EP2130948B1 - Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys - Google Patents

Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys Download PDF

Info

Publication number
EP2130948B1
EP2130948B1 EP08010058A EP08010058A EP2130948B1 EP 2130948 B1 EP2130948 B1 EP 2130948B1 EP 08010058 A EP08010058 A EP 08010058A EP 08010058 A EP08010058 A EP 08010058A EP 2130948 B1 EP2130948 B1 EP 2130948B1
Authority
EP
European Patent Office
Prior art keywords
diglycidyl ether
pyrophosphate
copper
reaction product
containing bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08010058A
Other languages
German (de)
French (fr)
Other versions
EP2130948A1 (en
Inventor
Philip Hartmann
Klaus-Dieter Schulz
Lars Kohlmann
Heiko Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39831596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2130948(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to PL08010058T priority Critical patent/PL2130948T3/en
Priority to EP08010058A priority patent/EP2130948B1/en
Priority to AT08010058T priority patent/ATE492665T1/en
Priority to DE502008002080T priority patent/DE502008002080D1/en
Priority to SI200830180T priority patent/SI2130948T1/en
Priority to ES08010058T priority patent/ES2354395T3/en
Priority to PCT/EP2009/003886 priority patent/WO2009146865A1/en
Priority to KR1020107019214A priority patent/KR101609171B1/en
Priority to US12/866,996 priority patent/US20100326838A1/en
Priority to CN2009801204709A priority patent/CN102046852B/en
Priority to JP2011510900A priority patent/JP5735415B2/en
Priority to CA2724211A priority patent/CA2724211C/en
Priority to BRPI0912309 priority patent/BRPI0912309B1/en
Priority to TW098117986A priority patent/TWI441958B/en
Publication of EP2130948A1 publication Critical patent/EP2130948A1/en
Publication of EP2130948B1 publication Critical patent/EP2130948B1/en
Application granted granted Critical
Priority to US14/100,633 priority patent/US9399824B2/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Definitions

  • the invention relates to a pyrophosphate-containing bath for the cyanide-free deposition of copper-tin alloys on substrate surfaces, which contains as an additive a reaction product of a secondary monoamine with a diglycidyl ether.
  • the bath can be used to deposit cyanide-free homogeneous, lustrous copper-tin alloy layers whose alloying ratio can be adjusted selectively within the electrolyte, depending on the metal salt ratio used.
  • Tin alloys and especially copper-tin alloys, have come into focus as an alternative to nickel deposits. Electrodeposited nickel layers are commonly used for both decorative and functional applications.
  • Cyanide-containing copper-tin alloy baths are industrially established. Due to stricter regulations and the high toxicity and problematic and expensive disposal of these cyanide-containing baths, there is a growing demand for cyanide-free copper-tin electrolytes.
  • JP 10-102278 A a pyrophosphate-based copper-tin alloy bath which contains as an additive a reaction product of an amine and an epihalodrin derivative (molar ratio 1: 1), an aldehyde derivative and, optionally, depending on the application, surfactants.
  • the US 6416571 B1 also describes a pyrophosphate-based bath which also contains as additives a reaction product of an amine and an epihalohydrin derivative (molar ratio 1: 1), a cationic surfactant, optionally further surface-active surfactants and an antioxidant.
  • a disadvantage of the abovementioned baths is that no uniform alloy layers are obtained, especially in the case of drum galvanizations, so that the products do not have a uniform coloring and gloss.
  • a pyrophosphate-containing copper-tin alloy bath containing as an additive a reaction product of an amine derivative, more preferably piperazine, an epihalohydrin derivative, especially epichlorohydrin, and a glycidyl ether.
  • an amine derivative more preferably piperazine
  • an epihalohydrin derivative especially epichlorohydrin
  • a glycidyl ether for the preparation of this reaction product, a mixture consisting of epichlorohydrin and the glycidyl ether is added slowly under precise temperature control to an aqueous solution of piperazine, wherein the temperature from 65 to 80 ° C must be maintained.
  • this electrolyte exhibits weaknesses in rack plating applications.
  • the quality of the deposited layers which often show a haze, very much depends on the nature of the movement of goods during the electrolysis.
  • the copper-tin coatings obtained in this way also often have pores, which is problematic especially in decorative coatings.
  • Example A-11 on page 26 of WO 2004/005528 describes the use of a reaction product of the diamine piperazine with ethylene glycol diglycidyl ether. This reaction product provides only matte white bronze layers.
  • the invention is therefore based on the object to develop a plating bath for copper-tin alloys, which allows the production of optically attractive copper-tin alloy layers.
  • the invention relates to a pyrophosphate-containing bath for the cyanide-free deposition of copper alloys on substrate surfaces, comprising a reaction product of a secondary monoamine with a diglycidyl ether.
  • the secondary monoamines and the diglycidyl ethers can be used individually or in a mixture for the preparation of the reaction product.
  • the secondary amine is morpholine.
  • the digylcidyl ethers are glycerol diglycidyl ether, poly (ethylene glycol) diglycidyl ether, poly (propylene glycol) diglycidyl ether and mixtures thereof.
  • a preferred reaction product for use in the bath of the invention is the reaction product of morpholine with glycerol diglycidyl ether.
  • the organic additives can easily by reacting the corresponding amine components with the corresponding diglycidyl ethers in a suitable solvent, such as water, aqueous alcoholic solutions, aprotic solvents, such as ethers, NMP, NEP, DMF, DMAc or in bulk at room temperature or be displayed in the heat under normal or elevated pressure.
  • a suitable solvent such as water, aqueous alcoholic solutions, aprotic solvents, such as ethers, NMP, NEP, DMF, DMAc or in bulk at room temperature or be displayed in the heat under normal or elevated pressure.
  • a suitable solvent such as water, aqueous alcoholic solutions, aprotic solvents, such as ethers, NMP, NEP, DMF, DMAc or in bulk at room temperature or be displayed in the heat under normal or elevated pressure.
  • aprotic solvents such as ethers, NMP, NEP, DMF, DMAc
  • the reaction times required for this are between a few minutes and several hours,
  • the resulting reaction products can be used directly, so that production in an aqueous medium or in bulk, the preferred method of preparation represents.
  • the preferred temperatures of the preparation of the reaction products according to the invention are 15 to 100 ° C, particularly preferably 20 to 80 ° C.
  • the molar ratios diglycidyl ether / amine are 0.8 to 2, more preferably 0.9 to 1.5. Particularly advantageous in these additives compared to the additive of WO 2004/005528 is the very simple production.
  • reaction products according to the invention can be used alone or as a mixture of a plurality of different reaction products of the abovementioned type in a concentration of from 0.0001 to 20 g / l, preferably from 0.001 to 1 g / l and particularly preferably from 0.01 to 0.6 g / l become.
  • the electrolyte baths according to the invention may contain copper pyrophosphate in a concentration of 0.5 to 50 g / l, with concentrations of 1 to 5 g / l being particularly preferred.
  • the baths according to the invention may contain tin pyrophosphate in a concentration of 0.5 to 100 g / l, with concentrations of 10 to 40 g / l being particularly preferred.
  • tin and copper pyrophosphates In addition to the above-mentioned tin and copper pyrophosphates, other water-soluble tin and copper salts, e.g. Tin sulfate, Zinnmethansulfonat, copper sulfate, copper methanesulfonate, are used, which can be umkomplexiert by addition of suitable alkali metal pyrophosphates within the electrolyte into the corresponding pyrophosphates.
  • concentration ratio of pyrophosphate to tin / copper should be from 3 to 80, more preferably from 5 to 50.
  • the alkali metal pyrophosphates optionally present in the baths according to the invention are particularly preferably the sodium, potassium and ammonium pyrophosphates in concentrations of 50 to 500 g / l, more preferably of 100 to 400 g / l.
  • the antioxidants optionally present in the baths of the invention include hydroxylated aromatic compounds, e.g. Catechol, resorcinol, pyrocatechol, hydroquinone, pyrogallol, ⁇ - or ⁇ -naphthol, phloroglucin and sugar-based systems such as e.g. Ascorbic acid, sorbitol in concentrations of 0.1 to 1 g / l.
  • hydroxylated aromatic compounds e.g. Catechol, resorcinol, pyrocatechol, hydroquinone, pyrogallol, ⁇ - or ⁇ -naphthol, phloroglucin
  • sugar-based systems such as e.g. Ascorbic acid, sorbitol in concentrations of 0.1 to 1 g / l.
  • alkylsulfonic acids both mono- and polysulfonic acids, e.g. Methanesulfonic acid, methanedisulfonic acid, ethanesulfonic acid, propanesulfonic acid, 2-propanesulfonic acid, butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, decanesulfonic acid, dodecanesulfonic acid and salts thereof and their hydroxylated derivatives are used. Particularly preferred is the use of methanesulfonic acid in a concentration of 0.01 to 1 g / l.
  • the baths according to the invention have a pH of 3 to 9, more preferably 6 to 8.
  • the additive according to the invention ie the reaction product of a secondary monoamine with a diglycidyl ether to deposit the alloy on the substrate with a uniform layer thickness with high gloss with a uniform distribution of the alloy components in the coating over a wide current density range. Furthermore, no pore formation occurs when the additive according to the invention is used. Finally, even with the Gestellgalvanmaschine fogging can be avoided.
  • the aforementioned effects can be enhanced by the addition of N-methylpyrrolidone.
  • the N-methylpyrrolidone is preferably used in a concentration of 0.1 to 50 g / l, more preferably 0.5 to 15 g / l.
  • the baths according to the invention can be prepared by conventional methods, for example by adding the specific amounts of the above-described components to water.
  • the amount of base, acid and buffer components, such as sodium pyrophosphate, methanesulfonic acid and / or boric acid, should preferably be selected so that the bath reaches the pH range of at least 6 to 8.
  • the baths according to the invention deposit a bright, even and ductile copper-tin alloy layer at each customary temperature of about 15 to 50.degree. C., preferably 20.degree. C. to 40.degree. C., particularly preferably 20.degree. C. to 30.degree. At these temperatures, the baths according to the invention are stable and effective over a wide, adjusted current density range of 0.01 to 2 A / dm 2 , more preferably 0.25 to 0.75 A / dm 2 .
  • the baths of the invention may be operated in a continuous or intermittent manner, and from time to time the components of the bath will have to be supplemented.
  • the components of the bath may be added singly or in combination. Furthermore, they can be varied over a wide range, depending on the consumption and present concentration of the individual components.
  • Table 1 shows, according to a preferred embodiment, the deposition results of the tin-copper alloy layers in the electrolytes according to the invention in comparison to electrolytes of the specification WO 2004/005528 , entry electrolyte Einges.
  • Inventive electrolyte with additive A preparation and application example 1
  • Electrolyte according to WO 2004/005528 Comparative Example 11, additive conc .: 10% by weight
  • Electrolyte according to WO 2004/005528 Comparative Example 12, additive concentration: 1% by weight
  • An advantage of the tin-copper baths according to the invention in comparison to the electrolyte of the WO 2004/005528 is the surprisingly low consumption of the additives of the invention compared to the reaction products of piperazine with epichlorohydrin and glycidyl ether.
  • the aqueous baths according to the invention can generally be used for all types of substrates on which copper-tin alloys can be deposited.
  • substrates on which copper-tin alloys can be deposited.
  • useful substrates include copper-zinc alloys, chemically copper or chemically nickel-coated ABS plastic surfaces, mild steel, stainless steel, spring steel, chrome steel, chromium-molybdenum steel, copper and tin.
  • Another object is therefore a process for the electrodeposition of copper-tin alloys on conventional substrates, wherein the bath according to the invention is used.
  • the substrate to be coated is introduced into the electrolyte bath.
  • the deposition of the coatings at a set current density of 0.25 to 0.75 A / dm 2 and at a temperature of 15 to 50 ° C, preferably 20 to 30 ° C.
  • the method according to the invention can be carried out in the application for mass parts, for example as a drum electroplating method and for depositing on larger workpieces as a rack electroplating method.
  • Anodes are used which can be soluble, such as copper anodes, tin anodes or suitable copper-tin alloy anodes, which serve as a copper and / or tin-ion source at the same time, so that on the Cathode deposited copper and / or tin is substituted by dissolving copper and / or tin at the anode.
  • insoluble anodes e.g., platinized titanium mixed oxide anodes
  • the copper and tin ions withdrawn from the electrolyte must be re-added in some other way, e.g. by addition of the corresponding soluble metal salts.
  • galvanic deposition it is also possible to operate the process according to the invention under nitrogen or argon injection, with goods movement or without movement, without resulting in any disadvantages for the coatings obtained.
  • the current source used are commercial DC converters or pulse rectifiers.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 3 g / l Copper pyrophosphate monohydrate 30 g / l pyrophosphate 40 ml / l Methanesulfonic acid 70% 12.5 ml / l 85% phosphoric acid 4 ml / l N-methylpyrrolidone 0.2 ml / l a 40% solution of one of the additives according to the invention according to an additive of Preparation Examples 1 to 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Pyrophosphate containing bath (I) comprises a reaction product of a secondary monoamine with a diglycidyl ether, where the secondary monoamine is morpholine and the diglycidyl ether is glycerol diglycidyl ether, poly(propyleneglycol)diglycidylether, and/or poly(ethyleneglycol)diglycidylether. Independent claims are included for: (1) the galvanic separation of brightener and copper-tin-alloy coatings comprising contacting a substrate to be coated and an aqueous cyanide free (I) and separating the copper-tin-alloy coating on the substrate; and (2) the reaction product.

Description

Gebiet der ErfindungField of the invention

Die Erfindung betrifft ein pyrophosphathaltiges Bad zur cyanidfreien Abscheidung von Kupfer-Zinn-Legierungen auf Substratoberflächen, das als Additiv ein Umsetzungsprodukt eines sekundären Monoamins mit einem Diglycidylether enthält.The invention relates to a pyrophosphate-containing bath for the cyanide-free deposition of copper-tin alloys on substrate surfaces, which contains as an additive a reaction product of a secondary monoamine with a diglycidyl ether.

Mit dem Bad können homogene, glänzende Kupfer-Zinn-Legierungsschichten, deren Legierungsverhältnis je nach eingesetztem Metallsalzverhältnis innerhalb des Elektrolyten gezielt eingestellt werden kann, cyanidfrei abgeschieden werden.The bath can be used to deposit cyanide-free homogeneous, lustrous copper-tin alloy layers whose alloying ratio can be adjusted selectively within the electrolyte, depending on the metal salt ratio used.

Stand der TechnikState of the art

Zinn-Legierungen und insbesondere Kupfer-Zinn-Legierungen sind als Alternative zu Nickelabscheidungen in den Fokus des Interesses gekommen. Galvanisch abgeschiedene Nickelschichten werden üblicherweise sowohl für dekorative als auch funktionale Anwendungen eingesetzt.Tin alloys, and especially copper-tin alloys, have come into focus as an alternative to nickel deposits. Electrodeposited nickel layers are commonly used for both decorative and functional applications.

Trotz ihrer guten Eigenschaften sind Nickelschichten auf Grund ihrer sensibilisierenden Eigenschaften gerade bei direktem Hautkontakt gesundheitlich problematisch. Aus diesem Grund sind Alternativen von höchstem Interesse. Neben den im Elektronik-Sektor etablierten aber ökologisch problematischen Zinn-Blei-Legierungen, sind in den letzten Jahren vor allem Kupfer-Zinn-Legierungen als Ersatz ins Auge gefasst worden. Kapitel 13 (S. 155 bis 163) der Schrift " The Electrodeposition of Tin and ist Alloys" von Manfred Jordan (Eugen G. Leuze Publ., 1st Ed., 1995 ) gibt einen Überblick über die bekannten Bad-Typen für Kupfer-Zinn-Legierungsabscheidungen.Despite their good properties, nickel layers are problematic due to their sensitizing properties, especially in the case of direct skin contact. For this reason, alternatives are of the highest interest. In addition to the established in the electronics sector but ecologically problematic tin-lead alloys, especially copper-tin alloys have been considered as a replacement in recent years. Chapter 13 (pp. 155-163) of the text " The Electrodeposition of Tin and Alloys is by Manfred Jordan (Eugen G. Leuze Publ., 1st Ed., 1995 ) gives an overview of the known bath types for copper-tin alloy deposits.

Industriell etabliert sind cyanid-haltige Kupfer-Zinn-Legierungsbäder. Aufgrund strenger werdender Regularien und der hohen Toxizität und problematischen und teuren Entsorgung dieser cyanid-haltigen Bäder besteht ein wachsender Bedarf an cyanid-freien Kupfer-Zinn-Elektrolyten.Cyanide-containing copper-tin alloy baths are industrially established. Due to stricter regulations and the high toxicity and problematic and expensive disposal of these cyanide-containing baths, there is a growing demand for cyanide-free copper-tin electrolytes.

Zu diesem Zweck sind vereinzelt cyanid-freie pyrophosphat-haltige Elektrolyte entwickelt worden. So beschreibt die JP 10-102278 A ein Kupfer-Zinn-Legierungsbad auf Pyrophosphat-Basis, das als Additiv ein Reaktionsprodukt eines Amins und eines Epihalodrin-Derivates (Molverhältnis 1:1), ein Aldehyd-Derivat und gegebenenfalls je nach Anwendung Tenside enthält. Die US 6416571 B1 beschreibt ebenfalls ein Pyrophosphat-basierendes Bad, welches ebenfalls als Additive ein Reaktionsprodukt eines Amins und eines Epihalohydrin-Derivates (Molverhältnis 1:1), ein kationisches Tensid, gegebenenfalls weitere oberflächenaktive Tenside und ein Antioxidationsmittel enthält.For this purpose, isolated cyanide-free pyrophosphate-containing electrolytes have been developed. That's how it describes JP 10-102278 A a pyrophosphate-based copper-tin alloy bath which contains as an additive a reaction product of an amine and an epihalodrin derivative (molar ratio 1: 1), an aldehyde derivative and, optionally, depending on the application, surfactants. The US 6416571 B1 also describes a pyrophosphate-based bath which also contains as additives a reaction product of an amine and an epihalohydrin derivative (molar ratio 1: 1), a cationic surfactant, optionally further surface-active surfactants and an antioxidant.

Nachteilig bei den oben genannten Bädern ist, dass gerade bei Trommelgalvanisierungen keine einheitlichen Legierungsschichten erhalten werden, so dass die Produkte keine einheitliche Farbgebung und Glanz aufweisen.A disadvantage of the abovementioned baths is that no uniform alloy layers are obtained, especially in the case of drum galvanizations, so that the products do not have a uniform coloring and gloss.

Zur Lösung dieses Problems wird in der WO 2004/005528 ein pyrophosphathaltiges Kupfer-Zinn-Legierungsbad vorgeschlagen, das als Additiv ein Reaktionsprodukt eines Amin-Derivates, besonders bevorzugt Piperazin, eines Epihalohydrin-Derivates, vor allem Epichlorhydrin, und eines Glycidylethers enthält. Zur Herstellung dieses Reaktionsproduktes wird ein Gemisch bestehend aus Epichlorhydrin und dem Glycidylether langsam unter genauer Temperaturkontrolle zu einer wässrigen Lösung des Piperazin gegeben, wobei die Temperatur von 65 bis 80°C eingehalten werden muss. Nachteilig bei diesem Additiv ist die schwierig zu kontrollierende Reaktionsführung gerade bei hohen Temperaturen, da derartige Reaktionsprodukte bei zu hohen Reaktions- und/oder Lagertemperaturen zur Nachreaktion und somit Bildung hochmolekularer und somit teilweise wasserunlöslicher und unwirksamer Polymere neigen. Ein Ausweg aus diesem Dilemma kann nur durch eine Reaktionsführung in sehr hoher Verdünnung (< 1 Gew.-%) erreicht werden. Dabei kommt es bei derartig gering konzentrierten Additiv-Lösungen bei mehrmaligem Nachdosieren zu einem nachteiligen Lösungsaufbau des Elektrolyten. Dadurch kann es bei längerem Elektrolytgebrauch zu schwankenden Abscheidungen kommen.To solve this problem is in the WO 2004/005528 proposed a pyrophosphate-containing copper-tin alloy bath containing as an additive a reaction product of an amine derivative, more preferably piperazine, an epihalohydrin derivative, especially epichlorohydrin, and a glycidyl ether. For the preparation of this reaction product, a mixture consisting of epichlorohydrin and the glycidyl ether is added slowly under precise temperature control to an aqueous solution of piperazine, wherein the temperature from 65 to 80 ° C must be maintained. A disadvantage of this additive is the difficult to control reaction, especially at high temperatures, since such reaction products tend at too high reaction and / or storage temperatures for post-reaction and thus formation of high molecular weight and thus partially water-insoluble and ineffective polymers. A way out of this dilemma can be achieved only by a reaction in very high dilution (<1 wt .-%). It comes with such low concentration additive solutions with repeated replenishment to an adverse solution buildup of the electrolyte. This can lead to fluctuating deposits with longer use of electrolyte.

Ferner zeigt dieser Elektrolyt Schwächen bei Anwendungen in der Gestellgalvanisierung. So ist die Qualität der abgeschiedenen Schichten, die oftmals einen Schleier zeigen, sehr stark von der Art der Warenbewegung während der Elektrolyse abhängig. Die auf diese Weise erhaltenen Kupfer-Zinn-Überzüge weisen zudem oftmals Poren auf, was gerade bei dekorativen Überzügen problematisch ist.Further, this electrolyte exhibits weaknesses in rack plating applications. Thus, the quality of the deposited layers, which often show a haze, very much depends on the nature of the movement of goods during the electrolysis. The copper-tin coatings obtained in this way also often have pores, which is problematic especially in decorative coatings.

Das Beispiel A-11 auf Seite 26 der WO 2004/005528 beschreibt die Verwendung eines Umsetzungsprodukts des Diamins Piperazin mit Ethylenglykoldiglycidylether. Dieses Umsetzungsprodukt liefert nur matte Weißbronze-Schichten.Example A-11 on page 26 of WO 2004/005528 describes the use of a reaction product of the diamine piperazine with ethylene glycol diglycidyl ether. This reaction product provides only matte white bronze layers.

Zusammenfassung der ErfindungSummary of the invention

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein galvanisches Bad für Kupfer-Zinn-Legierungen zu entwickeln, welches die Herstellung von optisch ansprechenden Kupfer-Zinn-Legierungsschichten ermöglicht.The invention is therefore based on the object to develop a plating bath for copper-tin alloys, which allows the production of optically attractive copper-tin alloy layers.

Dabei sollen zusätzlich eine homogenere Kupfer-Zinn-Legierungsmetallverteilung und ein optimales Kupfer/Zinnmetallverhältnis eingestellt werden. Außerdem sollen eine einheitliche Schichtdicke mit hohem Glanz und die Gleichmäßigkeit der Verteilung der Legierungskomponenten im Überzug über einen weiten Stromdichtebereich aufrechterhalten werden.In addition, a more homogeneous copper-tin alloy metal distribution and an optimal copper / tin metal ratio should be set. In addition, a uniform layer thickness with high gloss and the uniformity of the distribution of the alloy components in the coating should be maintained over a wide current density range.

Gegenstand der Erfindung ist ein pyrophosphathaltiges Bad zur cyanidfreien Abscheidung von Kupferlegierungen auf Substratoberflächen, umfassend ein Umsetzungsprodukt eines sekundären Monoamins mit einem Diglycidylether.The invention relates to a pyrophosphate-containing bath for the cyanide-free deposition of copper alloys on substrate surfaces, comprising a reaction product of a secondary monoamine with a diglycidyl ether.

Dabei können die sekundären Monoamine und die Diglycidylether einzeln oder im Gemisch zur Herstellung des Umsetzungsprodukts eingesetzt werden.In this case, the secondary monoamines and the diglycidyl ethers can be used individually or in a mixture for the preparation of the reaction product.

Beschreibung bevorzugter Ausführungsformen der ErfindungDescription of preferred embodiments of the invention

Das sekundäre Amin ist Morpholin. Die Digylcidylether sind Glyceroldiglycidylether, Poly(ethylenglykol)diglycidylether, Poly(propylenglykol)diglycidylether und deren Gemische.The secondary amine is morpholine. The digylcidyl ethers are glycerol diglycidyl ether, poly (ethylene glycol) diglycidyl ether, poly (propylene glycol) diglycidyl ether and mixtures thereof.

Ein bevorzugtes Umsetzungsprodukt zur Verwendung in dem erfindungsgemäßen Bad ist das Umsetzungsprodukt von Morpholin mit Glyceroldiglycidylether.A preferred reaction product for use in the bath of the invention is the reaction product of morpholine with glycerol diglycidyl ether.

Die organischen Additive können leicht durch Umsetzung der entsprechenden Amin-Komponenten mit den entsprechenden Diglycidylethern in einem geeigneten Lösemittel, wie z.B. Wasser, wässrigen alkoholischen Lösungen, aprotischen Lösemitteln, wie z.B. Ethern, NMP, NEP, DMF, DMAc oder auch in Substanz bei Raumtemperatur oder in der Hitze unter Normal- oder erhöhtem Druck dargestellt werden. Bei der Herstellung in Substanz ist es zweckmäßig nach beendeter Reaktion das Reaktionsprodukt mit Wasser zu verdünnen. Die hierzu benötigten Reaktionszeiten liegen je nach eingesetztem Einsatzstoff zwischen wenigen Minuten und mehreren Stunden. Hierzu kann neben den klassischen Wärmequellen auch ein Mikrowellenofen eingesetzt werden. Im Falle der Verwendung von Wasser als Lösemittel oder der Herstellung in Substanz können die anfallenden Umsetzungsprodukte direkt eingesetzt werden, so dass ein Herstellung in wässrigem Milieu oder in Substanz die bevorzugte Herstellungsart darstellt. Die bevorzugten Temperaturen der Herstellung der erfindungsgemäßen Umsetzungsprodukte sind 15 bis 100°C, besonders bevorzugt 20 bis 80°C. Die Molverhältnisse Diglycidylether/Amin sind 0,8 bis 2, besonders bevorzugt 0,9 bis 1,5. Besonders vorteilhaft bei diesen Additiven im Vergleich zum Additiv der WO 2004/005528 ist die sehr einfache Herstellung.The organic additives can easily by reacting the corresponding amine components with the corresponding diglycidyl ethers in a suitable solvent, such as water, aqueous alcoholic solutions, aprotic solvents, such as ethers, NMP, NEP, DMF, DMAc or in bulk at room temperature or be displayed in the heat under normal or elevated pressure. In the preparation in substance, it is useful after completion of the reaction to dilute the reaction product with water. The reaction times required for this are between a few minutes and several hours, depending on the starting material used. For this purpose, in addition to the classic heat sources and a microwave oven can be used. In the case of using water as a solvent or the preparation in bulk, the resulting reaction products can be used directly, so that production in an aqueous medium or in bulk, the preferred method of preparation represents. The preferred temperatures of the preparation of the reaction products according to the invention are 15 to 100 ° C, particularly preferably 20 to 80 ° C. The molar ratios diglycidyl ether / amine are 0.8 to 2, more preferably 0.9 to 1.5. Particularly advantageous in these additives compared to the additive of WO 2004/005528 is the very simple production.

Die erfindungsgemäßen Umsetzungsprodukte können alleine oder als Gemisch mehrerer unterschiedlicher Umsetzungsprodukte des oben genannten Typs in einer Konzentration von 0,0001 bis 20 g/l, bevorzugt von 0,001 bis 1 g/l und besonders bevorzugt 0,01 bis 0,6 g/l eingesetzt werden.The reaction products according to the invention can be used alone or as a mixture of a plurality of different reaction products of the abovementioned type in a concentration of from 0.0001 to 20 g / l, preferably from 0.001 to 1 g / l and particularly preferably from 0.01 to 0.6 g / l become.

Gemäß einer bevorzugten Ausführungsform enthält das erfindungsgemäße Bad Orthophosphorsäure, eine organische Sulfonsäure, Borsäure, ein Antioxidationsmittel und einen von dem Umsetzungsprodukt verschiedenen organischen Glanzbildner.According to a preferred embodiment, the bath according to the invention contains orthophosphoric acid, an organic sulfonic acid, boric acid, an antioxidant and an organic brightener other than the reaction product.

Als Kupferionenquelle können die erfindungsgemäßen Elektrolytbäder Kupferpyrophosphat in einer Konzentration von 0,5 bis 50 g/l enthalten, wobei Konzentrationen von 1 bis 5 g/l besonders bevorzugt sind.As a source of copper ions, the electrolyte baths according to the invention may contain copper pyrophosphate in a concentration of 0.5 to 50 g / l, with concentrations of 1 to 5 g / l being particularly preferred.

Als Zinn-lonen-Quelle können die erfindungsgemäßen Bäder Zinnpyrophosphat in einer Konzentration von 0,5 bis 100 g/l enthalten, wobei Konzentrationen von 10 bis 40 g/l besonders bevorzugt sind.As tin-ion source, the baths according to the invention may contain tin pyrophosphate in a concentration of 0.5 to 100 g / l, with concentrations of 10 to 40 g / l being particularly preferred.

Neben den oben erwähnten Zinn- und Kupferpyrophosphaten können auch anderweitige wasserlösliche Zinn- und Kupfersalze, wie z.B. Zinnsulfat, Zinnmethansulfonat, Kupfersulfat, Kupfermethansulfonat, eingesetzt werden, die durch Zusatz geeigneter Alkalimetallpyrophosphate innerhalb des Elektrolyten in die entsprechenden Pyrophosphate umkomplexiert werden können. Dabei sollte das Konzentrationsverhältnis Pyrophosphat zu Zinn/Kupfer bei 3 bis 80, besonders bevorzugt bei 5 bis 50 liegen.In addition to the above-mentioned tin and copper pyrophosphates, other water-soluble tin and copper salts, e.g. Tin sulfate, Zinnmethansulfonat, copper sulfate, copper methanesulfonate, are used, which can be umkomplexiert by addition of suitable alkali metal pyrophosphates within the electrolyte into the corresponding pyrophosphates. The concentration ratio of pyrophosphate to tin / copper should be from 3 to 80, more preferably from 5 to 50.

Die in den erfindungsgemäßen Bädern gegebenenfalls enthaltenen Alkalimetallpyrophosphate sind besonders bevorzugt die Natrium-, Kalium- und Ammoniumpyrophosphate in Konzentrationen von 50 bis 500 g/l, besonders bevorzugt von 100 bis 400 g/l.The alkali metal pyrophosphates optionally present in the baths according to the invention are particularly preferably the sodium, potassium and ammonium pyrophosphates in concentrations of 50 to 500 g / l, more preferably of 100 to 400 g / l.

Die in den erfindungsgemäßen Bäder gegebenenfalls enthaltenen Antioxidationsmittel umfassen hydroxylierte aromatische Verbindungen, wie z.B. Catechol, Resorcin, Brenzkatechin, Hydrochinon, Pyrogallol, α- oder β-Naphthol, Phloroglucin und zuckerbasierte Systeme wie z.B. Ascorbinsäure, Sorbitol in Konzentrationen von 0,1 bis 1 g/l.The antioxidants optionally present in the baths of the invention include hydroxylated aromatic compounds, e.g. Catechol, resorcinol, pyrocatechol, hydroquinone, pyrogallol, α- or β-naphthol, phloroglucin and sugar-based systems such as e.g. Ascorbic acid, sorbitol in concentrations of 0.1 to 1 g / l.

Als Alkylsulfonsäuren können sowohl Mono- als auch Polysulfonsäuren wie z.B. Methansulfonsäure, Methandisulfonsäure, Ethansulfonsäure, Propansulfonsäure, 2-Propansulfonsäure, Butansulfonsäure, 2-Butansulfonsäure, Pentansulfonsäure, Hexansulfonsäure, Decansulfonsäure, Dodecansulfonsäure sowie deren Salze und deren hydroxylierte Derivate eingesetzt werden. Besonders bevorzugt ist die Verwendung von Methansulfonsäure in einer Konzentration von 0,01 bis 1 g/l.As the alkylsulfonic acids, both mono- and polysulfonic acids, e.g. Methanesulfonic acid, methanedisulfonic acid, ethanesulfonic acid, propanesulfonic acid, 2-propanesulfonic acid, butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, decanesulfonic acid, dodecanesulfonic acid and salts thereof and their hydroxylated derivatives are used. Particularly preferred is the use of methanesulfonic acid in a concentration of 0.01 to 1 g / l.

Die erfindungsgemäßen Bäder weisen einen pH-Wert von 3 bis 9, besonders bevorzugt 6 bis 8 auf.The baths according to the invention have a pH of 3 to 9, more preferably 6 to 8.

Im Gegensatz zu den aus der WO 2004/005528 bekannten Zusätzen ist es mit dem erfindungsgemäßen Additiv, d.h. dem Umsetzungsprodukt eines sekundären Monoamins mit einem Diglycidylether möglich, die Legierung auf dem Substrat mit einer einheitlichen Schichtdicke mit hohem Glanz bei gleichmäßiger Verteilung der Legierungskomponenten im Überzug über einen weiten Stromdichtebereich abzuscheiden. Des Weiteren tritt bei Verwendung des erfindungsgemäßen Additivs keine Porenbildung auf. Schließlich kann auch bei der Gestellgalvanisierung eine Schleierbildung vermieden werden.Unlike the ones from the WO 2004/005528 Known additions, it is possible with the additive according to the invention, ie the reaction product of a secondary monoamine with a diglycidyl ether to deposit the alloy on the substrate with a uniform layer thickness with high gloss with a uniform distribution of the alloy components in the coating over a wide current density range. Furthermore, no pore formation occurs when the additive according to the invention is used. Finally, even with the Gestellgalvanisierung fogging can be avoided.

Die vorgenannten Effekte können durch den Zusatz von N-Methylpyrrolidon noch verstärkt werden. Vorzugsweise wird das N-Methylpyrrolidon in einer Konzentration von 0,1 bis 50 g/l, besonders bevorzugt 0,5 bis 15 g/l, eingesetzt. Die erfindungsgemäßen Bäder können mit gebräuchlichen Verfahren hergestellt werden, beispielsweise durch Zugabe der spezifischen Mengen der vorstehend beschriebenen Komponenten zu Wasser. Die Menge der Basen-, Säure- und Pufferkomponenten, wie z.B. Natriumpyrophosphat, Methansulfonsäure und/oder Borsäure, sollte vorzugsweise so gewählt werden, dass das Bad den pH-Bereich von mindestens 6 bis 8 erreicht.The aforementioned effects can be enhanced by the addition of N-methylpyrrolidone. The N-methylpyrrolidone is preferably used in a concentration of 0.1 to 50 g / l, more preferably 0.5 to 15 g / l. The baths according to the invention can be prepared by conventional methods, for example by adding the specific amounts of the above-described components to water. The amount of base, acid and buffer components, such as sodium pyrophosphate, methanesulfonic acid and / or boric acid, should preferably be selected so that the bath reaches the pH range of at least 6 to 8.

Die erfindungsgemäßen Bäder scheiden eine blanke, ebene und duktile Kupfer-Zinn-Legierungsschicht bei jeder gebräuchlichen Temperatur von etwa 15 bis 50°C, vorzugsweise 20°C bis 40°C, besonders bevorzugt 20°C bis 30°C, ab. Bei diesen Temperaturen sind die erfindungsgemäßen Bäder stabil und über einen weiten, eingestellten Stromdichtebereich von 0,01 bis 2 A/dm2, besonders bevorzugt 0,25 bis 0,75 A/dm2, wirkungsvoll.The baths according to the invention deposit a bright, even and ductile copper-tin alloy layer at each customary temperature of about 15 to 50.degree. C., preferably 20.degree. C. to 40.degree. C., particularly preferably 20.degree. C. to 30.degree. At these temperatures, the baths according to the invention are stable and effective over a wide, adjusted current density range of 0.01 to 2 A / dm 2 , more preferably 0.25 to 0.75 A / dm 2 .

Die erfindungsgemäßen Bäder können auf eine kontinuierliche oder intermittierende Weise betrieben werden, und von Zeit zu Zeit wird man die Komponenten des Bades ergänzen müssen. Die Komponenten des Bades können einzeln oder in Kombination zugesetzt werden. Ferner können sie über einen weiten Bereich variiert werden, abhängig vom Verbrauch und vorliegenden Konzentration der Einzelkomponenten.The baths of the invention may be operated in a continuous or intermittent manner, and from time to time the components of the bath will have to be supplemented. The components of the bath may be added singly or in combination. Furthermore, they can be varied over a wide range, depending on the consumption and present concentration of the individual components.

Tabelle 1 zeigt gemäß einer bevorzugten Ausführungsform die Abscheidungsresultate der Zinn-Kupfer-Legierungsschichten in den erfindungsgemäßen Elektrolyten im Vergleich zu Elektrolyten der Schrift WO 2004/005528 . Eintrag Elektrolyt Einges. Konzentration Glanzbildner [ml/l] Erscheinungsbild der Abscheidung 1 Erfindungsgemäßer Elektrolyt mit Additiv A (Herstellungs- und Anwendungsbeispiel 1) 0,2 Sehr glänzende weiße Abscheidung 2 Elektrolyt gemäß WO 2004/005528 (Vergleichsbeispiel 11, Additiv-Konz.: 10 Gew.-%) 0.5 Graue matte Abscheidung mit geringer Haftung 3 Elektrolyt gemäß WO 2004/005528 (Vergleichsbeispiel 12, Additiv-Konz.: 1 Gew.-%) 14 Glänzende weiße Abscheidung mit vereinzelten Poren u. Schleiern Table 1 shows, according to a preferred embodiment, the deposition results of the tin-copper alloy layers in the electrolytes according to the invention in comparison to electrolytes of the specification WO 2004/005528 , entry electrolyte Einges. Concentration Brightener [ml / l] Appearance of the deposition 1 Inventive electrolyte with additive A (preparation and application example 1) 0.2 Very shiny white deposit 2 Electrolyte according to WO 2004/005528 (Comparative Example 11, additive conc .: 10% by weight) 0.5 Gray matt deposit with low adhesion 3 Electrolyte according to WO 2004/005528 (Comparative Example 12, additive concentration: 1% by weight) 14 Brilliant white deposit with isolated pores u. veils

Wie aus Tabelle 1 ersichtlich werden bei Verwendung der erfindungsgemäßen Additive hinsichtlich des äußeren Erscheinungsbildes sowie der wirksamen Konzentration bessere Resultate erhalten. So sind die erfindungsgemäßen Additive um einen Faktor bis zu 1,75 aktiver als die in der Patentschrift WO 2004/005528 beschriebenen Additive.As can be seen from Table 1 better results are obtained when using the additives according to the invention in terms of the external appearance and the effective concentration. Thus, the additives according to the invention are more active than those in the patent by a factor of up to 1.75 WO 2004/005528 described additives.

Ein Vorteil der erfindungsgemäßen Zinn-Kupfer-Bäder im Vergleich zum Elektrolyten der WO 2004/005528 ist der überraschend geringe Verbrauch der erfindungsgemäßen Additive im Vergleich zu den Umsetzungsprodukten des Piperazins mit Epichlorhydrin und Glycidylether.An advantage of the tin-copper baths according to the invention in comparison to the electrolyte of the WO 2004/005528 is the surprisingly low consumption of the additives of the invention compared to the reaction products of piperazine with epichlorohydrin and glycidyl ether.

Die erfindungsgemäßen wässrigen Bäder können im allgemeinen für alle Arten von Substraten verwendet werden, auf welchen Kupfer-Zinn-Legierungen abgeschieden werden können. Beispiele zweckdienlicher Substrate schließen Kupfer-Zink-Legierungen, mit chemisch Kupfer oder chemisch Nickel beschichtete ABS-Kunststoffoberflächen, Weichstahl, Edelstahl, Federstahl, Chromstahl, Chrom-Molybdänstahl, Kupfer und Zinn ein.The aqueous baths according to the invention can generally be used for all types of substrates on which copper-tin alloys can be deposited. Examples of useful substrates include copper-zinc alloys, chemically copper or chemically nickel-coated ABS plastic surfaces, mild steel, stainless steel, spring steel, chrome steel, chromium-molybdenum steel, copper and tin.

Ein weiterer Gegenstand ist daher ein Verfahren zur galvanischen Abscheidung von Kupfer-Zinn-Legierungen auf üblichen Substraten, wobei das erfindungsgemäße Bad verwendet wird. Dabei wird das zu beschichtende Substrat in das Elektrolytbad eingebracht.Another object is therefore a process for the electrodeposition of copper-tin alloys on conventional substrates, wherein the bath according to the invention is used. In this case, the substrate to be coated is introduced into the electrolyte bath.

Vorzugsweise erfolgt bei dem erfindungsgemäßen Verfahren die Abscheidung der Überzüge bei einer eingestellten Stromdichte von 0,25 bis 0,75 A/dm2 sowie bei einer Temperatur von 15 bis 50°C, vorzugsweise 20 bis 30°C.Preferably, in the inventive method, the deposition of the coatings at a set current density of 0.25 to 0.75 A / dm 2 and at a temperature of 15 to 50 ° C, preferably 20 to 30 ° C.

Das erfindungsgemäße Verfahren kann bei der Anwendung für Massenteile beispielsweise als Trommelgalvanisierverfahren und zur Abscheidung auf größeren Werkstücken als Gestellgalvanisierverfahren durchgeführt werden. Dabei werden Anoden verwendet, die löslich sein können, wie beispielsweise Kupferanoden, Zinnanoden oder geeignete Kupfer-Zinn-Legierungsanoden, die gleichzeitig als Kupfer und/oder Zinn-lonen-Quelle dienen, damit das auf der Kathode abgeschiedenen Kupfer und/oder Zinn durch Auflösen von Kupfer und/oder Zinn an der Anode substituiert wird.The method according to the invention can be carried out in the application for mass parts, for example as a drum electroplating method and for depositing on larger workpieces as a rack electroplating method. Anodes are used which can be soluble, such as copper anodes, tin anodes or suitable copper-tin alloy anodes, which serve as a copper and / or tin-ion source at the same time, so that on the Cathode deposited copper and / or tin is substituted by dissolving copper and / or tin at the anode.

Andererseits können auch unlösliche Anoden (z.B. platinierte Titanmischoxid-Anoden) eingesetzt werden, wobei die dem Elektrolyten entzogenen Kupfer- und Zinn-Ionen auf andere Weise wieder zugesetzt werden müssen, z.B. durch Zusatz der entsprechenden löslichen Metallsalze. Wie bei der galvanischen Abscheidung möglich, kann auch das erfindungsgemäße Verfahren unter Stickstoff- oder Argoneinblasung, mit Warenbewegung oder ohne Bewegung, betrieben werden, ohne dass sich hierfür irgendwelche Nachteile für die erhaltenen Überzüge ergeben. Zur Vermeidung bzw. Reduzierung von Oxidationen der zugesetzten Additive bzw. der Zinn(II)-lonen kann mit der Trennung der Elektrodenräume oder mit der Verwendung von Membrananoden gearbeitet werden, wodurch eine erhebliche Stabilisierung des Elektrolyten erreicht werden kann.On the other hand, insoluble anodes (e.g., platinized titanium mixed oxide anodes) may also be employed, and the copper and tin ions withdrawn from the electrolyte must be re-added in some other way, e.g. by addition of the corresponding soluble metal salts. As in the case of galvanic deposition, it is also possible to operate the process according to the invention under nitrogen or argon injection, with goods movement or without movement, without resulting in any disadvantages for the coatings obtained. To avoid or reduce oxidations of the added additives or the stannous ions, it is possible to work with the separation of the electrode chambers or with the use of membrane anodes, whereby a considerable stabilization of the electrolyte can be achieved.

Als Stromquelle dienen handelsübliche Gleichstromrichter oder Pulsgleichrichter.The current source used are commercial DC converters or pulse rectifiers.

Beispiele:Examples: Herstellungsbeispiel 1:Production Example 1

In einem Rundkolben werden in 19,84 g Wasser 4 g (0,0455 mol) Morpholin und 9,29 g (0,0455 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch wird für eine Stunde auf 80°C erhitzt. Es werden 33,13 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.4 g (0.0455 mol) of morpholine and 9.29 g (0.0455 mol) of glycerol diglycidyl ether are dissolved in 19.84 g of water in a round bottom flask, and the reaction mixture is heated to 80 ° C. for one hour. There are obtained 33.13 g of a colorless liquid, which is then used for performance tests.

Herstellungsbeispiel 2:Production Example 2

In einem Rundkolben werden in 17,44 g Wasser 1,67 g (0,0190 mol) Morpholin und 10 g (0,0190 mol) Poly(ethylenglykol)diglycidylether (Molekulargewicht 526,6 g/mol) gelöst und das Reaktionsgemisch für eine Stunde auf 80°C erhitzt.1.67 g (0.0190 mol) of morpholine and 10 g (0.0190 mol) of poly (ethylene glycol) diglycidyl ether (molecular weight 526.6 g / mol) are dissolved in 17.47 g of water in a round bottom flask and the reaction mixture is subjected to a Hour heated to 80 ° C.

Es werden 29,11 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.There are obtained 29.11 g of a colorless liquid, which is then used for performance tests.

Herstellungsbeispiel 3:Production Example 3

In einem Rundkolben werden in 19,43 g Wasser 2,50 g (0,0287 mol) Morpholin und 2,92 g (0,0143 mol) Glyceroldiglycidylether und 7,53 g (0,0143 mol) Poly(ethylenglykol)diglycidylether gelöst und das Reaktionsgemisch für eine Stunde auf 80°C erhitzt. Es werden 32,38 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.2.50 g (0.0287 mol) of morpholine and 2.92 g (0.0143 mol) of glycerol diglycidyl ether and 7.53 g (0.0143 mol) of poly (ethylene glycol) diglycidyl ether are dissolved in 19.43 g of water in a round-bottomed flask and the reaction mixture heated to 80 ° C for one hour. There are obtained 32.38 g of a colorless liquid, which is then used for performance testing.

Herstellungsbeispiel 4:Production Example 4

In einem Rundkolben werden in 15,28 ml Wasser, 1,67 g (0,019 mol) Morpholin und 12,16 g (0,019 mol; mittleres Molekulargewicht: 640 g/mol) Poly(propylenglykol)diglycidylether gelöst und das Reaktionsgemisch für eine Stunde auf 80°C erhitzt. Es werden 21,11 g einer Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfung eingesetzt wird.In a round bottom flask are dissolved in 15.28 ml of water, 1.67 g (0.019 mol) of morpholine and 12.16 g (0.019 mol, average molecular weight: 640 g / mol) of poly (propylene glycol) diglycidyl ether and the reaction mixture for one hour Heated to 80 ° C. There are obtained 21.11 g of a liquid, which is then used for performance testing.

Vergleichendes Herstellungsbeispiel 5:Comparative Production Example 5:

In einem Rundkolben werden in 21,92 g Wasser 4,97 g (0,0472 mol) Thiomorpholin und 9,64 g (0,0472 mol) Glyceroldiglycidylether emulgiert und das Reaktionsgemisch für zwei Stunden auf 80°C erhitzt. Nach beendeter Reaktion scheidet sich ein gelbes Öl ab. Zu dem Reaktionsgemisch werden 23,60 ml 2 molare Salzsäure gegeben und 30 Minuten gerührt. Es werden 58,15 g einer gelben farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.4.97 g (0.0472 mol) of thiomorpholine and 9.64 g (0.0472 mol) of glycerol diglycidyl ether are emulsified in 21.92 g of water in a round-bottomed flask, and the reaction mixture is heated to 80 ° C. for two hours. After completion of the reaction, a yellow oil separates out. 23.60 ml of 2 molar hydrochloric acid are added to the reaction mixture and the mixture is stirred for 30 minutes. There are obtained 58.15 g of a yellow colorless liquid, which is then used for performance tests.

Vergleichendes Herstellungsbeispiel 6:Comparative Preparation Example 6

In einem Rundkolben werden in 15 g Wasser 4,90 ml (0,0490 mol) Piperidin und 10 g (0,0490 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch für zwei Stunden auf 80°C erhitzt. Es werden 35,43 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.4.90 ml (0.0490 mol) of piperidine and 10 g (0.0490 mol) of glycerol diglycidyl ether are dissolved in 15 g of water in a round-bottom flask and the reaction mixture is heated to 80 ° C. for two hours. There are 35.43 g of a colorless liquid obtained, which is then used for performance testing.

Vergleichendes Herstellungsbeispiel 7:Comparative Preparation Example 7

In einem Rundkolben werden in 15 g Wasser 6,20 ml (0,0490 mol) Dimethylamin und 10 g (0,0490 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch für zwei Stunden auf 80°C erhitzt. Es werden 30,52 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.6.20 ml (0.0490 mol) of dimethylamine and 10 g (0.0490 mol) of glycerol diglycidyl ether are dissolved in 15 g of water in a round bottom flask, and the reaction mixture is heated to 80 ° C. for two hours. There are obtained 30.52 g of a colorless liquid, which is then used for performance testing.

Herstellungsbeispiel 8:Production Example 8:

In einem Rundkolben werden in 22,50 g Wasser 5 g (0,0574 mol) Morpholin und 10 g (0,0490 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch für eine Stunde auf 80°C erhitzt. Es werden 37,50 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.5 g (0.0574 mol) of morpholine and 10 g (0.0490 mol) of glycerol diglycidyl ether are dissolved in 22.50 g of water in a round bottom flask, and the reaction mixture is heated to 80 ° C. for one hour. There are obtained 37.50 g of a colorless liquid, which is then used for performance tests.

Herstellungsbeispiel 9:Production Example 9:

In einem Rundkolben werden in 23,54 g Wasser 5,69 g (0,0653 mol) Morpholin und 10 g (0,0490 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch für eine Stunde auf 80°C erhitzt. Es werden 39,23 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.5.69 g (0.0653 mol) of morpholine and 10 g (0.0490 mol) of glycerol diglycidyl ether are dissolved in 23.54 g of water in a round-bottom flask and the reaction mixture is heated to 80 ° C. for one hour. There are obtained 39.23 g of a colorless liquid, which is then used for performance tests.

Herstellungsbeispiel 10:Production Example 10

In einem Rundkolben werden in 19,84 g Wasser 4 g (0,0455 mol) Morpholin und 9,29 g (0,0455 mol) Glyceroldiglycidylether gelöst und das Reaktionsgemisch für eine Stunde auf 60°C erhitzt. Es werden 33,13 g einer farblosen Flüssigkeit erhalten, welche anschließend für anwendungstechnische Prüfungen eingesetzt wird.4 g (0.0455 mol) of morpholine and 9.29 g (0.0455 mol) of glycerol diglycidyl ether are dissolved in 19.84 g of water in a round bottom flask, and the reaction mixture is heated to 60 ° C. for one hour. There are obtained 33.13 g of a colorless liquid, which is then used for performance tests.

Vergleichendes Herstellungsbeispiel 11 gemäßComparative Production Example 11 According to WOWHERE 2004/0055282004/005528

In einem Rundkolben werden 131,65 ml (0,250 mol) Poly(ethylenglykol)diglycidylether vorgelegt und unter Rühren innerhalb von 15 Minuten 19,75 ml (0,250 mol) Epichlorhydrin zugetropft und weitere 15 Minuten gerührt. Diese Lösung wird innerhalb einer Stunde ohne Kühlung langsam zu einer Lösung aus 21,535 g Piperazin in 75 ml Wasser unter kräftigem Rühren zugetropft. Durch die Zugabe wird eine Temperatur von 80°C erhalten, die nicht überschritten werden soll. Nach beendeter Zugabe wird das Reaktionsgemisch eine weitere Stunde bei 80°C gerührt, wobei eine sehr viskose Lösung entstand. Der Reaktionsansatz wird auf Raumtemperatur abgekühlt und mit 229,81 g Wasser verdünnt. Es entstanden 500 g Lösung (40 Gew.-%), die sich nach einer viertel Stunde verfestigte. Die feste Massen wurde mittels Ultra-Turrax-Rührer zerkleinert und durch weiter Wasserzugabe auf eine 10-gew.-%-ige Polymer-Emulsion eingestellt. Das Additiv wurde analog dem allgemeinen Anwendungsbeispiel getestet.131.65 ml (0.250 mol) of poly (ethylene glycol) diglycidyl ether are placed in a round bottom flask and 19.75 ml (0.250 mol) of epichlorohydrin are added dropwise with stirring within 15 minutes and the mixture is stirred for a further 15 minutes. This solution is slowly added dropwise within one hour without cooling to a solution of 21.535 g of piperazine in 75 ml of water with vigorous stirring. The addition gives a temperature of 80 ° C, which should not be exceeded. After completion of the addition, the reaction mixture is stirred for a further hour at 80 ° C, whereby a very viscous solution was formed. The reaction is cooled to room temperature and diluted with 229.81 g of water. This gave 500 g of solution (40 wt .-%), which solidified after a quarter of an hour. The solid mass was crushed by means of Ultra-Turrax-stirrer and adjusted by further addition of water to a 10 wt .-% - polymer emulsion. The additive was tested analogously to the general application example.

Vergleichendes Herstellungsbeipiel 12 gemäßComparative manufacturing example 12 according to WOWHERE 2004/0055282004/005528

In einem Rundkolben werden 3,3 ml (0,00625 mol) Poly(ethylenglykol)diglycidylether vorgelegt und unter Rühren innerhalb von 15 Minuten 0,5 ml (0,00625 mol) Epichlorhydrin zugetropft und weitere 15 Minuten gerührt. Diese Lösung wird innerhalb einer Stunde ohne Kühlung langsam zu einer Lösung aus Piperazin (0,55 g (0,00625 mol)) in 75 ml Wasser unter kräftigem Rühren bei 80°C zugetropft. Nach beendeter Zugabe wird das Reaktionsgemisch eine weitere Stunde bei 80°C gerührt, wobei eine sehr viskose Lösung entstand. Der Reaktionsansatz wird auf Raumtemperatur abgekühlt und mit 420 g Wasser verdünnt. Es entstanden 500 g Lösung (< 1 Gew.-%). Das Additiv wurde analog dem allgemeinen Anwendungsbeispiel getestet.3.3 ml (0.00625 mol) of poly (ethylene glycol) diglycidyl ether are placed in a round bottom flask and 0.5 ml (0.00625 mol) of epichlorohydrin are added dropwise with stirring within 15 minutes and the mixture is stirred for a further 15 minutes. This solution is slowly added dropwise within one hour without cooling to a solution of piperazine (0.55 g (0.00625 mol)) in 75 ml of water with vigorous stirring at 80 ° C. After completion of the addition, the reaction mixture is stirred for a further hour at 80 ° C, whereby a very viscous solution was formed. The reaction mixture is cooled to room temperature and diluted with 420 g of water. There were 500 g of solution (<1 wt .-%). The additive was tested analogously to the general application example.

Allgemeines Anwendungsbeispiel :General application example:

Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet: 300 g/l Tetrakaliumpyrophosphat 3 g/l Kupferpyrophosphat Monohydrat 30 g/l Zinnpyrophosphat 40 ml/l Methansulfonsäure 70%-ig 12,5 ml/l Phosphorsäure 85%-ig 4 ml/l N-Methylpyrrolidon 0,2 ml/l einer 40%-igen Lösung eines der erfindungsgemäßen Zusätze gemäß eines Zusatzes der Herstellungsbeispiele 1 bis 10. An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 3 g / l Copper pyrophosphate monohydrate 30 g / l pyrophosphate 40 ml / l Methanesulfonic acid 70% 12.5 ml / l 85% phosphoric acid 4 ml / l N-methylpyrrolidone 0.2 ml / l a 40% solution of one of the additives according to the invention according to an additive of Preparation Examples 1 to 10.

250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1 A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine glänzende Abscheidung erhalten. Tabelle 2: Molares Verhältnis Eintrag Herstellungsbeispiel Amin Diglycidylether 1 Diglycidylether 2 Erscheinung 1 1 1 1 Sehr glänzende weiße Abscheidung 2 2 1 1' Glänzend weiße Abscheidung 3 3 1 0,5 0,5 Glänzend weiße Abscheidung 4 4 1 12 Glänzend weiße Abscheidung 5 Vgl-bsp. 5 13 1 Glänzend weiße Abscheidung 6 Vgl-bsp. 6 14 1 Glänzend weiße Abscheidung 7 Vgl-bsp. 7 15 1 Glänzend weiße Abscheidung 8 8 1,17 1 Sehr glänzende weiße Abscheidung 9 9 1,33 1 Sehr glänzende weiße Abscheidung 10 106 1 1 Sehr glänzende weiße Abscheidung 11 Vgl.-bsp.11 17 18 Graue matte Abscheidung mit geringer Haftung 12 Vgl.-bsp. 12 17 18 Glänzende weiße Abscheidung mit vereinzelten Poren und Schleiern 1: Poly(ethylenglykol)diglycidylether;
2: Poly(propylenglykol)diglycidylether;
3: Thiomorpholin nicht Bestandteil der Erfindung
4:Piperidin nicht Bestandteil der Erfindung
5: Dimethylamin nicht Bestandteil der Erfindung
6: Herstellung bei 60°C;
7: Piperazin;
8: Poly(ethylenglykol)diglycidylether-Epichlorhydrin-Addukt
250 ml of the electrolyte with a pH of 7 are filled into a Hull cell. The anode used is a titanium mixed oxide electrode. The cathode sheet is coated at 1 A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A brilliant deposit was obtained. <u> Table 2: </ u> Molar ratio entry Preparation example Amin Diglycidyl ether 1 Diglycidyl ether 2 appearance 1 1 1 1 Very shiny white deposit 2 2 1 1' Shiny white deposition 3 3 1 0.5 0.5 Shiny white deposition 4 4 1 1 2 Shiny white deposition 5 See-Ex. 5 1 3 1 Shiny white deposition 6 See-Ex. 6 1 4 1 Shiny white deposition 7 See-Ex. 7 1 5 1 Shiny white deposition 8th 8th 1.17 1 Very shiny white deposit 9 9 1.33 1 Very shiny white deposit 10 10 6 1 1 Very shiny white deposit 11 Comp bsp.11 1 7 1 8 Gray matt deposit with low adhesion 12 Comp Ex. 12 1 7 1 8 Brilliant white deposit with isolated pores and veils 1 : poly (ethylene glycol) diglycidyl ether;
2 : poly (propylene glycol) diglycidyl ether;
3 : Thiomorpholine not part of the invention
4 : Piperidine does not form part of the invention
5 : dimethylamine does not form part of the invention
6 : preparation at 60 ° C;
7 : piperazine;
8 : Poly (ethylene glycol) diglycidyl ether-epichlorohydrin adduct

Claims (24)

  1. A pyrophosphate-containing bath for the cyanide-free deposition of copper-tin alloys on substrate surfaces, comprising a reaction product of a secondary monoamine with a diglycidyl ether, wherein the secondary monoamine is morpholine and the diglycidyl ether is selected from the group consisting of glycerol diglycidyl ether, poly(propylene glycol) diglycidyl ether, poly(ethylene glycol) diglycidyl ether and mixtures thereof.
  2. The pyrophosphate-containing bath according to claim 1, wherein the diglycidyl ether is glycerol diglycidyl ether.
  3. The pyrophosphate-containing bath according to claim 1, wherein the molar ratio of diglycidyl ether to secondary monoamine is 0.8 to 2.
  4. The pyrophosphate-containing bath according to claim 3, wherein the molar ratio is 0.9 to 1.5.
  5. The pyrophosphate-containing bath according to any one of claims 1 to 4, wherein the reaction product is contained in a concentration of 0.0001 to 20 g/l.
  6. The pyrophosphate-containing bath according to claim 5, wherein the reaction product is contained in a concentration of 0.001 to 1 g/l.
  7. The pyrophosphate-containing bath according to any one of claims 1 to 6, further comprising an additive selected from the group consisting of orthophosphoric acid, an organic sulfonic acid, boric acid, an antioxidant agent and an organic brightener.
  8. The pyrophosphate-containing bath according to claims 1 to 7, further comprising N-methylpyrrolidone.
  9. The pyrophosphate-containing bath according to claim 8, wherein the N-methylpyrrolidone is contained in a concentration of 0.1 to 50 g/l.
  10. The pyrophosphate-containing bath according to claim 9, wherein the N-methylpyrrolidone is contained in a concentration of 0.5 to 15 g/l.
  11. The pyrophosphate-containing bath according to claims 1 to 10 with a pH value of 3 to 9.
  12. The pyrophosphate-containing bath according the claim 11 with a pH value of 6 to 8.
  13. A method for the galvanic deposition of glossy and even copper-tin alloy coatings, comprising the introducing of a substrate to be coated into an aqueous cyanide-free electrolyte bath according to claims 1 to 12 and depositing the copper-tin alloy coating on the substrate.
  14. The method according to claim 13, wherein the bath is operated at a set current density of 0.01 to 2 A/dm2.
  15. The method according to claim 14, wherein the bath is operated at a set current density of 0.25 to 0.75 A/dm2.
  16. The method according to claim 13, wherein the bath is operated at a temperature of 15 to 50°C.
  17. The method according to claim 13, wherein the bath is operated at a temperature of 20 to 30°C.
  18. The method according to claims 13 to 17, wherein the coatings are deposited on a conductive substrate by means of a rack plating method.
  19. The method according to claims 13 to 18, wherein membrane anodes are used as anodes.
  20. The reaction product of a secondary monoamine with a diglycidyl ether, wherein the secondary monoamine is morpholine and the diglycidyl ether is selected from the group consisting of glycerol diglycidyl ether, poly(propylene glycol) diglycidyl ether, poly(ethylene glycol) diglycidyl ether and mixtures thereof.
  21. The reaction product according to claim 20, wherein the diglycidyl ether is glycerol diglycidyl ether.
  22. The reaction product according to claim 20, wherein the molar ratio of diglycidyl ether to secondary monoamine is 0.8 to 2.
  23. The reaction product according to claim 20, wherein the molar ratio is 0.9 to 1.5.
  24. The use of a reaction product according to anyone of claims 20 to 23 as brightener.
EP08010058A 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys Not-in-force EP2130948B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
PL08010058T PL2130948T3 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys
EP08010058A EP2130948B1 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys
AT08010058T ATE492665T1 (en) 2008-06-02 2008-06-02 PYROPHOSPHATE BATH FOR CYANIDE-FREE DEPOSITION OF COPPER-TIN ALLOYS
DE502008002080T DE502008002080D1 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for the cyanide-free deposition of copper-tin alloys
SI200830180T SI2130948T1 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys
ES08010058T ES2354395T3 (en) 2008-06-02 2008-06-02 BATHROOM WITH CONTENT IN PYROPHOSPHATE FOR THE EXEMPT DEPOSITION OF COPPER AND TIN ALLOYS CYANIDE.
US12/866,996 US20100326838A1 (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
KR1020107019214A KR101609171B1 (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
PCT/EP2009/003886 WO2009146865A1 (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
CN2009801204709A CN102046852B (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
JP2011510900A JP5735415B2 (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for copper-tin alloy deposition without cyanide
CA2724211A CA2724211C (en) 2008-06-02 2009-05-29 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
BRPI0912309 BRPI0912309B1 (en) 2008-06-02 2009-05-29 method for galvanic deposition of uniform and shiny copper-tin alloy coatings
TW098117986A TWI441958B (en) 2008-06-02 2009-06-01 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
US14/100,633 US9399824B2 (en) 2008-06-02 2013-12-09 Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08010058A EP2130948B1 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys

Publications (2)

Publication Number Publication Date
EP2130948A1 EP2130948A1 (en) 2009-12-09
EP2130948B1 true EP2130948B1 (en) 2010-12-22

Family

ID=39831596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010058A Not-in-force EP2130948B1 (en) 2008-06-02 2008-06-02 Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys

Country Status (14)

Country Link
US (2) US20100326838A1 (en)
EP (1) EP2130948B1 (en)
JP (1) JP5735415B2 (en)
KR (1) KR101609171B1 (en)
CN (1) CN102046852B (en)
AT (1) ATE492665T1 (en)
BR (1) BRPI0912309B1 (en)
CA (1) CA2724211C (en)
DE (1) DE502008002080D1 (en)
ES (1) ES2354395T3 (en)
PL (1) PL2130948T3 (en)
SI (1) SI2130948T1 (en)
TW (1) TWI441958B (en)
WO (1) WO2009146865A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569718B2 (en) * 2009-08-21 2014-08-13 キザイ株式会社 Cyan-free bright copper-tin alloy plating bath
US8262895B2 (en) * 2010-03-15 2012-09-11 Rohm And Haas Electronic Materials Llc Plating bath and method
US8268157B2 (en) * 2010-03-15 2012-09-18 Rohm And Haas Electronic Materials Llc Plating bath and method
CN102242381A (en) * 2011-06-29 2011-11-16 杭州阿玛尔科技有限公司 Alkaline non-cyanide copper plating solution with main coordination agent of methylenediphosphonate
CN102220610B (en) * 2011-07-29 2012-12-05 福州大学 Non-cyanide copper-tin alloy plating solution
JP5505392B2 (en) 2011-10-04 2014-05-28 株式会社デンソー COMPOSITE MATERIAL, AND ELECTRIC CONTACT ELECTRODE, ELECTRIC CONTACT FILM, CONDUCTIVE FILLER, ELECTRIC CONTACT STRUCTURE USING THE SAME, AND METHOD FOR PRODUCING COMPOSITE MATERIAL
CN104152955A (en) * 2014-07-17 2014-11-19 广东致卓精密金属科技有限公司 Plating solution and process for electroplating and brightening white copper-tin by using alkaline solution
JP6491989B2 (en) * 2014-10-10 2019-03-27 日本ニュークローム株式会社 Iridescent coloring treatment method for surface
JP6621169B2 (en) * 2015-04-28 2019-12-18 オーエム産業株式会社 Manufacturing method of plated products
CN105200469A (en) * 2015-10-30 2015-12-30 无锡市嘉邦电力管道厂 Tin-copper alloy electroplate liquid and electroplating method thereof
CN106350838A (en) * 2016-09-29 2017-01-25 广州市汇吉科技企业孵化器有限公司 Long-service life brightener and preparation method thereof
CN108642533B (en) * 2018-05-15 2020-03-27 河南电池研究院有限公司 Sn-Cu electroplating solution, tin-based alloy electrode for lithium ion battery, preparation method of tin-based alloy electrode and lithium ion battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493092A (en) * 1946-01-11 1950-01-03 United Chromium Inc Method of electrodepositing copper and baths therefor
US4469564A (en) * 1982-08-11 1984-09-04 At&T Bell Laboratories Copper electroplating process
US4842756A (en) * 1987-03-23 1989-06-27 Texaco Inc. Multifunctional viscosity index improver
JP3674887B2 (en) 1996-09-30 2005-07-27 日本ニュークローム株式会社 Pyrophosphate bath for copper-tin alloy plating
US6210556B1 (en) * 1998-02-12 2001-04-03 Learonal, Inc. Electrolyte and tin-silver electroplating process
JP3455712B2 (en) 2000-04-14 2003-10-14 日本ニュークローム株式会社 Pyrophosphate bath for copper-tin alloy plating
WO2002090623A1 (en) * 2001-05-09 2002-11-14 Ebara-Udylite Co., Ltd. Copper plating bath and method for plating substrate by using the same
JP4249438B2 (en) 2002-07-05 2009-04-02 日本ニュークローム株式会社 Pyrophosphate bath for copper-tin alloy plating
US7147767B2 (en) * 2002-12-16 2006-12-12 3M Innovative Properties Company Plating solutions for electrochemical or chemical deposition of copper interconnects and methods therefor
TW200613586A (en) * 2004-07-22 2006-05-01 Rohm & Haas Elect Mat Leveler compounds
JP2006156068A (en) 2004-11-29 2006-06-15 Sanyo Chem Ind Ltd Conductive particulate
EP1741804B1 (en) * 2005-07-08 2016-04-27 Rohm and Haas Electronic Materials, L.L.C. Electrolytic copper plating method
TWI328622B (en) * 2005-09-30 2010-08-11 Rohm & Haas Elect Mat Leveler compounds

Also Published As

Publication number Publication date
DE502008002080D1 (en) 2011-02-03
US20140124376A1 (en) 2014-05-08
SI2130948T1 (en) 2011-04-29
EP2130948A1 (en) 2009-12-09
PL2130948T3 (en) 2011-05-31
US9399824B2 (en) 2016-07-26
TW201011130A (en) 2010-03-16
CA2724211C (en) 2016-10-25
CN102046852A (en) 2011-05-04
ES2354395T3 (en) 2011-03-14
CN102046852B (en) 2013-06-12
WO2009146865A1 (en) 2009-12-10
KR20110022558A (en) 2011-03-07
CA2724211A1 (en) 2009-12-10
KR101609171B1 (en) 2016-04-05
BRPI0912309B1 (en) 2019-12-10
US20100326838A1 (en) 2010-12-30
ATE492665T1 (en) 2011-01-15
BRPI0912309A2 (en) 2015-10-13
JP5735415B2 (en) 2015-06-17
JP2011522116A (en) 2011-07-28
TWI441958B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
EP2130948B1 (en) Pyrophosphate-containing bath for cyanide-free electroplating of copper- tin alloys
EP2103717B1 (en) Pyrophosphate-based bath for depositing tin alloy layers
EP1114206B1 (en) Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
EP2283170B1 (en) Pd and pd-ni electrolyte baths
DE102005011708B3 (en) A polyvinylammonium compound and process for the production thereof, and an acidic solution containing the compound and a process for electrolytically depositing a copper precipitate
EP2116634B1 (en) Modified copper-tin electrolyte and method of depositing bronze layers
EP1870495A1 (en) Aqueous alkaline, cyanide-free, bath for the galvanic deposition of Zinc and Zinc alloy layers
DE69917620T2 (en) DUCTILITY IMPROVING ADDITIVES FOR NICKEL TUNGSTEN ALLOYS
CH682823A5 (en) Platierungszusammensetzungen and procedures.
DE2428499A1 (en) GALVANIZED
DE3001879C2 (en) Aqueous acid bath and process for the galvanic deposition of shiny and leveled nickel-iron layers
DE3447813A1 (en) AQUEOUS ACID BATH AND A METHOD FOR GALVANIC DEPOSITION OF ZINC OR ZINC ALLOYS
DE2830441A1 (en) AQUATIC BATH FOR GALVANIC DEPOSITION OF ZINC AND ITS USE
DE3139815C2 (en) Process for the galvanic production of a gold coating containing a metal hardener
DE2431332C2 (en) Aqueous acid bath for the galvanic deposition of shiny nickel-iron
DE2718285A1 (en) PROCESS AND COMPOSITION FOR THE PRODUCTION OF AN ELECTRICAL DEPOSIT
EP2609232B1 (en) Electrolytic bath for electroplating and process thereof
DE3139641C2 (en) Electroplating bath for use with insoluble anodes for the deposition of semi-bright, ductile and stress-free nickel coatings and processes for their deposition
DE102020133188A1 (en) Silver bismuth electrolyte for the deposition of hard silver layers
DE4032864A1 (en) ACIDIC BATH FOR THE GALVANIC DEPOSITION OF COPPER COVERS AND METHODS USING THIS COMBINATION
DE3705949C2 (en)
DE1956144A1 (en) Process and bath for galvanic tinning
DE2948999C2 (en) Aqueous, acidic bath for the electrodeposition of gold and method for the electrodeposition of hard gold with its use
DE3232735A1 (en) Process for increasing the corrosion resistance of an electrolytically deposited palladium/nickel alloy
EP2878711A1 (en) Method for the galvanic deposition of nickel and corresponding electrolyte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100204

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 3/58 20060101AFI20100331BHEP

Ipc: C25D 3/60 20060101ALI20100331BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008002080

Country of ref document: DE

Date of ref document: 20110203

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002080

Country of ref document: DE

Effective date: 20110203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110302

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110322

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

26N No opposition filed

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002080

Country of ref document: DE

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120602

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 492665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130602

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190624

Year of fee payment: 12

Ref country code: DE

Payment date: 20190619

Year of fee payment: 12

Ref country code: CZ

Payment date: 20190527

Year of fee payment: 12

Ref country code: PL

Payment date: 20190523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 12

Ref country code: SI

Payment date: 20190521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190719

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008002080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200602