EP2118987A1 - Turboalternateur - Google Patents

Turboalternateur

Info

Publication number
EP2118987A1
EP2118987A1 EP08708118A EP08708118A EP2118987A1 EP 2118987 A1 EP2118987 A1 EP 2118987A1 EP 08708118 A EP08708118 A EP 08708118A EP 08708118 A EP08708118 A EP 08708118A EP 2118987 A1 EP2118987 A1 EP 2118987A1
Authority
EP
European Patent Office
Prior art keywords
rotor
active region
bale
forgings
turbogenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08708118A
Other languages
German (de)
English (en)
Inventor
Markus Staubli
Reinhard Joho
Ralf Rotzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2118987A1 publication Critical patent/EP2118987A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/42Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding

Definitions

  • the present invention relates to the field of rotary electric machines. It relates to a turbogenerator according to the preamble of claim 1.
  • Turbogenerators are known for example from EP-A2-1 209 802. They comprise a rotor rotatably mounted about a rotor axis, which is surrounded concentrically by a stator. In the rotor, a DC-powered rotor winding is housed, which interacts with an AC stator winding in the stator in electromagnetic interaction.
  • the rotors of the turbogenerators are made of magnetizable, ferritic steels. In most Cases these rotors are made from a forged blank produced as a monoblock by appropriate processing.
  • rotor can be divided along the axis into a central rotor bale and at the ends of the rotor bale subsequent shaft ends, with which the rotor is rotatably mounted in respective rotor bearings.
  • the central area of the rotor bale is the (electromagnetically) active area of the rotor.
  • the rotor bale in the active region consists of a material which is readily magnetizable, in particular a first steel, and in that the end portions of the outside of the active region are Rotor bale and the subsequent shaft ends of a material with reduced magnetizability or of a non-magnetic material, in particular a second, such as austenitic steel exist.
  • An embodiment of the invention is characterized in that the rotor ball in the active area of one or more forgings (s) is that the out-of-range active end portions of the rotor bale and the shaft ends of one or more forgings (s), and that the magnetically different forgings are joined together in a material-bonding manner by a fusion welding process.
  • the different forgings can also be positively and non-positively connected to each other.
  • the forgings and powder metallurgy produced parts can be used, which are also bonded cohesively or positively and non-positively.
  • any combination of forgings and powder metallurgically produced pieces are conceivable for the rotor.
  • Another embodiment is characterized in that a rotor cap is shrunk onto each of the rotor bales at the ends, and that the rotor caps are shrunk in the region of the end portions of the rotor bale.
  • FIG. 1 in a greatly simplified representation of the longitudinal section through a turbogenerator, as is suitable for implementing the invention;
  • Fig. 2 shows the one end portion of the rotor of Fig. 1 for the known
  • Fig. 1 is a simplified view of the longitudinal section through a turbogenerator, as it is suitable for the realization of the invention reproduced.
  • the turbogenerator 10 includes a rotor 1 1 rotatably mounted about an axis 19 and a stator 12 concentrically surrounding the rotor 11. Both are in turn surrounded by a housing, which is omitted in Fig. 1 for the sake of simplicity.
  • the rotor 1 1 has as a central portion of a cylindrical rotor bale 13, the central part (portion between the dashed lines in Fig. 1) as the active region 23 causes the electromagnetic interaction with the stator 12.
  • a rotor winding 15 are housed in the rotor 11 and a stator winding 18 in the stator 13, which comprise in a known manner in corresponding grooves inserted winding conductors.
  • a stator winding 18 in the stator 13 which comprise in a known manner in corresponding grooves inserted winding conductors.
  • At the end faces of the rotor bale 13 and the stator 12 winding heads are formed.
  • the winding heads on the rotor bale 13 are held and protected by end caps on the rotor bale 13 shrunk rotor caps 16.
  • the rotor 1 1 is not - as shown in Fig. 2 - of a single material with the same same magnetic properties, ie, for example, from a good magnetizable steel, but of at least two materials with different magnetic properties: The rotor 1 1 - As shown in Fig.
  • a rotor parts 21, 22 constructed or assembled rotor formed in the active region 23 of forgings with good magnetizability and in the end portions of the rotor bale 13 (bale sections 20, cap seats of the rotor caps 16) and the Shaft ends 14 of forgings with reduced magnetizability or of a non-magnetic material, such as an austenitic steel exists.
  • a non-magnetic material such as an austenitic steel exists.
  • the joining of the magnetically different forgings is preferably carried out by a fusion welding, but can also be done by screw or the like.
  • the rotor parts 21, 22 in turn each consist of one piece or can be composed of several pieces.
  • the active region 23 of the rotor need not be identical to that of the stator 12. It is advantageously slightly smaller than this, as indicated in Fig. 1.
  • forgings and powder metallurgy produced parts can be used, which are also bonded cohesively or positively and non-positively.
  • any combinations of forgings and powder metallurgy produced pieces are conceivable for the rotor, wherein in the active region 23 of the rotor bale 13 forgings or powder metallurgy produced pieces of materials with good magnetization and in the end of the rotor bale 13 (bale sections 20, cap seats of the rotor caps 16) and the shaft ends 14 forgings or powder metallurgically produced pieces of materials with reduced magnetizability or from a non-magnetic material are used.
  • the pieces produced by powder metallurgy preferably consist of a steel produced by powder metallurgy, but may also be superalloys produced by powder metallurgy.
  • the field which penetrates the cap seat and always has a certain alternating component is reduced. There are therefore fewer electrical eddy current losses in the rotor cap seat.
  • the end of the stator is greatly relieved with respect to the axially entering field. This results in less eddy current losses in the stator in yoke and tooth.
  • the stator winding conductors are relieved in the region of the stator ends with respect to the passing field. This results in fewer eddy current losses in the stator winding conductor.
  • the non-magnetic and therefore large-area cross-sectional current-carrying bale material at the rotor end can serve for electrically conductive connection under the continuous damper wedges.
  • the local losses and temperatures in the forehead area are reduced. It is possible to have a higher limit power or an extended power range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

L'invention concerne un turboalternateur (10) comprenant un rotor (11) qui comporte un corps de rotor cylindrique (13), se transformant respectivement aux deux extrémités en une extrémité d'arbre (14) et présentant dans une section médiane la zone électromagnétiquement active (23) du rotor (11), le rotor (11) étant composé de plusieurs parties de rotor reliées les unes aux autres et agencées les unes derrière les autres dans l'axe (19) du rotor. Pour un tel rotor, des pertes plus faibles et des températures plus faibles dans la région frontale du rotor, ainsi que dans l'ensemble une puissance limite plus élevée ou une plage de performance élargie sont possibles du fait que le corps de rotor (13) est constitué, dans la zone active (23), d'un matériau facile à magnétiser, en particulier d'un premier acier, et du fait que la section terminale, se trouvant à l'extérieur de la zone active (23), du corps de rotor (13) et les extrémités d'arbre (14) sont constituées d'un matériau ayant une aptitude réduite à la magnétisation ou d'un matériau non magnétique, en particulier d'un second acier.
EP08708118A 2007-02-05 2008-01-23 Turboalternateur Withdrawn EP2118987A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1862007 2007-02-05
PCT/EP2008/050755 WO2008095779A1 (fr) 2007-02-05 2008-01-23 Turboalternateur

Publications (1)

Publication Number Publication Date
EP2118987A1 true EP2118987A1 (fr) 2009-11-18

Family

ID=38226572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708118A Withdrawn EP2118987A1 (fr) 2007-02-05 2008-01-23 Turboalternateur

Country Status (5)

Country Link
US (1) US8330321B2 (fr)
EP (1) EP2118987A1 (fr)
JP (1) JP2010518801A (fr)
CN (1) CN101606301A (fr)
WO (1) WO2008095779A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2118987A1 (fr) 2007-02-05 2009-11-18 ALSTOM Technology Ltd Turboalternateur
EP2528201A1 (fr) * 2011-05-24 2012-11-28 Alstom Technology Ltd Procédé d'application d'un système de rétention au-dessus d'un coeur de rotor de machine électrique et ensemble de rotor
JP2016052218A (ja) * 2014-09-01 2016-04-11 株式会社荏原製作所 永久磁石型回転子を有する回転電機

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE567854C (de) * 1934-01-23 Bbc Brown Boveri & Cie Induktorkoerper fuer Synchronmaschinen grosser Leistung
CH150099A (de) * 1929-11-02 1931-10-15 Bbc Brown Boveri & Cie Rotor für schnellaufende Maschinen, insbesondere Turbogeneratoren.
FR716437A (fr) * 1930-05-16 1931-12-21 Acec Mode de construction, en trois parties, des rotors de turbo-alternateurs à grande vitesse
FR2057147A5 (en) 1969-08-01 1971-05-21 North American Rockwell Rotors for electric motors and generators
GB1324634A (en) 1969-08-05 1973-07-25 Parsons Co Ltd C A Turbo generators
US3694906A (en) * 1971-10-14 1972-10-03 Gen Motors Corp Method for manufacturing a high speed squirrel cage rotor
US3793546A (en) * 1973-02-05 1974-02-19 Westinghouse Electric Corp Rotor for dynamoelectric machines
US3812392A (en) 1973-03-09 1974-05-21 Gen Electric Composite armature core for dynamoelectric machine
SE395991B (sv) 1975-12-17 1977-08-29 Asea Ab Rotor for turbogenerator
JPS5932977B2 (ja) * 1978-05-24 1984-08-13 株式会社日立製作所 回転電機
DE2824257C2 (de) * 1978-06-02 1986-04-17 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen eines hohlkörperartigen Bauteiles mit verbesserter thermischer Belastbarkeit in elektromagnetischen Maschinen
JPS5863046A (ja) * 1981-10-09 1983-04-14 Hitachi Ltd 回転電機の固定子鉄心
US4490638A (en) * 1983-08-08 1984-12-25 Mcgraw-Edison Company Salient pole rotor with amortisseur winding
SU1451804A1 (ru) * 1987-04-13 1989-01-15 Куйбышевский политехнический институт им.В.В.Куйбышева Ротор турбогенератора
JPH05195154A (ja) * 1992-01-13 1993-08-03 Japan Steel Works Ltd:The リテーニングリング材
US5536985A (en) * 1994-05-09 1996-07-16 General Motors Corporation Composite armature assembly
JP3484051B2 (ja) * 1997-09-10 2004-01-06 株式会社 日立インダストリイズ 永久磁石式同期電動機及びその製造方法ならびに永久磁石式同期電動機を備えた遠心圧縮機
US6122817A (en) * 1997-09-19 2000-09-26 Alliedsignal Inc. Rotor assembly having lamination stack that is separately piloted and clamped
US6157109A (en) * 1998-02-10 2000-12-05 Reliance Electric Technologies, Llc Dynamoelectric machine with ferromagnetic end winding ring
US5936324A (en) * 1998-03-30 1999-08-10 Genetic Microsystems Inc. Moving magnet scanner
JP2001136690A (ja) * 1999-11-10 2001-05-18 Isuzu Motors Ltd 回転機のロータ
DE19956042A1 (de) * 1999-11-22 2001-05-23 Abb Ind Ag Baden Rotor für eine schnellaufende elektrische Maschine
DE10058857A1 (de) 2000-11-27 2002-06-06 Alstom Switzerland Ltd Gasgekühlte Maschine, insbesondere Turbogenerator
DE10114612A1 (de) * 2001-03-23 2002-09-26 Alstom Switzerland Ltd Rotor für eine Turbomaschine sowie Verfahren zur Herstellung eines solchen Rotors
US6787967B2 (en) 2001-05-15 2004-09-07 General Electric Company High temperature super-conducting rotor coil support and coil support method
GB2378586A (en) * 2001-07-31 2003-02-12 Alstom Rotor assembly with reduced heating due to eddy currents
US6803693B2 (en) 2002-04-11 2004-10-12 General Electric Company Stator core containing iron-aluminum alloy laminations and method of using
US7365464B2 (en) * 2003-09-05 2008-04-29 Gsi Group Corporation Composite rotor and output shaft for galvanometer motor and method of manufacture thereof
EP2118987A1 (fr) 2007-02-05 2009-11-18 ALSTOM Technology Ltd Turboalternateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008095779A1 *

Also Published As

Publication number Publication date
WO2008095779A1 (fr) 2008-08-14
US8330321B2 (en) 2012-12-11
JP2010518801A (ja) 2010-05-27
CN101606301A (zh) 2009-12-16
US20100117472A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
EP2639936B1 (fr) Machine électrique à rotor excité en permanence et rotor excité en permanence correspondant
DE102004017157B4 (de) Verfahren zur Herstellung einer Rotoranordnung und Rotoranordnung für eine elektrische Maschine
DE60309811T2 (de) Elektromotor mit Dauermagnetläufer
DE2445207A1 (de) Dynamoelektrische maschine mit einer dauermagnetanordnung und einem scheibenfoermigen rotor
DE4104641A1 (de) Dynamoelektrische maschine und dafuer vorgesehenes blech
DE102012219003A1 (de) Läuferanordnung für eine rotatorische elektrische Maschine
EP3178150A2 (fr) Élément en tôle ou en métal fritté pour stator ou rotor d'une machine électrique et un procédé de fabrication de celui-ci
DE3917343A1 (de) Schleifringloser klauenpol-generator
DE112013000316T5 (de) Drehende Elektromaschine mit Hybriderregung
DE102017102242A1 (de) Verwendung von magnetfeldern in elektromaschinen
DE102017127157A1 (de) Rotor für einen Axialflussmotor
DE102011083917A1 (de) Verfahren zum Herstellen einer Maschinenkomponente für eine elektrischeMaschine, Maschinenkomponente und elektrische Maschine
EP2118987A1 (fr) Turboalternateur
DE4342870C1 (de) Elektrische Maschine, insbesondere Drehstromgenerator
WO2015071090A2 (fr) Rotor pour machine électrique asynchrone et procédé de fabrication d'un tel rotor
DE3517883A1 (de) Rotor einer elektrischen maschine
WO2019110173A1 (fr) Rotor ou stator d'une machine électrique
DE102011080959B4 (de) Außenläufermaschine mit Statorsegmenten
WO2020260567A1 (fr) Stator pour une machine électrique
DE102014208715A1 (de) Flussleitelement für eine elektrische Maschine, Maschinenkomponente, elektrische Maschine und Verfahren zum Aufbau einer elektrischen Maschine
DE102015218304B3 (de) Elektrische Maschine mit hoch drehzahlfestem Rotor
DE102004008688B4 (de) Linearmotor
DE102017222055A1 (de) Stator oder Rotor einer elektrischen Maschine
EP2228888A1 (fr) Rotor pour un turbogénérateur et turbogénérateur doté d'un rotor
DE102021104270B4 (de) Klauenpol-Rotor für eine elektrische Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150801