EP2119159A1 - Dispositif de correction de phase - Google Patents

Dispositif de correction de phase

Info

Publication number
EP2119159A1
EP2119159A1 EP08701331A EP08701331A EP2119159A1 EP 2119159 A1 EP2119159 A1 EP 2119159A1 EP 08701331 A EP08701331 A EP 08701331A EP 08701331 A EP08701331 A EP 08701331A EP 2119159 A1 EP2119159 A1 EP 2119159A1
Authority
EP
European Patent Office
Prior art keywords
phase
sampling clock
signal
signal components
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08701331A
Other languages
German (de)
English (en)
Inventor
Frank Hofmann
Gerald Spreitz
Sascha Jakoblew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2119159A1 publication Critical patent/EP2119159A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/003Correction of carrier offset at baseband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0046Open loops

Definitions

  • the present invention relates to a phase error correction device according to the preamble of patent claim 1, in particular a phase correction device for an OFDM transmission system, a corresponding phase correction method according to the preamble of patent claim 6 and a receiving device with a corresponding phase correction device according to the preamble of Patent claim 10.
  • phase correction device is disclosed in DE 103 24 418 and is sampled for a signal having a plurality of signal components modulated onto a respective carrier signal prior to transmission in a transmission device having a transmit sampling clock having a transmit sampling clock duration, and after receiving a receiving device having a receive sample clock having a receive sample clock duration, each carrier signal having an associated carrier frequency.
  • the phase correcting device is installed in the receiving device.
  • the signal has periodically recurring signal sections.
  • a phase error detecting means incorporated in the receiving apparatus detects phase errors for each of the signal components from the periodically recurring signal portions based on a difference between the transmission sampling clock period and the reception sampling clock period. The phase errors are then corrected by the phase corrector for the individual signal components using an interpolation formula.
  • a disadvantage of the method is that a high computational effort is required to perform the interpolation.
  • the object of the present invention is to provide a phase correction device, a reception device with the phase correction device and a phase correction method, by means of which a phase correction can be carried out particularly efficiently.
  • phase correcting device with the features of the characterizing part of patent claim 1, a phase correction method having the features of the characterizing part of patent claim 6 and a receiving device having the features of the characterizing part of patent claim 10.
  • the present invention relates to a phase correcting means arranged to change phases of the signal components depending on a ratio of the transmission sampling clock duration to the reception sampling clock duration, respectively, by an associated phase amount.
  • phase correction device does not require a large memory requirement and computational effort.
  • the phase correction means is arranged to change the Phase amounts of the signal components depending on the associated carrier frequencies to perform.
  • this can achieve a particularly accurate correction.
  • the change is one of the phases in the complex notation by a multiplication by a correction factor given that ⁇ is the ratio of the transmit sampling clock period to the received sampling clock period, k is a natural number, n (0g is the carrier frequency which is an integer multiple of a base frequency (O 3 of the transmitting device and T 0 is the transmit sampling clock duration.
  • the phase error correction device is set up to transform the signal components respectively into differential phases ( ⁇ ) and to change the differential phases ( ⁇ ) in each case by adding a phase amount.
  • phase error correction device can be implemented with a particularly low outlay in an OFDM system which uses 4-DQPSK.
  • the phase error correction device is set up to change the phases of adjacent signal components by the same phase amount.
  • the present invention further relates to a phase correction method for a signal, wherein phases of the signal components are changed depending on a ratio of the transmission sampling clock duration to the reception sampling clock duration by an associated phase amount, respectively.
  • the changes in the phase amounts of the signal components are performed as a function of the associated carrier frequencies.
  • the signal components are transformed into differential phases, and the differential phases are each changed by adding a phase amount.
  • the phases of adjacent signal components are changed by an equal phase amount.
  • the present invention further relates to a receiving apparatus with phase correction means arranged to change phases of the signal components depending on a ratio of the transmission sampling clock duration to the reception sampling clock duration by an associated phase amount, respectively.
  • FIG. 1 is a schematic representation of a transmitting device
  • FIG. 2 is a schematic representation of a receiving device
  • FIG. FIG. 3 shows a phase star illustrating a quadrature component Q and an inphase component I of differential phases
  • FIG. 4 shows a phase star which illustrates a quadrature component Q and an inphase component I of differential phases.
  • FIG. 1 shows a schematic representation of a transmission device of an OFDM transmission system which is based on 4-DQPSK.
  • the parallel data streams are coded differentially to complex transmission symbols d k (n) by a differen- tial encoder 2, chen the difference phases correspond and are referred to as signal components.
  • This modulation corresponds to a multiplication by the factors exp (jn ( ⁇ n t).
  • FIG. 2 shows a schematic representation of a receiving device.
  • a receiving antenna 7 receives the OFDM receive signal u (t), which is identical to the OFDM transmit signal m (t) except for noise.
  • the receiving device can be regarded as a correlation receiver (see Christian Hansen, "Synchronization method for OFDM-based broadcasting systems", Dissertation, University of Hannover, p. 12, 2004), the signals resulting after the demodulation can be represented as:
  • the OFDM receive signal u (t) is identical to the OFDM transmit signal m (t) and thus can be represented as (see FIG. 1):
  • Equation (3) can be transformed into a noise component U k (n)
  • contains all sums for which mn applies, causes intercarrier interference (ICI) and is neglected in the following as it is very small with small sample clock inaccuracies. Integration then results in:
  • the factor si ( ⁇ n ( ⁇ -1)) has a dampening effect during the term ej ( ⁇ -l) nk ⁇ s ⁇ .
  • e j ⁇ n ( ⁇ -L) to a Phasenverschiebun g leads which can kor ⁇ by multiplication by the correction factor f (n) corresponding to a phase amount to be rigiert, for which:
  • the phase amount is composed of the two correction phase components ⁇ i and ⁇ 2 :
  • T ⁇ is calculated from T 1 / and T 0 in the input device 8 and then transmitted to the phase correction device 12, thereby T 0 is determined from periodically recurring signal sections, as described for example in DE 103 24 418.
  • FIG. FIG. 3 shows a phase star illustrating a quadrature component Q and an inphase component I of differential phases between two consecutive U k (n) for the 4-DQPSK transmission system without phase correction.
  • FIG. 4 shows a phase star illustrating a quadrature component Q and a differential phase in-phase component I for the phase correction 4-DQPSK transmission system.
  • the differential phases represented as circles are compared to the differential phases of FIG. 3 is slightly shifted by noise from its ideal position.
  • the correction of the signal components can be carried out in a particularly simple manner directly after the differential decoding in the decoder 11, in which differential phases ⁇ (n, n + 1) are also formed from successive bit sequences, so that the phase correction can be achieved by addition in a phase choke - rectifier 12 can be performed.
  • the difference phase results in a difference phase amount which is composed of ⁇ i and ⁇ 2 :
  • the correction can also be carried out a correction by the same phase for several adjacent channels in order to reduce the storage requirements and computational effort.
  • an exact correction value is calculated for every xth channel and then used for (x-l) / 2 adjacent channels on both sides.
  • x 5
  • the corrected signals B k , n in the multiplexer 13 are finally multiplexed into a bit sequence having a plurality of sequence sections ⁇ b k ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

La présente invention concerne un dispositif de correction de phase (12) destiné à un signal qui présente plusieurs composantes de signal modulées respectivement sur une porteuse, qui a été détecté avant émission dans un dispositif d'émission avec une période de détection d'émission ayant une durée donnée et après réception dans un dispositif de réception ayant une période de détection de réception d'une durée donnée, chaque porteuse ayant une fréquence de porteuse associée. Pour réaliser une correction de phase particulièrement efficace, le dispositif de correction de phase (12) est conçu pour modifier les phases de composantes de signal en fonction d'un rapport entre la période de détection d'émission et la période de détection de réception, respectivement d'une valeur de phase associée.
EP08701331A 2007-02-06 2008-01-09 Dispositif de correction de phase Withdrawn EP2119159A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005768A DE102007005768A1 (de) 2007-02-06 2007-02-06 Phasenkorrektureinrichtung
PCT/EP2008/050166 WO2008095745A1 (fr) 2007-02-06 2008-01-09 Dispositif de correction de phase

Publications (1)

Publication Number Publication Date
EP2119159A1 true EP2119159A1 (fr) 2009-11-18

Family

ID=39462040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08701331A Withdrawn EP2119159A1 (fr) 2007-02-06 2008-01-09 Dispositif de correction de phase

Country Status (5)

Country Link
EP (1) EP2119159A1 (fr)
KR (1) KR20090107052A (fr)
CN (1) CN101606366A (fr)
DE (1) DE102007005768A1 (fr)
WO (1) WO2008095745A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201145918A (en) * 2009-12-27 2011-12-16 Maxlinear Inc Methods and apparatus for synchronization in multiple-channel communication systems
JP5516967B2 (ja) * 2010-05-31 2014-06-11 ソニー株式会社 位相同期装置、位相同期方法、およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889819B2 (en) * 2002-10-04 2011-02-15 Apurva Mody Methods and systems for sampling frequency offset detection, correction and control for MIMO OFDM systems
KR100488802B1 (ko) * 2002-12-09 2005-05-12 한국전자통신연구원 직교 주파수 분할 다중화 무선 통신 시스템에서의 반송파주파수 오차와 샘플링 주파수 오차 추적 방법 및 그 장치
DE10324418B4 (de) 2003-05-28 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bestimmen eines Abtastfehlers und eine Einrichtung zum Korrigieren desselben
US7668199B2 (en) * 2004-06-17 2010-02-23 Texas Instruments Incorporated Methods and systems for communicating using transmitted symbols associated with multiple time durations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008095745A1 *

Also Published As

Publication number Publication date
CN101606366A (zh) 2009-12-16
DE102007005768A1 (de) 2008-08-07
WO2008095745A1 (fr) 2008-08-14
KR20090107052A (ko) 2009-10-12

Similar Documents

Publication Publication Date Title
DE69818933T2 (de) Korrektur von Phasen- und/oder Frequenzverschiebungen in Mehrträgersignalen
DE69114733T3 (de) Verfahren zur Datenverbreitung mit Zeit-Frequenzverschachtelung mit Verwendung von Bezugsfrequenzsignalen.
DE69807945T2 (de) Verfahren und einrichtung zur feinen frequenzsynchronisierung in mehrträgerdemodulationssystemen
DE69128252T2 (de) Empfang von orthogonalen frequenzmultiplexsignalen
EP1374513B1 (fr) Procede de synchronisation de trame et de frequence de signaux ofdm et procede d'emission de signaux ofdm
DE69933409T2 (de) Verfahren un Anordnung zum Erreichen und Aufrechterhalten der Symbolsynchronisierung in einem OFDM-Übertragungssystem
DE60124234T2 (de) Verfahren zur kompensation von phasenfehlern in mehrträgersignalen
DE60028276T2 (de) Verringerung von Verzögerung in Mehrträgerempfängern
DE10026325B4 (de) Verfahren zur Synchronisation von OFDM-Symbolen bei Rundfunkübertragungen
DE102007057378A1 (de) Detektionsvorrichtung für Zeitbereich-IQ-Fehlanpassung eines OFDM-Empfängers
DE69802212T2 (de) Grobe frequenzsynchronisierung in mehrträgersystemen
EP0740869B1 (fr) Procede de correction de frequence numerique pour des processus de transmission a porteuses multiples
EP2119159A1 (fr) Dispositif de correction de phase
EP1537711B1 (fr) Preambule pour l'estimation et la correction d'asymetries entre une branche en phase et une branche en quadrature dans des systemes de transmission a porteuses multiples
CN101601031A (zh) 使用2n点FFT计算非2n点DFT的处理装置、方法和系统
EP1254546B1 (fr) Procede de determination de la puissance des porteurs restante pour un signal multiporteur a modulation d'amplitude en quadrature, en mode 8k, selon la norme dvb-t
DE112012006561T5 (de) Phasenfehler-Erfassungsvorrichtung, Phasenfehler-Erfassungsverfahren und Empfangsvorrichtung
EP1685668A1 (fr) Procede et dispositif de surveillance de la stabilite de la frequence porteuse d'emetteurs dans un reseau de frequences communes
DE10300267A1 (de) Demodulation eines frequenzmodulierten Empfangssignals durch Abbilden der Nulldurchgänge auf eine Folge von Parameterwerten
DE102019126988A1 (de) Verfahren zur Reduzierung von Störeinflüssen in einem Radar-System
DE102004039016A1 (de) Verfahren und Vorrichtung zum Schätzen der Frequenz und/oder der Phase mit blockweiser Grobschätzung
DE102004047600A1 (de) Verfahren zum Synchronisieren eines Abtasttaktes sowie Synchronisationseinheit für ein Mehrträgerempfangssystem
WO2021165164A1 (fr) Corrélateur de paquets pour système de transmission sans fil à dérive de fréquence variant avec le temps
DE102007035807B4 (de) Verfahren und Vorrichtung zur Schätzung des ganzzahligen Trägerfrequenzversatzes
DE102008028493A1 (de) OFDM-Empfangsvorrichtung für ein digitales Rundfunkempfangssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091112

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104