EP2148751B1 - Verfahren und vorrichtung zum runden von blechabschnitten - Google Patents

Verfahren und vorrichtung zum runden von blechabschnitten Download PDF

Info

Publication number
EP2148751B1
EP2148751B1 EP08733799A EP08733799A EP2148751B1 EP 2148751 B1 EP2148751 B1 EP 2148751B1 EP 08733799 A EP08733799 A EP 08733799A EP 08733799 A EP08733799 A EP 08733799A EP 2148751 B1 EP2148751 B1 EP 2148751B1
Authority
EP
European Patent Office
Prior art keywords
rounding
sheet metal
measurement
machine
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08733799A
Other languages
English (en)
French (fr)
Other versions
EP2148751A1 (de
Inventor
Peter Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soudronic AG
Original Assignee
Soudronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soudronic AG filed Critical Soudronic AG
Publication of EP2148751A1 publication Critical patent/EP2148751A1/de
Application granted granted Critical
Publication of EP2148751B1 publication Critical patent/EP2148751B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2676Cans or tins having longitudinal or helical seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/14Bending sheet metal along straight lines, e.g. to form simple curves by passing between rollers

Definitions

  • the invention relates to a method for rounding of individual sheet metal sections to Be fiscalzargen blanks and a method for producing can bodies from individual sheet metal sections according to the preamble of claim 1 and 10. Further, the invention relates to a rounding machine for rounding individual Blechabschnitfe according to the preamble of claim 11 and a welder for can bodies with such a round machine.
  • Methods and apparatus of the type mentioned are used in the production of container frames, in particular can bodies, made of sheet metal.
  • the Be fiscalerzargen blanks are transported to the rounding directly into a welding machine for welding the longitudinal seam of the frame.
  • the stacking of the sheets, the round apparatus and the welding machine form a unit.
  • Corresponding plants for can production are for example DE-A-33 30 171 or off US-A-5,209,625 known.
  • the rounding takes place in such a way that the can body formed can be guided directly into the Z-rail used for the seam overlap.
  • the rectangular cut sheet metal sections with defined dimensions and material properties recorded in standards are moved from a slide-in system into a first, driven transport roller pair pushed by several driven transport rollers at a speed of 100-450m / min. transported further and bent in a round machine with a round system with the help of wedges with rollers or with roller systems to a round frame. It may also be done by means of a wedge system of an optional Flexerstation a previous plastic deformation, which serves to reduce the stress in the sheet before rounding.
  • Such circular machines or systems are known in the art.
  • the sheets processed in series have different sheet thicknesses and material properties, such as yield strength, elongation and solidification behavior, which lead to different frame diameters and thus different openings at the free ends after the rounding process. Since this is not all rounded in series frames in the same position in the round station and they have different rounding radii, this can have variations of the overlap in the welding station result, which is problematic for the welding of the frame, or problems in the lateral pushing out of Frames from the rounding machine in the welding device and thereby lead to a machine stop with longer downtime. The efficiency of the machine is thereby reduced and there are downtime costs for the machine operator.
  • EP-A-477752 known to measure the sheet thickness and / or the yield strength or yield strength and adjust the position of lateral rounding rolls. Furthermore, it is off DE-A-2 221 776 in the formation of threaded pipe tubes, it is known to measure the deformation resistance of the strip before the sheet metal strip enters the strip bending device, so that the return spring remains within admissible limits. In the rounding and welding of can bodies, which takes place at said very high speed, the procedures shown are not applicable. US 5,497,935 shows a generic method and such a device for rounding and welding of Be cumerzargen, wherein during the rounding measured the sheet thickness and the measured value is used to control the rounding means to keep the rounding radius as constant as possible.
  • This object is likewise achieved by a method for producing can bodies from individual sheet metal sections having the features of claim 10. This can be done in such a way that partial pre-rounding occurs on the feed line or that partial rounding takes place in the round machine, in particular in FIG the Flexerstation, and that the rounding behavior is measured electrically and / or mechanically and / or visually and / or acoustically.
  • the measurement in the rounding operation is carried out non-destructively on successive sheet metal sections, so that thus measured in the current rounding operation and according to the measurement, the rounding is set.
  • the rounding takes place in the formation of can bodies, and in particular at a speed of 100 to 450 m / minute and the rounded Be Strukturerzargen-blanks from the rounding machine of a welder for can bodies with welding rollers, especially with thereon running wire intermediate electrodes, and a Z-rail for positioning the Zargenkanten supplied.
  • the sheet thickness can be measured as the sheet property.
  • At least one of the round rollers of the round machine and / or a round wedge of the rounding machine is preferably controlled. It can additionally or alternatively be controlled by the measured value or the value derived therefrom a Vorrundkeil the rounding machine. Furthermore, by means of the measured value or the value derived therefrom, a flexer station of the round machine, in particular a flexi wedge arranged therein, can be controlled.
  • FIG. 1 shows schematically in side view various embodiments of the present invention. It can be seen that sheet metal sections, of which the sections 1 and 2 are shown as examples, are stacked by a stack 10 and placed in a transport device 3, which serves as a feed line for a rounding machine 4. Go through the sheets doing this arrangement of feed line and machine in the direction of arrow A.
  • the stacking of the stack 10 and the introduction into the transport device 3 is here, since this is known in the art, not further explained.
  • the transport device 3 is also considered to be optional, although preferred, so that the sheets could also be dispensed directly from the stack 10 into the rounding machine 4. This then requires that the measuring device, which is explained below, is positioned at the entrance of the rounding machine 4 or in this, which is also shown in more detail.
  • each sheet metal section is rounded to form a frame blank, as can be seen for the forward part of the sheet metal section 2 in the direction of passage.
  • the rounding is done with a predetermined by the setting of the rounding machine Sollrundungsradius and leads to the rounding radius R; this with a rounding speed VR of eg 100 to 450 m / minute.
  • Round machines are known in various embodiments, especially for can bodies, the round machine can be provided in a simple form as two-roll rounding machine with the two rollers 11 and 12. Also round machines with a plurality of rollers are known, such as from EP-A-1 197 272 , Also, such circular machines can be used in the context of the present invention, as well as basically any other circular machines; According to the invention, they must be controllable in their setting for determining the rounding in the rounding operation, as explained in more detail becomes.
  • a Vorrundkeil 14 may be provided in front of the round rollers 11 and 12.
  • a round wedge 13 may be provided after the round rollers 11, 12.
  • a flex station is provided in front of the actual run station, which in the embodiment shown is part of the round machine 4, which could also be a separate station.
  • the flexer station has the rollers 9 and 8 and the flexer wedge 7, which acts on the plate emerging from the rollers.
  • Flexerstations for the removal of stresses in the sheet metal are known as such in principle for the pretreatment of the sheet and to facilitate the subsequent rounding to the expert, for example from the above-mentioned US 5,209,625 , and are not explained here as such;
  • the measuring device described below can be arranged to determine the Rundungs s in the flexer station and use their preliminary rounding to determine the rounding behavior of the sheet, which will be explained in more detail.
  • the adjustable elements of the rotary machine and preferably also of the flexer station are provided with drives (referred to below as actuators) which can move these elements within the scope of their customary setting possibilities in order to allow the control of the round machine to influence the rounding result;
  • the influence of the actuators on the elements of the round machine is symbolized in the figures by outgoing arrows from the actuators in the respective element, the movement of the element by another arrow, the connection of the actuators with the controller 5 is symbolized by lines 40.
  • the flexi wedge 7 can be moved by the actuator 6 in the direction of arrow B.
  • the precut wedge 14 can be moved by the actuator 15 in the direction of the arrow C.
  • rollers 11 and 12 may be provided whose distance from one another determining drive, which acts on one or both of the rollers and which is shown schematically as an actuator 16. Furthermore, the actuator 17 can act on the circular wedge 13 in order to move it in the direction of the arrow D. All of these actuators may be provided or only one of them and any combinations are possible which allow the controller 5 of the rounding machine 4, via the control of the actuators and thus the setting of the moving rollers and / or round wedges, the rounding result or the rounding radius R directly in operation.
  • the design of the corresponding movement elements and drives can vary depending on the structural design of the rounding machine, but is readily apparent to those skilled in the art.
  • the actuators may be based on electromotive, magnetic, pneumatic, hydraulic or piezoelectric base to adjust the respective elements of the circular machine. This should, as mentioned, be possible during the operation of the rounding machine in order to cause a change in the radius of curvature between successive sheets, and preferably even during the rounding of a sheet, by the controller.
  • the rounding machine is usually operated in a for the sheet metal sections of the stack 10, which have certain sheet metal properties, suitable default setting, which leads to the desired rounding radius R in compliance with these sheet metal properties.
  • the controller 5 can operate at least one actuator based on the measurement in order to adapt the rounding properties to measured, changed sheet properties, so that in turn the rounding result with the desired rounding radius R is achieved. If only one of the actuators is present, for example, the actuator 17, which acts on the circular wedge 13, the change is easily performed by the controller 5 and this can be adjusted by a few test trials with sheets of different property or that the correct result is achieved for these different sheets.
  • the controller will react in accordance with the test tests and make the corresponding round wedge setting which is for desired rounding result for a sheet with this measured value leads. It can be seen that with the provision of several actuators and therefore several influencing possibilities, the complexity of the command variants stored in the controller 5 also increases, since these decide, for example, if the sheet metal characteristic changes, compliance with the desired radius R is achieved via the precut wedge 14 Actuator 15 is achieved, or more suitable via the actuator 16 and the roll adjustment. This can also be determined by test plates by the machine setter and the controller 5 can be set or programmed accordingly.
  • a measuring device for the sheet metal sections is provided by means of which at least one property of the respective sheet can be detected before rounding, so that the rounding machine for the rounding of this sheet is adjusted accordingly.
  • a procedure in which a measurement takes place in the rounding mode as will be explained below.
  • a measurement is made of at least one sheet metal property within the feed line 3, which is formed here by the transport device shown.
  • the sheet thus passes directly via a stacker from the stack 10 into the entry area 25 of the rounding machine, where it is detected and conveyed by the latter, then the measurement of the at least one sheet metal property takes place either at the stacker and / or directly at the entrance or in the rounding machine 4, in particular in the flexer station.
  • the expert can readily arrange the measuring devices described below so that they are not, as shown, in the feed line 3, but at the stacker and / or at the entrance of the rounding machine or in the rounding machine, especially in a flexer station.
  • FIGS. 4 and 5 Such an example is in the FIGS. 4 and 5 shown.
  • a measuring device 27 is shown, which lies between the roller pairs 21, 22 and 23, 24. This measuring device is connected to the control device 5, so that the measured value or a derived value indicating the sheet properties can be delivered to the controller 5.
  • a measuring device 28 may be provided which measures the sheet thickness of the respective sheet metal section in a manner known in principle to those skilled in the art. Such sheet thickness gauges are also known and commercially available and will not be discussed further here.
  • the output value of the sheet thickness measurement is fed to the controller 5 and is there also for adjusting at least one of Control in this way reaches the measured value or the measured values or correspondingly derived values, which allows the setting of at least one of the actuators.
  • a measuring device 27 is shown, which lies between the roller pairs 21, 22 and 23, 24.
  • the measuring device 27 is connected to the control device 5, so that the measured value or a derived value indicating the sheet properties can be delivered to the controller 5.
  • the measuring device 27 is a device which allows the measurement of the strength of the respective sheet metal section, in the figure of the sheet metal section 1.
  • this is a non-contact measuring method.
  • a well-known non-contact measurement method which is applied to steel strips, and is now applied to individual sheet metal sections, based on a periodic magnetization of the metal and the subsequent measurement of the gradient of the residual magnetic field strength on the top and bottom of the band or here the section.
  • the measured value of the residual magnetic field strength or the calculated gradient is associated with the mechanical strength of the sheet metal section via correlation relationships, which in particular includes the tensile strength and the yield strength of the respective metal sheet.
  • a measuring device is known under the brand IMPOC ® and commercially available and manufactured by the company EMG Automation GmbH, Wenden, Germany and distributed. With such a measuring device, the strength properties of the sheet metal sections can be determined, which have a direct influence on the Rundungseigenschaften, and the corresponding measured value is delivered to the controller 5, which in particular increase or decrease the strength values against a preset setpoint or setpoint range at least one of the actuators operated in order to adapt the rounding machine to the changed strength values during operation.
  • the controller 5 for this sheet metal section 1, for example, the actuator 17 for the Press round wedge 13 and possibly also the actuator 15 for the Vorrundkeil 14 after the previous sheet metal section 2 has left the round rollers 11,12, so that the rounding behavior of the circular machine is adapted to the opposite to the sheet 2 different strength property of the sheet 1, so that in turn the desired radius of curvature R results when the sheet 1 passes through the rounding machine.
  • the subsequent and further subsequent sheet-metal sections are moved, so that, if necessary, an adaptation results for each sheet-metal section during operation.
  • a measuring device 28 may be provided which measures the sheet thickness of the respective sheet metal section in a manner known in principle to those skilled in the art. Such sheet thickness gauges are also known and commercially available and will not be discussed further here.
  • the output value of the sheet thickness measurement is fed to the controller 5 and is there also for adjusting at least one of Actuators used to adapt the rounding machine 4 to the sheet property "thickness".
  • the controller 5 influences the rounding machine 4 via the actuators, possibly including the flexer station.
  • a preliminary rounding is provided in this embodiment, in which a part of the sheet metal section is rounded and the current behavior of this sheet metal section is measured to this rounding.
  • the rollers 30 and 31 may be provided, which is usually a wedge 32 upstream.
  • the rollers are operated by an arrangement, not shown, so that they cause a rounding only for a part of the sheet metal section, preferably for a front portion, as shown in the figure.
  • the sheet metal section can subsequently also be bent straight again.
  • three different possible rounding curves of a sheet with a, b and c are indicated and shown with different line representation in the figure.
  • a measuring arrangement 33 to 35 can be determined how the sheet metal section behaves in this rounding.
  • a plurality of sensors 34 may be arranged in a linear sequence in the direction of sheet travel. These sensors may be mechanically responsive to touch or may be electrical sensors responsive to the electrical conductivity of the sheet. In particular, it may be electrical contacts, as with the example of the FIGS.
  • the sensors can also be optical sensors, for example light barriers or acoustic sensors, for example ultrasonic distance sensors.
  • it can be determined by the sensors at which place of impact 35, or at which impact time, the leading edge of the sheet 1 impinges on the sensor assembly, which is a measure of the rounding behavior of the respective sheet, or the curve a or b or c.
  • the shape of the rounded region a, b or c can also be determined directly.
  • the thus measured rounding behavior of the sheet in the preliminary rounding is fed to the control 5 as a measured value or derived value and serves there to set at least one of the actuators.
  • the actuator 6 and a single actuator 15 ' which symbolizes the adjustment of both the Vorrundkeils 14 and at least one of the rollers 11, 12 and the adjustment of the inclination of the rollers.
  • a wedge 13 with associated actuator could also be provided here.
  • the measuring device 33 could additionally one or both at FIG. 1 be described measuring devices 27, 28 may be provided.
  • the measuring device 33 in the execution after FIG. 1 be provided or within the rounding machine 4, for example in the flexer station of the same.
  • FIG. 3 shows an embodiment in which the above statements also apply and like reference numerals again denote the same or similar elements.
  • a wedge 36 is additionally provided analogous to the flexor of the flexer station in the measuring device 33.
  • This wedge 36 influences the pre-round measurement in much the same way as the flex wedge affects the rounding, so that the measurement of the rounding property is better adapted to the subsequent rounding. Accordingly, the flexer wedge 36 is preferably adjusted by an actuator and the controller 5.
  • the corresponding measuring device 50 can, as for the previously described measuring devices 27 or 33 to 35 or 33 to 36 the case is to be arranged in the feed line 3. However, it can also be arranged in the actual rotary apparatus, in particular between the flexer station with the rollers 8, 9 and the flexer wedge 7; but then it is preferably a part of the flexer station or arranged in this. Thus, the illustrated rollers 28 and 29 of the measuring device instead of the rollers 8 and 9 of the flexer station of the rotary apparatus occur or instead of the rollers 31 and 30 in the feed 3.
  • the rolls 41 and 42 are the round rolls (corresponding to the round rolls 11 and 12 of the preceding examples) and thus the previously described elements or wedges 14 and 13 thereof could be arranged before and after the round rolls 41, 42, respectively FIG. 4 is indicated only with the rectangles 13 and 14. Other placements before the round apparatus 4 or in this are of course possible.
  • the measuring device 50 has a flexing wedge 37. If the measuring device is thus used in accordance with the measuring device 33 to 36 in the feed section 3, then this flexer wedge 37 can be adjusted as the flexer wedge 7 in the round apparatus.
  • the flexing wedge 37 of the measuring device also directly assumes the function of the flexer wedge 7 of the rotary apparatus according to the previous examples, so that the rounding behavior is measured with a flexer wedge.
  • the measuring device 50 could also do without its flexer wedge 37.
  • the measuring device has at least one sensor 45, with which the arrival of the respective sheet metal 1 at or in the measuring device 50 can be detected.
  • the front edge of the sheet in the transport direction is detected, in particular by an optical sensor, in particular a light barrier or a plurality of light barriers. This detection of the sheet 1 starts at the measuring device 50 a time measurement.
  • FIG. 4 This can be done by a separate time measuring means or by the controller 5, which has already been mentioned, and which in this case also controls or is part of the measuring device.
  • This variant is in FIG. 4 shown.
  • the time measurement is terminated when the leading edge of the sheet strikes a measuring plate 38, which is reported via a line to the controller 5.
  • the time is different according to the rounding behavior and thus represents a measure of the rounding behavior of the sheet.
  • the round apparatus is thus subsequently controlled accordingly, as has already been described.
  • this this is indicated by the wiring harness 40, which leads from the controller 5 in the manner described above to the above-explained actuators of the rounding machine for influencing the rounding behavior.
  • the detection of the impact of the leading edge of the sheet on the measuring plate 38 of the measuring device 50 is preferably carried out electrically. This can be done so that the measuring plate is at a first electrical potential and at least one of the rollers 28, 29 is at a different electrical potential (and, if present, the flexing wedge 27 of the measuring device is at the electric potential of the roller). If the leading edge of the electrically conductive sheet meets the measuring plate 38, the two potentials are short-circuited, which can be determined by a corresponding current flow or a corresponding voltage drop of the measuring voltage. Thus, the time measurement is stopped or the time between detection of the leading edge by the sensor 45 and the impact of the leading edge on the measuring plate 38 is determined and thus the rounding of the sheet in the measuring device 50.
  • the measuring plate 38 is preferred with a A plurality of electrically insulated from each other, juxtaposed measuring parts 38a, 38b, 38c, 38d, etc. executed, which are also alternately on the different electrical potentials.
  • the impact on the measuring plate 38 can be electrically detected
  • These parts can be designed wedge-shaped, as in FIGS. 4 and 5 seen.
  • FIG. 5 shows some of the adjacent measuring wedges in a diagrammatic representation.
  • FIG. 6 shows a corresponding measuring circuit with a measuring voltage source U s , wherein the rollers 28, 29 and the flexing wedge 37 are at ground potential. Also at ground potential are the measuring wedges 38b, 38d, etc. (in FIG. 6 for simplicity, only 38b is shown). On the other hand, the measuring wedges 38a, 38c, etc. (in FIG. 6 only 38a is shown).
  • the method and the device are used in particular for the welding of can bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Vehicle Body Suspensions (AREA)

Description

    Hintergrund
  • Die Erfindung betrifft ein Verfahren zum Runden von einzelnen Blechabschnitten zu Behälterzargen-Rohlingen sowie ein Verfahren zur Herstellung von Dosenzargen aus einzelnen Blechabschnitten gemäß dem oberbegriff des Anspruchs 1 bzw. 10. Ferner betrifft die Erfindung eine Rundmaschine zur Rundung einzelner Blechabschnitfe gemäß dem Oberbegriff des Anspruchs 11 sowie eine Schweissvorrichtung für Dosenzargen mit einer solchen Rundmaschine.
  • Stand der Technik
  • Verfahren und Vorrichtungen der genannten Art werden bei der Herstellung von Behälterzargen, insbesondere Dosenzargen, aus Blech verwendet. Die Behälterzargen-Rohlinge werden dazu nach der Rundung direkt in eine Schweissmaschine zur Schweissung der Längsnaht der Zarge transportiert. Dabei bilden in der Regel die Abstapelung der Bleche, der Rundapparat und die Schweissmaschine eine Einheit. Entsprechende Anlagen für die Dosenherstellung sind z.B. aus DE-A-33 30 171 oder aus US-A-5 209 625 bekannt. Die Rundung erfolgt dabei so, dass die gebildete Dosenzarge direkt in die für die Nahtüberlappung verwendete Z-Schiene geführt werden kann. Für die Rundung werden die rechteckig zugeschnittenen Blechabschnitte mit definierten Abmessungen und in Normen festgehaltenen Materialeigenschaften von einem Einschubsystem in ein erstes, angetriebenes Transportwalzenpaar geschoben, von mehreren angetriebenen Transportwalzen mit einer Geschwindigkeit von 100-450m/Min. weitertransportiert und in einer Rundmaschine mit einem Rundsystem mit Hilfe von Keilen mit Walzen oder mit Walzensystemen zu einer runden Zarge gebogen. Eventuell erfolgt zusätzlich mittels eines Keilsystems einer optionalen Flexerstation eine vorgängige plastische Verformung, welche dem Spannungsabbau im Blech vor der Rundung dient. Derartige Rundmaschinen bzw. Anlagen sind dem Fachmann bekannt. Je nach Blechqualität weisen die in Serie verarbeiteten Bleche unterschiedliche Blechdicken und Materialeigenschaften, wie Streckgrenze, Dehnungs- und Verfestigungsverhalten auf, welche nach dem Rundprozess zu unterschiedlichen Zargendurchmessern und dadurch unterschiedlichen Öffnungen an den freien Enden führen. Da dadurch nicht alle in Serie gerundeten Zargen in der gleichen Position in der Rundstation liegen und sie unterschiedliche Rundungsradien aufweisen, kann dies Variationen des Überlappungsmasses in der Schweissstation zur Folge haben, was für die Schweissung der Zarge problematisch ist, oder zu Problemen beim seitlichen Ausschieben der Zargen aus der Rundmaschine in die Schweisseinrichtung und dadurch zu einem Maschinenstopp mit längeren Ausfallzeiten führen. Die Effizienz der Maschine wird dadurch vermindert und es entstehen Ausfallkosten für den Maschinenbetreiber.
  • Bei der vergleichsweise sehr langsamen Bildung von einzelnen Rohren oder Körpern aus einem vom Operateur in eine Rundmaschine eingebrachtem Blech ist es aus EP-A-477 752 bekannt, die Blechdicke und/oder die Streckgrenze oder Dehngrenze zu messen und die Position von seitlichen Rundungswalzen anzupassen. Ferner ist es aus DE-A-2 221 776 bei der Bildung von Schraubennahtrohren bekannt, vor dem Eintritt des Blechbandes in die Bandbiegeeinrichtung den Verformungswiderstand des Bandes zu messen, damit das Rückfedermass innerhalb zulässiger Grenzen bleibt. Bei der Rundung und Schweissung von Dosenzargen, die mit der genannten sehr hohen Geschwindigkeit erfolgt, sind die gezeigten Vorgehensweisen nicht anwendbar. US 5 497 935 zeigt ein gattungsgemässes Verfahren bzw. eine solche Vorrichtung zum Runden und Schweissen von Behälterzargen, wobei bei der Rundung die Blechdicke gemessen und der Messwert zur Steuerung der Rundungsmittel verwendet wird, um den Rundungsradius möglichst konstant zu halten.
  • Darstellung der Erfindung
  • Zur Vermeidung der genannten Probleme beim Runden und Schweissen von Dosenzargen werden heute möglichst Bleche mit geringen Materialeigenschaftsschwankungen und möglichst aus einer Herstellungsserie des Blechherstellers verwendet. Eine Durchmischung verschiedener Bleche wird möglichst vermieden. Die Rundung muss häufig überprüft und bei Bedarf das Rundsystem nachjustiert werden.
  • Es ist Aufgabe der Erfindung, diese Nachteile zu vermeiden.
  • Dies wird durch ein Verfahren zum Runden von einzelnen Blechabschnitten zu einzelnem Behälterzargen-Rohlingen mit dem Merkwalen des Anspruchs 1 erreicht. Diese Aufgabe wird ebenfalls durch ein Verfahren zur Herstellung von Dosenzargen aus einzelnen Blechabschnitten mit den Merkmalen des Anspruchs 10 gelöst. Dies kann derart erfolgen, dass auf der Zuführstrecke eine teilweise Vorrundung erfolgt oder dass in der Rundmaschine eine teilweise Vorrundung erfolgt, insbesondere in der Flexerstation, und dass das Rundungsverhalten elektrisch und/oder mechanisch und/oder optisch und/oder akustisch gemessen wird.
  • Die oben genannte Aufgabe wird durch eine Rundmaschine mit dem Merkmalen des Anspruchs 11 gelöst.
  • Bei dem Verfahren bzw. einer Vorrichtung wird die Messung im Rundungsbetrieb zerstörungsfrei an nacheinander folgenden Blechabschnitten durchgeführt, so dass also im laufenden Rundungsbetrieb gemessen und entsprechend der Messung die Rundung eingestellt wird. Die Rundung erfolgt bei der Bildung von Dosenzargen und insbesondere mit einer Geschwindigkeit von 100 bis 450 m/Minute und die gerundeten Behälterzargen-Rohlinge werden aus der Rundmaschine einer Schweissvorrichtung für Dosenzargen mit Schweissrollen, insbesondere mit darauf laufenden Drahtzwischenelektroden, und einer Z-Schiene zur Positionierung der Zargenkanten zugeführt. Dabei kann als Blecheigenschaft die Blechdicke gemessen werden.
  • Durch den Messwert oder den davon abgeleiteten Wert wird mindestens eine der Rundwalzen der Rundmaschine und/oder wird vorzugsweise ein Rundkeil der Rundmaschine gesteuert. Es kann zusätzlich oder alternativ durch den Messwert oder den davon abgeleiteten Wert ein Vorrundkeil der Rundmaschine gesteuert werden. Weiter kann durch den Messwert oder den davon abgeleiteten Wert eine Flexerstation der Rundmaschine, insbesondere ein darin angeordneter Flexerkeil, gesteuert werden.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigt
    • Figur 1 schematisch eine Vorrichtung zur Erläuterung erster Ausführungsformen der Erfindung;
    • Figur 2 schematisch eine Vorrichtung zur Erläuterung weiterer Ausführungsformen der Erfindung;
    • Figur 3 schematisch eine Ausführung ähnlich derjenigen von Figur 2 mit einem Keil bei der Messeinrichtung;
    • Figur 4 eine schematische Darstellung einer Messeinrichtung;
    • Figur 5 eine perspektivische teilweise Darstellung der Messeinrichtung von Figur 4; und
    • Figur 6 eine Darstellung der elektrischen Beschaltung der Messeinrichtung der Figuren 4 und 5.
    Wege zur Ausführung der Erfindung
  • Figur 1 zeigt schematisch in Seitenansicht verschiedene Ausführungsformen der vorliegenden Erfindung. Dabei ist ersichtlich, dass Blechabschnitte, von denen als Beispiele die Abschnitte 1 und 2 dargestellt sind, von einem Stapel 10 abgestapelt und in eine Transporteinrichtung 3 gegeben werden, welche als Zuführstrecke für eine Rundmaschine 4 dient. Die Bleche durchlaufen dabei diese Anordnung aus Zuführstrecke und Maschine in Richtung des Pfeils A. Die Abstapelung vom Stapel 10 und das Einbringen in die Transporteinrichtung 3 wird hier, da dies dem Fachmann bekannt ist, nicht näher erläutert. Die Transporteinrichtung 3 ist ferner als fakultativ, wenn auch bevorzugt, anzusehen, so dass die Bleche auch direkt vom Stapel 10 in die Rundmaschine 4 abgegeben werden könnten. Dies bedingt dann, dass die Messeinrichtung, welche nachfolgend erläutert wird, am Eingang der Rundmaschine 4 oder in dieser positioniert ist, was ebenfalls noch näher dargestellt wird. Eine Anordnung der Messeinrichtung in der Rundmaschine 4 oder an deren Eingang ist natürlich auch möglich, wenn eine Transporteinrichtung 3 vorhanden ist. In der dargestellten Ausführungsform ist die Transporteinrichtung 3 mit mehreren Walzenpaaren 19, 20; 21, 22 und 23, 24 ausgerüstet, welche den jeweiligen Blechabschnitt an den Eingang 25 der Rundmaschine 4 fördern. Diese Förderung könnte auch auf andere, dem Fachmann bekannte Weise ausgeführt werden, als mit den dargestellten Walzenpaaren. In der Rundmaschine 4 wird jeder Blechabschnitt zu einem Zargen-Rohling gerundet, wie dies für den in Durchlaufrichtung vorderen Teil des Blechabschnitts 2 ersichtlich ist. Die Rundung erfolgt dabei mit einem durch die Einstellung der Rundmaschine vorgegebenen Sollrundungsradius und führt zum Rundungsradius R; dies mit einer Rundungsgeschwindigkeit VR von z.B. 100 bis 450 m/Minute. Rundmaschinen sind in vielfältiger Ausführungsform bekannt, insbesondere auch für Dosenzargen, wobei die Rundmaschine in einfacher Form als Zweiwalzen-Rundmaschine mit den beiden Walzen 11 und 12 vorgesehen sein kann. Auch Rundmaschinen mit einer Mehrzahl von Walzen sind bekannt, so z.B. aus der EP-A-1 197 272 . Auch derartige Rundmaschinen können im Rahmen der vorliegenden Erfindung verwendet werden, wie auch grundsätzlich beliebige andere Rundmaschinen; gemäss der Erfindung müssen sie in ihrer Einstellung zur Festlegung der Rundung im Rundungsbetrieb steuerbar sein, wie dies noch näher erläutert wird. Im vorliegenden Ausführungsbeispiel ist gezeigt, dass vor den Rundwalzen 11 und 12 ein Vorrundkeil 14 vorgesehen sein kann. Ebenso kann ein Rundkeil 13 nach den Rundwalzen 11, 12 vorgesehen sein. Weiter ist es möglich und auch bevorzugt, dass vor der eigentlichen Run- , dungsstation eine Flexerstation vorgesehen ist, welche in der gezeigten Ausführungsform Teil der Rundmaschine 4 ist, welche aber auch eine separate Station sein könnte. In dem gezeigten Beispiel weist die Flexerstation die Walzen 9 und 8 auf sowie den Flexerkeil 7, welcher auf das aus den Walzen austretende Blech einwirkt. Flexerstationen zur Entfernung von Spannungen im Blech sind als solche grundsätzlich zur Vorbehandlung des Bleches und zur Erleichterung der nachfolgenden Rundung dem Fachmann bekannt, z.B. aus der eingangs erwähnten US 5,209,625 , und werden hier als solche nicht weiter erläutert; indes kann die nachfolgend beschriebene Messeinrichtung zur Ermittlung des Rundungsverhaltens in der Flexerstation angeordnet sein und deren Vorrundung zur Ermittlung des Rundungsverhaltens des Bleches verwenden, was noch genauer erläutert wird.
  • Die einstellbaren Elemente der Rundmaschine und vorzugsweise auch der Flexerstation sind mit Antrieben versehen (nachfolgend Aktoren genannt), welche diese Elemente im Rahmen ihrer üblichen Einstellmöglichkeiten bewegen können, um der Steuerung der Rundmaschine einen Einfluss auf das Rundungsergebnis zu ermöglichen; der Einfluss der Aktoren auf die Elemente der Rundmaschine ist in den Figuren durch von den Aktoren ausgehende Pfeile in das jeweilige Element symbolisiert, die Bewegung des Elementes durch einen weiteren Pfeil, die Verbindung der Aktoren mit der Steuerung 5 ist durch Leitungen 40 symbolisiert. So kann der Flexerkeil 7 durch den Aktor 6 in Richtung des Pfeils B bewegt werden. Der Vorrundkeil 14 kann durch den Aktor 15 in Richtung des Pfeils C bewegt werden. Für die Walzen 11 und 12 kann ein deren Abstand zueinander bestimmender Antrieb vorgesehen sein, welche auf eine oder auf beide der Walzen wirkt und welcher als Aktor 16 schematisch dargestellt ist. Ferner kann der Aktor 17 auf den Rundkeil 13 einwirken, um diesen im Sinne des Pfeiles D zu bewegen. Es können alle diese Aktoren vorgesehen sein oder nur einer derselben und beliebige Kombinationen sind möglich, welche es der Steuerung 5 der Rundmaschine 4 erlauben, über die Ansteuerung der Aktoren und damit die Einstellung der dadurch bewegten Walzen und/oder Rundkeile das Rundungsergebnis bzw. den Rundungsradius R im Betrieb direkt zu beeinflussen. Die Ausgestaltung der entsprechenden Bewegungselemente und Antriebe kann je nach konstruktivem Aufbau der Rundmaschine variieren, ist aber für den Fachmann ohne weiteres ersichtlich. Die Aktoren können auf elektromotorischer, magnetischer, pneumatischer, hydraulischer oder auf piezoelektrischer Basis beruhen, um die jeweiligen Elemente der Rundmaschine zu verstellen. Dies soll, wie erwähnt, während des Betriebes der Rundmaschine möglich sein, um zwischen aufeinander folgenden Blechen, und vorzugsweise sogar bei der Rundung eines Bleches, durch die Steuerung eine Änderung des Rundungsradius zu bewirken. Die Rundmaschine wird dabei in der Regel in einer für die Blechabschnitte des Stapels 10, welche bestimmte Blecheigenschaften aufweisen, geeigneten Grundeinstellung betrieben, welche bei der Einhaltung diese Blecheigenschaften zu dem gewünschten Rundungsradius R führt. Liegen abweichende Blecheigenschaften vor, welche gemäss der Erfindung gemessen werden, was noch erläutert wird, so kann die Steuerung 5 aufgrund der Messung mindestens einen Aktor bedienen, um die Rundungseigenschaften an gemessene, veränderte Blecheigenschaften anzupassen, so dass wiederum das Rundungsergebnis mit dem gewünschten Rundungsradius R erzielt wird. Ist nur einer der Aktoren vorhanden, z.B. der Aktor 17, welcher auf den Rundkeil 13 einwirkt, so ist die Änderung durch die Steuerung 5 einfach vollziehbar und diese kann durch wenige Testversuche mit Blechen unterschiedlicher Eigenschaft so eingestellt bzw. programmiert werden, dass für diese unterschiedlichen Bleche das korrekte Resultat erzielt wird. Wird dann bei der Messung im Betrieb erkannt, dass ein Blech mit einem Messwert vorliegt, der einem vorgängig gespeicherten Wert entspricht oder in einem vorgängig gespeicherten Wertebereich für den Messwert liegt, so wird die Steuerung entsprechend den Testversuchen reagieren und die entsprechende Rundkeileinstellung vornehmen, die zum gewünschten Rundungsergebnis für ein Blech mit diesem Messwert führt. Es ist ersichtlich, dass mit dem Vorsehen von mehreren Aktoren und daher mehreren Einflussmöglichkeiten auch die Komplexität der in der Steuerung 5 abgelegten Befehlsvarianten steigt, da diese z.B. entscheiden, ob bei sich ändernder Blecheigenschaft die Einhaltung des gewünschten Radius R über den Vorrundkeil 14 bzw. den Aktor 15 erzielt wird, oder geeigneter über den Aktor 16 und die Walzenverstellung. Auch dies kann durch Testbleche durch den Maschineneinrichter ermittelt werden und die Steuerung 5 kann entsprechend eingestellt bzw. programmiert werden. Dasselbe gilt für die Variante, bei welcher auch der Flexerkeil 7 mittels eines Aktors einstellbar ist. Da die mittels der entsprechenden Elemente 7, 14, 11 und 12 oder gegebenenfalls 13 erzielbaren Effekte dem Fachmann für Rundmaschinen bekannt sind, kann er ohne weiteres die Steuerung entsprechend programmieren, damit sie die Änderungen, die er in bekannter Weise durch Einstellung ausserhalb des Betriebes (offline) für eine bestimmte Blecheigenschaft durchführen würde, auch innerhalb des Betriebes (online) durch die Aktoren durchführen kann.
  • Gemäss Ausführungsbeispielen der Erfindung ist eine Messeinrichtung für die Blechabschnitte vorgesehen, mittels welcher vor dem Runden mindestens eine Eigenschaft des jeweiligen Bleches erfasst werden kann, so dass die Rundmaschine für das Runden dieses Bleches entsprechend eingestellt wird. Erfindungsgemäss ist ein Vorgehen, bei welchem eine Messung im Rundungsbetrieb erfolgt, wie dies nachfolgend erläutert wird. Bei den gezeigten Ausführungsformen, sowohl von Figur 1 als auch von Figur 2 oder 3, erfolgt eine Messung mindestens einer Blecheigenschaft innerhalb der Zufuhrstrecke 3, welche hier von der gezeigten Transporteinrichtung gebildet wird. Entfällt eine solche Zufuhrstrecke, gelangt das Blech also direkt über einen Abstapler vom Stapel 10 in den Eingangsbereich 25 der Rundmaschine, wo es von dieser erfasst und weitergefördert wird, so erfolgt die Messung der mindestens einen Blecheigenschaft entweder beim Abstapler und/oder direkt beim Eingang oder in der Rundmaschine 4, insbesondere in der Flexerstation. Dazu kann der Fachmann die nachfolgend beschriebenen Messeinrichtungen ohne weiteres so anordnen, dass diese nicht, wie gezeigt, in der Zufuhrstrecke 3 liegen, sondern beim Abstapler und/oder beim Eingang der Rundmaschine oder in der Rundmaschine, insbesondere in einer Flexerstation derselben. Ein solches Beispiel ist in den Figuren 4 und 5 dargestellt. Im gezeigten Beispiel von Figur 1 ist eine Messeinrichtung 27 dargestellt, welche zwischen den Walzenpaaren 21, 22 und 23, 24 liegt. Diese Messeinrichtung ist mit der Steuereinrichtung 5 verbunden, so dass der Messwert oder ein abgeleiteter Wert der die Blecheigenschaften angibt, an die Steuerung 5 abgegeben werden kann.
  • Zusätzlich zu der Messeinrichtung 27 und der weiteren, noch zu erläuternden Messeinrichtungen der Beispiele gemäss den Figuren 2 bis 6, kann eine Messeinrichtung 28 vorgesehen sein, welche auf grundsätzlich dem Fachmann bekannte Weise die Blechdicke des jeweiligen Blechabschnittes misst. Solche Blechdicken-Messgeräte sind ebenfalls bekannt und handelsüblich und werden hier nicht weiter erläutert. Der Ausgangswert der Blechdickenmessung wird der Steuerung 5 zugeführt und wird dort ebenfalls zur Einstellung mindestens eines der Steuerung auf diese Weise zu dem Messwert oder den Messwerten oder entsprechend abgeleiteten Werten gelangt, welche die Einstellung mindestens eines der Aktoren erlaubt. Im gezeigten Beispiel von Figur 1 ist eine Messeinrichtung 27 dargestellt, welche zwischen den Walzenpaaren 21, 22 und 23, 24 liegt. Diese Messeinrichtung ist mit der Steuereinrichtung 5 verbunden, so dass der Messwert oder ein abgeleiteter Wert der die Blecheigenschaften angibt, an die Steuerung 5 abgegeben werden kann. Bevorzugt ist die Messeinrichtung 27 eine Einrichtung, welche die Messung der Festigkeit des jeweiligen Blechabschnittes, in der Figur des Blechabschnittes 1, erlaubt. Zum Beispiel handelt es sich dabei um ein berührungslos arbeitendes Messverfahren. Ein bekanntes berührungsloses Messverfahren, welches bei Stahlbändern angewendet wird, und hier neu für einzelne Blechabschnitte angewendet wird, basiert auf einer periodischen Magnetisierung des Metalls und der anschliessenden Messung des Gradienten der magnetischen Restfeldstärke auf der Oberseite und der Unterseite des Bandes bzw. hier des Abschnittes. Der gemessene Wert der magnetischen Restfeldstärke bzw. dem berechneten Gradienten wird über Korrelationsbeziehungen die mechanische Festigkeit des Blechabschnittes zugeordnet, welche insbesondere die Zugfestigkeit und die Streckgrenze des jeweiligen Bleches umfasst. Eine solche Messeinrichtung ist unter der Marke IMPOC® bekannt und im Handel erhältlich und wird von der Firma EMG Automation GmbH, Wenden, Deutschland hergestellt und vertrieben. Mit einer solchen Messeinrichtung lassen sich die Festigkeitseigenschaften der Blechabschnitte ermitteln, welche direkt einen Einfluss auf die Rundungseigenschaften haben, und der entsprechende Messwert wird an die Steuerung 5 abgegeben, welche insbesondere bei Erhöhung oder Erniedrigung der Festigkeitswerte gegenüber einem voreingestellten Sollwert oder Sollwertbereich mindestens einen der Aktoren bedient, um die Rundmaschine an die veränderten Festigkeitswerte im Betrieb anzupassen. Weicht somit der gemessene Festigkeitswert für den Blechabschnitt 1 von einem voreingestellten Sollwert oder Sollwertbereich ab und liegt bei einem anderen voreingestellten Wert oder Wertebereich, für den die Steuerung Anweisungen zur Einstellung der Rundmaschine besitzt, so wird die Steuerung 5 für diesen Blechabschnitt 1 z.B. den Aktor 17 für den Rundkeil 13 und allenfalls auch den Aktor 15 für den Vorrundkeil 14 betätigen, nachdem der vorherige Blechabschnitt 2 die Rundwalzen 11,12 verlassen hat, so dass das Rundungsverhalten der Rundmaschine an die gegenüber dem Blech 2 unterschiedliche Festigkeitseigenschaft des Bleches 1 angepasst ist, so dass wiederum der gewünschte Rundungsradius R resultiert, wenn das Blech 1 die Rundmaschine durchläuft. Ebenso wird mit dem nachfolgenden und weiteren nachfolgenden Blechabschnitten verfahren, so dass sich im Betrieb, sofern nötig, eine Anpassung für jeden Blechabschnitt ergibt. Anstelle des erwähnten Produktes INPOC® ist auch ein handelsübliches Produkt 3R-AQC der Firma 3R Technics GmbH, Zürich, Schweiz anwendbar, welches ebenfalls Blecheigenschaften berührungs- und zerstörungsfrei misst, indem durch eine Messspule Wirbelströme im Blech erzeugt und diese wiederum gemessen werden. Aus der Wirbelstrommessung können ebenfalls über Korrelation die mechanischen Festigkeitseigenschaften, wie Härte, Zugfestigkeit, Streckgrenze, des Bleches gemessen werden.
  • Zusätzlich oder anstelle der Messeinrichtung 27 und der weiteren, noch zu erläuternden Messeinrichtungen der Beispiele gemäss den Figuren 2 bis 6, kann eine Messeinrichtung 28 vorgesehen sein, welche auf grundsätzlich dem Fachmann bekannte Weise die Blechdicke des jeweiligen Blechabschnittes misst. Solche Blechdicken-Messgeräte sind ebenfalls bekannt und handelsüblich und werden hier nicht weiter erläutert. Der Ausgangswert der Blechdickenmessung wird der Steuerung 5 zugeführt und wird dort ebenfalls zur Einstellung mindestens eines der Aktoren verwendet, um die Rundmaschine 4 an die Blecheigenschaft "Dicke" anzupassen.
  • Die Figuren 2 und 3 zeigen weitere Ausführungsformen, bei welcher gleiche Bezugszeichen wiederum gleiche Elemente bezeichnen. Sämtliche Erwägungen, welche für die Ausführungsformen der Figur 1 gemacht worden sind, gelten ebenfalls für die Ausführungsformen der Varianten gemäss den Figuren 2 und 3. Auch hier beeinflusst die Steuerung 5 über die Aktoren die Rundmaschine 4, ggf. inklusive der Flexerstation. Als Messeinrichtung ist bei dieser Ausführungsform eine Vorrundung vorgesehen, bei welcher ein Teil des Blechabschnittes gerundet wird und das aktuelle Verhalten dieses Blechabschnittes auf diese Vorrundung gemessen wird. Für die Vorrundung können z.B. die Walzen 30 und 31 vorgesehen sein, welchen in der Regel ein Keil 32 vorgeschaltet ist. Die Walzen werden durch eine nicht dargestellte Anordnung so betrieben, dass sie eine Rundung nur für einen Teil des Blechabschnittes bewirken, vorzugsweise für einen vorderen Abschnitt, wie in der Figur dargestellt. Der Blechabschnitt kann nachfolgend auch wieder gerade gebogen werden. In der Figur sind drei verschiedene mögliche Rundungsverläufe eines Bleches mit a, b und c bezeichnet und mit verschiedener Strichdarstellung in der Figur dargestellt. Durch eine Messanordnung 33 bis 35 kann ermittelt werden, wie sich der Blechabschnitt bei dieser Messrundung verhält. Dazu können z.B. mehrere Sensoren 34 in linearer Abfolge in Blechdurchlaufrichtung angeordnet sein. Diese Sensoren können mechanisch auf Berührung reagieren oder können elektrische Sensoren sein, die auf Grund der elektrischen Leitfähigkeit des Bleches ansprechen. Insbesondere können es elektrische Kontakte sein, wie dies auch anhand des Beispiels der Figuren 4 bis 6 noch näher erläutert wird. Die Sensoren können auch optische Sensoren sein, z.B. Lichtschranken oder akustische Sensoren, z.B. Ultraschallabstandssensoren. Durch die Sensoren kann insbesondere festgestellt werden, an welcher Auftreffstelle 35, oder zu welcher Auftreffzeit, die Vorderkante des Bleches 1 auf die Sensorenanordnung auftrifft, was ein Mass für das Rundungsverhalten des jeweiligen Bleches, bzw. den Verlauf a oder b oder c darstellt. Optisch, durch Bildverarbeitung oder akustisch mit Abstandsmessung kann auch direkt die Form des gerundeten Bereichs a, b oder c bestimmt werden. Das so gemessene Rundungsverhalten des Bleches in der Vorrundung wird der Steuerung 5 als Messwert oder abgeleiteter Wert zugeführt und dient dort zur Einstellung mindestens eines der Aktoren. Es ist in diesem Ausführungsbeispiel ebenfalls der Aktor 6 und ein einzelner Aktor 15' gezeigt, der die Einstellung sowohl des Vorrundkeils 14 als auch mindestens einer der Walzen 11, 12 symbolisiert bzw. die Einstellung der Schrägstellung der Walzen. Natürlich könnte auch hier ein Keil 13 mit zugehörigem Aktor vorgesehen sein. Neben der Messeinrichtung 33 könnte zusätzlich eine oder könnten beide der bei Figur 1 geschilderten Messeinrichtungen 27, 28 vorgesehen sein. Ebenso könnte die Messeinrichtung 33 bei der Ausführung nach Figur 1 vorgesehen sein oder innerhalb der Rundmaschine 4, z.B. in der Flexerstation derselben. Figur 3 zeigt eine Ausführungsform, bei welcher die obigen Ausführungen ebenfalls gelten und gleiche Bezugszeichen wiederum gleiche oder ähnliche Elemente bezeichnen. Bei dieser Ausführungsform ist bei der Messeinrichtung 33 zusätzlich ein Keil 36 analog dem Flexerkeil der Flexerstation vorgesehen. Dieser Keil 36 beeinflusst die Vorrundungsmessung ähnlich wie der Flexerkeil die Rundung beeinflusst, so dass dadurch die Messung der Rundungseigenschaft besser an die spätere Rundung angepasst ist. Entsprechend wird auch der Flexerkeil 36 vorzugsweise durch einen Aktor und die Steuerung 5 eingestellt.
  • Anhand der Figuren 4 bis 6 wird eine bevorzugte Ausführungsform zur Ermittlung des Rundungsverhaltens des jeweiligen Bleches erläutert. Die entsprechende Messeinrichtung 50 kann, wie dies für die zuvor beschriebenen Messeinrichtungen 27 oder 33 bis 35 oder 33 bis 36 der Fall ist, in der Zuführstrecke 3 angeordnet sein. Sie kann aber auch im eigentlichen Rundapparat angeordnet sein, insbesondere zwischen der Flexerstation mit den Walzen 8, 9 und dem Flexerkeil 7; sie ist dann aber bevorzugt ein Teil der Flexerstation bzw. in dieser angeordnet. So können die dargestellten Walzen 28 und 29 der Messeinrichtung anstelle der Walzen 8 und 9 der Flexerstation des Rundapparates treten oder anstelle der Walzen 31 und 30 in der Zuführstrecke 3. Für den bevorzugten, da Platz sparenden Fall, dass die Messeinrichtung 50 im Rundapparat angeordnet ist, sind die Walzen 41 und 42 somit die Rundwalzen (entsprechend den Rundwalzen 11 und 12 der vorhergehenden Beispiele) und es könnten somit die zuvor beschriebenen Elemente bzw. Keile 14 und 13 desselben vor bzw. nach den Rundwalzen 41, 42 angeordnet sein, was in Figur 4 lediglich mit den Rechtecken 13 und 14 angedeutet ist. Auch andere Platzierungen vor dem Rundapparat 4 oder in diesem sind natürlich möglich. In dem gezeigten Beispiel weist die Messeinrichtung 50 einen Flexerkeil 37 auf. Wird die Messeinrichtung somit entsprechend der Messeinrichtung 33 bis 36 in der Zuführstrecke 3 eingesetzt, so kann dieser Flexerkeil 37 so eingestellt werden, wie der Flexerkeil 7 im Rundapparat. Ist die Messeinrichtung im Rundapparat selber angeordnet, und insbesondere in der Flexerstation, so übernimmt der Flexerkeil 37 der Messeinrichtung direkt auch die Funktion des Flexerkeils 7 des Rundapparates gemäss den vorherigen Beispielen, so dass das Rundungsverhalten mit Flexerkeil gemessen wird. Die Messeinrichtung 50 könnte indes auch auf ihren Flexerkeil 37 verzichten. Die Messeinrichtung weist mindestens einen Sensor 45 auf, mit dem das Ankommen des jeweiligen Bleches 1 bei oder in der Messeinrichtung 50 detektiert werden kann. Insbesondere wird die in Transportrichtung vordere Kante des Bleches detektiert, insbesondere durch einen optischen Sensor, insbesondere eine Lichtschranke oder mehrere Lichtschranken. Diese Erkennung des Bleches 1 startet bei der Messeinrichtung 50 eine Zeitmessung. Diese kann durch ein separates Zeitmessmittel erfolgen oder durch die Steuerung 5, die bereits erwähnt worden ist, und die in diesem Fall auch die Messeinrichtung steuert bzw. Teil derselben ist. Diese Variante ist in Figur 4 dargestellt. Die Zeitmessung wird beendet, wenn die Vorderkante des Bleches auf einer Messplatte 38 auftrifft, was über eine Leitung an die Steuerung 5 gemeldet wird. Wie in Figur 4 in Seitenansicht ersichtlich, ist die Zeit entsprechend dem Rundungsverhalten unterschiedlich und stellt somit ein Mass für das Rundungsverhalten des Bleches dar. Mit diesem Mass wird somit nachfolgend der Rundapparat entsprechend gesteuert, wie dies bereits beschrieben worden ist. In Figur 4 ist dies mit dem Leitungsstrang 40 angedeutet, welcher von der Steuerung 5 auf die vorbeschriebene Weise zu den vorgängig erläuterten Aktoren der Rundmaschine zur Beeinflussung des Rundungsverhaltens führt.
  • Die Erkennung des Auftreffens der Vorderkante des Bleches auf die Messplatte 38 der Messeinrichtung 50 erfolgt vorzugsweise elektrisch. Dies kann so erfolgen, dass die Messplatte auf einem ersten elektrischen Potential liegt und mindestens eine der Walzen 28, 29 auf einem anderen elektrischen Potential liegt (und falls vorhanden auch der Flexerkeil 27 der Messeinrichtung auf dem elektrischen Potential der Walze liegt). Trifft die Vorderkante des elektrisch leitenden Bleches auf die Messplatte 38, so werden die beiden Potentiale kurzgeschlossen, was durch einen entsprechenden Stromfluss oder einen entsprechenden Spannungsabfall der Messspannung festgestellt werden kann. Damit wird die Zeitmessung gestoppt bzw. ist die Zeit zwischen Erkennung der Vorderkante durch den Sensor 45 und das Auftreffen der Vorderkante auf der Messplatte 38 bestimmt und damit die Rundung des Bleches in der Messeinrichtung 50. Bei beschichteten Blechen kann der elektrische Kontakt zwischen den Walzen 28, 29 und ggf. dem Flexerkeil 37 und dem Blech ungenügend sein. Deshalb wird bevorzugt die Messplatte 38 mit einer Mehrzahl von elektrisch voneinander isolierten, nebeneinander liegenden Messteilen 38a, 38b, 38c, 38d usw. ausgeführt, welche abwechslungsweise ebenfalls auf den unterschiedlichen elektrischen Potentialen liegen. Damit ist auch durch das Kurzschliessen von solchen Messteilen durch die Vorderkante des Bleches, die immer unbeschichtet ist, das Auftreffen auf der Messplatte 38 elektrisch detektierbar Diese Teile können keilförmig ausgestaltet sein, wie in Figur 4 und 5 ersichtlich. Figur 5 zeigt einige der nebeneinander liegenden Messkeile in schaubildlicher Darstellung. Figur 6 zeigt eine entsprechende Messschaltung mit einer Messspannungsquelle Us, wobei die Walzen 28, 29 und der Flexerkeil 37 auf Massepotential liegen. Ebenfalls auf Massepotential liegen die Messkeile 38b, 38d usw. (in Figur 6 ist zur Vereinfachung nur 38b dargestellt). Auf Pluspotential liegen dagegen die Messkeile 38a, 38c usw. (in Figur 6 ist nur 38a dargestellt). Die elektrischen Kurzschlussmöglichkeiten für die Messspannung durch das Auftreffen des Bleches auf der Messplatte 38, wobei die Messspannung detektierbar abfällt und somit die Zeitmessung stoppt, liegen somit beim Kurzschluss Messkeil - Messkeil oder Messkeil - Flexerkeil oder Messkeil - Walze. Die Spannungsabfalldetektion ist durch die Voltmetersymbole in Figur 6 dargestellt.
  • Das Verfahren und die Vorrichtung kommen insbesondere beim Schweissen von Dosenzargen zur Anwendung.
  • Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und auch in anderer Weise innerhalb des Umfangs der folgenden Ansprüche ausgeführt werden kann.

Claims (16)

  1. Verfahren zum Runden von einzelnen Blechabschnitten (1,2) zu einzelnen Behälterzargen-Rohlingen, bei welchem die einzelnen Blechabschnitte von einem Stapel (10) über eine Zuführstrecke (3) oder direkt einer Rundmaschine (4) zugeführt und in dieser gerundet werden, wobei vor und/oder in der Zuführstrecke (3) und/oder an oder in der Rundmaschine (4) mindestens eine Blecheigenschaft gemessen wird, welche die Rundung beeinflusst, dass der Messwert oder ein davon abgeleiteter Wert der Steuerung (5) der Rundmaschine (4) zugeführt wird, und dass die Rundmaschine in Abhängigkeit von dem Messwert oder abgeleiteten Wert derart gesteuert wird, dass der Rundungsradius (R) der Zarge bei sich ändernder Blecheigenschaft im wesentlichen konstant gehalten wird, dadurch gekennzeichnet, dass als Blecheigenschaft das Rundungsverhalten gemessen wird, wobei die Messung im Rundungsbetrieb zerstörungsfrei an nacheinander folgenden Blechabschnitten durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rundung mit einer Geschwindigkeit von 100 bis 450 m/Minute erfolgt und dass die gerundeten Behälterzargen-Rohlinge aus der Rundmaschine einer Schweissvorrichtung für Dosenzargen mit einer Z-Schiene zur Positionierung der Zargenkanten und Schweissrollen, insbesondere mit darauf laufenden Drahtzwischenelektroden, zugeführt werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Messung in einer Flexerstation erfolgt.
  4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass das Rundungsverhalten elektrisch und/oder mechanisch und/oder optisch und/oder akustisch gemessen wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Rundungsverhalten elektrisch gemessen wird, indem beim Durchlauf des Bleches dieses an einem vorbestimmten Ort detektiert wird, und dabei insbesondere dessen Vorderkante detektiert wird, und dass eine Zeitmessung erfolgt, mit der die Zeit bestimmt wird, bis das vorgerundete Blech elektrischen Kontakt mit einer Messplatte (38) hat.
  6. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass bei der Messung des Rundungsverhaltens mit Rundwalzen (28, 29; 30, 31) und allenfalls mit einem auf die Rundwalzen folgenden Flexerkeil (37; 36) auf das Blech eingewirkt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass durch den Messwert oder den davon abgeleiteten Wert mindestens eine Rundwalze (11, 12) und/oder ein Rundkeil (13) der Rundmaschine gesteuert wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass durch den Messwert oder den davon abgeleiteten Wert ein Vorrundkeil (14) der Rundmaschine gesteuert wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass durch den Messwert oder den davon abgeleiteten Wert eine Flexerstation der Rundmaschine, insbesondere ein darin angeordneter Flexerkeil (7), gesteuert wird.
  10. Verfahren zur Herstellung von Dosenzargen aus einzelnen Blechabschnitten (1,2), bei welchem die einzelnen Blechabschnitte von einem Stapel (10) über eine Zuführstrecke (3) oder direkt einer Rundmaschine (4) zugeführt und in dieser gerundet werden und die gerundeten Behälterzargen-Rohlinge aus der Rundmaschine einer Schweissvorrichtung für Dosenzargen mit einer Z-Schiene zur Positionierung der Zargenkanten und Schweissrollen, insbesondere mit darauf laufenden Drahtzwischenelektroden, zugeführt werden, wobei vor und/oder in der Zuführstrecke (3) und/oder an oder in der Rundmaschine (4) mindestens eine Blecheigenschaft gemessen wird, welche die Rundung beeinflusst, dass der Messwert oder ein davon abgeleiteter Wert der Steuerung (5) der Rundmaschine (4) zugeführt wird, und dass die Rundmaschine in Abhängigkeit von dem Messwert oder abgeleiteten Wert derart gesteuert wird, dass der Rundungsradius (R) der Zarge bei sich ändernder Blecheigenschaft im wesentlichen konstant gehalten wird, wobei durch den Messwert oder den davon abgeleiteten Wert mindestens eine Rundwalze (11, 12) und/oder ein Rundkeil (13) der Rundmaschine gesteuert wird, dadurch gekennzeichnet, dass die Rundung mit einer Geschwindigkeit von 100 bis 450 m/Minute erfolgt und dass als Blecheigenschaft das Rundungsverhalten gemessen wird, wobei die Messung im Rundungsbetrieb zerstörungsfrei an nacheinander folgenden Blechabschnitten durchgeführt wird und das Rundungsverhalten elektrisch und/oder mechanisch und/oder optisch und/oder akustisch gemessen wird und bei der Messung des Rundungsverhaltens mit Rundwalzen (28, 29; 30, 31) und allenfalls mit einem auf die Rundwalzen folgenden Keil (37; 36) auf das Blech eingewirkt wird.
  11. Rundmaschine (4) zur Rundung einzelner Blechabschnitte (1, 2), wobei die Rundmaschine als Elemente für die Rundung Rundwalzen (11, 12) und gegebenenfalls einen Rundkeil (13) und/oder gegebenenfalls einen Vorrundkeil (14) umfasst sowie Einstellmittel für diese Elemente, und wobei die Rundmaschine mindestens einen Aktor (6, 15, 16, 17) für mindestens eines der Elemente aufweist, durch welchen das Element angetrieben einstellbar ist, und dass durch eine Steuerung (5) der Rundmaschine das Element mittels des Aktors einstellbar ist, wobei die Steuerung ferner einen Eingang für einen Messwert der Blecheigenschaft oder einen davon abgeleiteten Wert aufweist, dadurch gekennzeichnet, dass die Rundmaschine zur Rundung mit einer Geschwindigkeit von 100 bis 450 m/Minute ausgestaltet ist und die Rundmaschine eine Messeinrichtung aufweist, mit der als Blecheigenschaft das Rundungsverhalten gemessen wird, wobei die Messung im Rundungsbetrieb zerstörungsfrei an nacheinander folgenden Blechabschnitten durchgeführt wird.
  12. Rundmaschine nach Anspruch 11, dadurch gekennzeichnet, dass das Rundungsverhalten elektrisch und/oder mechanisch und/oder optisch und/oder akustisch messbar ist.
  13. Rundmaschine nach Anspruch 11, dadurch gekennzeichnet, dass das Rundungsverhalten elektrisch gemessen wird, indem beim Durchlauf des Bleches ab einem bestimmten Ort eine Zeitmessung durchführbar und damit die Zeit bestimmbar ist, bis das vorgerundete Blech elektrischen Kontakt mit einer Messplatte (38) hat.
  14. Rundmaschine nach Anspruch 13, dadurch gekennzeichnet, dass die Messplatte (38) in mehrere nebeneinander liegende, elektrisch voneinander isolierte Messteile (38a, 38b, 38c, 38d) unterteilt ist.
  15. Rundmaschine nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass bei der Messung des Rundungsverhaltens mit Rundwalzen (28, 29; 30, 31) und allenfalls mit einem auf die Rundwalzen folgenden Keil (37; 36) auf das Blech eingewirkt wird.
  16. Schweissvorrichtung für Dosenzargen, mit einer Z-Schiene zur Positionierung der Zargenkanten und mit Schweissrollen, insbesondere mit darauf laufenden
    Drahtzwischenelektroden, umfassend eine Rundmaschine gemäss einem der Ansprüche 11 bis 15.
EP08733799A 2007-05-30 2008-04-17 Verfahren und vorrichtung zum runden von blechabschnitten Active EP2148751B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8622007 2007-05-30
PCT/CH2008/000173 WO2008144946A1 (de) 2007-05-30 2008-04-17 Verfahren und vorrichtung zum runden von blechabschnitten

Publications (2)

Publication Number Publication Date
EP2148751A1 EP2148751A1 (de) 2010-02-03
EP2148751B1 true EP2148751B1 (de) 2012-09-05

Family

ID=39743800

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08733800A Active EP2152445B1 (de) 2007-05-30 2008-04-17 Verfahren und vorrichtung zur einstellung einer flexerstation beim runden von blechen
EP08733799A Active EP2148751B1 (de) 2007-05-30 2008-04-17 Verfahren und vorrichtung zum runden von blechabschnitten

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08733800A Active EP2152445B1 (de) 2007-05-30 2008-04-17 Verfahren und vorrichtung zur einstellung einer flexerstation beim runden von blechen

Country Status (8)

Country Link
US (2) US8573013B2 (de)
EP (2) EP2152445B1 (de)
CN (2) CN101678424B (de)
AT (1) ATE477863T1 (de)
DE (1) DE502008001173D1 (de)
ES (2) ES2348067T3 (de)
PT (1) PT2148751E (de)
WO (2) WO2008144947A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110191B1 (de) * 2008-04-18 2011-03-09 Soudronic AG Rundapparat mit einem gelenkigen Vorrund-Element an der Runstation sowie Verfahren zum Runden von Blechen
CH700092A2 (de) * 2008-12-09 2010-06-15 Soudronic Ag Vorrund-Element an einem Rundapparat.
CN104624737B (zh) * 2014-12-24 2017-02-08 广东中南声像灯光设计研究院 Plc控制扭矩调节与滚压折弯的折弯机及方法
CA2972025A1 (en) * 2015-01-09 2016-07-14 Illinois Tool Works Inc. Inline resistive heating system and method for thermal treatment of continuous conductive products
WO2018177876A1 (de) 2017-03-29 2018-10-04 Can Man Ag Verfahren zum runden von blechzuschnitten für gebinde und eine längsnaht-schweissmaschine für die herstellung von dosenzargen mit einer rundstation
EP3706931A1 (de) * 2017-11-10 2020-09-16 Promau S.r.l. Vorrichtung und verfahren zur unterstützung und gesteuerten fortbewegung eines bleches in einer biegemaschine zur herstellung zylindrischer oder kegelstumpfförmiger strukturen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2221776C3 (de) 1972-05-04 1980-01-24 Hoesch Ag, 4600 Dortmund Steuereinrichtung zum Verstellen der Bandbiegevorrichtung eines Schraubennah trohrwerkes
IT8249012A0 (it) 1982-08-20 1982-08-20 Fmi Mecfond Aziende Mecc Saldatrice elettrica a resistenza per corpi scatolari con mezzi perfezionati per la calandratura della fascetta metallica, e il trasporto dei corpi calandrati fino alla stazione di saldatura
CH671945A5 (de) * 1987-05-07 1989-10-13 Elpatronic Ag
US5209625A (en) * 1989-08-22 1993-05-11 Elpatronic Ag Apparatus for rounding and conveying onwards sheet-metal blanks for can bodies
CN1029092C (zh) * 1990-03-05 1995-06-28 卡尔·厄思斯特·洛巴哈 金属薄板的成型
ATE120389T1 (de) * 1990-09-28 1995-04-15 Promau Srl Programmierbare blechbiegemaschine.
FR2687336B1 (fr) * 1992-02-14 1996-05-15 Jammes Ind Sa Ligne de production automatisee de viroles roulees soudees.
CN2265864Y (zh) * 1996-06-03 1997-10-29 吴忠市台钻厂 金属件滚圆、折角器
CN1138605C (zh) * 1998-04-16 2004-02-18 湖北重型机器集团有限公司 滚弯工件曲率的测量方法及可测工件曲率的辊式弯曲机
DE102004041732A1 (de) * 2004-08-28 2006-03-02 Sms Demag Ag Verfahren zum Richten eines Metallbandes und Richtmaschine

Also Published As

Publication number Publication date
US8627694B2 (en) 2014-01-14
ATE477863T1 (de) 2010-09-15
CN101678423A (zh) 2010-03-24
US20100154499A1 (en) 2010-06-24
DE502008001173D1 (de) 2010-09-30
US20100154500A1 (en) 2010-06-24
CN101678424A (zh) 2010-03-24
ES2391795T3 (es) 2012-11-29
CN101678424B (zh) 2014-04-02
CN101678423B (zh) 2012-05-23
ES2348067T3 (es) 2010-11-29
WO2008144946A1 (de) 2008-12-04
WO2008144947A1 (de) 2008-12-04
EP2148751A1 (de) 2010-02-03
US8573013B2 (en) 2013-11-05
EP2152445B1 (de) 2010-08-18
PT2148751E (pt) 2012-11-29
EP2152445A1 (de) 2010-02-17

Similar Documents

Publication Publication Date Title
EP2148751B1 (de) Verfahren und vorrichtung zum runden von blechabschnitten
EP0796158B1 (de) Verfahren und vorrichtung zur optimierten herstellung von schraubenfedern auf federwindeautomaten
EP0913352B1 (de) Taschenfalzwerk und Verfahren zur Registerregelung eines Taschenfalzwerks
DE2930005A1 (de) Verfahren und einrichtung zum herstellen eines plattenmaterials, das eine gleichmaessige breite und eine laengsweise dickenaenderung hat
EP1505025B1 (de) Verfahren und Vorrichtung zur Regelung der Bahnzugkräfte und der Schnittregisterfehler einer Rollenrotationsdruckmaschine
DE10335887A1 (de) Verfahren und Vorrichtung zur Regelung der Bahnzugkraft und des Schnittregisters einer Rollenrotationsdruckmaschine
EP2707208B1 (de) Vorrichtung und verfahren zum kalibrieren und abgleichen einer messeinrichtung einer tablettenpresse
EP2110191B1 (de) Rundapparat mit einem gelenkigen Vorrund-Element an der Runstation sowie Verfahren zum Runden von Blechen
EP1321411A1 (de) Verfahren zur Einstellung der Falzspaltenweite mehrerer Falzwalzenpaare sowie Falzmaschine, bei der das Verfahren durchgeführt werden kann
WO2008119090A1 (de) Verfahren zur festlegung eines einstellparameterwerts einer biegepresse
EP3572161B1 (de) Verfahren und vorrichtung zur herstellung eines produkts aus flexibel gewalztem bandmaterial
DE102010013913B4 (de) Fügeverfahren und Fügevorrichtung
CH678407A5 (de)
EP1013589B1 (de) Taschenfalzwerk und Verfahren zur Registerregelung eines Taschenfalzwerks
EP0728555B1 (de) Verfahren zum Schweissen von Behältern
DE19725726C2 (de) Verfahren zur Planheitsmessung von Bändern, insbesondere Metallbändern
EP3566788A1 (de) Anlage und verfahren zum vereinzeln von flexibel gewalztem bandmaterial
WO2003072278A1 (de) Verfahren zur reduktion der biegewinkelfehler beim gesenkbiegen
EP2916988B1 (de) Verfahren und vorrichtung zum rollnahtschweissen von behälterzargen
EP0870183A1 (de) Vorrichtung und verfahren zum messen der oberflächenhärte von gewickelten rollen aus papier- oder anderen materialbahnen
EP3822014A1 (de) Verfahren zum abtasten der oberfläche metallischer werkstücke
DE3533275A1 (de) Abtastvorrichtung zur bahnlaufregelung von warenbahnen
DE10144731A1 (de) Schweißzange sowie Verfahren zur Beurteilung der Qualität einer Schweißverbindung
EP3554753B1 (de) Verfahren und vorrichtung zur rollnahtschweissung von behälterzargen
EP0279173A2 (de) Vorrichtung zur Messung kleiner Dickenprofiländerungen in bandförmigem Material, insbesondere fotografischem Basispapier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100413

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 573843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008108

Country of ref document: DE

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2391795

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121129

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20121114

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008108

Country of ref document: DE

Effective date: 20130606

BERE Be: lapsed

Owner name: SOUDRONIC A.G.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 573843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080417

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130417

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230406

Year of fee payment: 16

Ref country code: IT

Payment date: 20230426

Year of fee payment: 16

Ref country code: FR

Payment date: 20230424

Year of fee payment: 16

Ref country code: ES

Payment date: 20230627

Year of fee payment: 16

Ref country code: DE

Payment date: 20220620

Year of fee payment: 16

Ref country code: CH

Payment date: 20230502

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 17