EP2132476A2 - Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen - Google Patents

Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen

Info

Publication number
EP2132476A2
EP2132476A2 EP08709217A EP08709217A EP2132476A2 EP 2132476 A2 EP2132476 A2 EP 2132476A2 EP 08709217 A EP08709217 A EP 08709217A EP 08709217 A EP08709217 A EP 08709217A EP 2132476 A2 EP2132476 A2 EP 2132476A2
Authority
EP
European Patent Office
Prior art keywords
pressure
cryogenic
storage medium
hydrogen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08709217A
Other languages
German (de)
French (fr)
Inventor
Tobias Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP2132476A2 publication Critical patent/EP2132476A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0367Arrangements in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a method for filling a for a cryogenic storage medium, in particular cryogenic hydrogen, provided pressure accumulator, in particular a cryogenic pressure tank of a motor vehicle in which the extracted from a large reservoir substantially under ambient pressure with a corresponding saturation temperature in the liquid state cryogenic storage medium under absolute pressure values in the order of 150 bar or more can be stored.
  • a cryogenic storage medium in particular cryogenic hydrogen
  • pressure accumulator in particular a cryogenic pressure tank of a motor vehicle in which the extracted from a large reservoir substantially under ambient pressure with a corresponding saturation temperature in the liquid state cryogenic storage medium under absolute pressure values in the order of 150 bar or more can be stored.
  • cryogenic hydrogen to supply the run as an engine Fzg. -Antriebsaggregats
  • a cryogenic tank as a cryogenic tank
  • which consists of a metallic inner tank, a metallic outer tank and an intermediate vacuum superinsulation to reduce the heat input into the inner tank.
  • the typical operating pressure of this storage tank is between 1 bar absolute and 10 bar absolute, and the operating temperatures in the so-called "cold regular operation" are between 20 K (Kelvin) and about 30 K, ie the same contained in the storage tank or in the inner tank of cryogenic hydrogen has these physical values mentioned, which are in the pressure-density diagram of the hydrogen in the so-called.
  • Subcritical range, on. The highest system storage densities shown so far are less than 30 grams of hydrogen per liter of system volume, to which, in addition to the cryogenic tank, all auxiliary systems necessary for the operation of the fuel supply system are counted. This corresponds to a volumetric system energy density of less than 1 kWh per liter of system volume.
  • the refueling of the cryogenic tank according to this prior art is carried out with cryogenic liquid hydrogen at pressures between 1 bar and 6 bar and corresponding saturation temperatures of the cryogenic hydrogen or with slight supercooling thereof.
  • the currently maximum representable supercooling is in the order of 6 Kelvin as the difference of the saturation temperature at a pressure of 6 bar absolute and the saturation temperature at a pressure of 1 bar absolute.
  • the physical storage densities are limited by the highest refueling pressure of approx. 6 bar absolute and the lowest possible hydrogen temperature of approx. 20 K and reach values of max. 71.5 g / l.
  • Boil-off problem of the current cryo-tanks according to which, due to although minimal, but unavoidable heat input into the cryogenic tank in this pressure increase takes place, which by Blowing off gaseous hydrogen from the cryogenic tank must be reduced.
  • the maximum lossless life of a current optimal cryo-tank is at a shutdown at operating pressure in the order of about 3 days, ie after this period, blowing off a small subset of stored hydrogen is unavoidable, which is not satisfactory in daily practice.
  • cryogenic pressure accumulator can be filled with warm compressed gas at 350 bar and low storage capacity or alternatively with liquid hydrogen at low pressure of about 1 bar (absolute) with a higher storage capacity.
  • this known cryogenic pressure accumulator according to the description of a working pressure range of 1 bar (absolute) to 350 bar (absolute).
  • the achievable physical storage densities are up to 71, 5 g / l, namely at 100% - filling at 1 bar absolute pressure.
  • Systemic storage densities reach values of up to approx. 33 grams per liter of system volume or 1.1 kWh per liter of system volume.
  • the heat absorption capacity of said cryogenic accumulator with liquid hydrogen filling at 1 bar (absolute) and a possible pressure increase up to about 350 bar about 7 days per watt average heat input and per kg stored hydrogen.
  • loss-free service lives of the order of 5 to 10 days are thus included maximum filling (with 10 kg of liquid hydrogen) and of about 30 days with medium filling (with 5 kg of liquid hydrogen) achievable, which is a significant increase over the above-mentioned prior art.
  • a disadvantage of this prior art is that when filling at 1 bar absolute with the highest physical storage density, no pressure supply for an out of this cryogenic pressure accumulator with hydrogen to be supplied for combustion unit, eg. A vehicle drive unit or a fuel cell, anschl devisend directly to a refueling is possible, since this or the hydrogen under slightly higher pressure, which is for today's said components in the order of at least 4 bar absolute, needed. A time-consuming and / or energy-intensive subsequent pressure increase in the vehicle would therefore be necessary for the operation of the drive unit or a fuel cell directly following refueling.
  • cryogenic pressure tank a long-lasting refueling operation with high amounts of gas recirculation (with density jump) of liquid hydrogen in contact with superheated tank walls, ie there is a need for complete cooling of the cryogenic pressure tank from permanent uptake of liquid hydrogen , Furthermore, an accelerated pressure build-up in the cryogenic pressure tank can be determined by the tendency to thermal stratification. Finally, both such a cryopressure tank and its ancillary systems must be removed from the cryopressure tank Storage medium are exposed to be designed for two-phase operation of the storage medium, ie the cryogenic hydrogen, with the result that an (increased) fatigue due to boiling processes of the storage medium is taken into account.
  • cryogenic pressure accumulator with cryogenic storage medium is proposed at supercritical pressure by the from a so-called.
  • Large reservoir which is analogous to the previous liquid hydrocarbon fuels (such as gasoline or diesel) at a "gas station", substantially below
  • the said storage medium is hydrogen, it may preferably be compressed to a supercritical pressure of the order of magnitude of 13 bar or more (known per se) If the critical pressure for hydrogen is 12.8 bar.)
  • Fzg. -Antriebsaggregat od he a fuel cell easy and unproblematic to supply with the storage medium or hydrogen.
  • the storage medium taken from the large storage container and preferably compressed by means of a cryogenic pump can be recooled substantially or as isobarically as possible, before it is introduced into the accumulator / cryopressure tank, i.
  • the temperature increase associated with the preceding compression is at least substantially reversed.
  • hydrogen as a storage medium, preferably a recooling to a temperature in the order of 20 K.
  • the storage capacity of the cryopressor is significantly increased by the compressed hydrogen at supercritical pressure to the temperature level of subcritical liquid hydrogen (from 1 bar absolute and about 20 K) is cooled.
  • the hydrogen withdrawn from the large reservoir can be compressed from point "a" to, for example, 150 bara (point “d") and, in the second embodiment, to be filled into the cryopressor subsequently cooled as isobarically to about 20 K, whereby the point "e" is reached.
  • FIG. 2 which is explained below, shows a device for carrying out the method proposed here, by means of which this method will now be explained again in detail:
  • a marked by the reference numeral 12 cryopressure tank of a motor vehicle to be fueled, ie the latter is to be filled with cryogenic liquid hydrogen from the large Vorhalts memorier 1.
  • a the cryosepressure tank 12 associated supply line 9 which is connected via a cold valve 10 with a filling line 1 1 opening within the cryogenic pressure tank 12, connected via a cryogenic pressure tank coupling 8 to a supply line 7 of the large reservoir 1.
  • said supply line 7, via which cryogenic hydrogen is ultimately discharged from the large storage tank 1, does not discharge directly into the cryogenic liquid hydrogen 24 stored in the large storage tank 1. Rather, the hydrogen 24 stored in the large storage tank 1 is discharged via a liquid removal line 2 taken from the large reservoir 1 and then in a preferably adiabatic cryogenic pump 3 to a supercritical pressure level, ie compressed or compressed over the pressure value 12.8 bara. Subsequently, by this compression or compression slightly heated liquid so-called cryogenic pressurized hydrogen either via valve 4 directly or via a valve 5, first through a heat exchanger 6 and then led thereto to the already mentioned supply line 7.
  • cryogenic liquid hydrogen In the heat exchanger 6, which is located within the large reservoir 1 in the stored therein cryogenic liquid hydrogen 24, which passed through the heat exchanger 6 so-called.
  • Kryo-pressure hydrogen is substantially at the temperature level of the stored cryogenic liquid hydrogen, ie approximately cooled back to the above-mentioned saturation temperature of 20.24 K.
  • the respective components as far as necessary, are sufficiently isolated.
  • the large reservoir 1 with the cryopump 3 and said valves 4, 5 is surrounded by an insulation 40.
  • the supply line 7 and the clutch 8 and the supply line 9 are sufficiently isolated.
  • cryogenic pressure tank 12 is provided as usual with a vacuum Superisolation 14, which surrounds the pressure tank 12, which receives the cryogenic hydrogen, and in turn in a pressure tank 12 correspondingly spaced enveloping vacuum-tight outer tank 13 is held.
  • a pressure reduction can take place therein. ie a pressure equalization can be performed by at least a portion of said residual amount, i. generally residual storage medium, which / is usually in gaseous form, is discharged from the cryogenic pressure tank 12. This is done via a return gas line 15, which leads via a return gas valve 16 to an insulated line 17, the end of which has a return gas coupling 18.
  • An isolated feed line 19 can be connected to this return gas coupling 18, which feeds this residual gas back into the cryogenic liquid hydrogen 24 of the large storage container 1 via a so-called storage tank valve 20.
  • This residual gas or a part thereof By returning this residual gas or a part thereof, the pressure loss caused by the removal of liquid hydrogen for refueling in the large reservoir 1 can be at least partially compensated.
  • excess residual gas via a valve 22 and a clutch 23 but also to a external consumers or recyclers, which may be, for example, a stationary fuel cell or a connected Drucktankpeichersys- system, are delivered.
  • a pressure sufficient for the use of the cryogenic hydrogen (or storage medium) in an aggregate is available almost immediately following a filling of the cryogenic pressure tank.
  • a fuel cell requires a pressure level between 4 bar and 10 bar (absolute), while for a supercharged hydrogen internal combustion engine even a pressure level between 8 bar and 20 bar is needed.
  • a time-fast filling of the cryogenic pressure tank is possible, since no evaporation occurs with density jump and resulting rapid pressure increase when filling in a non-cold tank. This results in shorter refueling times and lower return gas volumes. gene, which are otherwise regarded by the gas station side as refueling losses. As stated here, an amount of residual gas recirculated to the filling station or into the large reservoir 1 can be used even more advantageously.
  • this cryopressure tank can hold a cryogenic storage medium up to pressure values of 300 bar or more:
  • a clear improvement over simple cryotanks, which can only absorb slight overpressure, is already achieved with a cryopressure tank, the absolute pressure values can withstand the order of 150 bar, ie that the storage medium stored in the cryopressure tank can accept pressure values of up to 150 bar before a blow-off to reduce excess pressure values must be initiated.
  • a cryogenic pressure tank instead of a simple practically not overpressure-resistant cryogenic tank, even after a long lossy service life depending on Abblasedruck always a sufficient amount of hydrogen in the tank, so that a vehicle equipped with this vehicle can still be moved sufficiently far.
  • cryogenic pressure accumulator a quasi lossless cryopressure (cryogenic pressure accumulator) with sufficiently long loss-free life at the same sownevorgang free extraction operation, stand mode and especially refueling proposed which is made possible by the fact that a refueling of a cryogenic pressure tank with cryogenic storage medium is carried out at supercritical pressure, wherein it should be noted that quite a variety of details may be deviated from the above explanations, without departing from the content of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a method for filling a cryogenic pressurised tank on a motor vehicle provided for cryogenic hydrogen, in which cryogenic hydrogen taken from a large reservoir in liquid form, essentially at atmospheric pressure with a corresponding saturation temperature, can be stored with absolute pressure values in the range of 150 bar or more. The hydrogen is adiabatically compressed with a cryopump after withdrawal from the large reservoir and delivered to the cryotank at a supercritical pressure (13bar or more). A recooling to ca 20k preferably occurs previously by running the compressed hydrogen through a heat exchanger arranged in the hydrogen stored in the large reservoir. The residual cryo medium in the cryo pressure tank can be removed from the cryo pressure tank and introduced into the larger reservoir before the filling with new stored medium.

Description

Verfahren zum Befüllen eines für ein kryogenes Speichermedium, insbesondere Wasserstoff, vorgesehenen Druckspeichers Method for filling a pressure accumulator provided for a cryogenic storage medium, in particular hydrogen
Die Erfindung betrifft ein Verfahren zum Befüllen eines für ein kryogenes Speichermedium, insbesondere kryogenen Wasserstoff, vorgesehenen Druckspeichers, insbesondere eines Kryo-Drucktanks eines Kraftfahrzeugs, in dem das aus einem großen Vorratsbehälter im wesentlichen unter Umgebungsdruck mit entsprechender Sättigungstemperatur im flüssigen Zustand entnommene kryogene Speichermedium unter Absolutdruckwerten in der Größenordnung von 150 bar oder mehr gespeichert werden kann. Zum bekannten Stand der Technik wird neben der derzeit verwendeten Betankungstechnologie, die bspw. beim Fahrzeug „Hydrogen 7" der Anmelderin der vorliegenden Patentanmeldung angewendet und im folgenden Absatz erläutert wird, auf die DE 41 29 020 C2 sowie insbesondere auf die US 6,708,502 B1 verwiesen.The invention relates to a method for filling a for a cryogenic storage medium, in particular cryogenic hydrogen, provided pressure accumulator, in particular a cryogenic pressure tank of a motor vehicle in which the extracted from a large reservoir substantially under ambient pressure with a corresponding saturation temperature in the liquid state cryogenic storage medium under absolute pressure values in the order of 150 bar or more can be stored. The prior art, in addition to the currently used refueling technology, which is applied, for example, in the vehicle "Hydrogen 7" of the present application and explained in the following paragraph, refer to DE 41 29 020 C2 and in particular to US 6,708,502 B1.
Stand der Technik beim genannten Fahrzeug „Hydrogen 7", das mit einem sog. Kryo-Tank zur Speicherung von kryogenem Wasserstoff (zur Versorgung des als Brennkraftmaschine ausgeführten Fzg. -Antriebsaggregats) ausgerüstet ist, ist ein „unterkritischer" Speicherbehälter (als Kryo-Tank), der aus einem metallischen Innentank, einem metallischen Außentank und einer dazwischen liegenden Vakuum-Superisolation zur Minderung des Wärmeeintrags in den Innentank besteht. Der typische Betriebsdruck dieses Speicherbehälters liegt zwischen 1 bar absolut und 10 bar absolut, und die Betriebstemperaturen im sog. „kalten Regulärbetrieb" liegen zwischen 20 K (Kelvin) und ca. 30 K, d.h. der im Speicherbehälter bzw. im Innentank desselben enthaltene kryogene Wasserstoff weist diese genannten physikalischen Werte, die im Druck-Dichte-Diagramm des Wasserstoffs im sog. unterkritischen Bereich liegen, auf. Die höchsten damit bisher dargestellten Systemspeicherdichten liegen unter 30 Gramm Wasserstoff pro Liter Systemvolumen, zum dem neben dem Kryo-Tank alle für den Betrieb der Kraftstoffversorgungsanlage notwendigen Nebensysteme gezählt werden. Dies entspricht einer volumethschen Systemenergiedichte von weniger als 1 kWh je Liter Systemvolumen.State of the art in the mentioned vehicle "Hydrogen 7", which is equipped with a so-called. Cryo-tank for storing cryogenic hydrogen (to supply the run as an engine Fzg. -Antriebsaggregats) is a "subcritical" storage tank (as a cryogenic tank ), which consists of a metallic inner tank, a metallic outer tank and an intermediate vacuum superinsulation to reduce the heat input into the inner tank. The typical operating pressure of this storage tank is between 1 bar absolute and 10 bar absolute, and the operating temperatures in the so-called "cold regular operation" are between 20 K (Kelvin) and about 30 K, ie the same contained in the storage tank or in the inner tank of cryogenic hydrogen has these physical values mentioned, which are in the pressure-density diagram of the hydrogen in the so-called. Subcritical range, on. The highest system storage densities shown so far are less than 30 grams of hydrogen per liter of system volume, to which, in addition to the cryogenic tank, all auxiliary systems necessary for the operation of the fuel supply system are counted. This corresponds to a volumetric system energy density of less than 1 kWh per liter of system volume.
Die Betankung des Kryo-Tanks nach diesem Stand der Technik erfolgt mit kryogenem flüssigen Wasserstoff bei Drücken zwischen 1 bar und 6 bar und entsprechenden Sättigungstemperaturen des kryogenen Wasserstoffs oder bei leichter Unterkühlung desselben. Die derzeit maximal darstellbare Unterkühlung liegt in der Größenordnung von 6 Kelvin als Differenz der Sättigungstemperatur bei einem Druck von 6 bar absolut und der Sättigungstemperatur bei einem Druck von 1 bar absolut. Die physikalischen Speicherdichten sind begrenzt durch den höchsten Betankungsdruck von ca. 6 bar absolut und die niedrigste mögliche Wasserstofftemperatur von ca. 20 K und erreichen Werte von max. 71 ,5 g/l. Eine reguläre Fahrzeugbetankung ist aktuell durch die Mindestdruck-Anforderung des Fzg. -Antriebsaggregats einerseits sowie durch die fehlende „Überfüllbarkeit" andererseits - in der Regel gilt nämlcih eine ca. 80% bis 95% flüssige Volumenfüllgrenze des Kryo-Tanks - begrenzt. Ein Kryo-Tank nach derzeitigem Stand der Technik erreicht daher nicht die oben genannten maximal möglichen physikalischen Speicherdichten.The refueling of the cryogenic tank according to this prior art is carried out with cryogenic liquid hydrogen at pressures between 1 bar and 6 bar and corresponding saturation temperatures of the cryogenic hydrogen or with slight supercooling thereof. The currently maximum representable supercooling is in the order of 6 Kelvin as the difference of the saturation temperature at a pressure of 6 bar absolute and the saturation temperature at a pressure of 1 bar absolute. The physical storage densities are limited by the highest refueling pressure of approx. 6 bar absolute and the lowest possible hydrogen temperature of approx. 20 K and reach values of max. 71.5 g / l. Regular vehicle refueling is currently limited by the minimum pressure requirement of the vehicle drive unit on the one hand and by the lack of "overfillability" on the other hand - as a rule an approximately 80% to 95% liquid volume filling limit of the cryogenic tank is limited. Tank according to the current state of the art therefore does not achieve the above-mentioned maximum possible physical storage densities.
Bekannt ist dabei die sog. Boil-off-Problematik der derzeitigen Kryo-Tanks, wonach aufgrund von zwar minimalem, aber unvermeidbaren Wärmeeintrag in den Kryo-Tank in diesem eine Druckerhöhung erfolgt, welche durch Abblasen von gasförmigem Wasserstoff aus dem Kryo-Tank abgebaut werden muss. Die maximale verlustfreie Standzeit eines derzeitigen optimalen Kryo-Tanks liegt bei einem Abstellen bei Betriebsdruck in der Größenordnung von ca. 3 Tagen, d.h. nach diesem Zeitraum ist ein Abblasen einer kleinen Teilmenge von gespeichertem Wasserstoff unvermeidbar, was in der täglichen Praxis nicht befriedigend ist.Known is the so-called. Boil-off problem of the current cryo-tanks, according to which, due to although minimal, but unavoidable heat input into the cryogenic tank in this pressure increase takes place, which by Blowing off gaseous hydrogen from the cryogenic tank must be reduced. The maximum lossless life of a current optimal cryo-tank is at a shutdown at operating pressure in the order of about 3 days, ie after this period, blowing off a small subset of stored hydrogen is unavoidable, which is not satisfactory in daily practice.
Weiteren bekannten Stand der Technik stellt die sog. Kryo- Druckspeicherung dar, wozu auf die o.g. US 6,708,502 B1 verwiesen wird, in der verschiedene Arten von isolierten Druckspeichern für kryogene Speichermedien mit inneren und äußeren Diffusionssperren, die einen CFK- Innentank umhüllen, beschrieben sind. Nach diesem Stand der Technik kann der beschriebene sog. Kryo-Druckspeicher mit warmen Druckgas bei 350 bar und niedriger Speicherkapazität oder alternativ mit flüssigem Wasserstoff bei niedrigem Druck von ca. 1 bar (absolut) mit höherer Speicherkapazität befüllt werden. Bei Befüllung mit Flüssigwasserstoff weist dieser bekannte kryogene Druckspeicher laut Beschreibung einen Arbeitsdruckbereich von 1 bar (absolut) bis 350 bar (absolut) auf. Die erreichbaren physikalischen Speicherdichten liegen bei bis zu 71 ,5 g/l, nämlich bei 100%- iger Befüllung bei 1 bar Absolutdruck. Systemische Speicherdichten erreichen Werte bis ca. 33 Gramm pro Liter Systemvolumen bzw. 1 ,1 kWh pro Liter Systemvolumen.Further known prior art is the so-called. Cryo-pressure storage is, to which on the o.g. No. 6,708,502 B1, in which various types of isolated pressure accumulators for cryogenic storage media with inner and outer diffusion barriers, which encase a CFK inner tank, are described. According to this prior art, the so-called cryogenic pressure accumulator described can be filled with warm compressed gas at 350 bar and low storage capacity or alternatively with liquid hydrogen at low pressure of about 1 bar (absolute) with a higher storage capacity. When filled with liquid hydrogen, this known cryogenic pressure accumulator according to the description of a working pressure range of 1 bar (absolute) to 350 bar (absolute). The achievable physical storage densities are up to 71, 5 g / l, namely at 100% - filling at 1 bar absolute pressure. Systemic storage densities reach values of up to approx. 33 grams per liter of system volume or 1.1 kWh per liter of system volume.
Vorteilhafterweise beträgt die Wärmeaufnahme-Fähigkeit eines genannten Kryo-Druckspeichers mit Flüssigwasserstoffbefüllung bei 1 bar (absolut) und einer möglichen Drucksteigerung bis auf ca. 350 bar ca. 7 Tage pro Watt mittleren Wärmeeintrags und pro kg gespeichertem Wasserstoff. Mit einem System nach diesem Stand der Technik (mit ca. 150 1 Wasserstoff, was 10,7 kg bei 1 bar-Befüllung entspricht und 10 W max. Wärmeeintrag) sind damit verlustfreie Standzeiten in der Größenordnung von 5 bis 10 Tagen bei maximaler Befüllung (mit 10 kg Flüssigwasserstoff) und von ca. 30 Tagen bei mittlerer Befüllung (mit 5 kg Flüssigwasserstoff) erreichbar, was eine deutliche Steigerung gegenüber dem o.g. Stand der Technik ist.Advantageously, the heat absorption capacity of said cryogenic accumulator with liquid hydrogen filling at 1 bar (absolute) and a possible pressure increase up to about 350 bar about 7 days per watt average heat input and per kg stored hydrogen. With a system according to this state of the art (with about 150 l of hydrogen, which corresponds to 10.7 kg with 1 bar filling and 10 W of maximum heat input), loss-free service lives of the order of 5 to 10 days are thus included maximum filling (with 10 kg of liquid hydrogen) and of about 30 days with medium filling (with 5 kg of liquid hydrogen) achievable, which is a significant increase over the above-mentioned prior art.
Nachteilig bei diesem Stand der Technik ist jedoch, dass bei einer Befüllung bei 1 bar absolut mit höchster physikalischer Speicherdichte keine Druckbereitstellung für ein aus diesem Kryo-Druckspeicher mit Wasserstoff zur Verbrennung zu versorgenden Aggregat, bspw. einem Fahrzeug- Antriebsaggregat oder einer Brennstoffzelle, direkt anschleißend an eine Betankung möglich ist, da dieses bzw. diese den Wasserstoff unter geringfügig höherem Druck, der für heutige genannte Komponenten in der Größenordnung von zumindest 4 bar absolut liegt, benötigt. Eine zeitintensive und/oder energieintensive nachträgliche Druckerhöhung im Fahrzeug wäre folglich für den Betrieb des Antriebsaggregats oder einer Brennstoffzelle direkt im Anschluss an eine Betankung notwendig. Wegen fehlender Möglichkeiten einer zeitnahen, energieeffizienten Tankdruckerhöhung oder einer Druckerzeugung auf dem Weg zum Antriebsaggregat (bzw. allgemein einem Verbraucher, bei dem es sich neben einem Verbrennungsmotor auch um eine Brennstoffzelle handeln kann) werden mit dem bekannten Kryo- Druckspeicher die automotiven Randbedingungen also nicht erfüllt.A disadvantage of this prior art, however, is that when filling at 1 bar absolute with the highest physical storage density, no pressure supply for an out of this cryogenic pressure accumulator with hydrogen to be supplied for combustion unit, eg. A vehicle drive unit or a fuel cell, anschleißend directly to a refueling is possible, since this or the hydrogen under slightly higher pressure, which is for today's said components in the order of at least 4 bar absolute, needed. A time-consuming and / or energy-intensive subsequent pressure increase in the vehicle would therefore be necessary for the operation of the drive unit or a fuel cell directly following refueling. Because of the lack of opportunities for a timely, energy-efficient increase in tank pressure or pressure on the way to the drive unit (or generally a consumer, which may be in addition to an internal combustion engine and a fuel cell) so the automotive boundary conditions are not met with the known Kryo pressure accumulator ,
Auch ergibt sich mit einem solchen Kryo-Drucktank ein zeitlich lang andauernder Betankungsvorgang mit hohen Rückgasmengen wegen erfolgender Verdampfung (mit Dichtesprung) von flüssigem Wasserstoff bei Kontakt mit überhitzten Tankwänden, d.h. es besteht die Notwendigkeit einer vollständigen Durchkühlung des Kryo-Drucktanks vor bleibender Aufnahme von Flüssigwasserstoff. Weiterhin ist ein beschleunigter Druckaufbau im Kryo-Drucktank durch Neigung zur thermischen Schichtung feststellbar. Schließlich muss bzw. müssen sowohl ein solcher Kryo-Drucktank als auch seine Nebensysteme, die mit aus dem Kryo-Drucktank entnommenen Speichermedium beaufschlagt werden, auf zweiphasigen Betrieb des Speichermediums, d.h. des kryogenen Wasserstoffs ausgelegt werden, was zur Folge hat, dass eine (verstärkte) Materialermüdung durch Siedevorgänge des Speichermediums zu berücksichtigen ist.Also results with such a cryogenic pressure tank a long-lasting refueling operation with high amounts of gas recirculation (with density jump) of liquid hydrogen in contact with superheated tank walls, ie there is a need for complete cooling of the cryogenic pressure tank from permanent uptake of liquid hydrogen , Furthermore, an accelerated pressure build-up in the cryogenic pressure tank can be determined by the tendency to thermal stratification. Finally, both such a cryopressure tank and its ancillary systems must be removed from the cryopressure tank Storage medium are exposed to be designed for two-phase operation of the storage medium, ie the cryogenic hydrogen, with the result that an (increased) fatigue due to boiling processes of the storage medium is taken into account.
Ein verbessertes Verfahren zum Befüllen eines Kryo-Drucktanks nach dem Oberbegriff des Anspruchs 1 aufzuzeigen, mit dem zumindest ein Nachteil des im Zusammenhang mit der US 6,708,502 B1 geschilderten Standes der Technik vermieden werden kann, ist Aufgabe der vorliegenden Erfindung.An improved method for filling a cryogenic pressure tank according to the preamble of claim 1, with which at least one disadvantage of the prior art described in connection with US Pat. No. 6,708,502 B1 can be avoided, is the object of the present invention.
Die Lösung dieser Aufgabe ist dadurch gekennzeichnet, dass das Speichermedium nach Entnahme aus dem großen Vorratsbehälter verdichtet und sodann mit überkritischem Druck in den Druckspeicher, insbesondere Kryo-Drucktank eingebracht wird. Vorteilhafte Weiterbildungen sind Inhalt der Unteransprüche.The solution to this problem is characterized in that the storage medium compacted after removal from the large reservoir and then introduced with supercritical pressure in the pressure accumulator, in particular cryogenic pressure tank. Advantageous developments are content of the dependent claims.
Grundsätzlich wird eine Betankung des Kryo-Druckspeichers mit kryogenem Speichermedium bei überkritischem Druck vorgeschlagen, indem das aus einem sog. großen Vorratsbehälter, der sich analog den bisherigen flüssigen Kohlenwasserstoff-Kraftstoffen (wie Benzin oder Diesel) an einer „Tankstelle" befindet, im wesentlichen unter Umgebungsdruck entnommene und dabei flüssige kryogene Speichermedium möglichst bzw. im wesentlichen adiabat komprimiert bzw. verdichtet wird. Handelt es sich bei dem besagten Speichermedium um Wasserstoff, so kann vorzugsweise eine Verdichtung auf einen überkritischen Druck in der Größenordnung von 13 bar oder mehr erfolgen. (Bekanntlich liegt der kritische Druck für Wasserstoff bei 12,8 bar). Hiermit liegt mit Abschluss des Befüllvorganges des Kryo-Drucktanks in diesem ein Druckniveau in Höhe des besagten überkritischen Druckwertes vor, der ausreichend hoch ist, um einen Verbraucher, nämlich bspw. das weiter oben genannte Fzg. -Antriebsaggregat oder eine Brennstoffzelle einfach und unproblematisch mit dem Speichermedium bzw. Wasserstoff versorgen zu können. Auch die weiteren in Verbindung mit einem Kryo- Druckspeicher als Stand der Technik weiter oben geschilderten Nachteile können hiermit vermieden bzw. zumindest abgemildert werden.Basically, a refueling of the cryogenic accumulator with cryogenic storage medium is proposed at supercritical pressure by the from a so-called. Large reservoir, which is analogous to the previous liquid hydrocarbon fuels (such as gasoline or diesel) at a "gas station", substantially below If the said storage medium is hydrogen, it may preferably be compressed to a supercritical pressure of the order of magnitude of 13 bar or more (known per se) If the critical pressure for hydrogen is 12.8 bar.) With the completion of the filling process of the cryopressure tank, this results in a pressure level in the amount of said supercritical pressure value which is sufficiently high to reach a consumer, for example the one above called Fzg. -Antriebsaggregat od he a fuel cell easy and unproblematic to supply with the storage medium or hydrogen. The other disadvantages described above in connection with a cryogenic pressure accumulator as prior art can hereby be avoided or at least mitigated.
Im Sinne einer vorteilhaften Weiterbildung kann das aus dem großen Vorratsbehälter entnommene und vorzugsweise mittels einer Kryo-Pumpe verdichtete Speichermedium vor der Einleitung in den Duckspeicher / Kryo- Drucktank im wesentlichen bzw. möglichst isobar rückgekühlt werden, d.h. durch Kühlung wird die mit der vorhergehenden Verdichtung einhergehende Temperaturerhöhung zumindest im wesentlichen rückgängig gemacht. Im Falle von Wasserstoff als Speichermedium erfolgt dabei vorzugsweise eine Rückkühlung auf eine Temperatur in der Größenordnung von 20 K. Vorteilhafterweise wird hierdurch die Speicherkapazität des Kryo- Druckspeichers nennenswert erhöht, indem der komprimierte Wasserstoff bei überkritischem Druck auf das Temperaturniveau von unterkritischem flüssigen Wasserstoff (von 1 bar absolut und ca. 20 K) abgekühlt wird.For the purposes of an advantageous development, the storage medium taken from the large storage container and preferably compressed by means of a cryogenic pump can be recooled substantially or as isobarically as possible, before it is introduced into the accumulator / cryopressure tank, i. By cooling, the temperature increase associated with the preceding compression is at least substantially reversed. In the case of hydrogen as a storage medium, preferably a recooling to a temperature in the order of 20 K. Advantageously, thereby the storage capacity of the cryopressor is significantly increased by the compressed hydrogen at supercritical pressure to the temperature level of subcritical liquid hydrogen (from 1 bar absolute and about 20 K) is cooled.
Unabhängig vom jeweiligen Speichermedium ist es dabei besonders vorteilhaft, wenn das aus dem großen Vorratsbehälter entnommene und auf einen überkritischen Druck verdichtete Speichermedium zur Rückkühlung durch einen im im großen Vorratsbehälter gelagerten Speichermedium angeordneten Wärmetauscher geführt wird. In diesem großen Vorhaltsbehälter steht zum einen eine ausreichende Kühl-Kapazität zur Verfügung, zum anderen ist die über diesen Wärmetauscher eingebrachte Wärmemenge im Hinblick auf den Ausgleich für die entnommene Menge von kryogenem Speichermedium vorteilhaft.Regardless of the respective storage medium, it is particularly advantageous if the removed from the large reservoir and compressed to a supercritical pressure storage medium for recooling through a arranged in the large reservoir storage medium heat exchanger is performed. In this large Vorhaltsbehälter is on the one hand a sufficient cooling capacity available, on the other hand, the amount of heat introduced via this heat exchanger with regard to the compensation for the withdrawn amount of cryogenic storage medium is advantageous.
Für den Fall von Wasserstoff als kryogenem Speichermedium sind die entsprechenden Prozessschritte in der beigefügten Figur 1 , die im wesentli- chen ein Druck-Dichte-Diagramm des Wasserstoffs zeigt, exemplarisch wiedergegeben. Über der Dichte in der Einheit „Gramm je Liter (g/l) " ist dabei der zugehörige Absolut-Druck in „bar" (= bara) dargestellt, wobei ausdrücklich auf die Unterbrechung in der Ordinate hingewiesen sei, weshalb auch die jeweiligen Isothermen (293 K, 77 K, 50 K, 23 K, 20 K) unterbrochen dargestellt sind.In the case of hydrogen as the cryogenic storage medium, the corresponding process steps in the appended FIG. 1, which are essentially chen a pressure-density diagram of the hydrogen shows, reproduced by way of example. Above the density in the unit "grams per liter (g / l)" is the associated absolute pressure in "bar" (= bara) is shown, which is explicitly pointed to the interruption in the ordinate, which is why the respective isotherms ( 293 K, 77 K, 50 K, 23 K, 20 K) are shown interrupted.
Es wird somit flüssiger kryogener Wasserstoff in einem Zustand gemäß Punkt „a" aus einem großen Vorratsbehälter (im wesentlichen unter Umgebungsdruck = 1 bar sowie mit einer Temperatur von 20 Kelvin) entnommen. Dieser flüssige kryogene Wasserstoff wird anschließend möglichst adiabat auf einen überkritischen Fülldruck von 20 bara verdichtet, so dass der Punkt „b" erreicht wird. Vorzugsweise erfolgt daraufhin eine möglichst isobare Nachkühlung oder Rückkühlung im wesentlichen auf die Temperatur des im großen Vorratsbehälter vorhandenen flüssigen Wasserstoffs in der Größenordnung von ca. 20 Kelvin, so dass nun ein Zustand gemäß Punkt „c" erreicht ist. Im wesentlichen in diesem Zustand gelangt der Wasserstoff (bzw. allgemein das Speichermedium) anschließend in den zu befüllenden Kryo-Drucktank. Alternativ kann zur Erlangung noch höherer Dichten der aus dem großen Vorratsbehälter entnommene Wasserstoff ausgehend vom Punkt „a" auf bspw. 150 bara (Punkt „d") verdichtet und anschließend möglichst isobar auf ca. 20 K rückgekühlt werden, womit der Punkt „e" erreicht wird.Liquid cryogenic hydrogen is thus withdrawn from a large storage tank (substantially below ambient pressure = 1 bar and at a temperature of 20 Kelvin) in a state according to point "a." This liquid cryogenic hydrogen is then as adiabatic as possible to a supercritical filling pressure of 20 bara compressed, so that the point "b" is reached. Preferably, as isobaric aftercooling or recooling then takes place essentially at the temperature of the liquid hydrogen present in the large reservoir, of the order of magnitude of about 20 Kelvin, so that a state according to point "c" has now been reached Alternatively, in order to obtain even higher densities, the hydrogen withdrawn from the large reservoir can be compressed from point "a" to, for example, 150 bara (point "d") and, in the second embodiment, to be filled into the cryopressor subsequently cooled as isobarically to about 20 K, whereby the point "e" is reached.
In der im folgenden erläuterten Figur 2 ist eine Vorrichtung zur Durchführung des hier vorgeschlagenen Verfahrens dargestellt, womit dieses Verfahren nun nochmals ausführlich erläutert wird:FIG. 2, which is explained below, shows a device for carrying out the method proposed here, by means of which this method will now be explained again in detail:
Mit der Bezugsziffer 1 ist ein bspw. an einer Tankstelle befindlicher großer Vorratsbehälter gekennzeichnet, in dem kryogener flüssiger Wasserstoff 41 üblicherweise bei Umgebungsdruck (= 1 bara) und entsprechender Sättigungstemperatur von 20,24 K gelagert ist. Aus diesem großen Vorratsbehälter 1 soll ein mit der Bezugsziffer 12 gekennzeichneter Kryo- Drucktank eines Kraftfahrzeugs betankt werden, d.h. letzterer soll mit kryogenem Flüssig-Wasserstoff aus dem großen Vorhaltsbehälter 1 befüllt werden. Hierfür wird eine dem Kryo-Drucktank 12 zugeordnete Zuleitung 9, die über ein Kaltventil 10 mit einer innerhalb des Kryo-Drucktanks 12 mündenden Befüllleitung 1 1 verbunden ist, über eine Kryo-Drucktank- Kupplung 8 mit einer Versorgungsleitung 7 des großen Vorratsbehälters 1 verbunden.Reference numeral 1 denotes, for example, a large reservoir located at a gas station, in which cryogenic liquid hydrogen 41 Usually stored at ambient pressure (= 1 bara) and corresponding saturation temperature of 20.24 K. For this large reservoir 1, a marked by the reference numeral 12 cryopressure tank of a motor vehicle to be fueled, ie the latter is to be filled with cryogenic liquid hydrogen from the large Vorhaltsbehälter 1. For this purpose, a the cryosepressure tank 12 associated supply line 9, which is connected via a cold valve 10 with a filling line 1 1 opening within the cryogenic pressure tank 12, connected via a cryogenic pressure tank coupling 8 to a supply line 7 of the large reservoir 1.
Die genannte Versorgungsleitung 7, über die kryogener Wasserstoff letztlich aus dem großen Vorratsbehälter 1 abgegeben wird, mündet jedoch nicht direkt im im großen Vorratsbehälter 1 gelagerten kryogenen flüssigen Wasserstoff 24. Vielmehr wird der im großen Vorratsbehälter 1 gelagerte Wasserstoff 24 über eine Flüssig-Entnahmeleitung 2 aus dem großen Vorratsbehälter 1 entnommen und daraufhin in einer möglichst adiabaten Kryo-Pumpe 3 auf ein überkritisches Druckniveau, d.h. über den Druckwert 12,8 bara komprimiert bzw. verdichtet. Anschließend wird der durch diese Kompression bzw. Verdichtung leicht erwärmte flüssige sog. Kryo-Druck- Wasserstoff entweder über Ventil 4 direkt oder über ein Ventil 5 zunächst durch einen Wärmetauscher 6 und anschließend hieran zur bereits genannten Versorgungsleitung 7 geführt. Im Wärmetauscher 6, der sich innerhalb des großen Vorratsbehälters 1 im darin gelagerten kryogenen Flüssig-Wasserstoff 24 befindet, wird der durch den Wärmetauscher 6 hindurch geführte sog. Kryo-Druck-Wasserstoff im wesentlichen auf das Temperatur-Niveau des gelagerten kryogenen Flüssig-Wasserstoffs, d.h. annähernd auf die o.g. Sättigungstemperatur von 20,24 K rückgekühlt. Selbstverständlich sind die jeweiligen Bauelemente, so weit dies erforderlich ist, ausreichend isoliert. So ist der große Vorratsbehälter 1 mit der Kryo- Pumpe 3 und genannten Ventilen 4, 5 von einer Isolation 40 umhüllt. Selbstverständlich sind auch die Versorgungsleitung 7 sowie die Kupplung 8 und die Zuleitung 9 ausreichend isoliert. Auch der Kryo-Drucktank 12 ist wie üblich mit einer Vakuum-Superisolation 14 versehen, die den Drucktank 12, der den kryogenen Wasserstoff aufnimmt, umgibt und ihrerseits in einem den Drucktank 12 entsprechend beabstandet umhüllenden vakuumdichten Außentank 13 gehalten ist.However, said supply line 7, via which cryogenic hydrogen is ultimately discharged from the large storage tank 1, does not discharge directly into the cryogenic liquid hydrogen 24 stored in the large storage tank 1. Rather, the hydrogen 24 stored in the large storage tank 1 is discharged via a liquid removal line 2 taken from the large reservoir 1 and then in a preferably adiabatic cryogenic pump 3 to a supercritical pressure level, ie compressed or compressed over the pressure value 12.8 bara. Subsequently, by this compression or compression slightly heated liquid so-called cryogenic pressurized hydrogen either via valve 4 directly or via a valve 5, first through a heat exchanger 6 and then led thereto to the already mentioned supply line 7. In the heat exchanger 6, which is located within the large reservoir 1 in the stored therein cryogenic liquid hydrogen 24, which passed through the heat exchanger 6 so-called. Kryo-pressure hydrogen is substantially at the temperature level of the stored cryogenic liquid hydrogen, ie approximately cooled back to the above-mentioned saturation temperature of 20.24 K. Of course, the respective components, as far as necessary, are sufficiently isolated. Thus, the large reservoir 1 with the cryopump 3 and said valves 4, 5 is surrounded by an insulation 40. Of course, the supply line 7 and the clutch 8 and the supply line 9 are sufficiently isolated. Also, the cryogenic pressure tank 12 is provided as usual with a vacuum Superisolation 14, which surrounds the pressure tank 12, which receives the cryogenic hydrogen, and in turn in a pressure tank 12 correspondingly spaced enveloping vacuum-tight outer tank 13 is held.
Falls sich zu Beginn eines gewünschten Befüll-Vorgangs des Kryo- Drucktanks 12 in diesem eine noch nicht ausreichend entspannte Restmenge von gespeichertem Wasserstoff befindet sowie zur Erhöhung der Betankungs-Endmasse bei warmem Gasinhalt des Kryo-Drucktanks 12 vor einer Neubefüllung kann in diesem eine Druckreduktion, d.h. ein Druckausgleich, durchgeführt werden, indem zumindest ein Teil der besagten Restmenge, d.h. allgemein Rest-Speichermedium, die/das üblicherweise gasförmig vorliegt, aus dem Kryo-Drucktank 12 abgeführt wird. Dies erfolgt über eine Rückgasleitung 15, die über ein Rückgasventil 16 zu einer isolierten Leitung 17 führt, deren Ende eine Rückgaskupplung 18 aufweist.If, at the beginning of a desired filling operation of the cryopressure tank 12, there is a residual amount of stored hydrogen that is not yet sufficiently relaxed and to increase the final refueling mass with warm gas content of the cryogenic pressure tank 12 before refilling, a pressure reduction can take place therein. ie a pressure equalization can be performed by at least a portion of said residual amount, i. generally residual storage medium, which / is usually in gaseous form, is discharged from the cryogenic pressure tank 12. This is done via a return gas line 15, which leads via a return gas valve 16 to an insulated line 17, the end of which has a return gas coupling 18.
An diese Rückgaskupplung 18 kann eine isolierte Zuleitung 19 angeschlossen werden, die über ein sog. Vorratstank-Ventil 20 dieses Restgas zurück in den kryogenen flüssigen Wasserstoff 24 des großen Vorratsbehälters 1 einleitet. Durch die Rückführung dieses Restgases oder eines Teils hiervon kann der durch die Entnahme von flüssigem Wasserstoff für die Betankung herbeigeführte Druckverlust im großen Vorratsbehälter 1 zumindest teilweise ausgeglichen werden. Insbesondere im Falle eines Überschreitens des gewünschten Drucks im großen Vorratsbehälter 1 kann überschüssiges Restgas über ein Ventil 22 und eine Kupplung 23 aber auch an einen externen Verbraucher oder Verwerter, wobei es sich bspw. um eine stationäre Brennstoffzelle oder ein angeschlossenes Drucktankspeichersys- tem handeln kann, abgegeben werden.An isolated feed line 19 can be connected to this return gas coupling 18, which feeds this residual gas back into the cryogenic liquid hydrogen 24 of the large storage container 1 via a so-called storage tank valve 20. By returning this residual gas or a part thereof, the pressure loss caused by the removal of liquid hydrogen for refueling in the large reservoir 1 can be at least partially compensated. In particular, in the case of exceeding the desired pressure in the large reservoir 1, excess residual gas via a valve 22 and a clutch 23 but also to a external consumers or recyclers, which may be, for example, a stationary fuel cell or a connected Drucktankpeichersys- system, are delivered.
Das hier vorgestellte Befüllverfahren zeichnet sich durch folgende Vorteile aus:The filling method presented here has the following advantages:
Es sind hohe Speicherdichten erreichbar, bspw. gemäß Punkt „c" aus Fig.1 eine um 3,3% höhere Dichte als bei Befüllung eines Kryo-Druckspeichers mit kryogenem Flüssig-Wasserstoff mit einem Druck von 1 bar (absolut), bzw. eine um 12,7% höhere Dichte als bei heute üblicher Betankung gemäß eingangs genanntem Stand der Technik mit einem Maximaldruck von 4 bar (absolut) in einem nicht auf hohe Druckwerte ausgelegten Kryotank. Bei Umsetzung des Verfahrens gemäß Punkt „e" aus Fig.1 ergibt sich eine um 16,8% höhere Dichte bei Verwendung eines Kryo-Drucktanks bzw. eine um 31 ,6% höhere Dichte als bei Betankung eines heute üblichen, nicht auf hohe Druckwerte ausgelegten Kryotanks.There are high storage densities achievable, for example, according to point "c" of Figure 1, a 3.3% higher density than when filling a cryogenic pressure accumulator with cryogenic liquid hydrogen at a pressure of 1 bar (absolute), or a 12.7% higher density than in today's conventional refueling according to the cited prior art with a maximum pressure of 4 bar (absolute) in a cryotank not designed for high pressure values When the method according to point "e" of FIG a 16.8% higher density when using a cryogenic pressure tank or a 31, 6% higher density than when refueling a customary today, not designed for high pressure values cryotank.
Insbesondere steht praktisch direkt anschließend an eine Befüllung des Kryo-Drucktanks ein ausreichender Druck für die Verwendung des kryoge- nen Wasserstoffs (bzw. Speichermediums) in einem Aggregat zur Verfügung. Beispielsweise benötigt eine Brennstoffzelle ein Druckniveau zwischen 4 bar und 10 bar (absolut), während für einen aufgeladenen Wasserstoff- Verbrennungsmotor sogar ein Druckniveau zwischen 8 bar und 20 bar benötigt wird.In particular, a pressure sufficient for the use of the cryogenic hydrogen (or storage medium) in an aggregate is available almost immediately following a filling of the cryogenic pressure tank. For example, a fuel cell requires a pressure level between 4 bar and 10 bar (absolute), while for a supercharged hydrogen internal combustion engine even a pressure level between 8 bar and 20 bar is needed.
Vorteilhafterweise ist eine zeitlich schnelle Befüllung des Kryo-Drucktanks möglich, da keine Verdampfung mit Dichtesprung und resultierender schneller Druckerhöhung bei Einfüllen in einen nicht-kalten Tank erfolgt. Daraus resultieren kürzere Betankungszeiten und geringere Rückgasmen- gen, die im übrigen bisher von Tankstellenseite als Betankungsverluste angesehen werden. Wie hier ausgeführt kann eine an die Tankstelle bzw. in den großen Vorratsbehälter 1 zurückgeführte, hier sog. Restgasmenge sogar noch vorteilhaft verwendet werden.Advantageously, a time-fast filling of the cryogenic pressure tank is possible, since no evaporation occurs with density jump and resulting rapid pressure increase when filling in a non-cold tank. This results in shorter refueling times and lower return gas volumes. gene, which are otherwise regarded by the gas station side as refueling losses. As stated here, an amount of residual gas recirculated to the filling station or into the large reservoir 1 can be used even more advantageously.
Schließlich sind aufgrund des Vorliegens von überkritischem Druck keine Phasenübergänge und eine geringere Neigung zu thermischer Schichtung zu beobachten. Daraus ergibt sich sowohl eine geringere Materialbelastung des Kryo-Drucktanks und seiner Nebensysteme als auch ein verlangsamter Druckaufbau im Kryo-Drucktank, wenn das Fahrzeug längere Zeit abgestellt ist und somit kein Wasserstoff entnommen wird.Finally, due to the presence of supercritical pressure, no phase transitions and a lower tendency to thermal stratification are observed. This results in both a lower material load of the cryopressure tank and its ancillary systems as well as a slower pressure build-up in the cryogenic pressure tank when the vehicle is parked for a long time and thus no hydrogen is removed.
Im Vergleich zum eingangs erstgenannten Stand der Technik mit einem Kryotank, der lediglich geringen Überdruck aufnehmen kann, d.h. in dem kryogener Wasserstoff nur bis zu einem Druckniveau von ca. 4 bar gespeichert werden kann, ergibt sich mit einem erfindungsgemäß befüllten Kryo-Drucktank zusätzlich der Vorteil einer hohen verlustfreien Standzeit (von im Mittel über 20 Tagen), während derer allenfalls geringste Mengen von Wasserstoff abgegeben werden müssen. Dies resultiert daraus, dass dieser Kryo-Drucktank ein kryogenes Speichermedium bis zu Druckwerten von 300 bar oder mehr halten kann: Eine deutliche Verbesserung gegenüber einfachen Kryotanks, die lediglich geringen Überdruck aufnehmen können, wird aber bereits auch mit einem Kryo-Drucktank erzielt, der Absolutdruckwerten in der Größenordnung von 150 bar standhalten kann, d.h. dass das im Kryo-Drucktank gespeicherte Speichermedium Druckwerte bis zu 150 bar annehmen kann, bevor ein Abblasen zum Abbau von darüber hinausgehenden Druckwerten einzuleiten ist. Vorteilhafterweise verbleibt bei Verwendung eines Kryo-Drucktanks anstelle eines einfachen praktisch nicht überdruckfesten Kryotanks auch nach langer verlustbehafteter Standzeit je nach Abblasedruck stets eine ausreichende Menge von Wasserstoff im Tank, so dass ein hiermit ausgerüstetes Fahrzeug stets noch ausreichend weit bewegt werden kann. Zur Sicherstellung höchster Speicherdichte und ausreichender Druckverfügbarkeit für den gespeicherten kryogenen Wasserstoff bzw. allgemein für das kryogene Speichermedium ist hiermit also ein quasi verlustfreier Kryo-Drucktank (Kryo-Druckspeicher) mit ausreichend langer verlustfreier Standzeit bei gleichzeitig siedevorgangs- freiem Entnahmebetrieb, Standbetrieb und insbesondere Betankungsbetrieb vorgeschlagen, der dadurch ermöglicht wird, dass eine Betankung eines Kryo-Drucktanks mit tiefkaltem Speichermedium bei überkritischem Druck erfolgt, wobei noch darauf hingewiesen sei, dass durchaus eine Vielzahl von Details abweichend von obigen Erläuterungen gestaltet sein kann, ohne den Inhalt der Patentansprüche zu verlassen. In comparison to the first-mentioned prior art with a cryotank, which can absorb only slight overpressure, ie can be stored in the cryogenic hydrogen only up to a pressure level of about 4 bar, results with a inventively filled cryogenic pressure tank in addition the advantage a high loss-free life (over an average of 20 days) during which at most very small amounts of hydrogen must be released. This results from the fact that this cryopressure tank can hold a cryogenic storage medium up to pressure values of 300 bar or more: A clear improvement over simple cryotanks, which can only absorb slight overpressure, is already achieved with a cryopressure tank, the absolute pressure values can withstand the order of 150 bar, ie that the storage medium stored in the cryopressure tank can accept pressure values of up to 150 bar before a blow-off to reduce excess pressure values must be initiated. Advantageously, when using a cryogenic pressure tank instead of a simple practically not overpressure-resistant cryogenic tank, even after a long lossy service life depending on Abblasedruck always a sufficient amount of hydrogen in the tank, so that a vehicle equipped with this vehicle can still be moved sufficiently far. To ensure the highest storage density and sufficient pressure availability for the stored cryogenic hydrogen or generally for the cryogenic storage medium so hereby a quasi lossless cryopressure (cryogenic pressure accumulator) with sufficiently long loss-free life at the same sownevorgang free extraction operation, stand mode and especially refueling proposed which is made possible by the fact that a refueling of a cryogenic pressure tank with cryogenic storage medium is carried out at supercritical pressure, wherein it should be noted that quite a variety of details may be deviated from the above explanations, without departing from the content of the claims.

Claims

Patentansprüche claims
1. Verfahren zum Befüllen eines für ein kryogenes Speichermedium, insbesondere kryogenen Wasserstoff, vorgesehenen Druckspeichers, insbesondere eines Kryo-Drucktanks (12) eines Kraftfahrzeugs, in dem das aus einem großen Vorratsbehälter (1 ) im wesentlichen unter Umgebungsdruck mit entsprechender Sättigungstemperatur im flüssigen Zustand entnommene kryogene Speichermedium (24) unter Absolutdruckwerten in der Größenordnung von 150 bar oder mehr gespeichert werden kann, dadurch gekennzeichnet, dass das Speichermedium nach Entnahme aus dem großen Vorratsbehälter (1 ) verdichtet und sodann mit überkritischem Druck in den Druckspeicher, insbesondere Kryo-Drucktank (12) eingebracht wird.1. A method for filling a for a cryogenic storage medium, in particular cryogenic hydrogen, provided pressure accumulator, in particular a cryogenic pressure tank (12) of a motor vehicle, in which the from a large reservoir (1) taken substantially under ambient pressure with corresponding saturation temperature in the liquid state Cryogenic storage medium (24) under absolute pressure values in the order of 150 bar or more can be stored, characterized in that the storage medium after removal from the large reservoir (1) compressed and then with supercritical pressure in the pressure accumulator, in particular cryo-pressure tank (12 ) is introduced.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das verdichtete Speichermedium vor der Einleitung in den Duckspeicher / Kryo-Drucktank (12) rückgekühlt wird.2. The method according to claim 1, characterized in that the compressed storage medium is recooled before being introduced into the duck storage / cryopressure tank (12).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Speichermedium zur Rückkühlung durch einen im im großen Vorratsbehälter (1 ) gelagerten Speichermedium angeordneten Wärmetauscher (6) geführt wird.3. The method according to claim 2, characterized in that the storage medium for recooling through a in the large reservoir (1) mounted storage medium arranged heat exchanger (6) is guided.
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Verdichtung des aus dem großen Vorratsbehälter entnommenen Speichermediums mittels einer Kryo- Pumpe (3) erfolgt.4. Method according to one of the preceding claims, characterized in that the compression of the removed from the large reservoir storage medium by means of a cryopump (3).
5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass im Falle von Wasserstoff als Speichermedium eine Verdichtung auf einen überkritischen Druck in der Größenordnung von 13 bar oder mehr erfolgt.5. The method according to any one of the preceding claims, characterized in that in the case of hydrogen storage medium as a compression to a supercritical pressure in the order of 13 bar or more.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass im Falle von Wasserstoff als Speichermedium eine Rückkühlung auf eine Temperatur in der Größenordnung von 20 K erfolgt.6. The method according to any one of the preceding claims, characterized in that in the case of hydrogen storage medium as a re-cooling to a temperature in the order of 20 K takes place.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass vor der Befüllung mit neuem Speichermedium im Druckspeicher / Kryo-Drucktank (12) enthaltenes Rest-Speichermedium aus dem Druckspeicher abgeführt wird.7. The method according to any one of the preceding claims, characterized in that prior to filling with new storage medium in the pressure storage / cryopressure tank (12) contained residual storage medium is discharged from the pressure accumulator.
8. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das abgeführte Rest-Speichermedium in den großen Vorratsbehälter (1 ) rückgeführt wird.8. The method according to claim 8, characterized in that the discharged residual storage medium in the large reservoir (1) is recycled.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das abgeführte Rest-Speichermedium einem Verbraucher oder einem Drucktankspeichersystem zugeführt wird. 9. The method according to claim 8, characterized in that the discharged residual storage medium is supplied to a consumer or a pressure tank storage system.
EP08709217A 2007-03-09 2008-02-26 Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen Withdrawn EP2132476A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007011530A DE102007011530A1 (en) 2007-03-09 2007-03-09 Method for filling a pressure accumulator provided for a cryogenic storage medium, in particular hydrogen
PCT/EP2008/052314 WO2008110453A2 (en) 2007-03-09 2008-02-26 Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen

Publications (1)

Publication Number Publication Date
EP2132476A2 true EP2132476A2 (en) 2009-12-16

Family

ID=39321494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08709217A Withdrawn EP2132476A2 (en) 2007-03-09 2008-02-26 Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen

Country Status (4)

Country Link
US (1) US20090308083A1 (en)
EP (1) EP2132476A2 (en)
DE (1) DE102007011530A1 (en)
WO (1) WO2008110453A2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023821B4 (en) 2007-05-21 2017-09-28 Bayerische Motoren Werke Aktiengesellschaft Method for filling a cryogenic hydrogen storage container, in particular a motor vehicle
DE102007057979B4 (en) 2007-12-03 2018-04-26 Bayerische Motoren Werke Aktiengesellschaft Method for filling a storage tank with cryogenic hydrogen
DE102007057978A1 (en) 2007-12-03 2009-06-04 Bayerische Motoren Werke Aktiengesellschaft Operating procedure for a cryopressure tank
DE102008031344B4 (en) 2008-07-02 2016-12-22 Bayerische Motoren Werke Aktiengesellschaft Operating method for a provided with a vacuum insulation cryotank of a motor vehicle
US20110214839A1 (en) * 2008-11-10 2011-09-08 Jose Lourenco Method to increase gas mass flow injection rates to gas storage caverns using lng
DE102008060127A1 (en) 2008-12-03 2010-06-10 Bayerische Motoren Werke Aktiengesellschaft Arrangement for refueling motor vehicles, has cold accumulator loaded by heat exchange with deep-frozen hydrogen, which removes large storage tank
FR2942293A1 (en) * 2009-02-19 2010-08-20 Air Liquide METHOD AND INSTALLATION FOR FILLING WITH A CRYOGENIC LIQUID OF A RESERVOIR
US9945517B2 (en) * 2009-09-08 2018-04-17 Acd Company Portable gas filling system
DE102012204818A1 (en) 2012-03-26 2013-09-26 Bayerische Motoren Werke Aktiengesellschaft Operating procedure for a cryogenic pressure tank
DE102012207555A1 (en) 2012-05-07 2013-11-07 Bayerische Motoren Werke Aktiengesellschaft Cryogenic storage tank used for storing cryogenic hydrogen used as fuel for motor vehicle, has para-ortho catalyst that accelerates endothermic conversion of hydrogen stored in supercritical state, from para to ortho-state condition
DE102012210067A1 (en) 2012-06-14 2013-12-19 Bayerische Motoren Werke Aktiengesellschaft Cryo-pressure tank system for motor vehicle for storing hydrogen in cryogenic condition under supercritical pressure, has pump, by which operating fluid of extraction line supplied in liquid phase in cryo-pressure tank
DE102012218994B4 (en) 2012-10-18 2024-02-01 Bayerische Motoren Werke Aktiengesellschaft Method for determining the filling level of a cryogenic pressure tank
DE102012220292A1 (en) 2012-11-07 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Method for determining residual range of motor vehicle or fuel residual-quantity still available in tank, involves determining residual range from suitable estimated value for fuel consumption
DE102013003999A1 (en) * 2013-03-08 2014-09-11 Linde Aktiengesellschaft Method for refueling a storage container with a gaseous, pressurized medium, in particular hydrogen
FR3006742B1 (en) * 2013-06-05 2016-08-05 Air Liquide DEVICE AND METHOD FOR FILLING A TANK
DE102013011212B4 (en) 2013-07-04 2015-07-30 Messer Group Gmbh Device for cooling a consumer with a supercooled liquid in a cooling circuit
DE102014209919A1 (en) 2014-05-23 2015-11-26 Bayerische Motoren Werke Aktiengesellschaft Kryodruckbehälter
DE102014211503A1 (en) * 2014-06-16 2015-12-17 Bayerische Motoren Werke Aktiengesellschaft Monitoring device for a pressure tank and pressure tank
DE102015207908A1 (en) 2015-04-29 2016-11-03 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a chassis structure and a fuel tank
DE102016005217A1 (en) * 2016-04-28 2017-11-02 Linde Aktiengesellschaft Hydrogen station with liquid hydrogen
EP3625498B1 (en) * 2017-05-18 2022-11-16 Rolls-Royce North American Technologies, Inc. Two-phase thermal pump
DE102017011344A1 (en) * 2017-12-08 2019-06-13 Andreas Stihl Ag & Co. Kg Arrangement for filling a gas tank
FR3080906B1 (en) * 2018-05-07 2021-01-15 Air Liquide PROCESS AND INSTALLATION FOR STORAGE AND DISTRIBUTION OF LIQUEFIED HYDROGEN
FR3086993B1 (en) 2018-10-09 2021-11-26 Air Liquide PROCESS AND INSTALLATION FOR STORAGE AND DISTRIBUTION OF LIQUEFIED HYDROGEN
CN113661355B (en) * 2019-04-05 2023-03-28 川崎重工业株式会社 Double-shell tank and liquefied gas carrying ship
CN110410667A (en) * 2019-07-14 2019-11-05 杭州杭氧股份有限公司 A kind of device that liquid hydrogen fills
FR3112841B1 (en) * 2020-07-21 2022-07-22 Air Liquide Method of filling a liquefied gas tank
EP3992519A1 (en) * 2020-10-29 2022-05-04 Linde Kryotechnik AG Method and device for supplying a cryogenic gas such as hydrogen
US20230160537A1 (en) * 2021-11-22 2023-05-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude System and a coupled system for filling a cryogen storage vessel with a liquid cryogen
WO2023178371A1 (en) * 2022-03-24 2023-09-28 Cryoshelter LH2 GmbH System for rapid filling of a cryogenic container of a vehicle
US11885465B2 (en) 2022-05-10 2024-01-30 General Electric Company Systems for refueling cryo-compressed hydrogen tanks and methods for operating the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959928A (en) * 1957-09-26 1960-11-15 California Research Corp Lpg tankship refrigeration system
JPS4918288B1 (en) * 1962-07-05 1974-05-09
US3733838A (en) * 1971-12-01 1973-05-22 Chicago Bridge & Iron Co System for reliquefying boil-off vapor from liquefied gas
US3962882A (en) * 1974-09-11 1976-06-15 Shell Oil Company Method and apparatus for transfer of liquefied gas
US5409046A (en) * 1989-10-02 1995-04-25 Swenson; Paul F. System for fast-filling compressed natural gas powered vehicles
US4987932A (en) * 1989-10-02 1991-01-29 Pierson Robert M Process and apparatus for rapidly filling a pressure vessel with gas
DE4129020C2 (en) 1991-08-31 1997-07-24 Deutsche Forsch Luft Raumfahrt Method and refueling device for filling a cryogenic tank
US5537828A (en) * 1995-07-06 1996-07-23 Praxair Technology, Inc. Cryogenic pump system
US5924291A (en) * 1997-10-20 1999-07-20 Mve, Inc. High pressure cryogenic fluid delivery system
DE10050403A1 (en) * 2000-10-12 2002-04-25 Goldschmidt Ag Th Enzymatic production of hydroxy fatty acid esters of polyhydric alcohols which are solid at room temperature
WO2002057693A1 (en) * 2001-01-17 2002-07-25 Sierra Lobo, Inc. Densifier for simultaneous conditioning of two cryogenic liquids
DE10107187A1 (en) * 2001-02-15 2002-08-29 Linde Ag Gas station for cryogenic media
FR2822927B1 (en) * 2001-04-03 2003-06-27 Messer France PROCESS AND INSTALLATION FOR THE DEPOSITION, BETWEEN A MOBILE SUPPLY TANK AND A USE TANK, OF A LIQUEFIED GAS
DE10119115A1 (en) * 2001-04-19 2002-10-31 Messer Griesheim Gmbh pressure vessel
CA2362844C (en) * 2001-11-30 2004-08-31 Westport Research Inc. Method and apparatus for delivering a high pressure gas from a cryogenic storage tank
US6813893B2 (en) * 2001-12-19 2004-11-09 Conversion Gas Imports, L.L.C. Flexible natural gas storage facility
US6708502B1 (en) 2002-09-27 2004-03-23 The Regents Of The University Of California Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
US6810924B2 (en) * 2003-03-17 2004-11-02 Praxair Technology, Inc. Compressed gas stream introduction method and filling station
US7191602B2 (en) * 2003-06-16 2007-03-20 The Regents Of The University Of California Storage of H2 by absorption and/or mixture within a fluid medium
US7263845B2 (en) * 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system
US20060156742A1 (en) * 2005-01-20 2006-07-20 Farese David J Cryogenic fluid supply method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008110453A2 *

Also Published As

Publication number Publication date
US20090308083A1 (en) 2009-12-17
WO2008110453A2 (en) 2008-09-18
WO2008110453A3 (en) 2008-11-06
DE102007011530A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2008110453A2 (en) Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen
EP1360084B1 (en) Filling station for hydrogen
DE102007011742A1 (en) Process to refuel pressurised automotive fuel tank with liquid hydrogen
EP2217845B1 (en) Operating method for a cryopressure tank
EP2473772A1 (en) Filling storage containers with compressed media
EP2148127A2 (en) Storage device for compressed media and method for filling the tank of vehicles
EP1330620B1 (en) Storage container for cryogenic media
EP2459922B1 (en) Combustion-gas system, in particular for cargo vessels
DE102008060127A1 (en) Arrangement for refueling motor vehicles, has cold accumulator loaded by heat exchange with deep-frozen hydrogen, which removes large storage tank
DE102007023821B4 (en) Method for filling a cryogenic hydrogen storage container, in particular a motor vehicle
DE102012204819A1 (en) Operating method for a fuel cell system
DE102017204746B4 (en) HYDROGEN GAS STATION
EP2076707B1 (en) Apparatus for the rapid filling of compressed gas containers
DE102019000519A1 (en) Transport vehicle and use of a liquid hydrogen container transported by a transport vehicle
DE102018221323A1 (en) Fuel delivery device for an internal combustion engine
WO2021260100A1 (en) Filling apparatus for filling storage containers with comrpessed hydrogen, filling station having same and method for filling a storage container
DE102007057979B4 (en) Method for filling a storage tank with cryogenic hydrogen
EP1500864A2 (en) Process for filling a vehicle tank
EP1642062B1 (en) Storage system for cryogenic media
DE102017217348A1 (en) Pressure vessel system and method for supplying fuel from a pressure vessel system
DE202013102660U1 (en) Gas storage system for gaseous fuels
DE102010010108B4 (en) Method of storing and storing natural gas
DE10105819A1 (en) Fuel supply device for vehicles operated by cryogenic fuel has cryo-tank enclosing inner fuel storage chamber and separate fuel-reserve container connected to drive assembly and designed for higher structural pressure
DE102015008563A1 (en) Device for cooling a compressed gas container
DE102013211483B4 (en) Gas storage system for gaseous fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090707

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20161028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170308