EP2138766B1 - Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage - Google Patents

Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage Download PDF

Info

Publication number
EP2138766B1
EP2138766B1 EP08011324.4A EP08011324A EP2138766B1 EP 2138766 B1 EP2138766 B1 EP 2138766B1 EP 08011324 A EP08011324 A EP 08011324A EP 2138766 B1 EP2138766 B1 EP 2138766B1
Authority
EP
European Patent Office
Prior art keywords
boiler
substance
nozzle
propellant
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08011324.4A
Other languages
English (en)
French (fr)
Other versions
EP2138766A1 (de
Inventor
Roland Halter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Innova AG
Original Assignee
Hitachi Zosen Innova AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Innova AG filed Critical Hitachi Zosen Innova AG
Priority to ES08011324.4T priority Critical patent/ES2573638T3/es
Priority to PL08011324.4T priority patent/PL2138766T3/pl
Priority to EP08011324.4A priority patent/EP2138766B1/de
Priority to JP2009145230A priority patent/JP5614523B2/ja
Priority to US12/489,346 priority patent/US20100154690A1/en
Priority to US12/564,032 priority patent/US8763540B2/en
Publication of EP2138766A1 publication Critical patent/EP2138766A1/de
Application granted granted Critical
Publication of EP2138766B1 publication Critical patent/EP2138766B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/20Non-catalytic reduction devices

Definitions

  • the present invention relates to a method for injecting a substance into a boiler of a waste incineration plant according to the preamble of claim 1 and to an apparatus for carrying out the method according to the preamble of claim 9.
  • reducing agents in aqueous solution eg ammonia water or urea
  • gaseous eg ammonia
  • the optimum temperature range is approximately between 850 ° C and 950 ° C.
  • the corresponding area of the boiler is also referred to as a secondary combustion chamber.
  • WO 91/17814 discloses a method according to which a means for the reduction of pollutants is injected at a temperature in a flue gas passage, in which the pollutants are effectively reduced.
  • the nozzles are arranged in different, distributed over the height zones.
  • DE-C-3722523 proposed a nozzle assembly on a vertically displaceable lance stick over which the location of the ammonia feed can be adjusted.
  • WO 91/06506 discloses a system for reducing nitrogen oxides in the exhaust gas from the combustion of a carbonaceous fuel.
  • a treatment agent is introduced into the exhaust gas by means of injectors which are fed by a mixer.
  • DE-A-4434943 discloses a method in which the optimal temperature for the reduction temperature level is determined in the boiler via temperature sensors and the nozzles for supplying the reducing agent are aligned accordingly.
  • the DE 20 2006 013 152 a conduit arrangement for several atomizer lances on a boiler, through which an additive is fed into the boiler.
  • the feed quantity of the additive for each atomizing lance is set in a distributor.
  • every single two-substance lance or two-fluid nozzle has its own feed for the additive and its own feed for the compressed air, its construction is relatively complicated.
  • two-substance lances or two-substance nozzles have relatively large dimensions, which makes their installation in the boiler of an incinerator difficult.
  • ammonia is injected, then in the systems based on two-substance nozzles it is usually present in a very dilute solution in the form of ammonia water in order to produce a to ensure uniform distribution of the ammonia to the individual two-fluid nozzles.
  • softened water is generally used in order to minimize lime deposits in the nozzle or in the liquid line leading to it.
  • the object of the present invention is thus to provide a simple method for injecting a substance which is a reducing agent for the reduction of nitrogen oxides into a boiler of a waste incineration plant, which makes it possible to set the desired amount of substance for individual injection sites in a targeted manner and this setting rapidly adapt.
  • the substance to be injected is passed, starting from at least one distributor, via lines which branch off from the distributor to a respective nozzle assigned to the respective line.
  • the quantity of substance to be passed to the respective nozzle is set in the distributor.
  • the method of the present invention is used primarily for the above-mentioned SNCR methods.
  • the substance to be injected is therefore a reducing agent for the reduction of nitrogen oxides, in particular ammonia or urea.
  • the invention makes it possible to individually set the amount of reducing agent to be injected as a function of the prevailing temperature profile in the boiler for each nozzle. This can ensure that the reducing agent is mainly injected there, where the optimum temperature range for the reduction exists. This means that at a high reduction rate of nitrogen oxides, the slip and thus also the consumption of reducing agent is minimized, resulting overall in a very economical and ecological operation.
  • this change is made steplessly, i.e., in a state of change. continuous, performed.
  • the nozzles are arranged in a plurality, preferably at least three horizontal (and thus generally aligned transversely to the flow direction of the flue gas) nozzle planes.
  • the amount of substance to be injected can be shifted continuously from a first nozzle plane to a further nozzle plane, i. that it is infinitely reduced in a first horizontal nozzle level and simultaneously increased continuously on a further horizontal nozzle level. This makes it possible to respond optimally to temporal temperature fluctuations in the case of SNCR methods, which is not possible in the case of an abrupt nozzle level changeover and the resulting undefined transition states in this manner.
  • the invention further makes it possible to carry out said stepless change or displacement very quickly.
  • this is made possible by the fact that, according to the method according to the invention, a central dilution of the substance, as is carried out, for example, in the two-substance nozzle-based SNCR method, is not necessary is.
  • the present invention allows itself to adequately respond to short-term temperature changes.
  • the total quantity of reducing agent to be injected is regulated as a function of the nitrogen oxide content present in the flue gas after the boiler.
  • means for determining the nitrogen oxide content are arranged downstream of the boiler. The determined nitrogen oxide content is compared to control the required total amount of reducing agent with a predetermined setpoint.
  • the amount of reducing agent to be passed to the respective nozzle is generally controlled as a function of the temperature profile in the boiler.
  • the reducing agent is mainly injected where the optimal temperature range for the reduction exists.
  • any temperature measuring device in question which is suitable for this purpose.
  • Corresponding temperature measuring devices are known to the person skilled in the art. So-called radiation pyrometers, which allow an accurate measurement of the gas temperature, are particularly preferably used as temperature measuring devices.
  • the temperature gradient falling in the flow direction of the flue gas can be determined by means of an algorithm known to the person skilled in the art. By determining the temperature at a defined point, the be determined in the boiler temperature profile in the flow direction.
  • the temperature profile in the boiler is particularly preferably determined by means of at least two temperature measuring devices. It is conceivable, for example, that at least two temperature measuring devices are provided per distributor.
  • the amount of locally required reducing agent also depends on the local flow rate, since at a high flow rate more reducing agent is needed than at a low flow rate. In this regard, it is conceivable additionally to regulate the amount of reducing agent to be passed to the respective nozzle as a function of the flow velocity distribution of the flue gas in the boiler. It is usually sufficient to determine the flow rate once.
  • the adjustment of the reducing agent quantity to be conducted to the individual nozzles takes place according to the invention in the distributor. Specifically, the metered reducing agent is supplied to the propellant stream and that according to the invention before the branching of the line leading to the respective nozzle. Thus, therefore, before the branching there is a mixture containing the blowing agent and the reducing agent.
  • a distribution of the amount of blowing agent takes place.
  • a first amount of blowing agent is set for the nozzles acted upon by the reducing agent, while a second blowing agent quantity for cooling the said nozzles is set for the nozzles not acted upon by the reducing agent.
  • the means known to those skilled in the art are suitable, which are suitable for the corresponding purposes.
  • the amount of reducing agent or blowing agent can be adjusted by means of control valves.
  • the reducing agent is preferably in aqueous solution.
  • aqueous solution In the case of dissolved ammonia is therefore called ammonia water.
  • a commercial ammonia solution is used, e.g. a 25% ammonia solution.
  • any other solution is also conceivable which liberates ammonia at the temperatures present in the vessel, e.g. a solution containing an ammonium salt such as ammonium carbonate, ammonium formate and / or ammonium oxalate.
  • the blowing agent used is preferably air or steam.
  • ammonia water to be injected is atomised into droplets when it is fed into the air stream and then distributed immediately afterwards to the individual nozzles or to the respective lines leading to the nozzles. Any coalescing droplets are atomized again in the sonic nozzle.
  • nozzle nozzle pressure of about 1 to 5 bar is usually set so that the ammonia water or evaporating in the boiler ammonia can penetrate far enough into the flue gas stream.
  • Those nozzles that are not in operation, i. are not acted upon with ammonia are flowed through for cooling with a smaller amount of air.
  • a first air flow is adjusted for the nozzles acted upon by the ammonia water, while for those nozzles which are not in operation, another, compared to the first air flow lower air flow is set.
  • the branching from the manifold, leading to the respective nozzles lines are usually in the form of tubes, as they are known in the art for the corresponding purposes.
  • nozzles for example, round jet nozzles or fan nozzles can be used, with other suitable nozzles are known in the art.
  • an alternate arrangement of round jet nozzles with fan nozzles is conceivable.
  • Fig. 1 the device 2 is associated with a boiler 4 of a waste incineration plant, which is traversed by the flue gas combustion.
  • the flow direction of the flue gas is shown by means of parallel arrows 6.
  • the device 2 comprises a distributor 8.
  • a distributor 8 In this opens a supply line 10 for supplying a substance, in particular a reducing agent for the reduction of nitrogen oxides, and a supply line 12 for supplying a propellant.
  • three nozzles 14a, 14d, 14g and 14b, 14e, 14h and 14c, 14f, 14i are arranged one above the other and thus each in a vertical nozzle plane.
  • the distributor is also associated with two temperature measuring devices 18a, 18b, based on which the present in the boiler 4 temperature profile - as described above - is determined continuously in two dimensions.
  • the quantity of reducing agent to be passed to the respective nozzle 16a-i is set in distributor 2 and combined with the blowing agent.
  • the propellant flow containing the metered amount of reducing agent is subsequently conducted via the respective line 14a-i to the nozzle 16a-i at the desired injection point where it is injected into the boiler 4.
  • the non-pressurized with the reducing agent nozzles are cooled with a set also in the distributor 8, lower amount of blowing agent.
  • the reducing agents used in the described SNCR process are preferably ammonia water, which is supplied to a propellant stream of air or steam.
  • the distribution of the ammonia water takes place in such a way that it is injected in the optimum temperature range of 850 to 950 ° C. for the reduction of nitrogen oxides.
  • Fig. 2 illustrates further, according to which the temperature distribution for conventional boiler usually from about 1000 to 1100 ° C in the lowest part of the boiler, ie at about 2 to 4 m above the grate, to about 700 to 900 ° C in the uppermost region of the boiler, ie at about 20 to 40 m above the grid.
  • the region overlapping with the dark shaded, optimal temperature range of the SNCR process corresponds to that region of the boiler in which the nozzles distributed on the three horizontal nozzle planes are for optimal reduction of nitrogen oxides should be in operation.
  • nozzle levels are arranged at irregular intervals from each other. Depending on the boiler but also a regular arrangement of the nozzle levels is conceivable.
  • the diagram for a corresponding boiler provides information about the arrangement of the nozzle levels to be selected in order to ensure injection in the preferred temperature range.
  • a concrete embodiment for the metered addition of ammonia water for an SNCR process is shown in Table 1.
  • the boiler is divided into four boiler sectors, namely a rear left (HL) boiler sector, a rear right (HR) boiler sector, a left front boiler sector (VL) and a front right boiler (VR) sector.
  • the nozzles are arranged in the boiler sectors on three horizontal nozzle levels.
  • the temperature is determined by means of a radiation pyrometer at a given point.
  • the temperature of the individual nozzle levels in the boiler sectors can be determined on the basis of the respective measured temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Eindüsen eines Stoffes in einen Kessel einer Müllverbrennungsanlage gemäss dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens gemäss dem Oberbegriff des Anspruchs 9.
  • Gattungsgemässe Verfahren werden etwa für die selektive nicht-katalytische Reduktion (SNCR) von gasförmigen Stickoxiden (NOx) verwendet, wie sie etwa bei der Müllverbrennung anfallen. Solche SNCR-Verfahren werden etwa in der DE-A-4139862 und in der WO 2006/053281 beschrieben.
  • Bei den SNCR-Verfahren werden üblicherweise Reduktionsmittel in wässriger Lösung (z.B. Ammoniakwasser oder Harnstoff) oder gasförmig (z.B. Ammoniak) in die durch den Kessel strömenden heissen Rauchgase eingedüst, um Stickoxide gemäss den folgenden Gleichungen zu molekularem Stickstoff zu reduzieren.

            4 NO + 4 NH3 + O2 -> 4 N2 + 6 H2O

            2 NO2 + 4 NH3 + O2 -> 3 N2 + 6 H2O

  • Der optimale Temperaturbereich liegt dabei abhängig von der Rauchgaszusammensetzung ungefähr zwischen 850°C und 950°C. Der entsprechende Bereich des Kessels wird auch als Nachbrennkammer bezeichnet.
  • Oberhalb des optimalen Temperaturbereichs wird in zunehmendem Masse Ammoniak oxidiert, wobei Stickoxide entstehen, was in einem unerwünschten Mehrverbrauch von Ammoniak resultiert. Unterhalb des besagten Temperaturbereichs findet nur eine ungenügende Reduktion von Stickoxiden statt.
  • Um Stickoxide effizient aus dem Rauchgas zu entfernen, ist es somit notwendig, Ammoniak in erster Linie dort in den Kessel einzudüsen, wo besagter optimale Temperaturbereich gegeben ist.
  • Entsprechend wird beispielsweise in WO 91/17814 ein Verfahren offenbart, gemäss welchem ein Mittel zur Reduktion von Schadstoffen bei einer Temperatur in einen Rauchgasdurchlass eingedüst wird, bei der die Schadstoffe wirksam reduziert werden. Dabei sind die Düsen in unterschiedlichen, über die Höhe verteilten Zonen angeordnet.
  • Alternativ dazu wird in DE-C-3722523 eine Düsenanordnung an einem vertikal verschiebbaren Lanzenstock vorgeschlagen, über den der Ort der Ammoniakzufuhr angepasst werden kann.
  • In der WO 91/06506 wird ein System zur Reduktion von Stickoxiden im Abgas aus der Verbrennung eines kohlenstoffhaltigen Brennstoffs offenbart. Dabei wird ein Behandlungsmittel mittels Injektoren, die von einem Mischer gespeist werden, in das Abgas eingeführt.
  • Für eine effiziente Reduktion der Stickoxide kommt allerdings erschwerend hinzu, dass die Temperatur an den einzelnen Stellen im Kessel üblicherweise uneinheitlich und starken zeitlichen Schwankungen unterworfen ist.
  • Diesbezüglich wird in DE-A-4434943 ein Verfahren offenbart, in welchem über Temperatursensoren die für die Reduktion optimale Temperaturebene im Kessel bestimmt wird und die Düsen zur Zuführung des Reduktionsmittels entsprechend ausgerichtet werden.
  • Eine optimale Reduktion der Stickoxide ist in der Praxis aber nur dann möglich, wenn die Menge an zuzuführendem Reduktionsmittel für jede Düse einzeln eingestellt werden kann, um den lokalen Temperaturunterschieden im Kessel Rechnung zu tragen.
  • In diesem Zusammenhang offenbart die DE 20 2006 013 152 eine Leitungsanordnung für mehrere Zerstäuberlanzen an einem Kessel, durch die ein Additiv in den Kessel zugeführt wird. Dabei wird in einem Verteiler die Zufuhrmenge des Additivs für jede Zerstäuberlanze eingestellt.
  • Bei sämtlichen Düsen bzw. Lanzen der oben aufgeführten Dokumente des Standes der Technik handelt es sich um sog. Zweistoffdüsen bzw. Zweistofflanzen.
  • So werden etwa in der in der DE 20 2006 013 152 beschriebenen Anordnung das Additiv und das Druckmittel unmittelbar vor dem Zuführen in den Kessel in einem der Zerstäuberlanze zugeordneten Anschlussstück vermischt, was eine voneinander unabhängige Dosierung des Treibmittels und des Additivs erlaubt.
  • Da jede einzelne Zweistofflanze bzw. Zweistoffdüse über eine eigene Zuführung für das Additiv und eine eigene Zuführung für die Druckluft verfügt, ist ihre Konstruktion aber relativ aufwendig. Überdies besitzen Zweistofflanzen bzw. Zweistoffdüsen relativ grosse Abmessungen, was ihren Einbau in den Kessel einer Verbrennungsanlage erschwert.
  • Wird - wie in den SNCR-Verfahren üblich - Ammoniak eingedüst, so liegt dieses in den auf Zweistoffdüsen basierenden Systemen in der Regel in stark verdünnter Lösung in Form von Ammoniakwasser vor, um eine gleichmässige Verteilung des Ammoniaks auf die einzelnen Zweistoffdüsen zu gewährleisten. Dazu wird im Allgemeinen enthärtetes Wasser verwendet, um Kalkablagerungen in der Düse bzw. in der zu dieser führenden Flüssigkeitsleitung zu minimieren.
  • Nebst dem hohen Aufwand, der mit der zentralen Verdünnung von Ammoniak mit enthärtetem Wasser verbunden ist, weisen auf Zweistoffdüsen basierende Systeme oft den Nachteil auf, dass die Regelung träge ist, d.h. dass nur mit einer starken Verzögerung auf zeitliche Temperaturänderungen im Kessel reagiert werden kann. Insbesondere erlauben es die bekannten Systeme in der Regel nicht, auf kurzzeitige Temperaturspitzen im Kessel adäquat zu reagieren.
  • Aufgabe der vorliegenden Erfindung ist es somit, ein einfaches Verfahren zum Eindüsen eines Stoffes der ein Reduktionsmittel zur Reduktion von Stickoxiden ist, in einen Kessel einer Müllverbrennungsanlage zur Verfügung zu stellen, welches es erlaubt, für einzelne Eindüsstellen die gewünschte Stoffmenge gezielt einzustellen und diese Einstellung rasch anzupassen.
  • Insbesondere soll es das Verfahren bei einem möglichst geringen apparativen Aufwand erlauben, in SNCR-Verfahren eine optimale Reduktion der Stickoxide bei minimalem Reduktionsmittelverbrauch unter Berücksichtigung sowohl der örtlichen Temperaturunterschiede als auch der zeitlichen Temperaturänderungen im Kessel zu gewährleisten.
  • Die Aufgabe wird erfindungsgemäss gelöst durch das Verfahren des Anspruchs 1. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen aufgeführt.
  • Gemäss Anspruch 1 wird der einzudüsende Stoff ausgehend von mindestens einem Verteiler über Leitungen, die vom Verteiler abzweigen, zu jeweils einer der jeweiligen Leitung zugeordneten Düse geleitet. Die zur jeweiligen Düse zu leitende Stoffmenge wird im Verteiler eingestellt.
  • Dadurch, dass erfindungsgemäss der einzudüsende Stoff und das Treibmittel vor der Abzweigung der jeweiligen Leitung vom Verteiler zusammengeführt werden, liegt bereits vor der Abzweigung eine den Stoff und das Treibmittel enthaltende Mischung vor. Mithin können konstruktiv einfache und robuste Einstoffdüsen verwendet werden, wie sie etwa in der EP-A-0 364 712 beschrieben werden, deren Inhalt hiermit unter Bezugnahme mit eingeschlossen wird.
  • Bisher ist man davon ausgegangen, dass ein Einstellen der einzudüsenden Stoffmenge für jede einzelne Düse nur unter Verwendung von Zweistoffdüsen bewerkstelligt werden kann.
  • Man hat nun überraschenderweise gefunden, dass es auch unter Verwendung von Einstoffdüsen möglich ist, die einzudüsende Stoffmenge für jede Düse einzeln einzustellen.
  • Das Verfahren der vorliegenden Erfindung wird in erster Linie für die oben erwähnten SNCR-Verfahren verwendet. In der Regel ist der einzudüsende Stoff daher ein Reduktionsmittel zur Reduktion von Stickoxiden, insbesondere Ammoniak oder Harnstoff.
  • Die Erfindung erlaubt es, die einzudüsende Menge an Reduktionsmittel in Abhängigkeit des jeweils vorliegenden Temperaturprofils im Kessel für jede Düse einzeln einzustellen. Dadurch kann gewährleistet werden, dass das Reduktionsmittel schwerpunktmässig dort eingedüst wird, wo der für die Reduktion optimale Temperaturbereich vorliegt. Dies führt dazu, dass bei einer hohen Reduktionsrate der Stickoxide der Schlupf und somit auch der Verbrauch an Reduktionsmittel minimiert wird, was insgesamt in einer sehr ökonomischen und ökologischen Betriebsweise resultiert.
  • Gemäss einer Ausführungsform der Erfindung wird bei einer Änderung in der Einstellung der zur jeweiligen Düse zu leitenden Stoffmenge diese Änderung stufenlos, d.h. kontinuierlich, durchgeführt.
  • Im Allgemeinen sind die Düsen in mehreren, vorzugsweise mindestens drei horizontalen (und somit in der Regel quer zur Strömungsrichtung des Rauchgases ausgerichteten) Düsenebenen angeordnet. Gemäss der obigen Ausführungsform des Verfahrens kann die einzudüsende Stoffmenge von einer ersten Düsenebene zu einer weiteren Düsenebene stufenlos verschoben werden, d.h. dass sie in einer ersten horizontalen Düsenebene stufenlos reduziert und gleichzeitig auf einer weiteren horizontalen Düsenebene stufenlos angehoben wird. Dies erlaubt es, im Falle von SNCR-Verfahren optimal auf zeitliche Temperaturschwankungen zu reagieren, was bei einer abrupten Düsenebenenumschaltung und der sich dabei ergebenden undefinierten Übergangszustände in dieser Art nicht möglich ist.
  • Die Erfindung erlaubt es weiter, besagte stufenlose Änderung bzw. Verschiebung sehr rasch durchzuführen. Dies wird unter anderem dadurch ermöglicht, dass gemäss dem erfindungsgemässen Verfahren eine zentrale Verdünnung des Stoffes, wie sie etwa bei den auf Zweistoffdüsen basierenden SNCR-Verfahren durchgeführt wird, nicht notwendig ist. Somit erlaubt es die vorliegende Erfindung selbst auf kurzzeitige Temperaturänderungen adäquat zu reagieren.
  • In der Regel wird dabei die Gesamtmenge an einzudüsendem Reduktionsmittel in Abhängigkeit des nach dem Kessel vorliegenden Stickoxidgehalts im Rauchgas geregelt. Dazu sind stromabwärts vom Kessel Mittel zur Bestimmung des Stickoxidgehalts angeordnet. Der dabei ermittelte Stickoxidgehalt wird zur Regelung der benötigten Gesamtmenge an Reduktionsmittel mit einem vorgegebenen Sollwert verglichen.
  • Um eine möglichst hohe Stickoxid-Reduktionsrate bei minimalem Reduktionsmittelverbrauch zu gewährleisten, wird die zur jeweiligen Düse zu leitende Menge an Reduktionsmittel in der Regel in Abhängigkeit des Temperaturprofils im Kessel geregelt. Somit kann gewährleistet werden, dass das Reduktionsmittel schwerpunktmässig dort eingedüst wird, wo der für die Reduktion optimale Temperaturbereich vorliegt.
  • Für die Bestimmung des Temperaturprofils kommt prinzipiell jedes Temperaturmessgerät in Frage, das zu diesem Zweck geeignet ist. Entsprechende Temperaturmessgeräte sind dem Fachmann bekannt. Besonders bevorzugt werden als Temperaturmessgeräte sogenannte Strahlungspyrometer verwendet, welche eine genaue Messung der Gastemperatur erlauben.
  • Der in Strömungsrichtung des Rauchgases fallende Temperaturgradient kann mittels eines dem Fachmann bekannten Algorithmus bestimmt werden. Durch Bestimmung der Temperatur an einem definierten Punkt kann somit das im Kessel vorliegende Temperaturprofil in Strömungsrichtung bestimmt werden.
  • Zudem ist es durch Bestimmung der Temperatur an einem weiteren Punkt möglich, das Temperaturprofil auch quer zur Strömungsrichtung über Interpolation zwischen den zwei Temperaturpunkten zu bestimmen. Somit erlaubt es die Bestimmung der Temperatur an zwei verschiedenen Punkten, das gesamte Temperaturprofil in zwei Dimensionen zu bestimmen. Entsprechend wird das Temperaturprofil im Kessel besonders bevorzugt mittels mindestens zwei Temperaturmessgeräten bestimmt. Denkbar ist etwa, dass pro Verteiler mindestens zwei Temperaturmessgeräte vorgesehen sind.
  • Die Menge an lokal benötigtem Reduktionsmittel hängt überdies von der lokalen Strömungsgeschwindigkeit ab, da bei einer hohen Strömungsgeschwindigkeit mehr Reduktionsmittel benötigt wird, als bei einer niedrigen. Diesbezüglich ist denkbar, die zur jeweiligen Düse zu leitende Menge an Reduktionsmittel zusätzlich in Abhängigkeit der Strömungsgeschwindigkeitsverteilung des Rauchgases im Kessel zu regeln. Dabei ist es in der Regel ausreichend, die Strömungsgeschwindigkeit einmalig zu bestimmen.
  • Die Einstellung der zu den einzelnen Düsen zu leitenden Reduktionsmittelmenge erfolgt erfindungsgemäss im Verteiler. Konkret wird das dosierte Reduktionsmittel dem Treibmittelstrom zugeführt und zwar erfindungsgemäss vor der Abzweigung der zur jeweiligen Düse führenden Leitung. Somit liegt also vor der Abzweigung eine das Treibmittel und das Reduktionsmittel enthaltende Mischung vor.
  • Zudem findet erfindungsgemäß eine Verteilung der Treibmittelmenge statt. Dabei wird für die mit dem Reduktionsmittel beaufschlagten Düsen eine erste Treibmittelmenge eingestellt, während für die nicht mit dem Reduktionsmittel beaufschlagten Düsen eine zweite Treibmittelmenge zur Kühlung der besagten Düsen eingestellt wird.
  • Für die Verteilung kommen dabei die dem Fachmann bekannten Mittel in Frage, die für die entsprechenden Zwecke geeignet sind. Beispielsweise kann die Menge an Reduktionsmittel bzw. an Treibmittel mittels Regelventilen eingestellt werden.
  • Das Reduktionsmittel liegt vorzugsweise in wässriger Lösung vor. Im Falle von gelöstem Ammoniak spricht man deshalb von Ammoniakwasser. Vorzugsweise wird etwa eine handelsübliche Ammoniaklösung verwendet, z.B. eine 25% Ammoniaklösung. Denkbar ist aber auch jeder andere Lösung, die bei den im Kessel vorliegenden Temperaturen Ammoniak freisetzt, z.B. eine ein Ammoniumsalz wie Ammoniumcarbonat, Ammoniumformiat und/oder Ammoniumoxalat enthaltende Lösung.
  • Als Treibmittel wird bevorzugt Luft oder Wasserdampf verwendet.
  • Wird etwa Luft als Treibmittel verwendet, so wird das einzudüsende Ammoniakwasser bei der Zuführung in den Luftstrom zu Tröpfchen zerstäubt und unmittelbar anschliessend auf die einzelnen Düsen bzw. auf die jeweiligen zu den Düsen führenden Leitungen verteilt. Allfällig koaleszierende Tröpfchen werden in der mit Schallgeschwindigkeit durchströmten Düse wieder zerstäubt.
  • In den mit dem Ammoniakwasser beaufschlagten Düsen wird in der Regel ein Düsenvordruck von ca. 1 bis 5 bar eingestellt, damit das Ammoniakwasser bzw. das im Kessel ausdampfende Ammoniak genügend weit in den Rauchgasstrom eindringen kann. Diejenigen Düsen, die nicht in Betrieb sind, d.h. nicht mit Ammoniakwasser beaufschlagt sind, werden zur Kühlung mit einer geringeren Luftmenge durchströmt. Vor der Abzweigung der zu den jeweiligen Düsen führenden Leitungen wird somit für die mit dem Ammoniakwasser beaufschlagten Düsen ein erster Luftstrom eingestellt, während für diejenigen Düsen, die nicht in Betrieb sind, ein weiterer, gegenüber dem ersten Luftstrom geringerer Luftstrom eingestellt wird.
  • Die vom Verteiler abzweigenden, zu den jeweiligen Düsen führenden Leitungen liegen in der Regel in Form von Rohren vor, wie sie dem Fachmann für die entsprechenden Zwecke bekannt sind. Als Düsen können beispielsweise Rundstrahldüsen oder Fächerdüsen verwendet werden, wobei weitere geeignete Düsen dem Fachmann bekannt sind. Insbesondere ist eine abwechselnde Anordnung von Rundstrahldüsen mit Fächerdüsen denkbar.
  • Die Erfindung betrifft weiter eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens. Das Verfahren und die Vorrichtung werden anhand der angefügten Figuren weiter ausgeführt, von denen
    • Fig. 1 eine rein schematische Darstellung einer einem Kessel einer Müllverbrennungsanlage zugeordneten erfindungsgemässen Vorrichtung ist, welche insgesamt neun Düsen umfasst, die auf drei Düsenebenen verteilt sind; und
    • Fig. 2 ein Diagramm ist, in dem in Abhängigkeit der Kesselhöhe (Ordinate) der jeweilige Temperaturbereich (Abszisse) aufgetragen ist und die resultierende Fläche der Temperaturverteilung im Kessel in Überlagerung mit dem dunkel schraffiert dargestellten, optimalen Temperaturbereich des SCNR-Verfahrens aufgezeichnet ist.
  • Gemäss Fig. 1 ist die Vorrichtung 2 einem Kessel 4 einer Müllverbrennungsanlage zugeordnet, der vom Rauchgas der Verbrennung durchströmt wird. Die Strömungsrichtung des Rauchgases ist dabei anhand paralleler Pfeile 6 dargestellt.
  • Die Vorrichtung 2 umfasst einen Verteiler 8. In diesen mündet eine Zuführleitung 10 zur Zuführung eines Stoffes, insbesondere eines Reduktionsmittels zur Reduktion von Stickoxiden, und eine Zuführleitung 12 zur Zuführung eines Treibmittels. Vom Verteiler 8 zweigen insgesamt neun Leitungen 14a-i ab, von denen drei Leitungen 14a, 14b, 14c zu jeweils einer Düse 16a, 16b bzw. 16c einer ersten horizontalen Düsenebene, drei Leitungen 14d, 14e, 14f zu jeweils einer Düse 16d, 16e bzw. 16f einer zweiten horizontalen Düsenebene und drei Leitungen 14g, 14h, 14i zu jeweils einer Düse 16g, 16h bzw. 16i einer dritten horizontalen Düsenebene führen. Dabei sind jeweils drei Düsen 14a, 14d, 14g bzw. 14b, 14e, 14h bzw. 14c, 14f, 14i übereinander und somit jeweils in einer vertikalen Düsenebene angeordnet.
  • Dem Verteiler sind zudem zwei Temperaturmessgeräte 18a, 18b zugeordnet, anhand welcher das im Kessel 4 vorliegende Temperaturprofil - wie oben beschrieben - in zwei Dimensionen kontinuierlich bestimmt wird.
  • Bei der Verwendung der Vorrichtung in einem SNCR-Verfahren sind dieser in der Regel zudem Mittel zur Bestimmung des nach dem Kessel vorliegenden Stickoxidgehalts zugeordnet (nicht gezeigt), mittels welcher die Gesamtmenge an einzudüsendem Reduktionsmittel geregelt wird.
  • In Abhängigkeit des Temperaturprofils wird im Verteiler 2 die zur jeweiligen Düse 16a-i zu leitende Menge an Reduktionsmittel eingestellt und mit dem Treibmittel zusammengeführt. Der die dosierte Reduktionsmittelmenge enthaltende Treibmittelstrom wird in der Folge über die jeweilige Leitung 14a-i zur Düse 16a-i an der gewünschten Eindüsstelle geleitet und dort in den Kessel 4 eingedüst. Die nicht mit dem Reduktionsmittel beaufschlagten Düsen werden mit einer ebenfalls im Verteiler 8 eingestellten, geringeren Treibmittelmenge gekühlt.
  • Bei den im beschriebenen SNCR-Verfahren verwendeten Reduktionsmitteln handelt es sich vorzugweise um Ammoniakwasser, welches einem Treibmittelstrom aus Luft oder Dampf zugeführt wird. Die Verteilung des Ammoniakwasser erfolgt dabei derart, dass es in dem für die Reduktion von Stickoxiden optimalen Temperaturbereich von 850 bis 950°C eingedüst wird.
  • Dieses Konzept ist in Fig. 2 weiter veranschaulicht, gemäss welcher die Temperaturverteilung für herkömmliche Kessel in der Regel von ca. 1000 bis 1100 °C im untersten Bereich des Kessels, d.h. bei ca. 2 bis 4 m über dem Rost, bis ca. 700 bis 900 °C im obersten Bereich des Kessels, d.h. bei ca. 20 bis 40 m über dem Rost reicht. Der mit dem dunkel schraffiert dargestellten, optimalen Temperaturbereich des SNCR-Verfahrens überlappende Bereich entspricht demjenigen Bereich des Kessels, in dem die auf die drei horizontalen Düsenebenen verteilten Düsen für eine optimale Reduktion der Stickoxide in Betrieb sein sollten.
  • Die Lage dieser horizontalen Düsenebenen im Kessel ist in Fig. 2 anhand gestrichelter Pfeile wiedergegeben. Dabei sind die Düsenebenen in unregelmässigen Abständen voneinander angeordnet. Je nach Kessel ist aber auch eine regelmässige Anordnung der Düsenebenen denkbar.
  • Somit liefert das Diagramm für einen entsprechenden Kessel Aufschluss über die zu wählende Anordnung der Düsenebenen, um eine Eindüsung im bevorzugten Temperaturbereich zu gewährleisten.
  • Beispiel
  • Ein konkretes Ausführungsbeispiel für die Zudosierung von Ammoniakwasser für ein SNCR-Verfahren ist in Tabelle 1 wiedergegeben. Gemäss diesem Ausführungsbeispiel ist der Kessel in vier Kesselsektoren unterteilt, nämlich einen Kesselsektor hinten links (HL), einen Kesselsektor hinten rechts (HR), einen Kesselsektor vorne links (VL) und einen Kesselsektor vorne rechts (VR). Die Düsen sind in den Kesselsektoren auf drei horizontalen Düsenebenen angeordnet.
  • Für jeden einzelnen der Kesselsektoren wird mittels eines Strahlungspyrometers an einem vorgegebenen Punkt die Temperatur bestimmt. Mittels Multiplikation mit einem entsprechenden, in der Tabelle 1 angegebenen Faktor kann ausgehend von der jeweiligen gemessenen Temperatur die Temperatur der einzelnen Düsenebenen in den Kesselsektoren bestimmt werden.
  • Pro Kesselsektor wird 10 kg Ammoniakwasser (25% Ammoniaklösung)/h eingedüst. Die Aufteilung des Ammoniakwassers auf die einzelnen Düsenebenen erfolgt dabei in Abhängigkeit des berechneten Temperaturprofils und zwar derart, dass Ammoniakwasser schwerpunktmässig dort eingedüst wird, wo der für die Reduktion von Stickoxid optimale Temperaturbereich vorliegt.
  • Wie aus Tabelle 1 weiter ersichtlich ist, wird für die mit Ammoniakwasser beaufschlagten Düsen eine Treib-/Kühlluftmenge von 100 kg/h eingestellt, während für die nicht mit Ammoniakwasser beaufschlagten Düsen eine reduzierte Treib-/Kühlluftmenge von 50 kg/h zur Kühlung der besagten Düsen eingestellt wird. Tabelle 1
    HL HR VL VR Total
    Anzeige Strahlungspyrometer (T) °C 910 880 850 860
    Temperatur auf 1. Ebene (Berechnet 1.11*T) °C 1010 977 944 955
    Temperatur auf 2. Ebene (Berechnet 1.04*T) °C 946 915 884 894
    Temperatur auf 3. Ebene (Berechnet 0.97*T) °C 883 854 825 834
    Dosierung 25%-Ammoniakwasser auf 1. Ebene kg/h 0.0 0.0 0.3 0.0
    Dosierung 25%-Ammoniakwasser auf 2. Ebene kg/h 0.0 1.4 9.7 7.3 40
    Dosierung 25%-Ammoniakwasser auf 3. Ebene kg/h 10.0 8.6 0.0 2.7
    Treib-/Kühlluft auf 1. Ebene kg/h 50 50 100 50
    Treib-/Kühlluft auf 2. Ebene kg/h 50 100 100 100 950
    Treib-/Kühlluft auf 3. Ebene kg/h 100 100 50 100

Claims (9)

  1. Verfahren zum Eindüsen eines Stoffes in einen Kessel (4) einer Müllverbrennungsanlage unter Verwendung eines gasförmigen Treibmittels,
    wobei der Stoff ausgehend von mindestens einem Verteiler (8) über Leitungen (14a-i), die vom Verteiler (8) abzweigen, zu jeweils einer der jeweiligen Leitung (14a-i) zugeordneten Düse (16a-i) geleitet wird, mittels der der Stoff und das Treibmittel in den Kessel (4) eingedüst werden, und die zur jeweiligen Düse (16a-i) zu leitende Stoffmenge im Verteiler (8) eingestellt wird,
    wobei der Stoff und das Treibmittel vor der Abzweigung der jeweiligen Leitung (14a-i) zusammengeführt werden, und der Stoff ein Reduktionsmittel zur Reduktion von Stickoxiden ist,
    dadurch gekennzeichnet,
    dass für die mit dem Reduktionsmittel beaufschlagten Düsen eine erste Treibmittelmenge eingestellt wird, während für die nicht mit dem Reduktionsmittel beaufschlagten Düsen eine zweite Treibmittelmenge zur Kühlung der besagten Düsen eingestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einer Änderung in der Einstellung der zur jeweiligen Düse (16a-i) zu leitenden Stoffmenge diese stufenlos durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Stoff Ammoniak oder Harnstoff ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gesamtmenge an einzudüsendem Reduktionsmittel in Abhängigkeit des nach dem Kessel (4) vorliegenden Stickoxidgehalts im Rauchgas geregelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zur jeweiligen Düse (16a-i) zu leitende Menge an Reduktionsmittel in Abhängigkeit des Temperaturprofils im Kessel (4) geregelt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Temperaturprofil im Kessel mittels mindestens zwei Temperaturmessgeräten (18a, b) bestimmt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Temperaturmessgeräte (18a, b) Strahlungspyrometer verwendet werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Treibmittel Luft oder Wasserdampf verwendet wird.
  9. Vorrichtung zur Durchführung des Verfahrens gemäss einem der Ansprüche 1 bis 8, umfassend mindestens einen Verteiler (8), von dem Leitungen (14a-i) abzweigen, die zu je einer Düse (16a-i) zur Eindüsung des Stoffes und des Treibmittels in den Kessel (4) führen, wobei dem Verteiler (8) Mittel zur Einstellung der zur jeweiligen Düse (16a-i) zu leitenden Stoffmenge zugeordnet sind, wobei die Vorrichtung Mittel zum Zusammenführen des Stoffs und des Treibmittels vor der Abzweigung der jeweiligen Leitung (14a-i) vom Verteiler umfasst, dadurch gekennzeichnet, dass die Vorrichtung derart ausgestaltet ist, um für die mit dem Reduktionsmittel beaufschlagten Düsen eine erste Treibmittelmenge einzustellen und um für die nicht mit dem Reduktionsmittel beaufschlagten Düsen zu deren Kühlung eine zweite Treibmittelmenge einzustellen.
EP08011324.4A 2008-06-23 2008-06-23 Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage Active EP2138766B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES08011324.4T ES2573638T3 (es) 2008-06-23 2008-06-23 Procedimiento para inyectar una sustancia en una caldera de una planta de incineración de basuras
PL08011324.4T PL2138766T3 (pl) 2008-06-23 2008-06-23 Sposób wtryskiwania substancji do kotła instalacji spalania odpadów
EP08011324.4A EP2138766B1 (de) 2008-06-23 2008-06-23 Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage
JP2009145230A JP5614523B2 (ja) 2008-06-23 2009-06-18 ごみ焼却場のボイラー内に物質を注入する方法
US12/489,346 US20100154690A1 (en) 2008-06-23 2009-06-22 Method for injecting a substance into a boiler of a garbage incineration plant
US12/564,032 US8763540B2 (en) 2008-06-23 2009-09-21 Method for injecting a substance into a boiler of a waste incineration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08011324.4A EP2138766B1 (de) 2008-06-23 2008-06-23 Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage

Publications (2)

Publication Number Publication Date
EP2138766A1 EP2138766A1 (de) 2009-12-30
EP2138766B1 true EP2138766B1 (de) 2016-03-30

Family

ID=40352746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08011324.4A Active EP2138766B1 (de) 2008-06-23 2008-06-23 Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage

Country Status (5)

Country Link
US (1) US20100154690A1 (de)
EP (1) EP2138766B1 (de)
JP (1) JP5614523B2 (de)
ES (1) ES2573638T3 (de)
PL (1) PL2138766T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8317390B2 (en) * 2010-02-03 2012-11-27 Babcock & Wilcox Power Generation Group, Inc. Stepped down gas mixing device
JP5812630B2 (ja) * 2011-03-02 2015-11-17 三菱重工環境・化学エンジニアリング株式会社 廃棄物焼却プラント
FI126149B (en) 2014-06-04 2016-07-15 Amec Foster Wheeler Energia Oy Arrangement and method for feeding ammonia-containing liquid into the exhaust duct of an incineration plant and an incineration plant

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528974A (en) * 1975-07-12 1977-01-24 Mitsubishi Heavy Ind Ltd Ammonia feeding apparatus
JPS60216828A (ja) * 1984-04-10 1985-10-30 Nippon Kokan Kk <Nkk> 無触媒脱硝法
US4719092A (en) * 1985-10-04 1988-01-12 Fuel Tech, Inc. Reduction of nitrogen-based pollutants through the use of urea solutions containing oxygenated hydrocarbon solvents
DE8612710U1 (de) * 1986-05-09 1986-09-11 Bloom Engineering (Europa) GmbH, 4000 Düsseldorf Rauchgaskanal für Großkessel mit einer Vorrichtung zum Einspeisen von Ammoniak in den Rauchgasstrom
EP0497762A4 (en) * 1987-03-06 1993-04-07 Fuel Tech, Inc. System for the efficient reduction of nitrogen oxides in an effluent
DE3722523C1 (en) 1987-07-08 1988-06-30 Babcock Anlagen Ag Furnace with nozzles for blowing in ammonia for selective noncatalytic flue gas denitration (SNCR)
CH675623A5 (de) 1988-09-27 1990-10-15 Von Roll Ag
ATE140163T1 (de) 1990-05-21 1996-07-15 Nalco Fuel Tech Gmbh Verfahren zur minimierung der konzentration an schadstoffen in verbrennungsgasen
JP2948272B2 (ja) * 1990-05-25 1999-09-13 三菱重工業株式会社 ソーダ回収ボイラ排ガスのNOx低減装置
US5098680A (en) * 1990-10-15 1992-03-24 Exxon Research & Engineering Company Aqueous ammonia injection scheme
DE4139862A1 (de) 1991-12-03 1993-06-09 Martin Gmbh Fuer Umwelt- Und Energietechnik, 8000 Muenchen, De Verfahren zur regelung der eingabemenge eines behandlungsmediums zur verminderung des stickoxidgehaltes in den abgasen von verbrennungsprozessen
US5237939A (en) * 1992-08-20 1993-08-24 Wahlco Environmental Systems, Inc. Method and apparatus for reducing NOx emissions
BR9508764A (pt) * 1994-08-24 1998-01-13 Siemens Ag Processo para recodificar dados comprimidos de vídeo com uma necessidade de memória reduzida
DE4434943C2 (de) 1994-09-30 1998-08-27 Krc Umwelttechnik Gmbh Verfahren zur Reduzierung des NO¶x¶-Gehaltes bei gleichzeitiger Minimierung des Reduktionsmittelschlupfes in Ab- bzw. Rauchgasen von Verbrennungs- und Produktionsprozessen
US5988115A (en) * 1998-08-11 1999-11-23 Anderson; David K. SCR reactant injection grid
JP3716128B2 (ja) * 1999-03-26 2005-11-16 三菱重工業株式会社 燃焼炉廃棄物焼却炉の燃焼方法及び燃焼装置
JP2005308362A (ja) * 2004-04-26 2005-11-04 Jfe Engineering Kk ごみ焼却炉の燃焼制御方法及びごみ焼却炉
CN101056703B (zh) 2004-11-12 2011-03-09 巴布考克及威尔考克斯公司 Sncr分布栅板
US7910494B2 (en) * 2006-03-29 2011-03-22 Tokyo Electron Limited Thermal processing furnace, gas delivery system therefor, and methods for delivering a process gas thereto
DE202006013152U1 (de) 2006-08-28 2006-11-23 Erc Emissions-Reduzierungs-Concepte Gmbh Leitungsanordnung für Zerstäuberlanzen an einem Kessel

Also Published As

Publication number Publication date
JP2010002175A (ja) 2010-01-07
US20100154690A1 (en) 2010-06-24
EP2138766A1 (de) 2009-12-30
PL2138766T3 (pl) 2016-09-30
JP5614523B2 (ja) 2014-10-29
ES2573638T3 (es) 2016-06-09

Similar Documents

Publication Publication Date Title
DE102010021438B4 (de) Abgasnachbehandlungsvorrichtung
DE3728557C2 (de)
DE69120812T2 (de) Verfahren zur minimierung der konzentration an schadstoffen in verbrennungsgasen
EP2888028B1 (de) Verfahren und vorrichtung zur behandlung von abgasen
DE102010050334B4 (de) Verfahren und Vorrichtung zur nicht-katalytischen Entstickung von Abgasen von Verbrennungsanlagen
EP0624391A1 (de) Verfahren zur Entstickung von Rauchgasen
EP3265213B1 (de) Verfahren und vorrichtung zur dynamischen abgasbehandlung
EP0698199B1 (de) Verfahren und vorrichtung zum einbringen eines flüssigen oder gasförmigen behandlungsmediums in einen rauchgasstrom
EP0364712B1 (de) Verfahren zum Entfernen von Stickoxyden aus Rauchgasen
EP3325421B1 (de) Verfahren und anlage zur herstellung von zementklinker oder anderen mineralischen produkten und zur entstickung von bypassgasen
DE102011105419B4 (de) Verfahren zur Reduktion von Stickoxiden
EP2138766B1 (de) Verfahren zum Eindüsen eines Stoffes in einem Kessel einer Müllverbrennungsanlage
EP0787682A1 (de) Verfahren zur Herstellung von Natriumpercarbonat in Granulatform
DE3735112C2 (de)
DE4405010C2 (de) Verfahren zur Reinigung eines Verbrennungsabgases
EP0424893B1 (de) Verfahren zum Einbringen eines Behandlungsmediums in den Abgasstrom bei Verbrennungsprozessen
DE68919320T2 (de) Verfahren zur ermässigung der konzentration von schadstoffen in abgasen.
DE102015117316B4 (de) Verfahren zur Entstickung von Abgasen
DE102019127869B4 (de) Verfahren und Vorrichtung zur selektiven nicht-katalytischen Reduktion von Stickoxiden in Rauchgasen
EP3299079B1 (de) Gasbehandlungsanlage und verfahren zum betrieb einer gasbehandlungsanlage mit einer injektionslanze
EP2735364A1 (de) Schmelzekonfektionierung mittels laminaren Strahlzerfalls
EP3615194A1 (de) Verfahren und vorrichtung zur herstellung von harnstoff
DE102020106213A1 (de) Verfahren und Vorrichtung zur selektiven nicht-katalytischen Reduktion von Stickoxiden in Abgasen
DE19713136A1 (de) Verfahren zur selektiven Gasphasenreaktion
DE2209641C3 (de) Verfahren zur Verhinderung von Korrosion oder der Bildung eines sauren Rußes durch im Abgas vorhandene Schwefelsäurekomponenten an der Niedertemperaturseite eines ölgefeuerten Kessels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100520

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 20100624

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AE&E INOVA AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI ZOSEN INOVA AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20160121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014003

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2573638

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160609

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160330

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014003

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230828

Year of fee payment: 16

Ref country code: CH

Payment date: 20230702

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240621

Year of fee payment: 17

Ref country code: FR

Payment date: 20240628

Year of fee payment: 17

Ref country code: FI

Payment date: 20240625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240613

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240613

Year of fee payment: 17

Ref country code: SE

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 17