03-26 EP EP08718225A patent/EP2152226A2/de not_active Ceased
- 2008-03-26 WO PCT/EP2008/053554 patent/WO2008151858A2/de active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993009759A1 (de) * | 1991-11-19 | 1993-05-27 | Henkel Kommanditgesellschaft Auf Aktien | 5,6-dihydroxyindoline als additiv zu haarfärberezepturen |
Non-Patent Citations (1)
Title |
---|
See also references of WO2008151858A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008151858A3 (de) | 2010-01-07 |
CN101686920A (zh) | 2010-03-31 |
WO2008151858A2 (de) | 2008-12-18 |
DE102007027856A1 (de) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005062830A1 (de) | Oxidationsfärbemittel zur Färbung keratinhaltiger Fasern | |
EP2152226A2 (de) | Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel | |
DE102005024813A1 (de) | Haarfärbemittel mit Aloe-Bestandteilen | |
DE102005055270A1 (de) | Neuer Farbstoffvorproduktkombinationen | |
EP1787632A1 (de) | Neue Farbstoffvorproduktkombinationen | |
DE10240758A1 (de) | Neue Farbstoffkombination | |
DE102005055271A1 (de) | Neue Farbstoffvorproduktkombinationen | |
EP1324742B1 (de) | Oxidationsfärbemittel enthaltend 2-chlor-4-aminophenol | |
WO2008022958A2 (de) | Haarfärbemittel mit öl und proteinhydrolysat | |
EP2037871B1 (de) | Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel | |
EP1858594A1 (de) | Ammoniakfreies oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel | |
DE20017642U1 (de) | Oxidationsfärbemittel mit 2-Chlor-4-aminophenol | |
EP1762220A2 (de) | Mittel zur Färbung keratinischer Fasern enthaltend Polymere mit kleiner Molmasse | |
EP1453477B1 (de) | Entwickler-kuppler-kombination mit 2,4-dichlor-3-aminophenol | |
EP2209459B1 (de) | Oxidationsfärbemittel zur färbung keratinhaltiger fasern mit luftsauerstoff als einzigem oxidationsmittel | |
DE10120915A1 (de) | Verfahren zur oxidativen Färbung keratinischer Fasern | |
DE102005055496A1 (de) | Azofarbstoffe zum Färben keratinhaltiger Fasern | |
EP1286647B1 (de) | Verfahren zur oxidativen färbung keratinischer fasern | |
DE102005062645A1 (de) | Neue Kupplerkomponenten | |
DE10048733A1 (de) | Oxidationsfärbemittel mit 2-Amino-5-methylphenol | |
DE20016994U1 (de) | Oxidationsfärbemittel mit 2-Amino-5-methylphenol | |
DE20120050U1 (de) | Neue Oxidationsfarbstoffe mit 2,4-Dichlor-3-aminophenol | |
EP1731196A1 (de) | Mehrstufiges Färbeverfahren für keratinische Fasern | |
DE10242748A1 (de) | Haarbehandlungsmittel | |
DE102005055268A1 (de) | Neue Farbstoffvorproduktkombinationen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090923 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100323 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KOLONKO, CLAUDIA Inventor name: HOEFFKES, HORST Inventor name: HORSTMANN, BARBARA Inventor name: SUENGER, GEORG |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20120329 |