EP2122710A1 - Galvanisches element mit hoher kapazität - Google Patents

Galvanisches element mit hoher kapazität

Info

Publication number
EP2122710A1
EP2122710A1 EP08715818A EP08715818A EP2122710A1 EP 2122710 A1 EP2122710 A1 EP 2122710A1 EP 08715818 A EP08715818 A EP 08715818A EP 08715818 A EP08715818 A EP 08715818A EP 2122710 A1 EP2122710 A1 EP 2122710A1
Authority
EP
European Patent Office
Prior art keywords
element according
galvanic element
negative electrode
seal
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08715818A
Other languages
English (en)
French (fr)
Other versions
EP2122710B1 (de
Inventor
Eduard Pytlik
Arno Perner
Martin Krebs
Dejan Ilic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARTA Microbattery GmbH
Original Assignee
VARTA Microbattery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Microbattery GmbH filed Critical VARTA Microbattery GmbH
Publication of EP2122710A1 publication Critical patent/EP2122710A1/de
Application granted granted Critical
Publication of EP2122710B1 publication Critical patent/EP2122710B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a galvanic element having a positive electrode, a negative electrode and a separator, which are arranged in a housing of a cell cup and a cell lid, which are insulated from each other by a gasket, and a pressure for use as a negative electrode is suitable in such a galvanic element.
  • Galvanic elements such as batteries and accumulators are used today in many areas. They serve in particular for the supply of portable devices with electrical energy. In very small devices such as watches and hearing aids, the galvanic elements are preferably used in the form of button cells. Especially hearing aids have a very high power consumption. In modern hearing aids, a distinction is made between “behind the ear” devices (BTE) and “in-ear” devices (IDO) as well as channel devices that are used directly in the auditory canal. The power consumption of these devices depends in particular on the amplifier power. In higher-quality devices, microcomputers and radio devices are integrated, which also need to be supplied with power.
  • hearing aids are usually supplied with batteries of the electrochemical system zinc-air, which are characterized by a particularly high capacity.
  • Zinc-air button cells are available in essentially four different sizes commercially (according to the IEC 60086-2 standard). With standard-sized zinc-air batteries, hearing aids can usually be powered for between 3 days and 3 weeks. Zinc-air batteries are not rechargeable and must be disposed of after use. However, this is problematic because they contain about 1% by weight of mercury which should not be released into the environment. In addition, the permanent use of a hearing aid is correspondingly associated with high costs. For this reason, more and more rechargeable batteries are in demand.
  • nickel metal hydride batteries are particularly suitable because they have the same voltage as zinc-air batteries and a high current carrying capacity. Compared to zinc-air batteries, however, they have a very low capacity.
  • the maximum life of nickel metal hydride batteries in the four above-mentioned sizes is usually less than 1 day, so they must be recharged or replaced very frequently.
  • the present invention has for its object to provide rechargeable batteries, especially for hearing aids, which have a higher capacity than comparable known batteries.
  • the batteries should also have excellent cycle stability.
  • a galvanic element according to the invention has a positive electrode, a negative electrode and a separator. These are attached in a housing made of a cell cup and a cell lid. orders, which are isolated by a seal against each other.
  • a galvanic element according to the invention is characterized in particular by the fact that the negative electrode is in the form of a compact having a self-supporting structure. Preferably, the compact is in the form of a tablet.
  • ground electrodes are already known from the prior art, such.
  • Example from DE 43 43 435 A1 in which a gas-tight alkaline storage battery is described in the form of a button cell.
  • the nickel basket had both a dissipative function and, in particular, a supporting function since ground electrodes, which are known from the prior art and have been compressed into tablets, have inadequate structural integrity and can correspondingly decay during operation.
  • a galvanic element according to the invention has, in particular, a negative electrode with a self-supporting structure, that is to say an electrode which can be installed without the usual basket.
  • a supporting separate component is not required and not provided according to the invention.
  • an electrode according to the invention which is present as a compact having a self-supporting structure is associated with difficulties, which is due in particular to the fact that the compact must not be compacted too much during the production because it otherwise has too low a porosity to be sufficient To be able to absorb electrolyte. If the pressure is too low, however, the resulting structure is unstable.
  • the negative electrode of a galvanic element according to the invention consists of a powder which is at a pressure between - A -
  • 40 kN / cm 2 and 120 kN / cm 2 was compressed. Values between 40 kN / cm 2 and 120 kN / cm 2 are more preferred in this range.
  • the negative electrode has a density between 5.0 g / cm 3 and 7.5 g / cm 3 , in particular between 5.0 g / cm 3 and 6.5 g / cm 3 ,
  • the negative electrode has a hydrogen storage alloy as the active material.
  • a hydrogen storage alloy as the active material.
  • This is in particular a so-called AB 5 alloy, that is, for example, an alloy of one or more rare earth metals such as lanthanum and nickel in the ratio 1: 5.
  • the hydrogen storage alloy may contain one or more further metals as additives.
  • a galvanic element according to the invention has the consequence that more active material can be introduced into a battery housing of a defined dimension. Accordingly, a galvanic element according to the invention has a comparatively higher capacity.
  • the hydrogen storage alloy is in particle form with an average particle size between 0.1 ⁇ m and 100 ⁇ m, preferably between 10 ⁇ m and 50 ⁇ m.
  • the negative electrode of a galvanic element according to the invention comprises at least one hydrophobic, non-water-soluble polymer.
  • the at least one polymer may be present in the interstices formed by mutual contact of particles of the hydrogen storage alloy and distributed on the surfaces of the alloy. It can the at least one polymer forms areas in the electrode which can not be wetted by electrolyte or only slightly wetted.
  • the at least one polymer is preferably a polyolefin, in particular a halogenated polyolefin, more preferably a polyhaloolefin.
  • the at least one polymer is a fluorinated or perfluorinated polymer, in particular PTFE (polytetrafluoroethylene) and / or PCTFE (polychlorotrifluoroethylene)).
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • the at least one polymer is preferably present in the negative electrode of a galvanic element according to the invention in a proportion of between 0.1% by weight and 5% by weight, in particular between 0.5% by weight and 3% by weight, more preferably between 0.5% and 2% by weight.
  • the negative electrode may, in some preferred embodiments, comprise at least one conductive agent, in particular from the group consisting of carbon-based, preferably amorphous, conductive agents and metallic conductive agents.
  • the negative electrode preferably has at least one metal powder, in particular nickel powder, as conductive agent.
  • the negative electrode can have soot and / or graphite as a conductive agent.
  • the at least one conductive agent is preferably present in the at least one negative electrode in a proportion of between 0.1 and 10% by weight, in particular between 0.5% by weight and 5% by weight, particularly preferably between 0.5% by weight. -% and 3 wt .-%, included.
  • a galvanic element according to the invention is particularly preferred if the negative electrode has a pore content between 0.5% by volume and 40% by volume, preferably between 0.5% by volume and 15% by volume, in particular between 5% by volume and 10 Vol%, (a corresponding volume of electrolyte can be absorbed by a corresponding negative electrode).
  • the negative electrode is substantially exclusively pressed from a hydrogen storage alloy, that is essentially free of the at least one polymer and / or the at least one conductive agent, it preferably has a pore content between 25% by volume and 40% by volume.
  • this has a positive electrode, in which the active material is embedded in a conductive carrier.
  • Electrodes in which the active material is embedded in a conductive carrier are described in detail in the above-mentioned DE 43 43 435 A1.
  • the conductive support can be, in particular, a metal sponge (also known as "foam metal”) or a metal felt
  • a metal sponge also known as "foam metal”
  • metal felt With regard to the properties of particularly suitable conductive supports, reference is made to DE 43 43 435 A1, in which these are described in detail Metal sponges with a pore content between 85% by volume and 97% by volume, in particular of approximately 95% by volume, especially preferred.
  • the pore size of suitable metal sponges is in particular between 50 ⁇ m and 500 ⁇ m.
  • the conductive support consists of at least one metal, in particular nickel.
  • a galvanic element according to the invention on the side of the positive electrode in a particularly preferred embodiment, is also free of the already described metal basket with support and arrester function.
  • the conductive support has a self-supporting structure like the above-described pressed negative electrode and, moreover, performs the function of a drain.
  • the positive electrode preferably has nickel hydroxide and / or nickel oxide hydroxide as the active material, which can be introduced into the conductive carrier, for example, as a homogeneous aqueous paste.
  • the positive electrode may contain additives such as binders and in particular conducting agents.
  • a galvanic element according to the invention has a metallic housing.
  • a metallic housing Particularly suitable are cell cup and / or cell lid made of stainless steel / nickel-plated steel. Housings of a so-called trimetal (a layer arrangement of three metals), in particular made of sheet steel with an internal coating of copper and an outer coating of nickel, are preferably used.
  • a galvanic element according to the present invention comprises an alkaline electrolyte. This will be displayed before closing w the housing metered and fills the pores of the electrodes at least partially.
  • a galvanic element according to the invention has a cell cup and / or a cell lid with a thickness of less than 0.15 mm.
  • Galvanic elements with such thin housing components offer a correspondingly large internal volume and thus plenty of space for active material.
  • even such housing must withstand pressures that may arise, for example, by gas evolution in case of overcharge or during assembly to prevent leakage of electrolyte.
  • a particularly high density and mechanical stability comprises a galvanic element with a housing of a cell cup and a cell lid, which has a seal which extends to the inner wall of the cell cup adjacent to the bottom of the cell cup.
  • a galvanic element according to the invention may, in preferred embodiments, have a seal configured in this way, but such a seal can in principle be used in all galvanic elements of the generic type, not just those having a negative electrode in the form of a self-supporting compact, as described above.
  • a galvanic cell having a positive electrode, a negative electrode, and a separator disposed in a housing of a cell cup and a cell lid insulated from each other by a gasket is also provided, the gasket being abutted against the inner wall of the cell cup extends to the bottom of the cell cup, subject of the present invention.
  • a galvanic element according to the invention with such a specially designed seal can in principle be realized all the above already described as preferred embodiments of the galvanic element with a negative electrode in the form of a compact having a self-supporting structure, in particular with regard to the properties of the cell cup and of the cell lid.
  • the relevant statements are hereby expressly referred to and made reference.
  • Coin-shaped elements in button cell shape known from the prior art usually have seals which are arranged between the cell lid and the cell cup, often also led around the edge of the cell lid, so that they protrude into the interior of the cell.
  • the cell lid and the seal are always arranged above the separator, which subdivides the inner edge of known button cells into an upper and a lower compartment.
  • a galvanic element according to the invention clearly distinguishes itself from the described seal.
  • the separator arranged between the positive and negative electrodes has no direct contact with the cell cup or the cell lid. It connects laterally to the seal.
  • the seal of a galvanic element according to the invention is positively against the inner wall of the cell cup and is formed as thin as possible.
  • the seal surrounds the edge of the cell cover and thus ensures a high mechanical stability.
  • it may have a recess into which the edge of the cell lid can be inserted.
  • the cell lid is seated in this embodiment on the seal and can, in particular as a result of external pressures, such as those in the Flaring the edge of the cell beaker should not be pushed into the cells, thereby damaging the separator.
  • the described galvanic elements according to the invention can have both a foil seal and a seal made of injection molding.
  • a galvanic element according to the invention has the outer dimensions of a standardized button cell (according to standard IEC 60086-2).
  • a suitable for use as a negative electrode, in particular in a galvanic element according to the invention, suitable pressing is the subject of the present invention. It comprises a hydrogen storage alloy and optionally at least one hydrophobic, non-water-soluble polymer and / or at least one conducting agent and is characterized in that it has a density between 5.0 g / cm 3 and 7.5 g / cm 3 , in particular between 5.0 g / cm 3 and 6.5 g / cm 3 .
  • the pressure according to the invention consists of the hydrogen storage alloy, ie it has neither a conducting agent nor a hydrophobic polymer. - -
  • the pressing according to the invention consists of a mixture of the three specified solid components hydrogen storage alloy, hydrophobic, non-water-soluble polymer and conductive agent.
  • Hydrogen storage alloys suitable for the purposes of the invention, non-water-soluble polymers and conducting agents have already been described in detail. The corresponding statements are hereby incorporated by reference.
  • Fig. 1 the cross section of a galvanic element according to the invention and a compact according to the invention (negative electrode) is shown schematically.
  • the positive electrode (cathode) 1 has a nickel foam in which nickel hydroxide / nickel oxide hydroxide (Ni (OH) 2 / NiOOH) is embedded as active material.
  • the pressure according to the invention is located as a negative electrode (anode) 2, which is separated from the positive electrode 1 by the separator 3.
  • Neither the negative electrode 2 nor the positive Electrode 1 have a metallic cup as a scaffold. Both electrodes have a self-supporting structure.
  • the negative electrode 2 consists essentially of an AB 5 hydrogen storage alloy.
  • the housing of the illustrated galvanic EIe- ment consists essentially of the housing cup 4 and the housing cover 5. It consists of stainless steel / nickel-plated steel (for example, available under the trade name Hilumin®) and has a thickness of less than 0.15 mm.
  • the seal 6 covers the inner wall of the housing cup completely. It isolates on the one hand the housing cup from the housing cover, on the other hand, it has a support function. It has a recess in which the edge of the housing cover is embedded and provides appropriate stability against pressure that can occur, for example, when flanging the housing cup.
  • the spring element 7 is arranged made of nickel. This captures volume changes that the negative electrode undergoes during charging and discharging of the galvanic element.
  • buttons made of nickel wire were used which were not inserted in cups made of nickel wire, but instead were made as compacts with a self-supporting structure.
  • the compacts had different characteristics (area, height, volume, weight) depending on the type of head and had been compacted at different pressures.
  • the same hydrogen storage alloy was comparable turns with a bulk density of 7.95 g / cm 3. This resulted in each case a compact having a specific density and a certain porosity (see Table 1).
  • buttons For all button cells, a higher capacity was measured than for comparable cells with a conventional negative electrode. Some measurement data can be found in Table 2. In addition, all button cells have excellent cycle stability (several hundred cycles).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Beschrieben wird ein galvanisches Element mit einer positiven Elektrode, einer negativen Elektrode und einem Separator, die in einem Gehäuse aus einem Zellenbecher und einem Zellendeckel angeordnet sind, welche durch eine Dichtung voneinander isoliert sind. Besonders zeichnet sich das galvanische Element dadurch aus, dass es eine negative Elektrode aufweist, die als vorzugsweise tablettenförmiger Preßling mit selbsttragender Struktur vorliegt und/oder dass es eine Dichtung aufweist, die sich an der Innenwand des Zellenbechers anliegend bis zum Boden des Zellenbechers erstreckt. Daneben wird ein Preßling beschrieben, der zur Verwendung als negative Elektrode in einem solchen galvanischen Element geeignet ist, umfassend eine Wasserstoffspeicherlegierung sowie ggf. mindestens ein hydrophobes, nicht wasserlösliches Polymer und/oder mindestens ein Leitmittel. Der Preßling zeichnet sich dadurch aus, dass er eine Dichte zwischen 5,0 g/cm3 und 7,5 g/cm3 aufweist.

Description

Galvanisches Element mit hoher Kapazität
Die vorliegende Erfindung betrifft ein galvanisches Element mit einer positiven Elektrode, einer negativen Elektrode und einem Separator, die in einem Gehäuse aus einem Zellenbecher und einem Zellendeckel angeordnet sind, welche durch eine Dichtung gegeneinander isoliert sind, sowie einen Pressung, der zur Verwendung als negative Elektrode in einem solchen galvanischen Element geeignet ist.
Galvanische Elemente wie Batterien und Akkumulatoren finden heute in vielerlei Bereichen Anwendung. Sie dienen insbesondere zur Versor- gung portabler Geräte mit elektrischer Energie. In sehr kleine Geräte wie Uhren und Hörgeräte werden die galvanischen Elemente vorzugsweise in Form von Knopfzellen eingesetzt. Besonders Hörgeräte weisen einen sehr hohen Stromverbrauch auf. Man unterscheidet bei modernen Hörgeräten zwischen „hinter dem Ohr"-Geräten (HdO) und „im Ohr"-Geräten (IdO) sowie Kanalgeräten, die direkt in den Hörgang eingesetzt werden. Der Stromverbrauch dieser Geräte hängt insbesondere von der Verstärkerleistung ab. Bei höherwertigen Geräten sind zusätzlich noch Mikrocomputer und Funkeinrichtungen integriert, die ebenfalls mit Strom versorgt werden müssen.
Aufgrund des hohen Stromverbrauchs werden Hörgeräte in aller Regel mit Batterien des elektrochemischen Systems Zink-Luft versorgt, die sich durch eine besonders hohe Kapazität auszeichnen. Zink-Luft- Knopfzellen sind im wesentlichen in vier verschiedenen Baugrößen im Handel erhältlich (gemäß dem Standard IEC 60086-2). Mit Zink-Luft- Batterien in standardisierten Größen können Hörgeräte in der Regel zwischen 3 Tage und 3 Wochen mit Energie versorgt werden. Zink-Luft-Batterien sind nicht wiederaufladbar und müssen entsprechend nach dem Gebrauch entsorgt werden. Dies ist allerdings problematisch, da sie etwa 1 Gew.-% Quecksilber enthalten, das nicht in die Umwelt gelangen sollte. Zudem ist der dauerhafte Gebrauch eines Hörgerätes entsprechend mit hohen Kosten verbunden. Aus diesem Grund werden vermehrt wiederaufladbare Batterien nachgefragt. Als solche sind insbesondere Nickelmetallhydrid-Batterien geeignet, da diese die gleiche Spannungslage wie Zink-Luft-Batterien und eine hohe Strombelastbarkeit aufweisen. Im Vergleich zu Zink-Luft-Batterien weisen sie allerdings eine sehr geringe Kapazität auf. Die maximale Laufzeit von Nickelmetallhydrid-Batterien in den vier oben erwähnten Baugrößen beträgt in der Regel weniger als 1 Tag, so dass sie sehr häufig wiederaufgeladen oder ausgetauscht werden müssen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, wiederaufladbare Batterien, insbesondere für Hörgeräte, bereitzustellen, die eine höhere Kapazität als vergleichbare bekannte Batterien aufweisen. Darüber hinaus sollen die Batterien auch eine hervorragende Zyklenstabilität aufweisen.
Diese Aufgabe wird gelöst durch das galvanische Element mit den Merkmalen des Anspruchs 1 sowie den Pressung mit den Merkmalen des Anspruchs 29. Bevorzugte Ausführungsformen des erfindungsgemäßen galvanischen Elements sind in den Ansprüchen 2 bis 28 ange- geben. Eine bevorzugte Ausführungsform des erfindungsgemäßen Presslings findet sich in Anspruch 30. Darüber hinaus trägt insbesondere auch das galvanische Element mit den Merkmalen des Anspruchs 24 zur Lösung der Aufgabe bei. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.
Ein erfindungsgemäßes galvanisches Element weist eine positive Elektrode, eine negative Elektrode und einen Separator auf. Diese sind in einem Gehäuse aus einem Zellenbecher und einem Zellendeckel ange- ordnet, welche durch eine Dichtung gegeneinander isoliert sind. Ein erfindungsgemäßes galvanisches Element zeichnet sich insbesondere dadurch aus, dass die negative Elektrode als Preßling mit selbsttragender Struktur vorliegt. Vorzugsweise weist der Preßling die Form einer Tablette auf.
Zu Tabletten verpreßte Masseelektroden sind aus dem Stand der Technik bereits bekannt, so z. B. aus der DE 43 43 435 A1 , in der ein gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle beschrieben wird. Allerdings war es bislang stets erforderlich, die Tabletten vor dem Einsetzen in ein Gehäuse in ein Körbchen aus Nickeldraht einzusetzen. Das Nickel-Körbchen hatte dabei sowohl eine ableitende Funktion als auch insbesondere eine Stützfunktion, da aus dem Stand der Technik bekannte zu Tabletten verpreßte Masseelektroden eine un- zureichende strukturelle Integrität aufweisen und entsprechend im Betrieb zerfallen können.
Im Gegensatz dazu weist ein erfindungsgemäßes galvanisches Element insbesondere eine negative Elektrode mit selbsttragender Struktur auf, also eine Elektrode, die ohne das sonst übliche Körbchen verbaut werden kann. Ein solches stützendes separates Bauteil ist nicht erforderlich und erfindungsgemäß auch nicht vorgesehen.
Die Herstellung einer erfindungsgemäß geeigneten, als Preßling vorlie- genden Elektrode mit selbsttragender Struktur ist mit Schwierigkeiten verbunden, was insbesondere darin begründet liegt, dass der Preßling bei der Herstellung nicht zu stark verdichtet werden darf, da er ansonsten eine zu geringe Porosität aufweist, um ausreichend Elektrolyt aufnehmen zu können. Ist der Druck dagegen zu niedrig, so ist die entste- hende Struktur instabil.
Vorzugsweise besteht die negative Elektrode eines erfindungsgemäßen galvanischen Element aus einem Pulver, das bei einem Druck zwischen - A -
40 kN/cm2 und 120 kN/cm2 verdichtet wurde. In diesem Bereich sind Werte zwischen 40 kN/cm2 und 120 kN/cm2 weiter bevorzugt.
Es ist erfindungsgemäß besonders bevorzugt, dass die negative Elekt- rode eine Dichte zwischen 5,0 g/cm3 und 7,5 g/cm3, insbesondere zwischen 5,0 g/cm3 und 6,5 g/cm3, aufweist.
Vorzugsweise weist die negative Elektrode eine Wasserstoffspeicherlegierung als Aktivmaterial auf. Bei dieser handelt es sich insbesondere um eine sogenannte AB5-Legierung, also beispielsweise eine Legierung aus einem oder mehreren Seltenerdenmetallen wie Lanthan und Nickel im Verhältnis 1 : 5. Gegebenenfalls kann die Wasserstoffspeicherlegierung noch ein oder mehrere weitere Metalle als Zusätze enthalten.
Der Verzicht auf das Körbchen, das aufgrund der selbsttragenden Struktur der negativen Elektrode eines erfindungsgemäßen galvanischen E- lements überflüssig ist, hat zur Folge, dass mehr Aktivmaterial in ein Batteriegehäuse einer definierten Dimension eingebracht werden kann. Entsprechend weist ein erfindungsgemäßes galvanisches Element eine vergleichsweise höhere Kapazität auf.
In bevorzugten Ausführungsformen eines erfindungsgemäßen galvanischen Elements liegt die Wasserstoffspeicherlegierung in Partikelform mit einer mittleren Partikelgröße zwischen 0,1 μm und 100 μm, vor- zugsweise zwischen 10 μm und 50 μm, vor.
Besonders bevorzugt ist es, dass die negative Elektrode eines erfindungsgemäßen galvanischen Elements mindestens ein hydrophobes, nicht wasserlösliches Polymer aufweist. Das mindestens eine Polymer kann insbesondere in den durch gegenseitigen Kontakt von Partikeln aus der Wasserstoffspeicherlegierung gebildeten Zwischenräumen vorliegen und auf der Oberflächen der Legierung verteilt sein. Dabei kann das mindestens eine Polymer Bereiche in der Elektrode ausbilden, die von Elektrolyt nicht oder nur wenig benetzt werden können.
Bei dem mindestens einen Polymer handelt es sich vorzugsweise um ein Polyolefin, insbesondere um ein halogeniertes Polyolefin, besonders bevorzugt um ein Polyhalogenolefin.
In Weiterbildung ist es bevorzugt, dass das mindestens eine Polymer ein fluoriertes oder perfluoriertes Polymer, insbesondere PTFE (Polytetra- fluorethylen) und/oder PCTFE (Polychlortrifluorethylen)) ist.
Das mindestens eine Polymer liegt in der negativen Elektrode eines erfindungsgemäßen galvanischen Elements bevorzugt in einem Anteil zwischen 0,1 Gew.-% und 5 Gew.-%, insbesondere zwischen 0,5 Gew.- % und 3 Gew.-%, besonders bevorzugt zwischen 0,5 Gew.-% und 2 Gew.-%, vor.
Vorzugsweise liegt das mindestens eine Polymer in Partikelform mit einer mittleren Partikelgröße zwischen 0,1 μm und 100 μm, vorzugsweise zwischen 10 μm und 50 μm, in der negativen Elektrode vor.
Die negative Elektrode kann in einigen bevorzugten Ausführungsformen mindestens ein Leitmittel aufweisen, insbesondere aus der Gruppe mit kohlenstoffbasierten, vorzugsweise amorphen Leitmitteln und metalli- sehen Leitmitteln.
Vorzugsweise weist die negative Elektrode mindestens ein Metallpulver, insbesondere Nickelpulver, als Leitmittel auf.
Weiterhin kann die negative Elektrode Russ und/oder Graphit als Leitmittel aufweisen. Das mindestens eine Leitmittel ist in der mindestens einen negativen Elektrode bevorzugt in einem Anteil zwischen 0,1 und 10 Gew.-%, insbesondere zwischen 0,5 Gew.-% und 5 Gew.-%, besonders bevorzugt zwischen 0,5 Gew.-% und 3 Gew.-%, enthalten.
Besonders bevorzugt ist ein erfindungsgemäßes galvanisches Element wenn die negative Elektrode einen Porengehalt zwischen 0,5 Vol-% und 40 Vol.-%, vorzugsweise zwischen 0,5 Vol-% und 15 Vol.-%, insbesondere zwischen 5 Vol-% und 10 Vol-%, aufweist (ein entsprechender Vo- lumenanteil Elektrolyt kann von einer entsprechenden negativen Elektrode aufgenommen werden).
Wenn die negative Elektrode im wesentlichen ausschließlich aus einer Wasserstoffspeicherlegierung gepresst ist, also im wesentlichen frei von dem mindestens einen Polymer und/oder dem mindestens einen Leitmittel ist, so weist sie bevorzugt einen Porengehalt zwischen 25 Vol-% und 40 Vol.-% auf.
In einer besonders bevorzugten Ausführungsform des erfindungsgemä- ßen galvanischen Elements weist dieses eine positive Elektrode auf, bei der das Aktivmaterial in einen leitfähigen Träger eingebettet ist.
Elektroden, bei denen das Aktivmaterial in einen leitfähigen Träger eingebettet ist, sind in der oben bereits erwähnten DE 43 43 435 A1 aus- führlich beschrieben.
Bei dem leitfähigen Träger kann es sich insbesondere um einen Metallschwamm (auch als „Schaummetall" bekannt) oder einen Metallfilz handeln. Bezüglich der Eigenschaften besonders geeigneter leitfähigen Träger wird auf die DE 43 43 435 A1 verwiesen, in der diese ausführlich beschrieben sind. So sind Metallschwämme mit einem Porengehalt zwischen 85 Vol.-% und 97 Vol.-%, insbesondere von ca. 95 Vol.-%, be- sonders bevorzugt. Die Porengröße geeigneter Metallschwämme liegt insbesondere zwischen 50 μm und 500 μm.
Besonders bevorzugt besteht der leitfähige Träger aus mindestens ei- nem Metall, insbesondere aus Nickel.
In der DE 43 43 435 A1 ist erwähnt, dass die Verwendung eines solchen leitfähigen Trägers es ermöglicht, auf ein Metallkörbchen, das die positive Elektrode umhüllt, zu verzichten. Entsprechend ist auch ein erfin- dungsgemäßes galvanisches Element auf der Seite der positiven Elektrode in einer besonders bevorzugten Ausführungsform frei von dem bereits beschriebenen Metallkörbchen mit Stütz- und Ableiterfunktion. Der leitfähige Träger weist wie die oben beschriebene, als Preßling vorliegende negative Elektrode eine selbsttragende Struktur auf und über- nimmt darüber hinaus die Funktion eines Ableiters.
Die positive Elektrode weist als Aktivmaterial bevorzugt Nickelhydroxid und/oder Nickeloxidhydroxid auf, das beispielsweise als homogene wäßrige Paste in den leitfähigen Träger eingebracht werden kann. Zudem kann die positive Elektrode Zusätze wie Bindemittel und insbesondere Leitmittel enthalten.
Vorzugsweise weist ein erfindungsgemäßes galvanisches Element ein metallisches Gehäuse auf. Besonders geeignet sind Zellenbecher und/ oder Zellendeckel aus Edelstahl/nickelplatiertem Stahl. Auch Gehäuse aus einem sogenannten Trimetall (eine Schichtanordnung aus drei Metallen), insbesondere aus Stahlblech mit einer innenliegenden Beschich- tung aus Kupfer und einer außenliegenden Beschichtung aus Nickel, sind bevorzugt einsetzbar.
Bevorzugt weist ein galvanisches Element gemäß der vorliegenden Erfindung einen alkalischen Elektrolyten auf. Dieser wird vor dem Schlie- ßen des Gehäuses eindosiert und füllt die Poren der Elektroden mindestens teilweise aus.
Weiterhin ist es bevorzugt, dass ein erfindungsgemäßes galvanisches Element einen Zellenbecher und/oder einen Zellendeckel mit einer Dicke von weniger als 0,15 mm aufweist.
Galvanische Elemente mit derart dünnen Gehäusekomponenten bieten ein entsprechend großes Innenvolumen und damit viel Raum für Aktiv- material. Allerdings müssen auch solche Gehäuse Drücken standhalten können, die beispielsweise durch Gasentwicklung bei Überladung oder bei der Montage entstehen können, um ein Auslaufen von Elektrolyt zu verhindern.
Eine besonders hohe Dichtigkeit und mechanische Stabilität weist ein galvanisches Element mit einem Gehäuse aus einem Zellenbecher und einem Zellendeckel auf, das eine Dichtung aufweist, die sich an der Innenwand des Zellenbechers anliegend bis zum Boden des Zellenbechers erstreckt. Ein erfindungsgemäßes galvanisches Element kann in bevorzugten Ausführungsformen eine derart ausgestaltete Dichtung aufweisen, allerdings ist eine solche Dichtung grundsätzlich in allen gattungsgemäßen galvanischen Elementen einsetzbar, nicht nur in solchen mit einer negativen Elektrode in Form eines Preßlings mit selbsttragender Struktur, wie sie oben beschrieben wurden.
Daher ist auch ein galvanisches Element mit einer positiven Elektrode, einer negativen Elektrode und einem Separator, die in einem Gehäuse aus einem Zellenbecher und einem Zellendeckel angeordnet sind, welche durch eine Dichtung gegeneinander isoliert sind, wobei sich die Dichtung an der Innenwand des Zellenbechers anliegend bis zum Boden des Zellenbechers erstreckt, Gegenstand der vorliegenden Erfindung. - -
In einem erfindungsgemäßen galvanischen Element mit einer solchen speziell ausgebildeten Dichtung können grundsätzlich alle Merkmale verwirklicht sein, die oben bereits als bevorzugte Ausführungsformen des galvanischen Elements mit einer negativen Elektrode in Form eines Preßlings mit selbsttragender Struktur beschrieben wurden, insbesondere im Hinblick auf die Eigenschaften des Zellenbechers und des Zellendeckels. Auf die entsprechenden Ausführungen wird hiermit ausdrücklich verwiesen und Bezug genommen.
Aus dem Stand der Technik bekannte galvanische Elemente in Knopfzellenform weisen in aller Regel Dichtungen auf, die zwischen dem Zellendeckel und dem Zellenbecher angeordnet sind, häufig auch um den Rand des Zellendeckels herumgeführt sind, so dass sie ins Innere der Zelle ragen. Der Zellendeckel und die Dichtung sind dabei stets ober- halb des Separators angeordnet, der den Innenrand bekannter Knopfzellen in ein oberes und ein unteres Kompartiment unterteilt.
Davon grenzt sich ein erfindungsgemäßes galvanisches Element mit der beschriebenen Dichtung deutlich ab. Der zwischen positiver und negati- ver Elektrode angeordnete Separator weist keinen direkten Kontakt mit dem Zellenbecher oder dem Zellendeckel auf. Er schließt seitlich an die Dichtung an.
Vorzugsweise liegt die Dichtung eines erfindungsgemäßen galvanischen Elements formschlüssig an der Innenwand des Zellenbechers an und ist möglichst dünn ausgebildet.
In einer bevorzugten Ausführungsform umschließt die Dichtung den Rand des Zellendeckels und gewährleistet damit eine hohe mechani- sehe Stabilität. Insbesondere kann sie eine Ausnehmung aufweisen, in die der Rand des Zellendeckels eingeschoben werden kann. Der Zellendeckel sitzt in dieser Ausführungsform auf der Dichtung auf und kann insbesondere in Folge äußerer Drücke, wie sie beispielsweise beim Umbördeln des Randes des Zellenbechers auftreten, nicht in die Zellen hineingedrückt werden und dabei den Separator beschädigen.
Die beschriebenen erfindungsgemäßen galvanischen Elemente können sowohl eine Foliendichtung als auch eine Dichtung aus Spritzguß aufweisen. Insbesondere bei den beschriebenen Ausführungsformen eines galvanischen Elements mit einer an der Innenwand des Zellenbechers anliegenden, sich bis zum Boden des Zellenbechers erstreckenden Dichtung, die den Rand des Zellendeckels umschließt, handelt es sich bei der Dichtung jedoch besonders bevorzugt um ein Dichtungsformteil aus Spritzguß.
Wie bereits einleitend bemerkt wurde, liegt der vorliegenden Erfindung insbesondere das Ziel zugrunde, kapazitätsoptimierte galvanische EIe- mente für Hörgeräte bereitzustellen. Entsprechend weist ein erfindungsgemäßes galvanisches Element in bevorzugten Ausführungsformen die äußeren Dimensionen einer standardisierten Knopfzelle (gemäß dem Standard IEC 60086-2) auf.
Wie oben bereits erwähnt, ist auch ein zur Verwendung als negative E- lektrode, insbesondere in einem erfindungsgemäßen galvanischen Element, geeigneter Pressung Gegenstand der vorliegenden Erfindung. Er umfasst eine Wasserstoffspeicherlegierung sowie gegebenenfalls mindestens ein hydrophobes, nicht wasserlösliches Polymer und/oder min- destens ein Leitmittel und zeichnet sich dadurch aus, dass er eine Dichte zwischen 5,0 g/cm3 und 7,5 g/cm3, insbesondere zwischen 5,0 g/cm3 und 6,5 g/cm3, aufweist.
In bevorzugten Ausführungsformen besteht der erfindungsgemäße Pressung aus der Wasserstoffspeicherlegierung, weist also weder ein Leitmittel noch ein hydrophobes Polymer auf. - -
In der Regel ist es aber bevorzugt, dass der erfindungsgemäße Pressung aus einer Mischung der drei genannten festen Komponenten Wasserstoffspeicherlegierung, hydrophobes, nicht wasserlösliches Polymer und Leitmittel besteht.
Erfindungsgemäß geeignete Wasserstoffspeicherlegierungen, nicht wasserlösliche Polymere und Leitmittel sind bereits ausführlich beschrieben worden. Auf die entsprechenden Ausführungen wird hiermit Bezug genommen und verwiesen.
Dies gilt auch im Hinblick auf die sonstigen Eigenschaften des Press- lings wie Porosität und Pressdruck bei der Herstellung, die ebenfalls o- ben bereits beschrieben sind.
Die genannten und weitere Vorteile der Erfindung ergeben sich aus der nun folgenden Beschreibung bevorzugter Ausführungsformen und der Zeichnung in Verbindung mit den Unteransprüchen. Dabei können die einzelnen Merkmale der Erfindung für sich allein oder in Kombination miteinander verwirklicht sein. Die beschriebenen Ausführungsformen dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen.
Figurenbeschreibung
In Fig. 1 ist schematisch der Querschnitt eines erfindungsgemäßen galvanischen Elements sowie eines erfindungsgemäßen Presslings (negative Elektrode) dargestellt. Die positive Elektrode (Kathode) 1 weist einen Nickelschaum auf, in den als Aktivmaterial Nickelhydroxid/Nickel- oxidhydroxid (Ni(OH)2/NiOOH) eingebettet ist. Oberhalb der positiven Elektrode 1 befindet sich der erfindungsgemäße Pressung als negative Elektrode (Anode) 2, die von der positiven Elektrode 1 durch den Separator 3 getrennt ist. Weder die negative Elektrode 2 noch die positive Elektrode 1 weisen ein metallisches Körbchen als Stützgerüst auf. Beide Elektroden weisen eine selbsttragende Struktur auf. Die negative Elektrode 2 besteht im wesentlichen aus einer AB5-Wasserstoff- speicherlegierung. Das Gehäuse des dargestellten galvanisches EIe- ments besteht im wesentlichen aus dem Gehäusebecher 4 und dem Gehäusedeckel 5. Es besteht aus Edelstahl/nickelplatiertem Stahl (beispielsweise erhältlich unter der Handelsbezeichnung Hilumin®) und weist eine Dicke von weniger als 0,15 mm auf. Die Dichtung 6 deckt die Innenwand des Gehäusebechers vollständig ab. Sie isoliert zum einen den Gehäusebecher vom Gehäusedeckel, zum anderen weist sie eine Stützfunktion auf. Sie weist eine Ausnehmung auf, in der der Rand des Gehäusedeckels eingebettet ist und sorgt für entsprechende Stabilität gegen Druck, der beispielsweise beim Umbördeln des Gehäusebechers auftreten kann. Zwischen der negativen Elektrode 2 und dem Gehäuse- deckel 5 ist das Federelement 7 aus Nickel angeordnet. Dieses fängt Volumenänderungen auf, denen die negative Elektrode beim Laden und Entladen des galvanisches Elements unterliegt.
Beispiele
In verschiedenen Typen von Knopfzellen (Typ PR44, PR48, PR41 und PR70 gemäß IEC 60086-2) wurden negative Elektroden verbaut, die nicht in Körbchen aus Nickeldraht eingesetzt waren, sondern stattdes- sen als Preßlinge mit einer selbsttragenden Struktur hergestellt waren. Die Preßlinge wiesen abhängig vom Kopfzellentyp verschiedene Eigenschaften (Fläche, Höhe, Volumen, Gewicht) auf und waren bei verschiedenen Drücken verdichtet worden. In allen Fällen wurde die gleiche Wasserstoffspeicherlegierung mit einer bulk-Dichte von 7,95 g/cm3 ver- wendet. Es resultierte jeweils ein Preßling mit einer bestimmten Dichte und einer bestimmten Porosität (siehe Tabelle 1 ).
(Tabelle 1)
Bei allen Knopfzellen wurde eine höhere Kapazität gemessen als bei vergleichbaren Zellen mit herkömmlicher negativer Elektrode. Einige Meßdaten hierzu finden sich in Tabelle 2. Darüber hinaus wiesen alle Knopfzellen eine hervorragende Zyklenstabilität auf (mehrere hundert Zyklen).
(Tabelle 2)

Claims

Patentansprüche
1. Galvanisches Element mit einer positiven Elektrode, einer negativen Elektrode und einem Separator, die in einem Gehäuse aus einem Zellenbecher und einem Zellendeckel angeordnet sind, welche durch eine Dichtung gegeneinander isoliert sind, dadurch gekennzeichnet, dass die negative Elektrode als vorzugsweise tab- lettenförmiger Preßling mit selbsttragender Struktur vorliegt.
2. Galvanisches Element nach Anspruch 1 , dadurch gekennzeichnet, dass die negative Elektrode aus einem Pulver besteht, das bei einem Druck zwischen 40 kN/cm2 und 120 kN/cm2, insbesondere zwischen 40 kN/cm2 und 100 kN/cm2, verdichtet wurde.
3. Galvanisches Element nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die negative Elektrode eine Dichte zwischen 5,0 g/cm3 und 7,5 g/cm3, insbesondere zwischen 5,0 g/cm3 und 6,5 g/cm3, aufweist.
4. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode eine Wasserstoffspeicherlegierung als Aktivmaterial aufweist.
5. Galvanisches Element nach Anspruch 4, dadurch gekennzeichnet, dass es sich bei der Wasserstoffspeicherlegierung um eine AB5- Legierung handelt.
6. Galvanisches Element nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, dass die Wasserstoffspeicherlegierung in Partikelform mit einer mittleren Partikelgröße zwischen 0,1 μm und 100 μm, vorzugsweise zwischen 10 μm und 50 μm, vorliegt.
7. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode mindestens ein hydrophobes, nicht wasserlösliches Polymer aufweist.
8. Galvanisches Element nach Anspruch 7, dadurch gekennzeichnet, dass das mindestens eine Polymer ein Polyolefin, insbesondere ein halogeniertes Polyolefin, besonders bevorzugt ein Polyhaloge- nolefin ist.
9. Galvanisches Element nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, dass das mindestens eine Polymer ein fluoriertes oder perfluoriertes Polymer, insbesondere PTFE (Polytetrafluor- ethylen) und/oder PCTFE (Polychlortrifluorethylen)) ist.
10. Galvanisches Element nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das mindestens eine Polymer in der negativen Elektrode in einem Anteil zwischen 0,1 Gew.-% und 5 Gew.-%, insbesondere zwischen 0,5 Gew.-% und 3 Gew.-%, besonders bevorzugt zwischen 0,5 Gew.-% und 2 Gew.-%, enthalten ist.
1 1. Galvanisches Element nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das mindestens eine Polymer in Partikelform mit einer mittleren Partikelgröße zwischen 0,1 μm und 100 μm, vorzugsweise zwischen 10 μm und 50 μm, vorliegt.
12. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode mindestens ein Leitmittel aufweist, insbesondere aus der Gruppe mit kohlenstoffbasierten, vorzugsweise amorphen Leitmitteln und metallischen Leitmitteln.
13. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode mindestens ein Metallpulver, insbesondere Nickelpulver, als Leitmittel aufweist.
14. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode Russ und/oder Graphit als Leitmittel aufweist.
15. Galvanisches Element nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die negative Elektrode das mindestens eine Leitmittel in einem Anteil zwischen 0,1 und 10 Gew.-%, insbesondere zwischen 0,5 Gew.-% und 5 Gew.-%, besonders bevorzugt zwischen 0,5 Gew.-% und 3 Gew.-%, aufweist.
16. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die negative Elektrode einen Porengehalt zwischen 0,5 Vol-% und 40 Vol.-%, vorzugsweise zwischen 0,5 Vol-% und 15 Vol.-%, insbesondere zwischen 5 und 10 Vol-%, aufweist.
17. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Aktivmaterial der positiven Elektrode in einen leitfähigen Träger eingebettet ist.
18. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der leitfähige Träger ein Metallschwamm oder ein Metallfilz ist.
19. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der leitfähige Träger aus mindestens einem Metall, insbesondere aus Nickel, besteht.
20. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die positive Elektrode Nickelhydroxid und/oder Nickeloxidhydroxid als Aktivmaterial aufweist.
21. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es ein metallisches Gehäuse, insbesondere ein Gehäuse aus Edelstahl/nickelplatiertem Stahl, aufweist.
22. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen alkalischen Elektrolyten aufweist.
23. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Zellenbecher und/oder einen Zellendeckel mit einer Dicke von weniger als 0,15 mm aufweist.
24. Galvanisches Element nach einem der vorhergehenden Ansprüche oder dem Oberbegriff von Anspruch 1 , dadurch gekennzeichnet, dass sich die Dichtung an der Innenwand des Zellenbechers anliegend bis zum Boden des Zellenbechers erstreckt.
25. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dichtung den Rand des Zellendeckels umschließt.
26. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Dichtung um eine Foliendichtung handelt.
27. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Dichtung um ein Dichtungsformteil aus Spritzguß handelt.
28. Galvanisches Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es die äußeren Dimensionen einer Knopfzelle aufweist.
29. Pressung, geeignet zur Verwendung als negative Elektrode, insbesondere in einem galvanischen Element nach einem der vorhergehenden Ansprüche, umfassend eine Wasserstoffspeicherlegierung sowie ggf. mindestens ein hydrophobes, nicht wasserlösliches Polymer und/oder mindestens ein Leitmittel, dadurch gekennzeichnet, dass er eine Dichte zwischen 5,0 g/cm3 und 7,5 g/cm3, insbesondere zwischen 5,0 g/cm3 und 6,5 g/cm3, aufweist.
30. Pressung nach Anspruch 29, dadurch gekennzeichnet, dass er aus der Wasserstoffspeicherlegierung besteht.
EP08715818.4A 2007-02-16 2008-02-16 Galvanisches element mit hoher kapazität Active EP2122710B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007009295A DE102007009295A1 (de) 2007-02-16 2007-02-16 Galvanisches Element mit hoher Kapazität
PCT/EP2008/001218 WO2008098793A1 (de) 2007-02-16 2008-02-16 Galvanisches element mit hoher kapazität

Publications (2)

Publication Number Publication Date
EP2122710A1 true EP2122710A1 (de) 2009-11-25
EP2122710B1 EP2122710B1 (de) 2013-04-10

Family

ID=39410316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08715818.4A Active EP2122710B1 (de) 2007-02-16 2008-02-16 Galvanisches element mit hoher kapazität

Country Status (7)

Country Link
US (1) US8357465B2 (de)
EP (1) EP2122710B1 (de)
JP (1) JP2010518589A (de)
KR (1) KR20090111842A (de)
CN (1) CN101657917A (de)
DE (1) DE102007009295A1 (de)
WO (1) WO2008098793A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023126A1 (de) * 2009-05-20 2010-11-25 Varta Microbattery Gmbh Galvanisches Element mit quecksilberfreier negativer Elektrode
JP5482029B2 (ja) * 2009-08-31 2014-04-23 三洋電機株式会社 アルカリ蓄電池用負極及びアルカリ蓄電池
DE102010012977A1 (de) * 2010-03-22 2011-09-22 Varta Microbattery Gmbh Gegen Kurzschluss gesicherte Knopfzelle
JP5775330B2 (ja) * 2011-03-02 2015-09-09 住友電気工業株式会社 溶融塩電池
WO2014010413A1 (ja) * 2012-07-13 2014-01-16 日立マクセル株式会社 扁平形電池
JP6484829B2 (ja) * 2016-01-12 2019-03-20 パナソニックIpマネジメント株式会社 コイン形リチウム電池
CN107425145B (zh) * 2017-06-20 2023-06-20 惠州亿纬锂能股份有限公司 一种钮扣式锂电芯密封结构及密封方法
EP3742514B1 (de) * 2019-05-20 2024-03-20 VARTA Microbattery GmbH Verfahren zur herstellung einer batterie und gemäss dem verfahren hergestellte batterie

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988585A (en) 1952-06-23 1961-06-13 Accumulatoren Fabrik Ag Hermetically sealed alkaline storage battery
CA1240363A (en) 1983-10-28 1988-08-09 John E. Keem Electrodes made with disordered active material and method of making the same
US5034289A (en) * 1989-02-23 1991-07-23 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing negative electrode thereof
JP2980328B2 (ja) 1989-09-29 1999-11-22 株式会社東芝 電池用水素吸蔵合金、その製造方法及びニッケル水素二次電池
DE4017884A1 (de) 1990-06-02 1991-12-05 Varta Batterie Gasdichter alkalischer akkumulator
DE4343435A1 (de) 1993-12-18 1995-06-22 Varta Batterie Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
DE4417732A1 (de) * 1994-05-20 1995-11-23 Varta Batterie Gasdichter Nickel/Hydrid-Akkumulator vom Rundzellentyp
DE4426970A1 (de) * 1994-07-29 1996-02-01 Varta Batterie Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
US5725967A (en) * 1995-08-15 1998-03-10 Micron Communications, Inc. Battery container and method of manufacture
DE19647593B4 (de) * 1996-11-18 2012-06-21 Varta Microbattery Gmbh Verfahren zur Herstellung einer Knopfzelle
EP0965652B1 (de) 1997-12-26 2003-02-26 Toyota Jidosha Kabushiki Kaisha Wasserstoffabsorbierende legierungen, verfahren zur herstellung von wasserstoffabsorbierenden legierungen, elektrode aus wasserstoffabsorbierender legierung, verfahren zu deren herstellung und batterie
JP2000113880A (ja) 1998-10-08 2000-04-21 Daido Steel Co Ltd 水素吸蔵合金負極とその製造方法
US6309779B1 (en) * 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
JP2001351618A (ja) * 1999-07-30 2001-12-21 Shin Etsu Chem Co Ltd アルカリ二次電池負極用水素吸蔵合金成形体及びその製造方法
US6387148B1 (en) * 1999-07-30 2002-05-14 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery
DE10008193A1 (de) * 2000-02-23 2001-08-30 Varta Geraetebatterie Gmbh Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
DE10313830A1 (de) * 2003-03-21 2004-09-30 Varta Microbattery Gmbh Galvanisches Element in Form einer Knopfzelle und Verfahren zur Herstellung eines galvanischen Elements
EP1874679A4 (de) * 2005-04-22 2011-11-16 Angstrom Power Inc Wasserstoffspeicherverbundmaterial und zugehörige verfahren

Also Published As

Publication number Publication date
WO2008098793A1 (de) 2008-08-21
JP2010518589A (ja) 2010-05-27
DE102007009295A1 (de) 2008-08-21
US20110159354A1 (en) 2011-06-30
KR20090111842A (ko) 2009-10-27
US8357465B2 (en) 2013-01-22
EP2122710B1 (de) 2013-04-10
CN101657917A (zh) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2122710B1 (de) Galvanisches element mit hoher kapazität
EP3167499B1 (de) Sekundäre elektrochemische zelle
DE60315074T2 (de) Alkalische brennstoffzelle mit flachem gehäuse
DE2837729C3 (de) Wiederaufladbare galvanische Zelle und Verfahren zu ihrer Herstellung
EP2692903B1 (de) Wasserstoffentwicklungszelle mit Kathodentasche
EP3324479B1 (de) Asymmetrische, sekundäre elektrochemische zelle
DE102012112186A1 (de) Materialverbund, Verfahren zu dessen Herstellung, daraus hergestelltes System und Anwendung desselben
EP3151304B1 (de) Knopfzelle auf lithium-ionen-basis
EP3178125B1 (de) Sekundäre elektrochemische zelle auf basis von nickel / eisen
DE102015207552A1 (de) Sauerstoff-Kathode mit schwammartiger Kohlenstoffgerüststruktur
DE112022002372T5 (de) Bipolare elektrode für metallhydrid-batterie, metallhydrid-batterie, ausgestattet mit bipolarer elektrode, verfahren zum herstellen einer bipolaren elektrode für metallhydrid-batterie und verfahren zum herstellen einer metallhydrid-batterie
DE4343435A1 (de) Gasdicht verschlossener alkalischer Akkumulator in Form einer Knopfzelle
EP2983236B1 (de) Sekundäres elektrochemisches Element auf Basis von Nickel / Eisen
DE102014223194A1 (de) Sekundäres elektrochemisches Element
DE102014219636A1 (de) Batterie und Verfahren zur Herstellung einer Batterie
DE102016210838A1 (de) Anode für eine Batteriezelle, Verfahren zur Herstellung einer Anode und Batteriezelle
EP2966709B1 (de) Sekundäres elektrochemisches Element
EP3166171B1 (de) Elektrochemische zelle
EP1194977B1 (de) Gasdichte prismatische nickel-metallhydrid-zelle
DE102015207069A1 (de) Batterie mit prismatischem Metallgehäuse
EP0552441A1 (de) Gasdicht verschlossener alkalischer Akkumulator in Knopfzellenform
DE102018200552A1 (de) Verfahren zur Herstellung einer Elektrodenanordnung und ein Festkörperelektrolyt für eine Batterie
EP3104446A1 (de) Verfahren zum betrieb eines wiederaufladbaren speichersystems für elektrische energie sowie vorrichtung zur kontrolle und durchführung des ladevorgangs des speichersystems
DE102010032343A1 (de) Verfahren zur Behandlung alkalischer Akkumulatoren
DE102015200325A1 (de) Elektrode für eine Batteriezelle und Batteriezelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KREBS, MARTIN

Inventor name: PERNER, ARNO

Inventor name: PYTLIK, EDUARD

Inventor name: ILIC, DEJAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101208

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VARTA MICROBATTERY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 606433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008009682

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008009682

Country of ref document: DE

Effective date: 20140113

BERE Be: lapsed

Owner name: VARTA MICROBATTERY G.M.B.H.

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140216

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 606433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008009682

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008009682

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI CARTAGENA PARTNERSCHAFTSG, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008009682

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0002020000

Ipc: H01M0050100000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008009682

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 17

Ref country code: GB

Payment date: 20240222

Year of fee payment: 17