EP2121618A1 - Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen - Google Patents

Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen

Info

Publication number
EP2121618A1
EP2121618A1 EP07858009A EP07858009A EP2121618A1 EP 2121618 A1 EP2121618 A1 EP 2121618A1 EP 07858009 A EP07858009 A EP 07858009A EP 07858009 A EP07858009 A EP 07858009A EP 2121618 A1 EP2121618 A1 EP 2121618A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
general formula
hydrogen
compounds
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07858009A
Other languages
English (en)
French (fr)
Inventor
Thomas Zierke
Michael Rack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07858009A priority Critical patent/EP2121618A1/de
Publication of EP2121618A1 publication Critical patent/EP2121618A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to a process for the preparation of fluoromethyl-substituted heterocyclic compounds by reacting the corresponding chloromethyl-substituted compounds in the presence of fluorinating agents.
  • WO 2005/044804 describes lower alkyl esters of fluoromethyl-substituted heterocyclic carboxylic acids and their preparation by fluorination of the corresponding chloromethyl-substituted heterocyclic carboxylic acid esters and their further processing into the anilides of the fluoromethyl-substituted heterocyclic carboxylic acids.
  • the method is unsatisfactory in several respects.
  • the object of the present invention is thus to provide further fluoromethyl-substituted heterocyclic compounds, especially 3-difluoromethylpyrazol-4-yl or 3-trifluoromethylpyrazol-4-ylcarboxylic acid esters, and also processes for the preparation of these compounds.
  • These fluoromethyl-substituted pyrazol-4-ylcarboxylic acid esters should be distinguished by an improved convertibility into the corresponding amides.
  • the provision of the starting compounds for the preparation of the fluoromethyl-substituted pyrazol-4-ylcarbonklar with improved selectivity to the N-substitution is to be made possible.
  • heterocyclic carboxylic acid esters of the formulas I and II described below solve these objects and are thus advantageously suitable for the preparation of anilides of fluoromethyl-substituted heterocyclic carboxylic acids.
  • the present invention therefore provides fluoromethyl-substituted heterocyclic compounds of the general formula (I)
  • R 1 is hydrogen or fluorine
  • R 2 is a group - [AO] m -R 3 , in which
  • A is C 2 -C 4 -alkanediyl
  • R 3 is C 1 -C 4 -alkyl
  • n 1 or 2;
  • R 6 Al 4 is selected from C -C alkyl, d-Ce-haloalkyl, C 3 -C 6 cycloalkyl, Ci-C 4 alkoxy dC 4 alkyl, Ci-C4-alkylthio-Ci-C4- -alkyl, C 1 -C 4 -haloalkoxy-C 1 -C 4 -alkyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -alkoxycarbonyl, phenyl and benzyl, where the last two radicals optionally contain any combination of 1, 2 or 3 radicals R ⁇ 4 are independently selected from halogen, cyano, nitro, -C 4 - alkyl, Ci-C4-haloalkyl, Ci-C4-haloalkoxy may be substituted Ci-4 alkoxy and C;
  • R 1 ' is hydrogen or chlorine and R 2 and R 4 have the abovementioned meaning, in the presence of a fluorinating agent.
  • the compounds of the formula (I) according to the invention can be prepared in high yields, selectivities and purities. Another advantage is the high selectivity with respect to the position of the radical R 4 , since even the precursor of the formula (II) can be prepared with high regioselectivity. In addition, the inventive method allows the use of inexpensive starting materials. A further advantage is that both the work-up of the reaction mixtures obtained in the fluorination and the further reaction of the compounds of the formula (I) to give carboxylic acid amides can be carried out without difficulty.
  • the terms used for defining the variables for organic groups, such as the term "halogen", are generic terms that are representative of the individual members of these groups of organic entities.
  • the prefix C x -Cy denotes the number of possible carbon atoms in each case.
  • halogen refers to each of fluorine, bromine, chlorine or iodine, especially fluorine, chlorine or bromine.
  • C 1 -C 6 -alkyl as used herein and in the terms C 1 -C 6 -alkoxy, C 1 -C 6 -alkylamino, di (C 1 -C 6 -alkyl) amino, C 1 -C 6 -alkylthio C 1 -C 6 -alkylsulfonyl, C 1 -C 6 -alkyl, oxyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -alkoxycarbonyl, and C 1 -C 6 -alkylcarbonyloxy, denotes a saturated, straight-chain or branched hydrocarbon group comprising 1 to 6 carbon atoms, especially 1 to 4 carbon atoms, for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1, 1-dimethylethyl, pentyl, 1-methylbutyl, 2-
  • C 1 -C 6 -haloalkyl as used herein and in the haloalkyl moieties of C 1 -C 6 -haloalkoxy, C 1 -C 6 -haloalkoxy-C 1 -C 6 -alkyl and haloalkylthio describes straight-chain or branched alkyl groups having 1 to 6 carbon atoms, wherein the hydrogen atoms of these groups are partially or completely replaced by halogen atoms, for example C 1 -C 4 haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1 Bromothyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-tri
  • C 1 -C 6 alkoxy describes straight-chain or branched saturated alkyl groups comprising 1 to 6 carbon atoms which are bonded via an oxygen atom.
  • Examples include C 1 -C 6 -alkoxy, such as, for example, methoxy, ethoxy, OCH 2 -C 2 H 5 , OCH (CH 2 ) 2 , n-butoxy, OCH (CH 3) -C 2 H 5 , OCH 2 -CH (CH 2 ) 2 , OC (CH 3 ) 3 , n -pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1, 1-dimethylpropoxy, 1, 2-dimethylpropoxy, 2,2-dimethylpropoxy , 1-ethylpropoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1, 2-dimethylbutoxy, 1, 3-dimethylbutoxy, 2,
  • C 1 -C 6 -haloalkoxy describes C 1 -C 6 -alkoxy groups as described above, wherein the hydrogen atoms of these groups are partially or completely replaced by halogen atoms, ie, for example, C 1 -C 6 -haloalkoxy such as chloromethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2, 2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro
  • Ci-C4-alkoxy-Ci-C4-alkyl describes a Ci-C4-alkyl radical in which one hydrogen atom is replaced by a C 1 -C 4 -AIkOXy- radical.
  • Examples of these are CH 2 -OCH 3 , CH 2 -OC 2 H 5 , n-propoxymethyl, CH 2 -OCH (CH 2 ) 2 , n-butoxymethyl, (1-methylpropoxy) methyl, (2-methylpropoxy) methyl, CH 2 -OC (CH 3) S, 2- (methoxy) ethyl, 2- (ethoxy) ethyl, 2- (n-propoxy) ethyl, 2- (1-methylethoxy) ethyl, 2- (n-butoxy) ethyl, 2 - (1-methylpropoxy) ethyl, 2- (2-methylpropoxy) ethyl, 2- (1, 1-dimethylethoxy) ethyl, 2- (methoxy) propyl, 2- (ethoxy) propyl, 2- (n-propoxy ) propyl, 2- (1-methylethoxy) propyl, 2- (n-butoxy) propyl, 2- (1-methylpropoxy) propyl
  • C 1 -C 6 -alkylcarbonyl as used herein describes a straight-chain or branched saturated alkyl group comprising 1 to 6 carbon atoms which is terminally or internally bonded through the carbon atom of a carbonyl moiety.
  • Examples include C 1 -C 6 -alkylcarbonyls such as C (O) -CHs, C (O) -C 2 H 5 , n -propylcarbonyl, 1-methylethylcarbonyl, n-butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl, 1, 1-dimethylethylcarbonyl, n-pentylcarbonyl, 1-methylbutylcarbonyl, 2-methylbutylcarbonyl, 3-methylbutylcarbonyl, 1, 1-dimethylpropylcarbonyl, 1, 2-dimethylpropylcarbonyl, 2,2-dimethylpropylcarbonyl, 1-ethylpropylcarbonyl, n-hexylcarbonyl, 1 Methylpentylcarbonyl, 2-methylpentylcarbonyl, 3-methylpentylcarbonyl, 4-methylpentylcarbonyl, 1, 1-dimethylbutylcarbonyl,
  • C 1 -C 6 alkoxycarbonyl as used herein describes a straight-chain or branched alkoxy group comprising 1 to 6 carbon atoms which is bonded via the carbon atom of a carbonyl unit.
  • Examples include (C 1 -C 6 -alkoxy) carbonyls, such as C (O) -OCH 3 , C (O) -OC 2 H 5 , C (O) -O-CH 2 -C 2 H 5 , C (O) -OCH (CHs) 2 , n-butoxycarbonyl, C (O) -OCH (CHs) -C 2 H 5 , C (O) -OCH 2 CH (CHs) 2 , C (O) -OC (CHs) 3 , n-pentoxycarbonyl, 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl, 3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl, 1-ethylpropoxycarbonyl,
  • C 1 -C 6 -alkylcarbonyloxy as used herein describes straight-chain or branched saturated alkyl groups comprising 1 to 6 carbon atoms which is terminally or internally bonded through the carbon atom of the carbonyloxy moiety.
  • examples of examples include dC ⁇ -alkylcarbonyloxy, such as OC (O) -CH 3, O-C (O) H 5 , n-propylcarbonyloxy, 1-methylethylcarbonyloxy, n-butylcarbonyloxy, 1-methylpropylcarbonyl-oxy, 2-methylpropylcarbonyloxy, 1, 1-dimethylethylcarbonyloxy, n-pentylcarbonyloxy, 1-methylbutylcarbonyloxy, 2-methylbutylcarbonyloxy, 3-methylbutylcarbonyloxy, 1, 1-dimethylpropylcarbonyloxy, 1, 2-dimethylpropylcarbonyloxy, etc.
  • dC ⁇ -alkylcarbonyloxy such as OC (O) -CH 3, O-C (O) H 5 , n-propylcarbonyloxy, 1-methylethylcarbonyloxy, n-butylcarbonyloxy, 1-methylpropylcarbonyl-oxy
  • C 2 -C 6 alkenyl as used herein and for the alkenyl moieties of C 2 -C 6 alkenyloxy describes straight and branched unsaturated hydrocarbon radicals comprising 2 to 6 carbon atoms and at least one carbon-carbon double bond, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2- Methyl 2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl 2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-buten
  • C 2 -C 6 alkenyloxy as used herein describes straight-chain or branched alkenyl groups comprising 2 to 6 carbon atoms which are bonded via an oxygen atom, such as vinyloxy, allyloxy (propen-3-yloxy), methallyl-oxy, Butene-4-yloxy, etc.
  • C 2 -C 6 alkynyl as used herein and in the alkynyl moieties of C 2 -C 6 alkynyloxy, C 2 -C 6 alkynylamino, C 2 -C 6 alkynylthio, C 2 -C 6 alkynylsulfonyl, C 2 -C 6 alkynylcarbonyl, C 2 -C 6 Alkynyloxycarbonyl and Ci-C ⁇ -alkynylcarbonyloxy, describes straight-chain and branched unsaturated hydrocarbons comprising 2 to 6 carbon atoms and at least one carbon-carbon triple bond, such as For example, ethynyl, prop-1-yn-1-yl, prop-2-yn-1-yl, n-but-1-yn-1-yl, n-but-1-yn-3-yl, n-But 1-yn-4-yl, n-but-2-yn-1-yl, n
  • Cs-Cs-cycloalkyl as used herein describes mono-, bi- or polycyclic hydrocarbon radicals comprising from 3 to 8 carbon atoms, especially 3 to 6 carbon atoms.
  • monocyclic radicals include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • bicyclic radicals include bicyclo [2.2.1] heptyl, bicyclo [3.1.1] heptyl, bicyclo [2.2.2] octyl and bicyclo [3.2.1] octyl.
  • tricyclic radicals are adamantyl and homoadamantyl.
  • Each cycloalkyl radical may optionally be substituted with 1, 2, 3, 4 or 5 of the aforementioned radicals R # .
  • 1, 2, 3, 4 or 5 of the hydrogen atoms of these radicals may be independently replaced by the aforementioned radicals R # .
  • the substituents R # are of cycloalkyl radicals selected from halogen, especially fluorine or chlorine, or C 1 -C 6 -alkyl.
  • (C 2 -C 4) alkanediyl as used herein describes ethane-1, 2-diyl, propane-1, 3-diyl and butane-1, 4-diyl.
  • R 1 in the general formula (I) and R 1 'in the general formula (II) is hydrogen.
  • m is preferably 1.
  • radicals R 2 in which m is 1 are 2-methoxyethyl, 3-methoxypropyl, 4-methoxybutyl, 2-ethoxyethyl, 3-ethoxypropyl, 4-ethoxybutyl, 2- (propoxy) ethyl, 3- (propoxy ) propyl, 4- (propoxy) butyl, 2- (1-methylethoxy) ethyl, 3- (1-methylethoxy) propyl, 4- (1-methylethoxy) butyl, 2- (butoxy) ethyl, 3- (butoxy ) propyl, 4- (butoxy) -butyl, 2- (2-methylpropoxy) ethyl, 3- (2-methylpropoxy) propyl, 4- (2-methylpropoxy) butyl, 2- (1,2-dimethylethoxy) ethyl, 3 - (1, 2-dimethylethoxy) propyl and 4- (1, 2-dimethylethoxy) butyl, preferably 2-methoxye
  • halogen exchange reaction For the implementation of chloromethyl-substituted heterocyclic compound of the general formula (II) in the presence of a fluorinating agent (hereinafter referred to as halogen exchange reaction) are in principle all commonly used for halogen exchange reactions fluorinating agent.
  • the fluorination agent is preferably selected from alkali fluorides, such as sodium fluoride, potassium fluoride or cesium fluoride, cobalt (III) fluoride, antimony fluoride, molybdenum fluoride, hydrogen fluoride, hydrogen fluoride / pyridine mixtures, tertiary ammonium hydrofluorides or trialkylamine hydrofluorides of the general formula n * HF / N (Ci C 4 alkyl) 3, where n is 1, 2 or 3.
  • alkali fluorides such as sodium fluoride, potassium fluoride or cesium fluoride
  • cobalt (III) fluoride such as sodium fluoride, potassium fluoride or cesium fluoride
  • antimony fluoride such as sodium fluoride, potassium fluoride or cesium fluoride
  • molybdenum fluoride molybdenum fluoride
  • hydrogen fluoride hydrogen fluoride / pyridine mixtures
  • the fluorinating agent is particularly preferably selected from triethylamine tris-hydrofluoride, tri-n-butylamine tris-hydrofluoride and hydrogen fluoride / pyridine mixtures, in particular triethylamine tris-hydrofluoride and tri-n-butylamine tris-hydrofluoride.
  • the fluorinating agent is used in a molar ratio of fluoride equivalents per chlorine atom to be replaced in the range of 1: 1 to 3: 1.
  • the fluorinating agent is preferably used in a molar ratio in the range from 1: 1 to 1.5: 1.
  • the halogen exchange reaction preferably takes place at a temperature in the range from 80 to 170 ° C., in particular at a temperature in the range from 100 to 150 ° C.
  • the halogen exchange reaction can be carried out under atmospheric pressure or in the autoclave under autogenous pressure.
  • the pressure is preferably in the range from 0.1 to 50 bar, especially in the range from 1 to 10 bar.
  • Another object of the invention relates in addition to the halogen exchange reaction, the provision of the compound of general formula (II).
  • Pyrazole compounds of general formula (II) are accessible by reaction of 2-acyl-N, N-dialkyl-3-aminoacrylic acid ester (III) with hydrazine or suitable hydrazine derivatives.
  • hydrazine or hydrazine derivative is about equimolar, z. B. in a molar ratio (III): (hydrazine or hydrazine derivative) in the range of 0.8: 1 to 1: 1, 2 used.
  • the reaction is carried out in a dry inert solvent such as aromatic hydrocarbons z. As toluene, xylene, etc.
  • the reaction is usually carried out under a protective gas atmosphere z. B. under nitrogen.
  • hydrazine or the hydrazine derivative will be initially charged and, while cooling, a solution of the 3-aminoacrylic acid ester in an optionally dried inert solvent is added.
  • the isolation of the product is then carried out, if necessary, by suitable separation techniques, such as extraction, crystallization and / or column chromatography.
  • 2-acyl-N, N-dialkyl-3-aminoacrylic acid esters (III) can be provided by reacting 3-N, N-dialkylaminoacrylic acid esters with halogenated acetyl chlorides.
  • the reaction is carried out in an inert solvent, such as toluene.
  • the molar ratio of diethylaminoacrylic acid ester to the halogenated acetyl chloride is typically in the range of 0.8: 1 to 1: 1.2, and is more preferably about equimolar.
  • dialkylaminoacrylic acid ester will be initially charged in an inert solvent and the haloge- ned acetyl chloride as a solution slowly add with cooling.
  • the isolation of the product of the reaction is then carried out by conventional separation methods, as mentioned above.
  • 3-N, N-Dimethylaminoacryl Acidester turn can be prepared from the alkali metal salts of formylacetic acid esters, in particular from the sodium salts, by reaction with hydrochlorides of secondary amines, especially dimethylamine hydrochloride provide.
  • hydrochlorides of secondary amines especially dimethylamine hydrochloride provide.
  • the hydrochloride of the secondary amine is initially charged in an inert, non-polar solvent and a solution of the salt of formylacetic acid ester is added slowly.
  • the molar ratio of (alkali salt of Formylessigkla- ester): (hydrochloride of the secondary amine) is usually in the range of 0.8: 1, 2 to 1: 1, 2, in particular, the two compounds are used approximately equimolar.
  • the by-produced salt precipitates it may be removed after completion of the reaction by a suitable method such as filtration and the filtrate comprising the desired reaction product is devolatilized, for example by evaporation. If necessary, the reaction product is isolated from the residue by suitable separation methods.
  • Another object of the present invention therefore relates to processes for the preparation of compounds of general formula (II), wherein a compound of general formula (III), wherein R 1 'and R 2 have the meaning given above, in the presence of hydrazine or a Hydrazine derivative of the formula (Ci-C4-alkyl) N HN H2.
  • methylhydrazine is used for this purpose.
  • the compounds of the general formula (I) according to the invention are advantageously suitable for the synthesis of a large number of compounds of interest as active ingredients, for example fungicidal carboxamides.
  • Another aspect of the invention relates to a process for the preparation of amides of the general formula (IV),
  • R 1 and R 4 have the previously given meaning
  • R 5 is selected from C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 3 -C 8 -cycloalkyl,
  • R 6 is selected from hydrogen, halogen, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy,
  • n 1, 2, 3 or 4;
  • R 7 is selected from C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, which may be optionally substituted by a combination of radicals R ay ,
  • R ay are independently selected from halogen, cyano, nitro, hydroxy, mercapto, amino, carboxyl, C 1 -C 6 -alkoxy, C 2 -C 6 -alkenyloxy, C 2 -C 6 -alkynyloxy, C 1 -C 6 -haloalkoxy , C 1 -C 6 -alkylthio, C 1 -C 6 -alkylamino, di (C 1 -C 6 -alkyl) amino, C 1 -C 6 -alkylsulfonyl, C 1 -C 6 -alkylsulfoxyl, formyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -alkylthio Alkoxycarbonyl, formyloxy and Ci-Ce-alkylcarbonyloxy;
  • R ax are independently selected from halo, cyano, nitro, hydroxy, mercapto, amino, carboxyl, d-Ce-alkyl, d-Ce-haloalkyl, C 3 -C 6 cycloalkyl, Ci-C 6 alkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 alkynyloxy, Ci-C 6 haloalkoxy, Ci-C 6 alkylthio, Ci-Ce-alkylamino, di (Ci-C 6 alkyl) amino, d-Ce Alkylsulfonyl, C 1 -C 6 -alkyl, oxyl, formyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -alkoxycarbonyl, formyloxy and C 1 -C 6 -alkylcarbonyloxy; and wherein at least one fluoromethyl-substituted heterocyclic compound of
  • esters to amides are known to those skilled in the art.
  • the ester function of the compounds of the general formula (I) can be converted in the presence of an acid or base, preferably in the presence of a base, by saponification into the free carboxylic acid or into the corresponding carboxylate anion.
  • the carboxylic acid can then be converted under suitable reaction conditions with a corresponding aniline derivative directly into a compound of general formula (IV) or, if appropriate, can be converted before the reaction with the aniline derivative in a more reactive species, for example in an acid chloride.
  • the coupling reaction of carboxylic acid and aniline derivative can optionally be carried out in the presence of catalysts, condensing agents, acid binding agents and / or with water separation, for example by azeotropic distillation.
  • catalysts for this and for the isolation of the desired product of general formula (IV) are known in the art.
  • Methylhydrazine (3.8 g, 0.08 mol) was placed in dry toluene (90 ml) under nitrogen and cooled to about 0 0 C. At this temperature, a solution of 4,4-dichloro-2- (N, N-dimethylaminomethylene) acetoacetic acid (2-methoxyethyl) ester (23 g, 0.08 mol) in dry toluene (90 mL) over a period of / 4 hours slowly dripped. After completion of the addition, stirring was WEI tere 3 hours at 0 0 C and then warmed to room temperature.
  • reaction solution was washed with water (100 ml).
  • the washing phase was extracted with toluene (100 ml), the two organic phases were combined and freed of the volatiles under reduced pressure.
  • the residue was purified by column chromatography (SiO 2, ethyl acetate: petroleum ether, 1: 1) and analyzed by GC control and 1 H-NMR.
  • the desired product was obtained with a yield of 7.7 g (0.03 mol) in a purity of 95.5 Fl. % receive.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von fluormethylsubstituierten heterocyclischen Verbindungen der allgemeinen Formel (I), worin R1 für H oder F steht; R2 für eine Gruppe -[A-O]m-R3 steht, worin A für C2-C4-Alkandiyl steht, R3 für C1-C4-Alkyl steht und m für 1 oder 2 steht; durch Umsetzung der entsprechenden chlormethylsubstituierten Verbindungen (II) in Gegenwart von Fluorierungsmitteln, Verfahren zur Herstellung der chlormethylsubstituierten Verbindungen (II), Verfahren zur Herstellung von Amiden der allgemeinen Formel (IV) sowie Verbindungen der allgemeinen Formeln (I) und (II).

Description

Verfahren zur Herstellung fluormethylsubstituierter heterocyclischer Verbindungen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von fluormethylsubsti- tuierten heterocyclischen Verbindungen durch Umsetzung der entsprechenden chlor- methylsubstituierten Verbindungen in Gegenwart von Fluorierungsmitteln.
Die WO 2005/044804 beschreibt Niederalkylester von fluormethylsubstituierten hetero- cyclischen Carbonsäuren sowie deren Herstellung durch Fluorierung der entsprechenden chlormethylsubstituierten heterocyclischen Carbonsäureester und deren Weiterverarbeitung zu den Aniliden der fluormethylsubstituierten heterocyclischen Carbonsäuren. Das Verfahren ist in mehrerer Hinsicht nicht zufrieden stellend.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, weitere fluormethylsub- stituierte heterocyclische Verbindungen, speziell 3-Difluormethylpyrazol-4-yl oder 3-Trifluormethylpyrazol-4-ylcarbonsäureester, sowie Verfahren zur Herstellung dieser Verbindungen bereitzustellen. Diese fluormethylsubstituierten Pyrazol-4-ylcarbon- säureester sollen sich dabei durch eine verbesserte Überführbarkeit in die entspre- chenden Amide auszeichnen. Weiterhin soll die Bereitstellung der Ausgangsverbindungen für die Herstellung der fluormethylsubstituierten Pyrazol-4-ylcarbonsäureester mit verbesserter Selektivität bezüglich der N-Substitution ermöglicht werden.
Überraschenderweise wurde gefunden, dass die im Folgenden beschriebenen hetero- cyclischen Carbonsäureester der Formeln I und Il diese Aufgaben lösen und somit in vorteilhafter Weise zur Herstellung von Aniliden fluormethylsubstituierter heterocyclischer Carbonsäuren geeignet sind.
Gegenstand der vorliegenden Erfindung sind daher fluormethylsubstituierte heterocyc- lische Verbindungen der allgemeinen Formel (I),
worin
R1 für Wasserstoff oder Fluor steht; R2 für eine Gruppe -[A-O]m-R3 steht, worin
A für C2-C4-Al kandiyl steht,
R3 für Ci-C4-Alkyl steht und
m für 1 oder 2 steht;
R4 ausgewählt ist unter Ci -C6-Al kyl, d-Ce-Haloalkyl, C3-C6-Cycloalkyl, Ci-C4-Alkoxy- d-C4-alkyl, Ci-C4-Alkylthio-Ci-C4-alkyl, Ci-C4-Haloalkoxy-Ci-C4-alkyl, Ci-Cβ-Alkylcarbonyl, Ci-Cβ-Alkoxycarbonyl, Phenyl und Benzyl, wobei die beiden letztgenannten Radikale gegebenenfalls mit jeglicher Kombination aus 1 , 2 oder 3 Radikalen R^4 unabhängig ausgewählt unter Halogen, Cyano, Nitro, CrC4- Alkyl, Ci-C4-Haloalkyl, Ci-C4-Alkoxy und Ci-C4-Haloalkoxy substituiert sein können;
und ein Verfahren zu ihrer Herstellung,
wobei man eine chlormethylsubstituierte heterocyclische Verbindung der allgemeinen Formel (II),
worin R1' für Wasserstoff oder Chlor steht und R2 und R4 die oben gegebene Bedeu- tung besitzen, in Gegenwart eines Fluorierungsmittels umsetzt.
Die erfindungsgemäßen Verbindungen der Formel (I) lassen sich in hohen Ausbeuten, Selektivitäten und Reinheiten herstellen. Ein weiterer Vorteil ist die hohe Selektivität bezüglich der Position des Restes R4, da bereits die Vorstufe der Formel (II) sich mit hoher Regioselektivität herstellen lässt. Zudem erlaubt das erfindungsgemäße Verfahren den Einsatz preiswerter Ausgangsmaterialien. Ein weiterer Vorteil besteht darin, dass sowohl die Aufarbeitung der bei der Fluorierung anfallenden Reaktionsgemische, als auch die weitere Umsetzung der Verbindungen der Formel (I) zu Carbonsäureami- den problemlos durchgeführt werden kann. Die bei der Definition der Variablen verwendeten Begriffe für organische Gruppen sind, wie beispielsweise der Ausdruck "Halogen", Sammelbegriffe, die stellvertretend für die einzelnen Mitglieder dieser Gruppen organischer Einheiten stehen. Das Präfix Cx-Cy bezeichnet im jeweiligen Fall die Anzahl möglicher Kohlenstoffatome.
Der Begriff "Halogen" bezeichnet jeweils Fluor, Brom, Chlor oder lod, speziell Fluor, Chlor oder Brom.
Beispiele anderer Bedeutungen sind:
Der Begriff "Ci -C6-Al kyl", wie hierin und in den Begriffen Ci-C6-Alkoxy, Ci-C6-Alkyl- amino, Di(Ci-C6-alkyl)amino, d-Ce-Alkylthio, Ci-C6-Alkylsulfonyl, Ci -C6-Al kylsu If oxyl, Ci-Cβ-Alkylcarbonyl, Ci-Cβ-Alkoxycarbonyl, und Ci-Cβ-Alkylcarbonyloxy verwendet, bezeichnet eine gesättigte, geradkettige oder verzweigte Kohlenwasserstoffgruppe, umfassend 1 bis 6 Kohlenstoffatome, speziell 1 bis 4 Kohlenstoffatome, beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1 ,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethyl- propyl, 1-Ethylpropyl, Hexyl, 1 ,1-Dimethylpropyl, 1 ,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1 ,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl und deren Isomere. CrC4-AIkVl umfasst beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1 ,1-Dimethylethyl.
Der Begriff "Ci-Cβ-Haloalkyl", wie hierin und in den Haloalkyleinheiten von Ci-Cβ-Haloalkoxy, Ci-Ce-Haloalkoxy-Ci-Cβ-alkyl und Haloalkylthio verwendet, beschreibt geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen, wobei die Wasserstoffatome dieser Gruppen teilweise oder vollständig durch Halogen- atome ersetzt sind, beispielsweise Ci-C4-Haloalkyl, wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorofluor- methyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromothyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor- 2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl etc.
Der Begriff "Ci-Cβ-Alkoxy", wie hierin verwendet, beschreibt geradkettige oder verzweigte gesättigte Alkylgruppen, umfassend 1 bis 6 Kohlenstoffatome, die über ein Sauerstoffatom gebunden sind. Beispiele umfassen Ci-Cβ-Alkoxy wie beispielsweise Methoxy, Ethoxy, OCH2-C2H5, OCH(CHs)2, n-Butoxy, OCH(CHs)-C2H5, OCH2-CH(CHs)2, OC(CHs)3, n-Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methyl- butoxy, 1 ,1-Dimethylpropoxy, 1 ,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethyl- propoxy, n-Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methyl- pentoxy, 1 ,1-Dimethylbutoxy, 1 ,2-Dimethylbutoxy, 1 ,3-Dimethylbutoxy, 2,2-Dimethyl- butoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1 ,1 ,2-Trimethylpropoxy, 1 ,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy, 1-Ethyl- 2-methylpropoxy, etc.
Der Begriff "Ci-Cβ-Haloalkoxy", wie hierin verwendet, beschreibt Ci-Cβ-Alkoxy- Gruppen, wie oben beschrieben, wobei die Wasserstoffatome dieser Gruppen teilweise oder vollständig durch Halogenatome ersetzt sind, d.h., beispielsweise Ci-Cβ-Halo- alkoxy, wie Chlormethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluor- methoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormetho- xy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-lodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-
2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlor- propoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3,3-Pentafluorpropoxy, Heptafluorpropoxy, 1-(Fluormethyl)-2-fluorethoxy, 1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy,
4-Chlorbutoxy, 4-Brombutoxy, Nonafluorbutoxy, 5-Fluor-1 -pentoxy, 5-Chlor-1 -pentoxy, 5-Brom-1 -pentoxy, 5-lod-1 -pentoxy, 5,5,5-Trichlor-1-pentoxy, Undecafluorpentoxy, 6-Fluor-1-hexoxy, 6-Chlor-1-hexoxy, 6-Brom-1-hexoxy, 6-lod-1-hexoxy, 6,6,6-Trichlor- 1-hexoxy oder Dodecafluorhexoxy, speziell Chlormethoxy, Fluormethoxy, Difluor- methoxy, Trifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy oder 2,2,2-Trifluorethoxy.
Der Begriff "Ci-C4-Alkoxy-Ci-C4-alkyl", wie hierin verwendet, beschreibt ein Ci-C4-Alkyl-Radikal, worin ein Wasserstoffatom durch ein C 1 -C4-AIkOXy- Radikal ersetzt ist. Beispiele hierfür sind CH2-OCH3, CH2-OC2H5, n-Propoxymethyl, CH2-OCH(CHs)2, n-Butoxymethyl, (I-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, CH2-OC(CH3)s, 2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(n-Propoxy)ethyl, 2-(1-Methylethoxy)ethyl, 2-(n-Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy)ethyl, 2-(1 ,1-Dimethyl- ethoxy)ethyl, 2-(Methoxy)propyl, 2-(Ethoxy)propyl, 2-(n-Propoxy)propyl, 2-(1-Methyl- ethoxy)propyl, 2-(n-Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)- propyl, 2-(1 ,1-Dimethylethoxy)propyl, 3-(Methoxy)propyl, 3-(Ethoxy)propyl,
3-(n-Propoxy)propyl, 3-(1-Methylethoxy)propyl, 3-(n-Butoxy)propyl, 3-(1 -Methylpro poxy) propyl, 3-(2-Methylpropoxy)propyl, 3-(1 ,1-Dimethylethoxy)propyl, 2-(Methoxy)- butyl, 2-(Ethoxy)butyl, 2-(n-Propoxy)butyl, 2-(1-Methylethoxy)butyl, 2-(n-Butoxy)butyl, 2-(1-Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl, 2-(1 ,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl, 3-(Ethoxy)butyl, 3-(n-Propoxy)butyl, 3-(1-Methylethoxy)butyl, 3-(n-Butoxy)butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(1 ,1-Dimethyl- ethoxy)butyl, 4-(Methoxy)butyl, 4-(Ethoxy)butyl, 4-(n-Propoxy)butyl, 4-(1-Methyl- ethoxy)butyl, 4-(n-Butoxy)butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methylpropoxy)butyl, 4-(1 ,1-Dimethylethoxy)butyl, etc.
Der Begriff "Ci-Cβ-Alkylcarbonyl", wie hierin verwendet, beschreibt eine geradkettige oder verzweigte gesättigte Alkylgruppe, umfassend 1 bis 6 Kohlenstoffatome, die terminal oder intern über das Kohlenstoffatom einer Carbonyleinheit gebunden ist. Bei- spiele umfassen d-Cβ-Alkylcarbonyle, wie C(O)-CHs, C(O)-C2H5, n-Propylcarbonyl, 1-Methylethylcarbonyl, n-Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropyl- carbonyl, 1 ,1-Dimethylethylcarbonyl, n-Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1 ,1-Dimethylpropylcarbonyl, 1 ,2-Dimethylpropylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, n-Hexylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentyl- carbonyl, 4-Methylpentylcarbonyl, 1 ,1-Dimethylbutylcarbonyl, 1 ,2-Dimethylbutyl- carbonyl, 1 ,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutyl- carbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 1 ,1 ,2-Trimethylpropylcarbonyl, 1 ,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropyl- carbonyl oder 1-Ethyl-2-methylpropylcarbonyl, etc.
Der Begriff "Ci-Cβ-Alkoxycarbonyl", wie hierin verwendet, beschreibt eine geradkettige oder verzweigte Alkoxygruppe, umfassend 1 bis 6 Kohlenstoffatome, die über das Kohlenstoffatom einer Carbonyleinheit gebunden ist. Beispiele umfassen (C-i-Cβ-Alkoxy)- carbonyle, wie C(O)-OCH3, C(O)-OC2H5, C(O)-O-CH2-C2H5, C(O)-OCH(CHs)2, n-Buto- xycarbonyl, C(O)-OCH(CHs)-C2H5, C(O)-OCH2CH(CHs)2, C(O)-OC(CHs)3, n-Pentoxy- carbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl, 2,2-Dimethylpropoxycarbonyl, 1 -Ethylpropoxycarbonyl, n-Hexoxycarbonyl, 1 ,1-Dimethylpropoxycarbonyl, 1 ,2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl,
1 ,1-Dimethylbutoxycarbonyl, 1 ,2-Dimethylbutoxycarbonyl, 1 ,3-Dimethylbutoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1 ,1 ,2-Trimethylpropoxycarbonyl, 1 ,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methylpropoxycarbonyl oder 1-Ethyl- 2-methylpropoxycarbonyl, etc.
Der Begriff "C-i-Cβ-Alkylcarbonyloxy", wie hierin verwendet, beschreibt geradkettige oder verzweigte gesättigte Alkylgruppen, umfassend 1 bis 6 Kohlenstoffatome, die terminal oder intern über das Kohlenstoffatom der Carbonyloxyeinheit gebunden ist. Bei- spiele umfassen d-Cβ-Alkylcarbonyloxy, wie O-C(O)-CH3, 0-C(O)^H5, n-Propyl- carbonyloxy, 1-Methylethylcarbonyloxy, n-Butylcarbonyloxy, 1-Methylpropylcarbonyl- oxy, 2-Methylpropylcarbonyloxy, 1 ,1-Dimethylethylcarbonyloxy, n-Pentylcarbonyloxy, 1 -Methylbutylcarbonyloxy, 2-Methylbutylcarbonyloxy, 3-Methylbutylcarbonyloxy, 1 ,1-Dimethylpropylcarbonyloxy, 1 ,2-Dimethylpropylcarbonyloxy, etc.
Der Begriff "C2-C6-Alkenyl", wie hierin und für die Alkenyleinheiten von C2-C6-Alkenyloxy verwendet, beschreibt geradkettige und verzweigte ungesättigte Kohlenwasserstoffradikale, umfassend 2 bis 6 Kohlenstoff Atome und wenigstens eine Kohlenstoff-Kohlenstoff-Doppelbindung, wie beispielsweise Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl- 1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl- 3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1 ,1-Dimethyl-2-propenyl, 1 ,2-Dimethyl-1-propenyl, 1 ,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl- 2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl- 1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl- 2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl- 3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl- 4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1 ,1-Dimethyl-2-butenyl, 1 ,1-Dimethyl-3-butenyl, 1 ,2-Dimethyl-1-butenyl, 1 ,2-Dimethyl- 2-butenyl, 1 ,2-Dimethyl-3-butenyl, 1 ,3-Dimethyl-1-butenyl, 1 ,3-Dimethyl-2-butenyl, 1 ,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl- 2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl- 2-butenyl, 2-Ethyl-3-butenyl, 1 ,1 ,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl.
Der Begriff "C2-C6-Alkenyloxy", wie hierin verwendet, beschreibt geradkettige oder verzweigte Alkenylgruppen, umfassend 2 bis 6 Kohlenstoffatome, die über ein Sauerstoffatom gebunden sind, wie beispielsweise Vinyloxy, Allyloxy (Propen-3-yloxy), Methallyl- oxy, Buten-4-yloxy, etc.
Der Begriff "C2-C6-Alkinyl", wie hierin und in den Alkinyleinheiten von C2-C6-Alkinyloxy, C2-C6-Alkinylamino, C2-C6-Alkinylthio, C2-C6-Alkinylsulfonyl, C2-C6-Alkinylcarbonyl, C2-C6-Alkinyloxycarbonyl und Ci-Cβ-Alkinylcarbonyloxy verwendet, beschreibt geradkettige und verzweigte ungesättigte Kohlenwasserstoffe, umfassend 2 bis 6 Kohlenstoffatome sowie wenigstens eine Kohlenstoff-Kohlenstoff-Dreifachbindung, wie Bei- spielsweise Ethinyl, Prop-1-in-1-yl, Prop-2-in-1-yl, n-But-1-in-1-yl, n-But-1-in-3-yl, n-But-1-in-4-yl, n-But-2-in-1-yl, n-Pent-1-in-1-yl, n-Pent-1-in-3-yl, n-Pent-1-in-4-yl, n-Pent-1-in-5-yl, n-Pent-2-in-1-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methylbut-1-in- 3-yl, 3-Methylbut-1-in-4-yl, n-Hex-1-in-1-yl, n-Hex-1-in-3-yl, n-Hex-1-in-4-yl, n-Hex- 1-in-5-yl, n-Hex-1-in-6-yl, n-Hex-2-in-1-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in- 6-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl, 3-Methylpent-1-in-1-yl, 3-Methylpent-1-in-3-yl, 3-Methylpent-1-in-4-yl, 3-Methylpent-1-in-5-yl, 4-Methylpent-1-in-1-yl, 4-Methylpent- 2-in-4-yl oder 4-Methylpent-2-in-5-yl und Weitere.
Der Begriff "Cs-Cs-Cycloalkyl" wie hierin verwendet, beschreibt mono- , bi- oder poly- cyclische Kohlenwasserstoffradikale, umfassend 3 bis 8 Kohlenstoffatome, speziell 3 bis 6 Kohlenstoffatome. Beispiele monocyclischer Radikale umfassen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl. Beispiele bicyclischer Radikale umfassen Bicyclo[2.2.1]heptyl, Bicyclo[3.1.1]heptyl, Bicyclo[2.2.2]octyl und Bicyclo[3.2.1]octyl. Beispiele tricyclischer Radikale sind Adamantyl und Homoadaman- tyl.
Jedes Cycloalkylradikal kann gegebenenfalls mit 1 , 2, 3, 4 oder 5 der zuvor genannten Radikale R# substituiert sein. Mit anderen Worten, 1 , 2, 3, 4 oder 5 der Wasserstoff- atome dieser Radikale können unabhängig voneinander durch die zuvor genannten Radikale R# ersetzt sein. Bevorzugt sind die Substituenten R#von Cycloalkylradikalen, ausgewählt unter Halogen, speziell Fluor oder Chlor, oder d-Cε-Alkyl.
Der Begriff "(C2-C4)-Alkandiyl" wie hierin verwendet, beschreibt Ethan-1 ,2-diyl, Propan- 1 ,3-diyl und Butan-1 ,4-diyl.
In einer speziellen Ausführungsform der Erfindung steht R1 in der allgemeinen Formel (I) und R1' in der allgemeinen Formel (II) für Wasserstoff.
In den Verbindungen der Formeln (I) und (II) steht m bevorzugt für 1.
Beispiele geeigneter Reste R2 worin m für 1 steht, sind 2-Methoxyethyl, 3-Methoxy- propyl, 4-Methoxybutyl, 2-Ethoxyethyl, 3-Ethoxypropyl, 4-Ethoxybutyl, 2-(Propoxy)- ethyl, 3-(Propoxy)propyl, 4-(Propoxy)butyl, 2-(1-Methylethoxy)ethyl, 3-(1-Methyl- ethoxy)propyl, 4-(1-Methylethoxy)butyl, 2-(Butoxy)ethyl, 3-(Butoxy)propyl, 4-(Butoxy)- butyl, 2-(2-Methylpropoxy)ethyl, 3-(2-Methylpropoxy)propyl, 4-(2-Methylpropoxy)butyl, 2-(1 ,2-Dimethylethoxy)ethyl, 3-(1 ,2-Dimethylethoxy)propyl und 4-(1 ,2-Dimethyl- ethoxy)butyl, bevorzugt 2-Methoxyethyl, 3-Methoxypropyl, 2-Ethoxyethyl oder 3-Ethoxypropyl und besonders bevorzugt 2-Methoxyethyl oder 2-Ethoxyethyl steht. Bevorzugt ist R4 ausgewählt unter Wasserstoff, d-Cε-Alkyl, Cs-Cβ-Cycloalkyl und gegebenenfalls substituiertem Phenyl; speziell unter Wasserstoff oder Ci-C4-AIkVl. Besonders bevorzugt steht R4 für Ci-C4-AIkVl; insbesondere steht R4 für Methyl.
Zur Umsetzung chlormethylsubstituierter heterocyclischer Verbindung der allgemeinen Formel (II) in Gegenwart eines Fluorierungsmittels (im Folgenden als Halogenaustausch-Reaktion bezeichnet) eignen sich grundsätzlich alle für Halogenaustauschreaktionen üblicherweise verwendeten Fluorierungsmittel. Vorzugsweise ist das Fluorie- rungsmittel jedoch ausgewählt unter Alkalifluoriden, wie Natriumfluorid, Kaliumfluorid oder Caesiumfluorid, Kobalt(lll)fluorid, Antimonfluorid, Molybdänfluorid, Fluorwasserstoff, Fluorwasserstoff/Pyridin-Gemischen, tertiären Ammoniumhydrofluoriden oder Trialkylaminhydrofluoriden der allgemeinen Formel n*HF/N(Ci-C4-Alkyl)3, wobei n für 1 , 2 oder 3 steht. Besonders bevorzugt ist das Fluorierungsmittel ausgewählt unter Triethylamin tris-Hydrofluorid, tri-n-Butylamin tris-Hydrofluorid und Fluorwasser- stoff/Pyridin-Gemischen, insbesondere unter Triethylamin tris-Hydrofluorid und tri-n-Butylamin tris-Hydrofluorid.
Das Fluorierungsmittel wird in einem Molmengenverhältnis von Fluorid-Äquivalenten pro zu ersetzendem Chloratom im Bereich von 1 : 1 bis 3 : 1 eingesetzt. Bevorzugt wird das Fluorierungsmittel in einem Molmengenverhältnis im Bereich von 1 :1 bis 1 ,5 : 1 eingesetzt.
Die Halogenaustausch-Reaktion findet vorzugsweise bei einer Temperatur im Bereich von 80 bis 170 0C, insbesondere bei einer Temperatur im Bereich von 100 bis 150 0C statt.
Die Halogenaustausch-Reaktion kann bei Normaldruck oder im Autoklaven unter Eigendruck erfolgen. Bevorzugt liegt der Druck in einem Bereich von 0,1 bis 50 bar, spe- ziell im Bereich von 1 bis 10 bar.
Ein weiterer Gegenstand der Erfindung betrifft zusätzlich zur Halogenaustausch- Reaktion die Bereitstellung der Verbindung der allgemeinen Formel (II).
Verbindungen der allgemeinen Formel (II) können in Analogie zu Synthesewegen zur Herstellung ähnlicher chlormethylsubstituierter Heterocyclen, die teilweise bekannt sind (WO 92/12970, WO 93/111 17, WO 2005/044804), hergestellt werden. Im Folgenden ist exemplarisch ein besonders geeigneter Syntheseweg zur Bereitstellung von Verbindungen der allgemeinen Formel (II) aufgeführt.
(N)
Pyrazolverbindungen der allgemeinen Formel (II) sind durch Reaktion von 2-Acyl- N,N-dialkyl-3-aminoacrylsäureester (III) mit Hydrazin oder geeigneten Hydrazinderiva- ten zugängig. Üblicherweise wird bei dieser Reaktion Hydrazin bzw. das Hydrazinderi- vat etwa äquimolar, z. B. in einem Molverhältnis (III) : (Hydrazin bzw. Hydrazinderivat) im Bereich von 0,8 : 1 bis 1 : 1 ,2 eingesetzt. In der Regel erfolgt die Umsetzung in einem trockenen inerten Lösungsmittel, wie beispielsweise aromatischen Kohlenwasserstoffen z. B. Toluol, XyIoIe etc. Die Umsetzung erfolgt in der Regel unter Schutzgasatmosphäre z. B. unter Stickstoff. In der Regel wird man Hydrazin bzw. das Hydrazinderivat vorlegen und unter Kühlung eine Lösung des 3-Aminoacrylsäureesters in einem gegebenenfalls getrockneten inerten Lösungsmittel zugeben. Die Isolierung des Produkts erfolgt anschließend wenn nötig durch geeignete Trennverfahren, wie beispielsweise Extraktion, Kristallisation und/oder Säulenchromatographie.
2-Acyl-N,N-dialkyl-3-aminoacrylsäureester (III) können beispielsweise durch Umsetzung von 3-N,N-Dialkylaminoacrylsäureester mit halogenierten Acetylchloriden bereitgestellt werden. Üblicherweise erfolgt die Umsetzung in einem inerten Lösungsmittel, wie beispielsweise Toluol. Das Molverhältnis von Diethylaminoacrylsäureester zu dem halogenierten Acetylchlorid liegt typischerweise im Bereich von 0,8 :1 bis 1 : 1 ,2 und ist insbesondere etwa äquimolar. Zur Umsetzung wird man typischerweise den Dialkyl- aminoacrylsäureester in einem inerten Lösungsmittel vorlegen und hierzu das haloge- nierte Acetylchlorid als Lösung langsam unter Kühlung zugeben. Die Isolierung des Produkts der Reaktion erfolgt dann durch übliche Trennverfahren, wie zuvor genannt.
3-N,N-Dimethylaminoacrylsäureester wiederum lassen sich aus den Alkalisalzen von Formylessigsäureestern, insbesondere aus den Natriumsalzen, durch Reaktion mit Hydrochloriden sekundärer Amine, insbesondere Dimethylamin-Hydrochlorid, bereitstellen. Üblicherweise wird das Hydrochlorid des sekundären Amins in einem inerten, unpolaren Lösungsmittel vorgelegt und eine Lösung des Salzes des Formylessigsäu- reesters langsam zugegeben. Das Molverhältnis von (Alkalisalz des Formylessigsäu- reesters) : (Hydrochlorid des sekundären Amins) liegt dabei in der Regel im Bereich von 0,8 : 1 ,2 bis 1 : 1 ,2, insbesondere werden die beiden Verbindungen etwa äquimo- lar eingesetzt. Wenn unter den speziellen Reaktionsbedingungen das als Nebenpro- dukt gebildete Salz ausfällt, kann dieses nach beendeter Reaktion durch eine geeignete Methode, wie beispielsweise Filtration, entfernt werden und das Filtrat, umfassend das gewünschte Reaktionsprodukt, wird von flüchtigen Bestandteilen, beispielsweise durch Verdampfung befreit. Das Reaktionsprodukt wird wenn nötig durch geeignete Trennmethoden aus dem Rückstand isoliert.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft daher Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (II), wobei man eine Verbindung der allgemeinen Formel (III), worin R1' und R2 die zuvor gegebene Bedeutung besitzen, in Gegenwart von Hydrazin oder eines Hydrazinderivats der Formel (Ci-C4-Alkyl) N H-N H2 umsetzt. Insbesondere wird hierzu Methylhydrazin verwendet.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) eignen sich vorteilhaft zur Synthese einer Vielzahl als Wirkstoff interessanter Verbindungen, wie beispielsweise fungizider Carboxamide.
Daher betrifft ein weiterer Gegenstand der Erfindung ein Verfahren zur Herstellung von Amiden der allgemeinen Formel (IV),
worin
R1 und R4 die zuvor gegebene Bedeutung besitzen;
R5 ausgewählt ist unter Ci -C6-Al kyl, d-Ce-Haloalkyl, C3-C8-Cycloalkyl,
Cs-Cs-Halocycloalkyl, Ci-C4-Alkoxy-Ci-C4-alkyl, Ci-C4-Haloalkoxy-Ci-C4-alkyl;
R6 ausgewählt ist unter Wasserstoff, Halogen, Ci-C6-Al kyl, Ci-C6-Alkoxy,
Ci-C6-Alkylthio, Ci-C6-Haloalkyl, Ci-C6-Haloalkoxy oder Ci-C6-Haloalkylthio;
n für 1 , 2, 3 oder 4 steht;
R7 ausgewählt ist unter Ci-C2o-Alkyl, C2-C2o-Alkenyl, C2-C2o-Alkinyl, die gegebenenfalls durch eine Kombination von Radikalen Ray substituiert sein können,
wobei Ray unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Ci-C6-Alkoxy, C2-C6-Alkenyloxy, C2-C6-Alkinyloxy, Ci-C6-Haloalkoxy, Ci-C6-Alkylthio, Ci-Ce-Alkylamino, Di(Ci-C6-alkyl)amino, Ci-C6-Alkylsulfonyl, Ci-Cβ-Alkylsulfoxyl, Formyl, Ci-Ce-Alkylcarbonyl, Ci-Ce-Alkoxycarbonyl, Formyloxy und Ci-Ce-Alkylcarbonyloxy;
Cs-Cs-Cycloalkyl, C4-Ci4-Bicycloalkyl und Phenyl, die gegebenenfalls durch eine Kombination von 1 , 2, 3, 4 oder 5 Radikalen Rax substituiert sein können,
wobei Rax unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, d-Ce-Alkyl, d-Ce-Haloalkyl, C3-C6-Cycloalkyl, Ci-C6-Alkoxy, C2-C6-Alkenyloxy, C2-C6-Alkinyloxy, Ci-C6-Haloalkoxy, Ci-C6-Alkylthio, Ci-Ce-Alkylamino, Di(Ci-C6-alkyl)amino, d-Ce-Alkylsulfonyl, Ci -C6-Al kylsu If oxyl, Formyl, d-Ce-Alkylcarbonyl, d-Ce-Alkoxycarbonyl, Formyloxy und Ci-Ce-Alkylcarbonyloxy; und wobei wenigstens eine fluormethylsubstituierte heterocyclische Verbindung der allgemeinen Formel (l)einer chemischen Umwandlung der Carboxylgruppe in eine Amid- funktion unterzogen wird.
Geeignete Methoden zur Umwandlung von Estern in Amide sind dem Fachmann bekannt. Beispielsweise kann die Esterfunktion der Verbindungen der allgemeinen Formel (I) in Gegenwart einer Säure oder Base, bevorzugt in Gegenwart einer Base, durch Verseifung in die freie Carbonsäure oder in das entsprechende Carboxylat-Anion über- führt werden. Die Carbonsäure kann anschließend unter geeigneten Reaktionsbedingungen mit einem entsprechenden Anilinderivat unmittelbar in eine Verbindung der allgemeinen Formel (IV) überführt werden oder kann gegebenenfalls vor der Umsetzung mit dem Anilinderivat in eine reaktivere Spezies, beispielsweise in ein Säurechlorid, überführt werden. In Abhängigkeit des ausgewählten Synthesewegs kann die Kupplungsreaktion von Carbonsäure- und Anilinderivat gegebenenfalls in Gegenwart von Katalysatoren, Kondensationsmitteln, Säurebindungsmitteln und/oder unter Was- serabscheidung, beispielsweise durch azeotrope Destillation, durchgeführt werden. Die Methoden hierzu und zur Isolierung des gewünschten Produkts der allgemeinen Formel (IV) sind dem Fachmann bekannt.
Im Folgenden wird die Herstellung fluormethylsubstituierter heterocyclischer Verbindungen anhand von Beispielen erläutert. Diese Beispiele erfüllen dabei einen rein illustrativen Zweck und sind nicht einschränkend zu interpretieren.
Beispiel 1 : Herstellung von 3-Difluormethyl-1-methyl-1 H-pyrazol-4-yl-carbonsäure- (2-methoxyethyl)ester
1.1 3-N,N-Dimethylaminoacrylsäure-(2-methoxyethyl)ester
Zu einer Suspension von Natriumhydrid (12,0 g, 0,30 mol) in trockenem Toluol
(100 ml) wurde 2-Methoxyethanol (22,8 g, 0,30 mol) in einer Geschwindigkeit zugetropft, dass die Temperatur 30 0C nicht deutlich überschritt (etwa 30 min). Nach beendeter Gasentwicklung wurde die Reaktionslösung weitere 3 h bei Raumtemperatur gerührt. Die Reaktionslösung wurde mit trockenem Toluol (20 ml) und Essigsäure-(2-methoxyethyl)ester (47,9 g, 0,40 mol) versetzt und in einen Autoklaven überführt. Der Autoklav wurde bei einem CO-Druck von 20 bar 12 h auf 60 0C erhitzt. Nach Abkühlen und Entspannen wurde die Reaktionsmischung erneut mit Toluol (20 ml) versetzt und über einen Zeitraum von 30 min zu Dimethylaminhydrochlorid (24,8 g, 0,30 mol) in Toluol (100 ml) getropft. Die Re- aktionsmischung wurde weitere 3 h gerührt, der ausgefallene kristalline Feststoff wurde durch Filtration entfernt und das Filtrat wurde vom Lösungsmittel unter vermindertem Druck befreit. Das gewünschte Reaktionsprodukt wurde nach fraktionierender Destillation erhalten.
1H-NMR (400 MHz, CDCI3): δ = 2,6-3,1 (s breit, 6H), 3,4 (d, 3H), 3,62 (t, 2H), 4,22 (t, 2H), 4,57 (d, 1 H), 7,47 ppm (d, 1 H).
1.2 4,4-Dichlor-2-(N,N-dimethylaminomethylen)acetessigsäure-(2-methoxyethyl)ester
3-N,N-Dimethylaminoacrylsäure-(2-methoxyethyl)ester (14 g, 0,08 mol) wurde in Toluol (200 ml) vorgelegt und auf eine Temperatur von 0 bis 5 0C gekühlt. Eine Lösung von Dichloracetylchlorid (12,0 g, 0,08 mol) in Toluol (20 ml) wurde über einen Zeitraum von 20 min zugetropft. Anschließend wurde eine wässrige Lö- sung von NaOH (10%ig, 0,08 mol) der Reaktionslösung bei einer Temperatur von
0 bis 5 0C langsam zugetropft. Nach dreistündigem Rühren bei dieser Temperatur wurde auf Raumtemperatur erwärmt. Nach Trennung der Phasen wurde die wässrige Phase mit Toluol extrahiert (50 ml). Die vereinten organischen Phasen wurden mit Wasser gewaschen (50 ml) und am Rotationsverdampfer von den vo- latilen Bestandteilen befreit. Man erhielt 23 g an 4,4-Dichlor-2-(N,N-dimethyl- aminomethylen)acetessigsäure-(2-methoxyethyl)ester.
1.3 3-Dichlormethyl-1 -methyl-1 H-pyrazol-4-carbonsäure-(2-methoxyethyl)ester
Methylhydrazin (3,8 g, 0,08 mol) wurde in trockenem Toluol (90 ml) unter Stickstoff vorgelegt und auf ca. 0 0C gekühlt. Bei dieser Temperatur wurde eine Lösung von 4,4-Dichlor-2-(N,N-dimethylaminomethylen)acetessigsäure- (2-methoxyethyl)ester (23 g, 0,08 mol) in trockenem Toluol (90 ml) über einen Zeitraum von /4 Stunde langsam zugetropft. Nach beendeter Zugabe wurde wei- tere 3 Stunden bei 0 0C gerührt und anschließend auf Raumtemperatur erwärmt.
Nach beendeter Reaktion wurde die Reaktionslösung mit Wasser (100 ml) gewaschen. Die Waschphase wurde mit Toluol (100 ml) extrahiert, die beiden organischen Phasen wurden vereint und unter vermindertem Druck von den flüchtigen Bestandteilen befreit. Der Rückstand wurde durch Säulenchromatographie (SiÜ2, Ethylacetat : Petrolether, 1 : 1) gereinigt und mittels GC-Kontrolle und 1H-NMR untersucht. Das gewünschte Produkt wurde mit einer Ausbeute von 7,7 g (0,03 mol) in einer Reinheit von 95,5 Fl. % erhalten. CI-MS: m/e = 267 (M+); 1H-NMR (500 MHz, CDCI3): δ = 3,4 (s, 3H), 3,67 (t, 2H), 3,95 (s, 3H), 4,4 (t, 2H), 7,4 (s, 1 H), 7,9 ppm (s, 1 H); 13C-NMR (127 MHz, CDCI3): δ = 39,82 (CH3), 58,93 (CH3), 62,59 (CH), 63,51 (CH2), 70,39 (CH2), 1 10,19 (quart. C), 134,87 (CH), 151 ,39 (quart. C), 161 ,79 ppm (quart. C).
1.4 3-Difluormethyl-1 -methyl-1 H-pyrazol-4-yl-carbonsäure(2-methoxyethyl)ester
3-Dichlormethyl-1 -methyl-1 H-pyrazol-4-carbonsäure-(2-methoxyethyl)ester und Triethylamin tris-Hydrofluorid wurden in einem Autoklaven 10 h bei 145 0C unter Eigendruck (< 1 bar) erhitzt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch in Dichlormethan gelöst, mit Wasser sowie einer gesättigten wässrigen NaCI-Lösung gewaschen, über MgSO4 getrocknet und unter vermindertem Druck von den flüchtigen Bestandteilen befreit. Das gewünschte Produkt wurde mit einer Ausbeute von 2,7 g (0,01 mol, 88 % der Theorie) erhalten. Die Reinheit wurde mittels 1H-NMR bestimmt und betrug etwa 90 %.
1H-NMR (500 MHz, CDCI3): δ = 3,4 (s, 3H), 3,65 (t, 2H), 3,97 (s, 3H), 4,4 (t, 2H), 7,12 (t, 1 H, 19F-2J-Kopplung = 74 Hz), 7,95 ppm (s, 1 H).

Claims

Patentansprüche
1. Verfahren zur Herstellung von fluormethylsubstituierten heterocyclischen Verbindungen der allgemeinen Formel (I),
worin
R1 für Wasserstoff oder Fluor steht;
R2 für eine Gruppe -[A-O]m-R3 steht, worin
A für C2-C4-Al kandiyl steht,
R3 für Ci-C4-Alkyl steht und
m für 1 oder 2 steht;
R4 ausgewählt ist unter Wasserstoff, d-Ce-Alkyl, Ci-C6-Haloalkyl,
Cs-Ce-Cycloalkyl, Ci-C4-Alkoxy- d-C4-alkyl, Ci-C4-Alkylthio-Ci-C4-alkyl, Ci-C4-Haloalkoxy-Ci-C4-alkyl, Ci-Cβ-Alkylcarbonyl, Ci-Cβ-Alkoxycarbonyl, Phenyl und Benzyl, wobei die beiden letztgenannten Radikale gegebenenfalls mit jeglicher Kombination aus 1 , 2 oder 3 Radikalen R^4 unabhängig ausgewählt unter Halogen, Cyano, Nitro, Ci-C4-Alkyl, Ci-C4-Haloalkyl, Ci-C4-Alkoxy und Ci-C4-Haloalkoxy substituiert sein können; und
wobei man eine chlormethylsubstituierte heterocyclische Verbindung der allge- meinen Formel (II),
worin R1' für Wasserstoff oder Chlor steht und R2 und R4 die oben angegebene Bedeutung besitzen, in Gegenwart eines Fluorierungsmittels umsetzt.
2. Verfahren gemäß Anspruch 1 , wobei R1 in der allgemeinen Formel (I) und R1' in der allgemeinen Formel (II) für Wasserstoff stehen.
3. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei m für 1 steht.
4. Verfahren gemäß Anspruch 3, wobei R2 für 2-Methoxyethyl, 3-Methoxypropyl, 2-Ethoxyethyl oder 3-Ethoxypropyl steht.
5. Verfahren gemäß Anspruch 4, wobei R2 für 2-Methoxyethyl oder 2-Ethoxyethyl steht.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei R4 für Wasserstoff oder CrC4-AIkVl steht.
7. Verfahren gemäß Anspruch 6, wobei R4 für CrC4-AIkVl steht.
8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Fluorie- rungsmittel ausgewählt ist unter Alkalifluoriden, Kobalt(lll)fluorid, Antimonfluorid, Molybdänfluorid, Fluorwasserstoff, Fluorwasserstoff/Pyridin-Gemischen, tertiären Ammoniumhydrofluoriden oder Trialkylaminhydrofluoriden der allgemeinen Formel n*HF/N(Ci-C4-Alkyl)3, wobei n für 1 , 2 oder 3 steht.
9. Verfahren gemäß Anspruch 8, wobei das Fluorierungsmittel ausgewählt ist unter Triethylamin tris-Hydrofluorid, tri-n-Butylamin tris-Hydrofluorid und Fluorwasser- stoff/Pyridin-Gemischen.
10. Verfahren gemäß Anspruch 9, wobei das Fluorierungsmittel ausgewählt ist unter Triethylamin tris-Hydrofluorid und tri-n-Butylamin tris-Hydrofluorid.
1 1. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Verbindungen der allgemeinen Formel (II) der Halogenaustausch-Reaktion bei einer Temperatur von 80 bis 170 0C unterworfen wird.
12. Verfahren gemäß einem der vorhergehenden Ansprüche, umfassend zusätzlich die Bereitstellung der Verbindung der allgemeinen Formel (II).
13. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (II), wobei man eine Verbindung der allgemeinen Formel
worin R1' und R2 die zuvor angegebene Bedeutung besitzen, in Gegenwart von Hydrazin oder eines Hydrazinderivats der Formel (Ci-C4-AIkVl) N H-N H2 umsetzt.
14. Verfahren zur Herstellung von Amiden der allgemeinen Formel (IV),
worin
R1 und R4 die zuvor angegebene Bedeutung besitzen;
R5 ausgewählt ist unter Wasserstoff, Ci-Cβ-Alkyl, C-i-Cβ-Haloalkyl,
Cs-Cs-Cycloalkyl, C3-C8-Halocycloalkyl, Ci-C4-Alkoxy-Ci-C4-alkyl und Ci-C4-Haloalkoxy-Ci-C4-alkyl;
R6 ausgewählt ist unter Wasserstoff, Halogen, Ci-Cβ-Alkyl, Ci-Cβ-Alkoxy, d-Ce-Alkylthio, Ci-C6-Haloalkyl, Ci-C6-Haloalkoxy oder Ci-C6-Haloal- kylthio; n für 1 , 2, 3 oder 4 steht;
R7 ausgewählt ist unter Ci-C2o-Alkyl, C2-C2o-Alkenyl, C2-C2o-Alkinyl, die gege- benenfalls durch eine Kombination von Radikalen Ray substituiert sein können,
wobei Ray unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Ci-Cβ-Alkoxy, C2-C6-Alkenyloxy, C2-C6-Alkinyloxy, Ci-C6-Haloalkoxy,
Ci-C6-Alkylthio, Ci-C6-Alkylamino, Di(Ci-C6-alkyl)amino, d-Ce-Alkylsulfonyl, Ci -C6-Al kylsu If oxyl, Formyl, d-Ce-Alkylcarbonyl, Ci-Cβ-Alkoxycarbonyl, Formyloxy und Ci-Ce-Alkylcarbonyloxy;
Cs-Cs-Cycloalkyl, C4-Ci4-Bicycloalkyl, Phenyl, die gegebenenfalls durch eine Kombination von 1 , 2, 3, 4 oder 5 Radikalen Rax substituiert sein können,
wobei Rax unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Ci-Cβ-Alkyl,
Ci-Ce-Haloalkyl, C3-C6-Cycloalkyl, Ci-C6-Alkoxy, C2-C6-Alkenyloxy, C2-C6-Alkinyloxy, Ci-Ce-Haloalkoxy, d-Ce-Alkylthio, d-Ce-Alkylamino, Di(Ci-C6-alkyl)amino, Ci-C6-Alkylsulfonyl, Ci-Cβ-Alkylsulfoxyl, Formyl, Ci-Cβ-Alkylcarbonyl, Ci-Cβ-Alkoxycarbonyl, Formyloxy und d-Cβ-Alkylcarbonyloxy; und
wobei wenigstens eine fluormethylsubstituierte heterocyclische Verbindung der allgemeinen Formel (I),
worin R1, R2 und Het die in einem der vorhergehenden Ansprüche angegebene Bedeutung besitzen, einer chemischen Umwandlung der Carboxylgruppe in eine Amidfunktion unterzogen werden.
15. Verbindungen der allgemeinen Formel (I),
worin R1, R2 und R4 die in einem der Ansprüche 1 bis 5 angegebene Bedeutung besitzen.
16. Verbindungen der allgemeinen Formel (II),
worin R1', R2 und R4 die in einem der Ansprüche 1 bis 5 angegebene Bedeutung besitzen.
EP07858009A 2006-12-21 2007-12-20 Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen Withdrawn EP2121618A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07858009A EP2121618A1 (de) 2006-12-21 2007-12-20 Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06126937 2006-12-21
PCT/EP2007/064390 WO2008077907A1 (de) 2006-12-21 2007-12-20 Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen
EP07858009A EP2121618A1 (de) 2006-12-21 2007-12-20 Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen

Publications (1)

Publication Number Publication Date
EP2121618A1 true EP2121618A1 (de) 2009-11-25

Family

ID=38375651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858009A Withdrawn EP2121618A1 (de) 2006-12-21 2007-12-20 Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen

Country Status (14)

Country Link
US (1) US7994207B2 (de)
EP (1) EP2121618A1 (de)
JP (1) JP2010513411A (de)
KR (1) KR20090107506A (de)
CN (1) CN101558044A (de)
AR (1) AR064631A1 (de)
AU (1) AU2007338031B2 (de)
BR (1) BRPI0720410A2 (de)
CA (1) CA2671527A1 (de)
EA (1) EA200900817A1 (de)
IL (1) IL199124A (de)
MX (1) MX2009005863A (de)
UA (1) UA96971C2 (de)
WO (1) WO2008077907A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA97498C2 (ru) * 2006-11-03 2012-02-27 Басф Се Способ получения дифторметилпиразолилкарбоксилатов
MX2009012020A (es) 2007-06-01 2009-11-18 Basf Se Procedimiento para la preparacion de (3-dihalometil-1-metil-pirazo l-4-il) carboxamidas n-sustituidas.
DK2158185T3 (da) 2007-06-15 2011-11-21 Basf Se Fremgangsmåde til fremstilling af difluormethylsubstituerede pyrazolforbindelser
CA2715668A1 (en) 2008-02-29 2009-09-03 Basf Se Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
WO2009133178A1 (de) 2008-05-02 2009-11-05 Basf Se Verfahren zur herstellung von 2-(aminomethyliden)-4,4-difluor-3-oxobuttersäureestern
EP2297111B1 (de) 2008-05-02 2012-06-20 Basf Se Verfahren zur herstellung halogensubstituierter 2-(aminomethyliden)-3-oxobuttersäureester
AU2009243550B2 (en) * 2008-05-05 2014-06-26 Basf Se Method for preparing 1,3,4-substituted pyrazol compounds
JP5731374B2 (ja) 2008-05-08 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アリールカルボキサミドの製造方法
WO2010009990A1 (en) 2008-07-21 2010-01-28 Basf Se Process for preparing 1,3-disubstituted pyrazolecarboxylic esters
JP2013510112A (ja) 2009-11-05 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア アミナールの調製方法及び1,3−二置換ピラゾール化合物を調製するためのその使用
BR112012010486A2 (pt) 2009-11-05 2016-03-15 Basf Se processo para preparação de compostos 1-3 pirazol, processo para preparação de um acido pirazolcarboxilico da formula ia e processo para preparação de um composto da formula v
EP2595962B1 (de) * 2010-07-23 2018-07-11 Solvay Sa Verfahren zur herstellung von estern aus 1-substituierten 3-fluoralkyl-pyrazol-4-carboxylsäuren
US8987470B2 (en) 2010-10-27 2015-03-24 Solvay Sa Process for the preparation of pyrazole-4-carboxamides
FR2975990B1 (fr) * 2011-06-01 2013-05-24 Rhodia Operations Procede de preparation d'un compose organique fluore
FR2975992B1 (fr) * 2011-06-01 2013-11-08 Rhodia Operations Procede de preparation d'un compose fluoromethylpyrazole sous forme acide carboxylique ou derivee
CH706864B1 (de) * 2011-06-22 2016-03-31 Central Glass Co Ltd Verfahren zur Herstellung einer Pyrazol-Verbindung.
CN102295498A (zh) * 2011-07-22 2011-12-28 华东师范大学 从苯乙酮连续制备α-氟代苯乙酮的方法
CN102516016A (zh) * 2011-10-31 2012-06-27 滨海康杰化学有限公司 一溴二氟甲基苯类化合物或三氟甲苯类化合物的制备方法
CN102731402A (zh) * 2012-06-29 2012-10-17 上海康鹏化学有限公司 3-三氟甲基吡唑-4-羧酸和3-二氟甲基吡唑-4-羧酸的制备方法
CN102718712B (zh) * 2012-06-29 2015-04-29 江苏威耳化工有限公司 3-二氟甲基吡唑-4-羧酸和3-三氟甲基吡唑-4-羧酸的制备方法
EP3046908B1 (de) * 2013-09-20 2017-08-16 Bayer CropScience Aktiengesellschaft Verfahren zur herstellung von 5-fluor-1-alkyl-3-fluoroalkyl-1h-pyrazol-4-carbaldehyd
CN104016920B (zh) * 2014-06-16 2016-08-24 联化科技股份有限公司 一种含氟甲基吡唑类化合物的联产方法
CN105541716B (zh) * 2015-03-26 2024-02-23 Agc株式会社 吡唑衍生物的制造方法
CN114195715A (zh) * 2021-12-31 2022-03-18 福建永晶科技股份有限公司 1-甲基-3-二氟甲基-4-吡唑酸和1-甲基-3-三氟甲基-4-吡唑酸的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437876A (en) * 1980-04-14 1984-03-20 Monsanto Company 2,4-Disubstituted-5-thiazole-carboxylic acids and derivatives
US5093347A (en) 1991-01-28 1992-03-03 Monsanto Company 3-difluoromethylpyrazolecarboxamide fungicides, compositions and use
US5223526A (en) 1991-12-06 1993-06-29 Monsanto Company Pyrazole carboxanilide fungicides and use
WO1995004724A1 (fr) * 1993-08-11 1995-02-16 Nippon Soda Co., Ltd. Derive d'imidazole et son procede de production, et substance anti-nuisibles
CA2136788C (en) * 1993-11-30 2005-01-25 Thomas Charles Britton Process for preparing 2,2-difluoroketene silyl acetals and .alpha.,.alpha.-difluoro-.beta.-silyloxy-1,3-dioxolane-4-propanoic acid esters
JP3533134B2 (ja) * 1999-02-15 2004-05-31 三井化学株式会社 フッ素化剤及びその製法と使用
DE10215292A1 (de) 2002-02-19 2003-08-28 Bayer Cropscience Ag Disubstitutierte Pyrazolylcarbocanilide
DE10351088A1 (de) * 2003-10-31 2005-06-02 Bayer Cropscience Gmbh Verfahren zum Herstellen von fluormethyl-substituierten Heterocyclen
JP2008502636A (ja) * 2004-06-18 2008-01-31 ビーエーエスエフ アクチェンゲゼルシャフト N−(オルト−フェニル)−1−メチル−3−ジフルオロメチルピラゾール−4−カルボキシアニリドおよびそれらの殺菌剤としての使用
TWI436984B (zh) * 2005-09-16 2014-05-11 Syngenta Participations Ag 同式-3-二氟甲基-1-甲基-1h-吡唑-4-羧酸(9-異丙基-1,2,3,4-四氫-1,4-橋亞甲基-萘-5-基)-醯胺之晶體改良物及其組成物與用途
UA97498C2 (ru) 2006-11-03 2012-02-27 Басф Се Способ получения дифторметилпиразолилкарбоксилатов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008077907A1 *

Also Published As

Publication number Publication date
JP2010513411A (ja) 2010-04-30
CA2671527A1 (en) 2008-07-03
US7994207B2 (en) 2011-08-09
WO2008077907A1 (de) 2008-07-03
MX2009005863A (es) 2009-06-12
KR20090107506A (ko) 2009-10-13
UA96971C2 (ru) 2011-12-26
US20100022782A1 (en) 2010-01-28
AU2007338031B2 (en) 2012-08-16
BRPI0720410A2 (pt) 2013-12-31
CN101558044A (zh) 2009-10-14
AR064631A1 (es) 2009-04-15
EA200900817A1 (ru) 2009-12-30
IL199124A (en) 2013-05-30
AU2007338031A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP2121618A1 (de) Verfahren zur herstellung fluormethylsubstituierter heterocyclischer verbindungen
EP2300417B1 (de) Verfahren zur herstellung von 2-(aminomethyliden)-4,4-difluor-3-oxobuttersäureestern
EP2297111B1 (de) Verfahren zur herstellung halogensubstituierter 2-(aminomethyliden)-3-oxobuttersäureester
WO2002048146A2 (de) Verwendung von substituierten imidazoazinen, neue imidazoazine, verfahren zu deren herstellung, sowie sie enthaltende mittel
EP1791819A1 (de) (hetero)cyclyl(thio) carbonsäureanilide zur bekämpfung von schadpilzen
DE3140276A1 (de) Phenoxyphenyl-azolylmethyl-ketone und -carbinole, verfahren zu ihrer herstellung und ihre verwendung als fungizide und als zwischenprodukte
DE3713774C2 (de) Pyrazol-Derivate, Verfahren zu ihrer Herstellung und diese enthaltende Fungizide
US9273007B2 (en) Processes for the preparation of 1-aryl-5-alkyl pyrazole compounds
DE3903799A1 (de) N-aryl-stickstoffheterocyclen
EP0284952A2 (de) Substituierte Propylamine
DE2910976A1 (de) Substituierte n-allyl-acetanilide, verfahren zu ihrer herstellung sowie ihre verwendung als fungizide
EP0019858A2 (de) N-Oximinoalkyl-anilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
DE2938575A1 (de) Acylierte imidazolyl-(gamma)-fluorpinakolyl-derivate, verfahren zu ihrer herstellung und ihre verwendung als fungizide
DE3033160A1 (de) N-oxiamide, verfahren zu ihrer herstellung sowie ihre verwendung als fungizide
EP1699752B1 (de) (hetero)cyclylcarboxanilide zur bekämpfung von schadpilzen
EP0355544B1 (de) Substituierte Decalinamine, Verfahren zu deren Herstellung, sowie deren Verwendung in Schädlingsbekämpfungsmitteln
DE2918893A1 (de) Fluorierte 1-imidazolyl-butan-derivate, verfahren zu ihrer herstellung und ihre verwendung als fungizide
EP0270971A2 (de) Substituierte Benzamide
DE19626771C2 (de) 4-(4-Oxocyclohexyl)-benzamide
EP0610651A1 (de) N-substituierte alpha-Fluoralkyl-Lactame
WO2001019782A1 (de) Cyclopropancarbonsäureamide, deren herstellung und verwendung
EP0075167A2 (de) N-(1-Alkenyl)-carbonsäureanilide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide
EP0330927A2 (de) Pyridin-4-carbonsäureanilide
DE4234012A1 (de) Neue Anilinderivate und diese enthaltende Pflanzenschutzmittel
DE3138772A1 (de) Halogen-substituierte n-oximino-alkyl-anilide, verfahren zu ihrer herstellung sowie ihre verwendung als fungizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130625