EP2135315A2 - Brennstoffzellensystem mit rezirkulationsstrang - Google Patents

Brennstoffzellensystem mit rezirkulationsstrang

Info

Publication number
EP2135315A2
EP2135315A2 EP08734376A EP08734376A EP2135315A2 EP 2135315 A2 EP2135315 A2 EP 2135315A2 EP 08734376 A EP08734376 A EP 08734376A EP 08734376 A EP08734376 A EP 08734376A EP 2135315 A2 EP2135315 A2 EP 2135315A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
reformate
reformer
fuel
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08734376A
Other languages
English (en)
French (fr)
Inventor
Norbert GÜNTHER
Andreas Reinert
Stefan Käding
Björn Erik MAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerday GmbH
Staxera GmbH
Original Assignee
Enerday GmbH
Staxera GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday GmbH, Staxera GmbH filed Critical Enerday GmbH
Publication of EP2135315A2 publication Critical patent/EP2135315A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system with a reformer for generating a reformate of fuel and oxidant, a fuel cell for converting the reformate into depleted reformate and electrical energy, and a Rezirkulationsstrang for partially returning lead the depleted reformate to the reformer.
  • the invention relates to a method for operating a fuel cell system, comprising the steps of producing a reformate from fuel and oxidizing agent by means of a reformer; Converting the reformate into depleted reformate and electrical energy by means of a fuel cell; and partially returning the depleted reformate to the reformer in a recirculation strand.
  • Fuel cell systems serve in a well-known way the conversion of chemical energy into electrical energy. Fuel cell systems must be able to process common fuels in practice. Since hydrogen and oxygen are converted in a fuel cell, the fuel used must be prepared so that the gas supplied to the anode of the fuel cell has the highest possible proportion of hydrogen. On the cathode side, atmospheric oxygen is supplied to the fuel cell in most cases. For this purpose, fuel and an oxidizing agent, preferably air, are fed to a reformer. In the reformer then takes place a reaction of the fuel with the oxygen, wherein preferably the process of partial oxidation is carried out.
  • EP 1 557 896 A1 discloses a fuel cell system with the features of the preamble of claim 1. In this fuel cell system, a reformate gas is returned to a reformer, which leaves a fuel cell on the output side. However, this system has a complex structure.
  • the fuel cell system builds on the generic state of the art in that a conveyor is provided by means of which both the fuel and the depleted reformate of the recirculation lationsstranges the reformer can be fed.
  • a conveyor which supplies the reformer both the fuel and the depleted reformate, additional conveyors could be saved.
  • such a structure also allows a simplified control, since by increasing the delivery rate of the conveyor automatically the fuel delivery rate and the delivery rate of the depleted reformate is increased, so that when a flow rate change, not the individual strands must be coordinated with each other. The delivery rate of the recirculated depleted reformate is thus controlled via the delivery rate of the fuel supplied.
  • a flow control valve is provided upstream of the conveyor to control the supply of fuel and depleted reformate to the conveyor independently.
  • This structure makes it possible to set the ratio of fuel to recirculation flow by varying the two valve positions relative to each other and the variation of the speed of the conveyor.
  • this interconnection has the advantage that a high flexibility in the adjustment of the gas composition in the reformer can be achieved, whereby a high flexibility of the fuel cell system in response to load changes can be achieved. Since this ratio also has an influence on the temperature of the reformer, it can be operated by the setting in a desired temperature range.
  • the provision of separate control valves is also less expensive than providing separate conveyors in each strand.
  • the fuel cell system according to the invention can be further developed by providing a heat exchanger for cooling the depleted reformate in the recirculation train.
  • a heat exchanger for cooling the depleted reformate in the recirculation train.
  • components in the recirculation line such as, for example, the valve or the conveyor, would have to be designed for temperatures of up to 850 ° C., which greatly increases the system complexity and makes it difficult to locate such components at all.
  • high application temperatures lead to high wear on mechanical components.
  • an oxidant strand leads through the heat exchanger, which leads oxidizing agent to the reformer, to the fuel cell or to an afterburner.
  • a media stream already present in the fuel cell system can be used to cool the recycled, depleted reformate. Additional fans for cooling down the recirculation flow can thus be saved.
  • the invention provides a method of controlling such a fuel cell system.
  • this can advantageously be distinguished by closing the flow control valve in the recirculation line during the start or shutdown of the fuel cell system.
  • This measure makes it possible to deactivate the recirculation line for the start of the fuel cell system, to which insufficiently depleted reformate is available, or to shut down the fuel cell system, so that advantageous conditions can be created for these operating states.
  • FIG. 1 is a schematic representation of the fuel cell system according to the invention.
  • FIG. 1 shows a schematic representation of the fuel cell system 10 according to the invention.
  • the fuel cell system 10 comprises a reformer 12 to which fuel can be fed from a delivery device 14 and a deflated reformate which will be explained later.
  • a fan or all suitable types of pumps such as rotary vane pumps for gases, can be used.
  • a flow control valve 16 is provided upstream of the conveyor 14 and upstream of a recombining point 18 at which the recirculated depleted reformate is introduced.
  • the fuel is preferably a gas.
  • the reformer 12 is supplied by means of a reformer 20 Oxidizer.
  • the reformer 12 converts the materials supplied via the delivery device 14 and the reforming fan 20, preferably under partial oxidation, into a reformate which can be supplied to a fuel cell 22.
  • a fuel cell stack can also be provided.
  • the reformate is a hydrogen-containing gas which is converted in the fuel cell 22 into electric power, heat and depleted reformate by means of cathode air delivered by a fuel cell fan 24.
  • the output side of the fuel cell 22 discharged depleted reformate is divided into two strands.
  • a portion of the depleted anode exhaust gas is fed to a Nachbren- ner 26, which is associated with a Nachbrennerbläse 28.
  • the depleted reformate is reacted with air conveyed through the afterburner fan 28 to form a combustion exhaust gas which contains virtually no pollutants.
  • the other part of the depleted reformate is fed via a recirculation line 30. next passed through a heat exchanger 32 and a Reformatküh- ler. This heat exchanger 32 cools the recirculated depleted reformate to, for example, 150 ° C.
  • the recirculation flow can advantageously be cooled via the heat exchanger 32 by a medium flow which is already present in the fuel cell system 10.
  • Suitable media streams are, for example, the media streams taken in by the reformer fan 20, the fuel cell fan 24 and / or the afterburner fan 28.
  • the recirculation flow via a flow control valve 34 leads to flow control of the recirculation flow.
  • This recirculation flow is mixed with the fuel at the merging point 18 and fed to the conveyor 14.
  • the delivery device 14 simultaneously aspirates the fuel and the depleted reformate recycled via the recirculation line 30.
  • Flow control valves 16 and 34 and the conveyor 14 is realized with suitable control algorithms, which are stored in an electronic control unit.
  • This electronic control unit is preferably a microcontroller and at least with the conveyor 14, the
  • Flow control valve 16 the reforming fan 20, the fuel cell blower 24, the afterburner fan 28 and the flow control valve 34 is connected.
  • the fuel cell fan 24 and the afterburner fan 28 corresponding pumps for gas delivery may also be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Die Erfindung betrifft ein Brennstoffzellensystem (10) mit einem Reformer (12) zum Erzeugen eines Reformats aus Brennstoff und Oxidationsmittel, einer Brennstoffzelle (22) zum Umsetzen des Reformats in abgereichertes Reformat und elektrische Energie, und einem Rezirkulationsstrang (30) zum teilweisen Zurückführen des abgereicherten Reformats zum Reformer (12). Dabei zeichnet sich die Erfindung in vorteilhafter Weise dadurch aus, dass eine Fördereinrichtung (14) vorgesehen ist, mittels der sowohl der Brennstoff als auch das abgereicherte Reformat des Rezirkulationsstranges (30) dem Reformer (12) zuführbar sind. Ferner betrifft die Erfindung ein Verfahren zum Betreiben solch eines Brennstoffzellensystems (10).

Description

BrennstoffZeilensystem mit Rezirkulationsstrang
Die Erfindung betrifft ein BrennstoffZellensystem mit einem Reformer zum Erzeugen eines Reformats aus Brennstoff und Oxidationsmittel, einer Brennstoffzelle zum Umsetzen des Reformats in abgereichertes Reformat und elektrische Energie, und einem Rezirkulationsstrang zum teilweisen Zurück- führen des abgereicherten Reformats zum Reformer.
Darüber hinaus betrifft die Erfindung ein Verfahren zum Betreiben eines Brennstoffzellensystems, mit den Schritten Erzeugen eines Reformats aus Brennstoff und Oxidationsmit- tel mittels eines Reformers; Umsetzen des Reformats in abgereichertes Reformat und elektrische Energie mittels einer Brennstoffzelle; und teilweises Zurückführen des abgereicherten Reformats zum Reformer in einem Rezirkulationsstrang.
Brennstoffzellensysteme dienen in allgemein bekannter Weise der Umwandlung von chemischer Energie in elektrische Energie. Brennstoffzellensysteme müssen in der Lage sein, in der Praxis übliche Brennstoffe zu verarbeiten. Da in einer Brennstoffzelle Wasserstoff und Sauerstoff umgesetzt werden, muss der verwendete Brennstoff so aufbereitet werden, dass das der Anode der Brennstoffzelle zugeführte Gas einen möglichst hohen Anteil an Wasserstoff besitzt. Kathodensei- tig wird in den meisten Fällen Luftsauerstoff an die Brenn- stoffzelle zugeführt. Zu diesem Zweck werden einem Reformer Brennstoff und ein Oxidationsmittel, vorzugsweise Luft, zugeführt. In dem Reformer erfolgt dann eine Umsetzung des Brennstoffs mit dem Sauerstoff, wobei vorzugsweise das Verfahren der partiellen Oxidation durchgeführt wird. EP 1 557 896 Al offenbart ein Brennstoffzellensystem mit den Merkmalen des Oberbegriffes des Anspruches 1. In diesem Brennstoffzellensystem wird zu einem Reformer ein Reformat- gas zurückgeführt, welches eine Brennstoffzelle ausgangs- seitig verlässt. Dieses System weist jedoch einen komplexen Aufbau auf .
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Möglichkeit zu schaffen, ein Brennstoffzellensystem bereit- zustellen, welches relativ einfach aufgebaut ist und somit kostengünstig herstellbar ist.
Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Das erfindungsgemäße Brennstoffzellensystem baut auf dem gattungsgemäßen Stand der Technik dadurch auf, dass eine Fördereinrichtung vorgesehen ist, mittels der sowohl der Brennstoff als auch das abgereicherte Reformat des Rezirku- lationsstranges dem Reformer zuführbar sind. Durch die Fördereinrichtung, welche dem Reformer sowohl den Brennstoff als auch das abgereicherte Reformat zuführt, könnten weitere Fördereinrichtungen eingespart werden. Darüber hinaus ermöglicht ein derartiger Aufbau auch eine vereinfachte Steuerung, da durch Erhöhung der Fördermenge der Fördereinrichtung automatisch die Brennstofffördermenge als auch die Fördermenge des abgereicherten Reformats erhöht wird, so dass bei einer Fördermengenänderung nicht die einzelnen Stränge zwangsläufig aufeinander abgestimmt werden müssen. Die Fördermenge des zurückgeführten abgereicherten Reformats ist somit über die Fördermenge des zugeführten Brenn- stoffs steuerbar. Darüber hinaus ist vorteilhaft, dass stromaufwärts der Fördereinrichtung jeweils ein Stromregelventil vorgesehen ist, um das Zuführen von Brennstoff und abgereichertem Reformat zu der Fördereinrichtung unabhängig voneinander zu steuern. Dieser Aufbau ermöglicht, dass durch die Variation der beiden Ventilstellungen zueinander und der Variation der Drehzahl der Fördereinrichtung das Verhältnis von Brennstoff zu Rezirkulationsstrom eingestellt werden kann. Somit bietet diese Verschaltung den Vorteil, dass eine hohe Flexibilität bei der Einstellung der GasZusammensetzung im Reformer erreicht werden kann, wodurch eine hohe Flexibilität des Brennstoffzellensystems bei der Reaktion auf Laständerungen erreicht werden kann. Da dieses Verhältnis auch einen Ein- fluss auf die Temperatur des Reformers hat, kann dieser durch die Einstellung auch in einem gewünschten Temperaturbereich betrieben werden. Ferner ist das Vorsehen von separaten Regelventilen auch, preiswerter als das Bereitstellen von separaten Fördereinrichtungen in jedem Strang.
Ferner kann das erfindungsgemäße BrennstoffZellensystem dadurch weitergebildet sein, dass ein Wärmetauscher zum Kühlen des abgereicherten Reformats im Rezirkulationsstrang vorgesehen ist. Ohne diesen Wärmetauscher müssten Komponen- ten im Rezirkulationsstrang wie beispielsweise das Ventil oder die Fördereinrichtung auf Temperaturen von bis zu 8500C ausgelegt werden, was den Systemaufbau stark verteuert und schwierig macht, derartige Komponenten überhaupt ausfindig zu machen. Außerdem führen hohe Anwendungstempe- raturen zu hohem Verschleiß an mechanischen Bauteilen.
Durch Kühlen des Rezirkulationsstroms kann dieser Problematik begegnet werden, so dass der Rezirkulationsstrom auf beispielsweise 1500C gekühlt wird, um zu ermöglichen, dass normale Komponenten verwendet werden können. Die normalen Komponenten können dann auf relativ moderaten Temperaturen betrieben werden.
In diesem Zusammenhang kann vorteilhafterweise vorgesehen sein, dass durch den Wärmetauscher ein Oxidationsmit- telstrang führt, der Oxidationsmittel zum Reformer, zur Brennstoffzelle oder zu einem Nachbrenner führt. Somit kann ein bereits im Brennstoffzellensystem vorhandener Medienstrom dazu verwendet werden, das zurückgeführte abgerei- cherte Reformat zu kühlen. Zusätzliche Gebläse für das Herunterkühlen des Rezirkulationsstroms können somit eingespart werden.
Darüber hinaus stellt die Erfindung ein Verfahren zum Steu- ern solch eines Brennstoffzellensystems bereit.
Im Rahmen des Verfahren kann sich dieses vorteilhafterweise auszeichnen durch Schließen des Stromregelventils im Rezir- kulationsstrang während des Starts oder des Herunterfahrens des Brennstoffzellensystems . Durch diese Maßnahme können für den Start des Brennstoffzellensystems, zu dem ungenügend abgereichertes Reformat zur Verfügung steht, oder beim Herunterfahren des Brennstoffzellensystems der Rezirkulati- onsstrang deaktiviert werden, so dass für diese Betriebszu- stände vorteilhafte Bedingungen geschaffen werden können.
Eine bevorzugte Ausführungsform der Erfindung wird nachfolgend anhand der Figur beispielhaft erläutert.
Es zeigt:
Figur 1 eine schematische Darstellung des erfindungsgemäßen Brennstoffzellensystems . Figur 1 zeigt eine schematische Darstellung des erfindungsgemäßen BrennstoffZeilensystems 10. Das Brennstoffzellen- system 10 umfasst einen Reformer 12, dem von einer Fördereinrichtung 14 Brennstoff und später erläutertes abge- reichertes Reformat zuführbar ist. Als Fördereinrichtung 14 kann ein Gebläse oder alle geeigneten Pumpentypen, wie beispielsweise Drehschieberpumpen für Gase, eingesetzt werden. Zur Steuerung der Zufuhr des Brennstoffs ist ein Stromregelventil 16 stromaufwärts der Fördereinrichtung 14 und stromaufwärts einer Zusammenführstelle 18, an der das rückgeführte abgereicherte Reformat eingeleitet wird, vorgesehen. Als Brennstoffarten kommen Diesel, Benzin, Biogas, Erdgas, und weitere aus dem Stand der Technik bekannten Brennstoffarten in Frage, wobei im vorliegenden Ausfüh- rungsbeispiel der Brennstoff vorzugsweise ein Gas ist. Weiterhin wird dem Reformer 12 mittels eines Reformergebläses 20 Oxidationsmittel zugeführt. Der Reformer 12 setzt die über die Fördereinrichtung 14 und das Reformergebläse 20 zugeführten Stoffe vorzugsweise unter partieller Oxidation in ein Reformat um, welches einer Brennstoffzelle 22 zuführbar ist. Alternativ zur Brennstoffzelle 22 kann auch ein Brennstoffzellenstapel vorgesehen sein. Bei dem Reformat handelt es sich um ein Wasserstoffhaltiges Gas, das in der Brennstoffzelle 22 mit Hilfe von durch ein Brennstoff- zellengebläse 24 geförderter Kathodenluft zu elektrischem Strom, Wärme und abgereichertem Reformat umgesetzt wird. Das ausgangsseitig von der Brennstoffzelle 22 abgeführte abgereicherte Reformat teil sich in zwei Stränge auf. Ein Teil des abgereicherten Anodenabgases wird einem Nachbren- ner 26 zugeführt, dem ein Nachbrennergebläse 28 zugeordnet ist. In dem Nachbrenner 26 erfolgt eine Umsetzung des abgereicherten Reformats mit durch das Nachbrennergebläse 28 geförderter Luft zu einem Verbrennungsabgas, das nahezu keine Schadstoffe enthält. Der andere Teil des abgereicher- ten Reformats wird über einen Rezirkulationsstrang 30 zu- nächst durch einen Wärmetauscher 32 bzw. einen Reformatküh- ler hindurchgeführt. Dieser Wärmetauscher 32 kühlt das zurückzuführende abgereicherte Reformat auf beispielsweise 1500C ab. Dabei kann der Rezirkulationsstrom in vorteilhaf- ter Weise über den Wärmetauscher 32 durch einen Medienstrom abgekühlt werden, der schon im BrennstoffZeilensystem 10 vorhanden ist. Als Medienströme kommen hier beispielsweise die vom Reformergebläse 20, vom Brennstoffzellengebläse 24 und/oder vom Nachbrennergebläse 28 angesaugten Medienströme in Frage. Alternativ ist auch möglich, ein Gebläse vorzusehen, welches die Wärmeenergie vom Wärmetauscher 32 abtransportiert. Anschließend führt der Rezirkulationsstrom über ein Stromregelventil 34 zur Durchflusssteuerung des Rezir- kulationsstroms . Dieser Rezirkulationsstrom wird an der Zu- sammenführstelle 18 mit dem Brennstoff gemischt und der Fördereinrichtung 14 zugeführt. Die Fördereinrichtung 14 saugt gleichzeitig den Brennstoff und das über den Rezirku- lationsstrang 30 zurückgeführte abgereicherte Reformat an. Durch eine derartige Rückführung kann ein höherer System- Wirkungsgrad erreicht werden, da die Energie des abgerei- cherten Reformats noch vollständiger umgesetzt wird, so dass im Vergleich zu Systemen ohne Rezirkulationsstrang 30 mit der gleichen Brennstoffmenge mehr elektrische Energie gewonnen werden kann, so dass sich der elektrische System- Wirkungsgrad erhöht. Die Einstellung bzw. Regelung der
Stromregelventile 16 und 34 sowie der Fördereinrichtung 14 wird mit geeigneten Regelalgorithmen verwirklicht, die in einer elektronischen Steuereinheit abgelegt sind. Diese e- lektronische Steuereinheit ist vorzugsweise ein Mikrocont- roller und zumindest mit der Fördereinrichtung 14, dem
Stromregelventil 16, dem Reformergebläse 20, dem Brennstoffzellengebläse 24, dem Nachbrennergebläse 28 sowie dem Stromregelventil 34 verbunden. Alternativ zum vorhergehend beschriebenen Ausführungsbeispiel können anstatt des Reformergebläses 20, des Brennstoffzellengebläses 24 und des Nachbrennergebläses 28 auch entsprechende Pumpen zur Gasförderung vorgesehen sein.
Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein.
Bezugszeichenliste:
10 Brennstoffzellensystem
12 Reformer
14 Fördereinrichtung
16 Stromregelventil
18 Zusammenführstelle 20 Reformergebläse
22 Brennstoffzelle
24 Brennstoffzellengebläse
26 Nachbrenner
28 Nachbrennergebläse 30 Rezirkulationsstrang
32 Wärmetauscher
34 Stromregelventil

Claims

ANS PRÜCHE
1. Brennstoffzellensystem (10) mit einem Reformer (12) zum Erzeugen eines Reformats aus Brennstoff und Oxidations- mittel, einer Brennstoffzelle (22) zum Umsetzen des Reformats in abgereichertes Reformat und elektrische Energie, und einem Rezirkulationsstrang (30) zum teilweisen Zurück- führen des abgereicherten Reformats zum Reformer (12), dadurch gekennzeichnet, dass eine Fördereinrichtung (14) vorgesehen ist, mittels der sowohl der Brennstoff als auch das abgereicherte Reformat des Rezirkulationsstranges (30) dem Reformer (12) zuführbar sind.
2. Brennstoffzellensystem (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass stromaufwärts der Fördereinrichtung
(14) jeweils ein Stromregelventil (16, 34) vorgesehen ist, um das Zuführen von Brennstoff und abgereichertem Reformat zu der Fördereinrichtung (14) unabhängig voneinander zu steuern.
3. Brennstoffzellensystem (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Wärme- tauscher (32) zum Kühlen des abgereicherten Reformats im Rezirkulationsstrang (30) vorgesehen ist.
4. Brennstoffzellensystem (10) gemäß Anspruch 4, dadurch gekennzeichnet, dass durch den Wärmetauscher (32) ein Oxi- dationsmittelstrang führt, der Oxidationsmittel zum Reformer (12) , zur Brennstoffzelle (22) oder zu einem Nachbrenner (26) führt.
5. Verfahren zum Betreiben eines Brennstoffzellensystems (10) , mit den Schritten-. Erzeugen eines Reformats aus Brennstoff und Oxidati- onsmittel mittels eines Reformers (12) ;
- Umsetzen des Reformats in abgereichertes Reformat und elektrische Energie mittels einer Brennstoffzelle (22) ; und
teilweises Zurückführen des abgereicherten Reformats zum Reformer (12) in einem Rezirkulationsstrang (30) ,
gekennzeichnet durch, Betreiben einer Fördereinrichtung (14) , um sowohl den Brennstoff als auch das abgereicherte Reformat des Rezirkulationsstranges (30) dem Reformer (12) zuzuführen.
6. Verfahren gemäß Anspruch 5, gekennzeichnet durch,
Steuern des Zuströmens von Brennstoff und Steuern des Zu- strömens von abgereichertem Reformat zu der Fördereinrich- tung (14) jeweils mittels eines Stromregelventils (16, 34) .
7. Verfahren gemäß einem der Ansprüche 5 oder 6, gekennzeichnet durch, Kühlen des abgereicherten Reformats im Rezirkulationsstrang (30) mittels eines Wärmetauschers (32).
8. Verfahren gemäß Anspruch 7, gekennzeichnet durch, Kühlen des abgereicherten Reformats im Rezirkulationsstrang (30) durch Führen von Oxidationsrαittel durch den Wärmetauscher (32) , welches dem Reformer (12) , der Brennstoffzelle (22) oder einem Nachbrenner (26) zugeführt wird.
9. Verfahren gemäß Anspruch 6, gekennzeichnet durch,
Schließen des Stromregelventils (34) im Rezirkulationsstrang (30) während des Starts oder des Herunterfahrens des Brennstoffzellensystems (10) .
EP08734376A 2007-03-16 2008-03-13 Brennstoffzellensystem mit rezirkulationsstrang Withdrawn EP2135315A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007012762A DE102007012762A1 (de) 2007-03-16 2007-03-16 Brennstoffzellensystem mit Rezirkulationsstrang
PCT/DE2008/000436 WO2008113327A2 (de) 2007-03-16 2008-03-13 Brennstoffzellensystem mit rezirkulationsstrang

Publications (1)

Publication Number Publication Date
EP2135315A2 true EP2135315A2 (de) 2009-12-23

Family

ID=39688224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08734376A Withdrawn EP2135315A2 (de) 2007-03-16 2008-03-13 Brennstoffzellensystem mit rezirkulationsstrang

Country Status (11)

Country Link
US (1) US20100104898A1 (de)
EP (1) EP2135315A2 (de)
JP (1) JP2010521785A (de)
KR (1) KR101128923B1 (de)
CN (1) CN101669241A (de)
AU (1) AU2008228663A1 (de)
BR (1) BRPI0808975A2 (de)
CA (1) CA2679689A1 (de)
DE (1) DE102007012762A1 (de)
EA (1) EA200970744A1 (de)
WO (1) WO2008113327A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007647B1 (ko) * 2010-09-27 2011-01-13 한국환경공단 바이오 가스를 연료로 사용하는 고분자 전해질 연료전지 발전시스템 및 그의 제어방법
KR101373441B1 (ko) * 2012-12-07 2014-03-14 한국가스공사 수소 충전 시스템 및 이 시스템을 이용한 운전 제어 방법
DE102015208920A1 (de) * 2015-05-13 2016-11-17 Volkswagen Ag Verfahren zum Einstellen eines Betriebsgasstroms in einem Brennstoffzellensystem und Brennstoffzellensystem
DE102017100163A1 (de) * 2017-01-05 2018-07-05 Technische Universität Darmstadt Vorrichtung und Verfahren zur Ansteuerung eines Brennstoffzellensystems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316134B1 (en) * 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
JP3614110B2 (ja) * 2001-02-21 2005-01-26 日産自動車株式会社 燃料電池システム
JP2003007319A (ja) * 2001-06-22 2003-01-10 Nissan Motor Co Ltd 燃料電池システム
JP3807361B2 (ja) * 2002-02-08 2006-08-09 日産自動車株式会社 燃料改質システムおよび燃料電池システム
US7285350B2 (en) 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
DE10315697A1 (de) * 2003-04-07 2004-10-21 Daimlerchrysler Ag Gaserzeugungssystem mit einem Reformer zum Erzeugen eines wasserstoffhaltigen Reformats
DE10318495A1 (de) * 2003-04-24 2004-11-11 Bayerische Motoren Werke Ag Energieumwandlungsvorrichtung sowie Reformereinrichtung und Brennstoffzelleneinrichtung hierfür
DE102004002337A1 (de) 2004-01-16 2005-08-11 Bayerische Motoren Werke Ag Energieumwandlungsvorrichtung und Verfahren zum Betreiben der Energieumwandlungsvorrichtung
US7306871B2 (en) * 2004-03-04 2007-12-11 Delphi Technologies, Inc. Hybrid power generating system combining a fuel cell and a gas turbine
US7998632B2 (en) * 2005-05-20 2011-08-16 Delphi Technologies, Inc. Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly
DE102005038733A1 (de) 2005-08-16 2007-02-22 Webasto Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers
US7858214B2 (en) * 2005-09-21 2010-12-28 Delphi Technologies, Inc. Method and apparatus for light internal reforming in a solid oxide fuel cell system
EP2064766A4 (de) * 2006-09-06 2010-09-29 Bloom Energy Corp Flexible brennstoffzellensystemkonfiguration zur handhabung von mehreren brennstoffen
AT502130B1 (de) * 2006-10-03 2008-02-15 Avl List Gmbh Vorrichtung und verfahren zum betrieb einer hochtemperaturbrennstoffzelle
US20080292922A1 (en) * 2007-05-22 2008-11-27 Fischer Bernhard A Method and apparatus for fueling a solid oxide fuel cell stack assembly

Also Published As

Publication number Publication date
CN101669241A (zh) 2010-03-10
US20100104898A1 (en) 2010-04-29
JP2010521785A (ja) 2010-06-24
BRPI0808975A2 (pt) 2014-09-09
WO2008113327A3 (de) 2008-11-20
WO2008113327A2 (de) 2008-09-25
DE102007012762A1 (de) 2008-09-18
KR101128923B1 (ko) 2012-07-11
EA200970744A1 (ru) 2010-02-26
KR20090123889A (ko) 2009-12-02
CA2679689A1 (en) 2008-09-25
AU2008228663A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
EP1679757B1 (de) Brennstoffzellensystem
DE10318495A1 (de) Energieumwandlungsvorrichtung sowie Reformereinrichtung und Brennstoffzelleneinrichtung hierfür
DE10062257B4 (de) Verfahren zum Betrieb eines Brennstoffzellensystems
EP1557896A1 (de) Energieumwandlungsvorrichtung und Verfahren zum Betreiben der Energieumwandlungsvorrichtung
EP2153485B1 (de) Mit flüssiggas betriebenes brennstoffzellensystem
WO2003021696A2 (de) System zum erzeugen elektrischer energie und verfahren zum betreiben eines systems zum erzeugen elektrischer energie
DE19956376A1 (de) Anordnung mit Brennstoffzellen und Gasversorgungssystem sowie Verfahren zum Betreiben der Anordnung
EP1947723B1 (de) Energiebereitstellungssystem
WO2008113327A2 (de) Brennstoffzellensystem mit rezirkulationsstrang
EP1855342A2 (de) Brennstoffzellensystem
DE102007039593B4 (de) Vorrichtung und Verfahren zum Betrieb einer Hochtemperaturbrennstoffzelle
EP1986263B1 (de) Brennstoffzellensystem und zugehöriges Startverfahren
WO2008000201A1 (de) Brennstoffzellensystem
DE102014115096B4 (de) System zur versorgung eines fahrzeugs mit elektrischer energie
WO2008006334A1 (de) Brennstoff zellensystem mit reformer und nachbrenner
AT520263B1 (de) Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle
DE102008008907A1 (de) Brennstoffzellensystem
DE102015218751A1 (de) Wärme-Feuchte-Übertragungseinrichtung für Brennstoffzelle, sowie Brennstoffzellensystem und Fahrzeug mit einer solchen
EP1942537A1 (de) Brennstoffzellensystem mit einer Regenerationseinrichtung für einen Reformer und zugehöriges Verfahren
DE102015117055A1 (de) Stapelgehäuse-Belüftung, Brennstoffzellensystem sowie Fahrzeug
DE102019206701A1 (de) Brennstoffzellenvorrichtung, sowie Verfahren zum Betreiben einer solchen Brennstoffzellenvorrichtung
DE102007033151B4 (de) Betriebsverfahren für ein Brennstoffzellensystem
AT525898B1 (de) Brennstoffzellensystem, Brennstoffzellenanlage und Verfahren zum Erzeugen von Synthesegas
DE102012024385A1 (de) Einrichtung und Verfahren zur Erzeugung elektrischer Energie
WO2017072000A1 (de) Kathodenversorgung für eine mehrfach-brennstoffzelle sowie verfahren zum versorgen von teilbrennstoffzellen mit einem kathoden-betriebsmedium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090901

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100707

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101118