AT520263B1 - Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle - Google Patents
Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle Download PDFInfo
- Publication number
- AT520263B1 AT520263B1 ATA50655/2017A AT506552017A AT520263B1 AT 520263 B1 AT520263 B1 AT 520263B1 AT 506552017 A AT506552017 A AT 506552017A AT 520263 B1 AT520263 B1 AT 520263B1
- Authority
- AT
- Austria
- Prior art keywords
- anode
- fuel cell
- cell system
- gas supply
- upstream
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 101
- 230000003647 oxidation Effects 0.000 claims abstract description 36
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 36
- 239000007800 oxidant agent Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 23
- 238000002407 reforming Methods 0.000 claims abstract description 17
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 61
- 230000003197 catalytic effect Effects 0.000 claims description 21
- 239000003570 air Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 239000002918 waste heat Substances 0.000 claims description 4
- 239000012080 ambient air Substances 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/045—Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/04514—Humidity; Ambient humidity; Water content of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Die Erfindung betrifft ein Brennstoffzellensystem (10) mit zumindest einer Hochtemperatur-Brennstoffzelle (11), beispielsweise einer Festoxidbrennstoffzelle oder einer Schmelzkarbonat-Brennstoffzelle, die einen Anodenbereich (A) mit einem Anodeneingang (12) und einem Anodenausgang (13) aufweist, sowie mit einer in den Anodeneingang (12) mündenden Anodengaszufuhrleitung (14), in welcher ein Reformer (15) für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet ist, sowie mit einer vom Anodenausgang (13) ausgehenden, stromaufwärts des Reformers (15) in die Anodengaszufuhrleitung (14) mündenden Anodenrezirkulationsleitung (16). Zur Erzeugung von Wasserdampf für die nachfolgende Reformierung während der Startphase des Systems ist in der Anodenrezirkulationsleitung (16) stromaufwärts deren Einmündung (17) in die Anodengaszufuhrleitung (14) zumindest ein Oxidationskatalysator (18, 19, 20) samt vorgeschaltetem Injektor (21, 22) für ein Oxidationsmittel angeordnet.
Description
[0001] Die Erfindung betrifft ein Brennstoffzellensystem mit zumindest einer HochtemperaturBrennstoffzelle, die einen Anodenbereich mit einem Anodeneingang und einem Anodenausgang aufweist, sowie mit einer in den Anodeneingang mündenden Anodengaszufuhrleitung, in welcher ein Reformer für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet ist, sowie mit einer vom Anodenausgang ausgehenden, stromaufwärts des Reformers in die Anodengaszufuhrleitung mündenden Anodenrezirkulationsleitung. Weiters betrifft die Erfindung ein Verfahren zum Starten eines Brennstoffzellensystems.
[0002] Unter einer Hochtemperatur-Brennstoffzelle versteht man beispielsweise eine Schmelzkarbonat-Brennstoffzelle (Molten Carbonate Fuel Cell, MCFC), die bei Betriebstemperaturen etwa von 580°C bis 675°C arbeitet. Als Elektrolyt wird bei diesem Brennstoffzellentyp meist eine Alkalicarbonat-Mischschmelze aus Lithium- und Kaliumcarbonat verwendet. Ebenso handelt es sich bei Festoxidbrennstoffzellen (Solid Oxide Fuel Cell, SOFC) um Hochtemperaturbrennstoffzellen, die bei Betriebstemperaturen von etwa 650°C bis 1000°C betrieben werden.
[0003] Derartige Brennstoffzellensysteme werden mit einem gasförmigen oder flüssigen Brennstoff, beispielsweise Ethanol, Methan, Erdgas oder auch Diesel und Benzin betrieben, welche in einem der Anode vorgeschalteten Reformer in ein Wasserstoff- und CO-haltiges Synthesegas umgewandelt werden. Über eine Anodenrezirkulationsleitung werden die Anodenabgase zumindest teilweise rückgeführt, wobei die Rezirkulationsleitung stromaufwärts des Reformers in die Anodengaszufuhrleitung einmündet. Im laufenden Betrieb des Brennstoffzellensystems wird dadurch dem Reformer auch Wasserdampf zugeführt, der im Anodenabgas enthalten ist.
[0004] Im Startbetrieb des Brennstoffzellensystems vor dem Erreichen der Betriebstemperatur wird noch kein Wasserdampf erzeugt und muss dem System während des Hochfahrens zugeführt werden.
[0005] In diesem Zusammenhang ist aus der WO 2015/090549 A1 ein Festoxid-Brennstoffzellensystem bekannt geworden, welches mit gasförmigen oder flüssigen kohlenwasserstoffhaltigen Brennstoffen bei einer Betriebstemperatur zwischen 500°C und 900°C betrieben wird. Das System weist einen Reformer auf, welcher mit einer Anode einer Festoxidbrennstoffzelle über einen Brenngasabschnitt eines Gaskreislaufs gekoppelt ist. Über einen Brennstoffabschnitt wird dem Reformer der Brennstoff zur Aufbereitung zugeführt. Weiters weist der Gaskreislauf einen Rezirkulationsabschnitt sowie einen Wärmetauscher auf, in welchem das Brenngas vor dem Eintritt in die Anode durch das Rezirkulat erhitzt wird. Weiters kann dem Rezirkulationsstrom Wasser oder Wasserdampf über eine in den Rezirkulationsabschnitt des Gaskreislaufs mündende Leitung mittels eines Ejektors oder einer Düse zugeführt werden. Nachteilig dabei ist, dass zusätzliche Betriebsmittel, wie Wasser oder Wasserdampf, bereitgestellt werden müssen.
[0006] Die DE 10 2004 042 806 A1 beschreibt ein PEM-Brennstoffzellensystem, das mit Wasserstoff und Luft betrieben wird, bei welchem in der Anodenrezirkulationsleitung an Stellen am Anodeneingang bzw. Anodenausgang katalytische Beschichtungen vorgesehen sind. Diese dienen dazu, im Stillstand der Brennstoffzelle, wenn der Anodenbereich mit Luft oderSauerstoff gefüllt ist, in Richtung des Anodenbereichs diffundierenden Wasserstoff katalytisch umzusetzen.
[0007] Aus der EP 2 336 083 A1 ist ein Gasgenerator sowie ein Verfahren zur Umwandlung eines Brennstoffs in ein sauerstoffarmes Gas und/oder mit Wasserstoff angereichertes Gas bekannt. Der Gasgenerator wird beispielsweise zum Erzeugen von Schutzgas oder Reduktionsgas zum Anfahren, Abschalten oder Notabstellen einer Hochtemperatur-Brennstoffzelle (z.B. SOFC) verwendet. Die Anodenzufuhrleitung des Systems umfasst einen Vorreformer, der im Brennstoff (z.B. Erdgas) enthaltene höhere Kohlenwasserstoffe in Methan umwandelt, eine Anodengasheizung, und einen P/R Gasgenerator, der das Schutz- und/oder Reduktionsgas für die Anode eines SOFC-Stapels erzeugt. Weiters weist das System eine Anodenrezirkulationsleitung auf, die ausgehend vom Anodenausgang über die Anodengasheizung einen Kühler und
1/11
AT 520 263 B1 2019-12-15 österreichisches patentamt ein Gebläse dem Vorreformer zugeführt wird. In der Anodenabgasleitung ist ein Oxidationskatalysator vorgesehen, der toxische und explosive Gase verbrennt, die in dem Anodenabgas des Stapels enthalten sind. Als Oxidationsmittel wird der Kathode des SOFC-Stapels Luft zugeführt, wobei mit Ventilen versehene Zweigleitungen der Luftzufuhr zum P/R Gasgenerator und zum Oxidationskatalysator geführt sind.
[0008] Aufgabe der Erfindung ist es, ein Brennstoffzellensystem, das einen Reformer für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs aufweist, auf einfache Weise auch im Startbetrieb mit dem für die Reformierung benötigten Wasserdampf zu versorgen.
[0009] Erfindungsgemäß wird dies dadurch erreicht, dass in der Anodenrezirkulationsleitung stromaufwärts deren Einmündung in die Anodengaszufuhrleitung zumindest ein Oxidationskatalysator samt vorgeschaltetem Injektor für ein Oxidationsmittel zur Erzeugung von Wasserdampf angeordnet ist. Bevorzugt wird Luft als Oxidationsmittel zugeführt. Mit anderen Worten ist also stromaufwärts der Einmündung einer Anodenrezirkulationsleitung in die Anodengaszufuhrleitung zumindest ein Oxidationskatalysator samt vorgeschaltetem Injektor vorgesehen.
[0010] Durch den Oxidationskatalysator und das Injizieren eines Oxidationsmittels kann aus dem im Anodenabgas verbliebenen wasserstoffhaltigen Brennstoff Wasserdampf generiert werden. Erfindungsgemäß kann somit beim Hochfahren der Brennstoffzelle sofort Wasserdampf generiert werden, ohne dass eine externe Quelle für Wasser oder Wasserdampf notwendig wäre. Weiters kann auf einen zusätzlichen Verdampfer verzichtet und gleichzeitig dafür gesorgt werden, dass der Reformer rasch auf seine optimale Betriebstemperatur aufgeheizt wird. Beim Einsatz von methanhaltigen Brenngasen steht sofort H2O für die Methanreformierung und die Vermeidung von Kohlenstoffablagerungen zur Verfügung. Diese Vorteile ergeben sich auch im Regulärbetrieb des Brennstoffzellensystems, wo nach der Anode die Umsetzungsprodukte des Brennstoffs - bei Verwendung eines kohlenwasserstoffhaltigen Brennstoffs insbesondere H2 und CO - oxidiert werden.
[0011] Für die Anordnung eines oder mehrerer Oxidationskatalysatoren in der Anodenrezirkulationsleitung stehen mehrere Positionen zur Verfügung:
[0012] Gemäß einer ersten Variante der Erfindung ist in der Anodengaszufuhrleitung vor dem Anodeneingang ein mit der Abwärme aus der Anodenrezirkulationsleitung beaufschlagter Wärmetauscher angeordnet, wobei der Oxidationskatalysator im Wärmetauscher angeordnet ist und vom Rezyklat durchströmt wird. Vorzugsweise ist der Oxidationskatalysator dabei als katalytische Innenbeschichtung im vom Anodenrezyklat beaufschlagten Bereich des Wärmetauschers ausgeführt. Damit ist kein zusätzliches Bauteil notwendig, so dass Platz und Kosten gespart werden können. Zusätzlich wird durch die Vornahme der katalytischen Reaktion im Wärmetauscher mehr Wärme generiert und auf das der Anode durch den Wärmetauscher zugeführte Anodengas übertragen.
[0013] Eine zweite Variante sieht vor, dass der Oxidationskatalysator im heißeren Bereich der Anodenrezirkulationsleitung stromabwärts des Anodenausgangs und stromaufwärts eines Wärmetauschers angeordnet ist. Dadurch kann eine kompakte Bauweise und unmittelbare Umwandlung des Anodenabgases erzielt werden.
[0014] Schließlich kann gemäß einer dritten Variante der Oxidationskatalysator im kühleren Bereich der Anodenrezirkulationsleitung stromaufwärts der Einmündung in die Anodengaszufuhrleitung und stromabwärts eines Wärmetauschers angeordnet sein. Vorzugsweise ist der Oxidationskatalysator dabei als katalytische Innenbeschichtung der Rezirkulationsleitung ausgeführt. Diese Ausführungsform ermöglicht eine längere Verwendung der eingesetzten Katalysatorkomponenten, da diese in kühleren Abschnitten angeordnet und damit geringeren thermischen Belastungen ausgesetzt sind - dadurch verringern sich Verschleiß und aufgrund der selteneren Wartungsarbeiten auch die Betriebskosten.
[0015] Zur Erhöhung der Oxidationsrate können die einzelnen Varianten auch kombiniert eingesetzt, also oxidierende Elemente bzw. Schichten an mehreren Stellen eingesetzt werden.
2/11
AT 520 263 B1 2019-12-15 österreichisches patentamt [0016] In einerweiteren Variante der Erfindung weist der Injektor eine Regeleinrichtung auf, mit welcher die Zufuhr des Oxidationsmittels abhängig von Betriebsparametern der Brennstoffzelle bzw. des Brennstoffzellensystems regelbar ist. Bei den Betriebsparametern kann es sich beispielsweise um die Stacktemperatur, das Dampf-zu-Kohlenstoffverhältnis (insbesondere in einem Reformer) oder ähnliches handeln.
[0017] Ein erfindungsgemäßes Verfahren zum Starten des beschriebenen Brennstoffzellensystems sieht folgende Schritte vor:
[0018] · Starten der Zufuhr des kohlenwasserstoffhaltigen Brennstoffs zur Brennstoffzelle, [0019] · während des Hochfahrens des Brennstoffzellensystems Zuführen eines Oxidationsmittels zum Oxidationskatalysator zur Erzeugung von Wasserdampf für die nachfolgende Reformierung des kohlenwasserstoffhaltigen Brennstoffs, sowie [0020] · Abschalten der Zufuhr des Oxidationsmittels sobald ausreichend Wasserdampf durch den Betrieb des Brennstoffzellensystems erzeugt wird.
[0021] Erfindungsgemäß kann die Zufuhr des Oxidationsmittels abhängig von Betriebsparametern des Brennstoffzellensystems geregelt werden. Bei den Betriebsparametern kann es sich beispielsweise um die Temperatur in der Brennstoffzelle bzw. im Brennstoffzellenstack, den Wasserdampfgehalt des Rezyklats in der Anodenrezirkulationsleitung oder das Dampf-zuKohlenstoffverhältnis insbesondere in einem Reformerelement bzw. reformierend wirkenden Element des Brennstoffzellensystems handeln.
[0022] In einer Variante der Erfindung wird dabei als Oxidationsmittel Umgebungsluft verwendet.
[0023] Die Erfindung wird im Folgenden anhand von nicht-einschränkenden Ausführungsbeispielen, die in den Figuren dargestellt sind, näher erläutert. Es zeigen:
[0024] Fig. 1 eine erste Ausführungsvariante eines erfindungsgemäßen Brennstoffzellensystems in einer schematischen Darstellung, [0025] Fig.2 eine zweite Ausführungsvariante eines erfindungsgemäßen Brennstoffzellensystems in einer schematischen Darstellung, sowie [0026] Fig. 3 eine dritte Ausführungsvariante eines erfindungsgemäßen Brennstoffzellensystems in einer schematischen Darstellung.
[0027] Die Fig. 1 bis 3 zeigen verschiedene Varianten des erfindungsgemäßen Brennstoffzellensystems 10. Die dargestellten Ausführungsvarianten weisen dabei zumindest eine Hochtemperatur-Brennstoffzelle 11 bzw. einen Stapel oder Stack von Hochtemperatur-Brennstoffzellen auf, die einen Anodenbereich A sowie einen durch einen Elektrolyt vom Anodenbereich getrennten Kathodenbereich K aufweisen.
[0028] Das Brennstoffzellensystem 10 ist mit einer in einen Anodeneingang 12 mündenden Anodengaszufuhrleitung 14, sowie mit einer von einem Anodenausgang 13 ausgehenden, in die Anodengaszufuhrleitung 14 mündenden Anodenrezirkulationsleitung 16 ausgestattet, mit der ein Teil des Anodenabgases der Anode A wieder zugeführt wird. Der Rest des Abgases zweigt an einer Abzweigungsstelle 29 von der Anodenrezirkulationsleitung 16 ab und wird über eine nicht näher erläuterte Abgasleitung 28 abgeführt. Nachfolgend wird für das Anodenabgas synonym der Begriff „Rezyklat“ verwendet, was sowohl das vor- als auch nach der Abzweigungsstelle strömende Gasgemisch umfasst.
[0029] Im Gaskreislauf der Anode A sind ein Rezirkulationsgebläse 24 und eine Druckmessvorrichtung 25 angeordnet. Über die Druckmessvorrichtung 25 kann die Rezirkulationsrate ermittelt werden, um das Rezirkulationsgebläse 24 entsprechend zu regeln.
[0030] In den dargestellten Ausführungsbeispielen ist dabei das Rezirkulationsgebläse 24 in der Anodengaszufuhrleitung 14 stromabwärts einer Einmündung 17 der Rezirkulationsleitung 16 angeordnet, die Druckmessvorrichtung 25 befindet sich zwischen Anodenausgang 13 und
3/11
AT 520 263 B1 2019-12-15 österreichisches patentamt besagter Einmündung 17.
[0031] In der Anodengaszufuhrleitung 14 ist in den dargestellten Ausführungsvarianten ein Reformer 15 für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet, die Reformierung des Brennstoffs kann jedoch auch direkt im anodenseitigen Bereich der Brennstoffzelle 11 bzw. des Brennstoffzellenstacks erfolgen. Die Regelung der Zuführung von Anodengas bzw. Brennstoff erfolgt über eine Regelvorrichtung 27.
[0032] Eine eventuelle Medienführung zu der bzw. durch die Kathode K ist aus Gründen der Übersichtlichkeit in den Figuren nicht dargestellt und wird hier nicht weiter erläutert.
[0033] Als kohlenwasserstoffhaltige Brennstoffe können beispielsweise Ethanol, Methan, Erdgas, Diesel oder Benzin verwendet werden.
[0034] Wie in den einzelnen Ausführungsvarianten im Detail dargestellt, ist in der Anodenrezirkulationsleitung 16 stromaufwärts deren Einmündung 17 in die Anodengaszufuhrleitung 14 zumindest an einer Stelle ein Oxidationskatalysator samt vorgeschaltetem Injektor angeordnet, mit welchem ein Oxidationsmittel zur Erzeugung von Wasserdampf zugeführt werden kann. Mit anderen Worten ist also zwischen dem Anodenausgang 13 und der Einmündung 17 der Anodenrezirkulationsleitung 16 in die Anodengaszufuhrleitung 14 zumindest ein Oxidationskatalysator samt vorgeschaltetem Injektor für ein Oxidationsmittel angeordnet.
[0035] Wie in Fig. 1 dargestellt, ist in der Anodengaszufuhrleitung 14 vor dem Anodeneingang 12 ein mit der Abwärme aus der Anodenrezirkulationsleitung 16 beaufschlagter Wärmetauscher 23 angeordnet. Der durch den Wärmetauscher 23 führende Abschnitt der Anodengaszufuhrleitung 14 transportiert das der Anode A zuzuführende Anodengas, welches durch die Abwärme der Brennstoffzelle 11 vorgewärmt wird. Der im Wärmetauscher 23 verlaufende Abschnitt der Anodenrezirkulationsleitung 16 weist den Oxidationskatalysator 20 auf. Der Wärmetauscher 23 ist im dargestellten Ausführungsbeispiel hinsichtlich der Anodenrezirkulationsleitung 16 zwischen dem Anodenausgang 13 und der Abzweigungsstelle 29 der Abgasleitung 28 angeordnet.
[0036] Bevorzugt kann der Oxidationskatalysator 20 dabei als katalytische Innenbeschichtung im vom Anodenrezyklat beaufschlagten heißen Bereich des Wärmetauschers 23 ausgeführt sein.
[0037] Die Anodenrezirkulationsleitung 16 unterteilt sich in einen heißeren Bereich T1 zwischen Anodenausgang 13 und Wärmetauscher 23, in dem im dargestellten Ausführungsbeispiel zwischen 700°C-900°C auftreten können, und einen kühleren Bereich T2 stromabwärts des Wärmetauschers 23, in dem die Temperaturen zwischen 350°C und 700°C liegen.
[0038] Gemäß einer Variante der Erfindung kann der Wärmetauscher 23 zusätzlich auf seiner kalten Seite (der Anodengaszufuhrleitung 14) mit einer Reformerfunktion versehen sein, sodass die Wärme des Anodenabgases für eine Reformierung genutzt werden kann. Dadurch kann ein separater Reformer 15, wie er z.B. in Fig. 1 dargestellt ist, entfallen bzw. in den Wärmetauscher 23 aufgenommen werden.
[0039] Dem Oxidationskatalysator 20 ist ein Injektor 21 vorgeschaltet, mit dem ein Oxidationsmittel in die Anodenrezirkulationsleitung 16 eingebracht wird. Dazu kann beispielsweise Luft verwendet werden. Mit anderen Worten ist also zwischen dem Anodenausgang 13 und dem Oxidationskatalysator 20 ein Injektor 21 vorgesehen.
[0040] Durch Einbringen bzw. Eindüsen des Oxidationsmittels wird der im Anodenabgas vorhandene Wasserstoff (H2), Kohlenwasserstoff und/oder Kohlenmonoxid (CO) in Wasserdampf und Kohlendioxid umgewandelt und in die Anodengaszufuhrleitung 14 rezirkuliert, wodurch der Reformierungsprozess des der Anode A zugeführten Brennstoffs verbessert werden kann. Gleichzeitig wird durch die Generierung von Wasserdampf die Bildung von Kohlenstoffablagerungen verhindert. Diese Vorteile ergeben sich unabhängig vom Betriebszustand des Brennstoffzellensystems 10 - in der Startphase, wo der Brennstoff in der Anode noch gar nicht bzw. unzureichend umgesetzt wird, kann der Brennstoff oxidiert werden, während im Normalbetrieb das Anodenabgas, das insbesondere H2 und CO beinhaltet, umgesetzt wird.
4/11
AT 520 263 B1 2019-12-15 österreichisches patentamt [0041] Gemäß der in Fig. 2 dargestellten Variante ist der Oxidationskatalysator 18 zur Generierung von Wasserdampf im heißeren Bereich T1 (ca. 650°C bis 900°C) der Anodenrezirkulationsleitung 16 stromabwärts des Anodenausgangs 13 und stromaufwärts des Wärmetauschers 23 angeordnet. Der Oxidationskatalysator 18 in diesem Ausführungsbeispiel ist damit stromaufwärts der Abzweigungsstelle 29 der Abgasleitung 28 angeordnet.
[0042] Die Düse bzw. der Injektor 21 für die Zudosierung des Oxidationsmittels (vorzugsweise Umgebungsluft) ist in den Varianten gemäß Fig. 1 und 2 stromaufwärts des Oxidationskatalysators 18 bzw. 20 angeordnet, kann jedoch auch direkt eingangsseitig in einen beispielsweise als separates Bauteil vorliegenden Oxidationskatalysator 18 münden.
[0043] Der Injektor 21 weist eine Regeleinrichtung 26 auf, mit welcher die Zufuhr des Oxidationsmittels abhängig von Betriebsparametern der Brennstoffzelle (beispielsweise Druck, Temperatur, Dampf-zu-Kohlenstoffverhältnis insbesondere in einem Reformerelement, etc.) regelbar und bei Erreichen stabiler Betriebszustände des Brennstoffzellensystems abschaltbar ist. Die Regelung der Zufuhr des Oxidationsmittels zielt insbesondere darauf ab, dass genügende Wasserdampf im Reformer vorhanden ist, um die Reformierungsreaktion zu unterstützen und die Ablagerung von Kohlenstoff zu vermeiden. In einer der möglichen Varianten wird dabei die notwendige Oxidationsmittelmenge über das Dampf-zu-Kohlenstoffverhältnis unter Berücksichtigung der Reformertemperatur und, gegebenenfalls, der Rezirkulationsrate definiert. Bei der Verwendung von Erdgas als Brennstoff wird dabei insbesondere ein Verhältnis von einem Teil CH4 zu zwei Teilen H2O angestrebt.
[0044] Schließlich kann der Oxidationskatalysator 19 gemäß einer weiteren Ausführungsform, die in Fig. 3 dargestellt ist, im kühleren Bereich T2 (ca. 350 bis 650°C) der Anodenrezirkulationsleitung 16 stromaufwärts der Einmündung 17 in die Anodengaszufuhrleitung 14 und stromabwärts des Wärmetauschers 23 angeordnet sein. Insbesondere befindet sich der Oxidationskatalysator 19 in diesem Ausführungsbeispiel stromabwärts der Abzweigungsstelle 29 der Abgasleitung 28 in der Anodenrezirkulationsleitung 16. Bei dieser Variante kann ein zweiter Injektor 22 ebenfalls im kühleren Bereich stromabwärts des Wärmetauschers 23 entweder zusätzlich zum Injektor 21 unmittelbar nahe dem Anodenausgang 13 bzw. statt dieses Injektors 21 angeordnet sein. Der Injektor 21 ist daher in Fig. 3 strichliert dargestellt. Diese Ausführungsform hat den Vorteil, dass das Oxidationsmittel erst nach der Abzweigungsstelle 29 der Abgasleitung 28 in die Anodenrezirkulationsleitung 16 eingebracht wird und damit vollständig zur Wasserdampfgenerierung zur Verfügung steht und nicht teilweise ungenutzt in die Umgebung entweicht. Außerdem ist der Oxidationskatalysator 19 einer geringeren thermischen Belastung ausgesetzt als in den anderen Ausführungsbeispielen, was einen geringeren Verschleiß und längere Betriebsdauer ermöglicht.
[0045] Die Oxidationskatalysatoren 18, 19 können beispielsweise als katalytische Innenbeschichtung der Rezirkulationsleitung 16 ausgeführt sein, es ist jedoch auch möglich, herkömmliche Katalysatoren samt Gehäuse und innenliegender, katalytisch beschichteter Trägerstruktur einzusetzen.
[0046] Das erfindungsgemäße Verfahren zum Betreiben eines derartigen Brennstoffzellensystems 10 kommt vorteilhafterweise speziell beim Starten des Brennstoffzellensystems 10 zum Einsatz. Hierbei ist es besonders wichtig, die Temperatur des Systems und seiner Komponenten rasch auf höhere Werte zu bringen, um einsatzbereit zu sein.
[0047] Die Zuführung eines Oxidationsmittels wie beispielsweise Luft ist im Wesentlichen im Startbetrieb des Brennstoffzellensystems erforderlich, da im Regelbetrieb genügend Wasserdampf durch die Brennstoffzellen selbst bereitgestellt wird. Sollte dem nicht so sein, kann die Zufuhr von Oxidationsmittel auch im Regulärbetrieb erfolgen, um den Wasserdampf für die Reformierung und Verhinderung von Kohlenstoffablagerungen bereit zu stellen.
[0048] Bei der Verwendung während des Hochfahrens des Brennstoffzellensystems 10 wird erfindungsgemäß nach Start der Zufuhr des Brennstoffes das Oxidationsmittel zugeführt, um in der Anodenrezirkulationsleitung 16 Wasserdampf für die Reformierung des Brennstoffes zu
5/11
AT 520 263 B1 2019-12-15 österreichisches patentamt erzeugen. Die Zufuhr des Oxidationsmittels kann eingestellt werden, wenn das Brennstoffzellensystem ausreichend selber Wasserdampf generiert. Dieser Zeitpunkt kann beispielsweise kennfeldgesteuert durch Überwachung bestimmter Betriebsparameter des Brennstoffzellensystems ermittelt werden. Gegebenenfalls kann auch während des Betriebs, z.B. während längerer Phasen geringer Belastung, ein zusätzliches Generieren von Wasserdampf notwendig sein, was durch Aktivieren der Oxidationsmittelzufuhr einfach möglich ist. Die Zufuhr des Oxidationsmittels - sowohl was Menge als auch Dauer bzw. Start und Stopp angeht - kann generell in Abhängigkeit von Betriebsparametern des Brennstoffzellensystems geregelt werden. Geeignete Parameter sind beispielsweise die Temperatur der Brennstoffzelle 11 und/oder der Wasserdampfgehalt des Rezyklats in der Anodenrezirkulationsleitung 16 und/oder das Dampf-zuKohlenstoffverhältnis insbesondere in einem Reformerelement.
Claims (10)
1. Brennstoffzellensystem (10) mit zumindest einer Hochtemperatur-Brennstoffzelle (11), die einen Anodenbereich (A) mit einem Anodeneingang (12) und einem Anodenausgang (13) aufweist, sowie mit einer in den Anodeneingang (12) mündenden Anodengaszufuhrleitung (14), in welcher ein Reformer (15) für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet ist, sowie mit einer vom Anodenausgang (13) ausgehenden, stromaufwärts des Reformers (15) in die Anodengaszufuhrleitung (14) mündenden Anodenrezirkulationsleitung (16), dadurch gekennzeichnet, dass in der Anodenrezirkulationsleitung (16) stromaufwärts deren Einmündung (17) in die Anodengaszufuhrleitung (14) zumindest ein Oxidationskatalysator (18, 19, 20) samt vorgeschaltetem Injektor (21, 22) für ein Oxidationsmittel, vorzugsweise Luft, zur Erzeugung von Wasserdampf angeordnet ist.
2. Brennstoffzellensystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass in der Anodengaszufuhrleitung (14) vor dem Anodeneingang (12) ein mit der Abwärme aus der Anodenrezirkulationsleitung (16) beaufschlagter Wärmetauscher (23) angeordnet ist, wobei der Oxidationskatalysator (20) im Wärmetauscher angeordnet ist.
3. Brennstoffzellensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass der Oxidationskatalysator (20) als katalytische Innenbeschichtung im vom Anodenrezyklat beaufschlagten Bereich des Wärmetauschers (23) ausgeführt ist.
4. Brennstoffzellensystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Oxidationskatalysator (18) im heißeren Bereich der Anodenrezirkulationsleitung (16) stromabwärts des Anodenausgangs (13) und stromaufwärts eines Wärmetauschers (23) angeordnet ist.
5. Brennstoffzellensystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Oxidationskatalysator (19) im kühleren Bereich der Anodenrezirkulationsleitung (16) stromaufwärts der Einmündung (17) in die Anodengaszufuhrleitung (14) und stromabwärts eines Wärmetauschers (23) angeordnet ist.
6. Brennstoffzellensystem (10) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Oxidationskatalysator (18, 19) als katalytische Innenbeschichtung der Rezirkulationsleitung (16) ausgeführt ist.
7. Brennstoffzellensystem (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Injektor (21, 22) eine Regeleinrichtung (26) aufweist, mit welcher die Zufuhr des Oxidationsmittels abhängig von Betriebsparametern der Brennstoffzelle regelbar ist.
8. Verfahren zum Starten eines Brennstoffzellensystems (10) mit zumindest einer Hochtemperatur-Brennstoffzelle (11), die mit einer Anodengaszufuhrleitung (14), in welcher ein Reformer (15) für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet ist, sowie mit einer in die Anodengaszufuhrleitung (14) mündenden Anodenrezirkulationsleitung (16) ausgestattet ist, wobei in der Anodenrezirkulationsleitung (16) stromaufwärts der Einmündung (17) in die Anodengaszufuhrleitung (14) zumindest ein Oxidationskatalysator (18, 19, 20) samt vorgeschaltetem Injektor (21, 22) für ein Oxidationsmittel angeordnet ist, mit den Schritten:
• Starten der Zufuhr des kohlenwasserstoffhaltigen Brennstoffs zur Brennstoffzelle (11), • während des Hochfahrens des Brennstoffzellensystems Zuführen eines Oxidationsmittels zum Oxidationskatalysator (18, 19, 20) zur Erzeugung von Wasserdampf für die nachfolgende Reformierung des kohlenwasserstoffhaltigen Brennstoffs, sowie • Abschalten der Zufuhr des Oxidationsmittels sobald ausreichend Wasserdampf durch den Betrieb des Brennstoffzellensystems (10) erzeugt wird.
7/11
AT 520 263 B1 2019-12-15 österreichisches patentamt
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Zufuhr des Oxidationsmittels abhängig von Betriebsparametern des Brennstoffzellensystems geregelt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass als Oxidationsmittel Umgebungsluft verwendet wird.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ATA50655/2017A AT520263B1 (de) | 2017-08-07 | 2017-08-07 | Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle |
| DE112018004017.8T DE112018004017A5 (de) | 2017-08-07 | 2018-08-07 | Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle |
| PCT/AT2018/060181 WO2019028487A1 (de) | 2017-08-07 | 2018-08-07 | Brennstoffzellensystem mit zumindest einer hochtemperatur-brennstoffzelle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ATA50655/2017A AT520263B1 (de) | 2017-08-07 | 2017-08-07 | Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AT520263A1 AT520263A1 (de) | 2019-02-15 |
| AT520263B1 true AT520263B1 (de) | 2019-12-15 |
Family
ID=63350283
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ATA50655/2017A AT520263B1 (de) | 2017-08-07 | 2017-08-07 | Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle |
Country Status (3)
| Country | Link |
|---|---|
| AT (1) | AT520263B1 (de) |
| DE (1) | DE112018004017A5 (de) |
| WO (1) | WO2019028487A1 (de) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT523210B1 (de) * | 2019-12-09 | 2021-08-15 | Avl List Gmbh | Brennstoffzellensystem |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003061040A1 (en) * | 2002-01-04 | 2003-07-24 | International Fuel Cells, Llc | Procedure for starting up a fuel cell system having an anode exhaust recycle loop |
| EP2336083A1 (de) * | 2009-12-17 | 2011-06-22 | Topsøe Fuel Cell A/S | Gasgenerator und Verfahren zur Umwandlung eines Brennstoffs in ein sauerstoffarmen Gases und/oder wasserstoffangereicherten Gases |
| WO2016041654A1 (de) * | 2014-09-18 | 2016-03-24 | Robert Bosch Gmbh | Brennstoffzellenvorrichtung mit verbessertem anodengasprozessor |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005010935A1 (de) * | 2005-03-09 | 2006-09-14 | Webasto Ag | Reformer, Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems |
| DE102005038733A1 (de) * | 2005-08-16 | 2007-02-22 | Webasto Ag | Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers |
-
2017
- 2017-08-07 AT ATA50655/2017A patent/AT520263B1/de active
-
2018
- 2018-08-07 WO PCT/AT2018/060181 patent/WO2019028487A1/de not_active Ceased
- 2018-08-07 DE DE112018004017.8T patent/DE112018004017A5/de not_active Withdrawn
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003061040A1 (en) * | 2002-01-04 | 2003-07-24 | International Fuel Cells, Llc | Procedure for starting up a fuel cell system having an anode exhaust recycle loop |
| EP2336083A1 (de) * | 2009-12-17 | 2011-06-22 | Topsøe Fuel Cell A/S | Gasgenerator und Verfahren zur Umwandlung eines Brennstoffs in ein sauerstoffarmen Gases und/oder wasserstoffangereicherten Gases |
| WO2016041654A1 (de) * | 2014-09-18 | 2016-03-24 | Robert Bosch Gmbh | Brennstoffzellenvorrichtung mit verbessertem anodengasprozessor |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2019028487A1 (de) | 2019-02-14 |
| AT520263A1 (de) | 2019-02-15 |
| DE112018004017A5 (de) | 2020-05-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE10062257B4 (de) | Verfahren zum Betrieb eines Brennstoffzellensystems | |
| EP2153485B1 (de) | Mit flüssiggas betriebenes brennstoffzellensystem | |
| DE10252075A1 (de) | Gestufte magere Verbrennung für einen Schnellstart eines brennstoffverarbeitenden Systems | |
| DE10065458A1 (de) | Brennstoffzellensystemabschaltung mit Anodendrucksteuerung | |
| DE102007039593B4 (de) | Vorrichtung und Verfahren zum Betrieb einer Hochtemperaturbrennstoffzelle | |
| DE102008045147B4 (de) | Effizientes Brennstoffzellensystem mit integrierter Gaserzeugung und zugehöriges Verfahren zur Regelung und Steuerung des Betriebes | |
| AT520263B1 (de) | Brennstoffzellensystem mit zumindest einer Hochtemperatur-Brennstoffzelle | |
| DE102007019359A1 (de) | Brennstoffzellensystem und zugehöriges Startverfahren | |
| EP1519894A2 (de) | Verfahren zum starten eines gaserzeugungssystems | |
| DE10010070A1 (de) | Gaserzeugungsvorrichtung | |
| AT518012B1 (de) | Vorrichtung und Verfahren zum Betrieb eines Brennstoffzellensystems | |
| EP2135315A2 (de) | Brennstoffzellensystem mit rezirkulationsstrang | |
| DE102019206701A1 (de) | Brennstoffzellenvorrichtung, sowie Verfahren zum Betreiben einer solchen Brennstoffzellenvorrichtung | |
| DE102006032956B4 (de) | Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat | |
| DE102008037028B4 (de) | Brennstoffzellensystem für gasförmige Kohlenwassserstoffe und dazugehöriges Betriebsverfahren | |
| DE10350039A1 (de) | Brenner für einen Reformer in einem Brennstoffzellensystem | |
| AT527087A1 (de) | Brennstoffzellensystem mit Startreformervorrichtung und Verfahren zum Starten des Brennstoffzellensystems | |
| EP2837054A2 (de) | Brennstoffzellenvorrichtung und verfahren zum betreiben einer brennstoffzellenvorrichtung | |
| DE102010053572B4 (de) | Verfahren zum Betrieb eines Brennstoffzellensystems | |
| DE10054842A1 (de) | Verfahren zur elektrischen Inbetriebnahme einer Brennstoffzelle | |
| DE10296673T5 (de) | Brennstoffzellen-Stromerzeugungsanlage | |
| DE102007033151B4 (de) | Betriebsverfahren für ein Brennstoffzellensystem | |
| WO2025184681A1 (de) | Kontrollverfahren und anordnung zum kontrollieren einer reformertemperatur | |
| AT527535A1 (de) | Brennstoffzellensystem für ein Erzeugen eines Synthesegases | |
| DE102015219862A1 (de) | Vorrichtung und Verfahren zur Erzeugung von Synthesegas |