EP2112242A1 - Alliages d'aluminium L12 durcissables par traitement thermique - Google Patents

Alliages d'aluminium L12 durcissables par traitement thermique Download PDF

Info

Publication number
EP2112242A1
EP2112242A1 EP09251012A EP09251012A EP2112242A1 EP 2112242 A1 EP2112242 A1 EP 2112242A1 EP 09251012 A EP09251012 A EP 09251012A EP 09251012 A EP09251012 A EP 09251012A EP 2112242 A1 EP2112242 A1 EP 2112242A1
Authority
EP
European Patent Office
Prior art keywords
weight percent
alloy
alloys
aluminum
dispersoids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09251012A
Other languages
German (de)
English (en)
Inventor
Awadh B. Pandey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP2112242A1 publication Critical patent/EP2112242A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates generally to aluminum alloys and more specifically to heat treatable aluminum alloys produced by melt processing and strengthened by L1 2 phase dispersions.
  • aluminum alloys with improved elevated temperature mechanical properties is a continuing process.
  • Some attempts have included aluminum-iron and aluminum-chromium based alloys such as Al-Fe-Ce, Al-Fe-V-Si, Al-Fe-Ce-W, and Al-Cr-Zr-Mn that contain incoherent dispersoids. These alloys, however, also lose strength at elevated temperatures due to particle coarsening. In addition, these alloys exhibit ductility and fracture toughness values lower than other commercially available aluminum alloys.
  • US-A-6,248,453 discloses aluminum alloys strengthened by dispersed Al 3 X L1 2 intermetallic phases where X is selected from the group consisting of Sc, Er, Lu, Yb, Tm, and U.
  • the Al 3 X particles are coherent with the aluminum alloy matrix and are resistant to coarsening at elevated temperatures.
  • the improved mechanical properties of the disclosed dispersion strengthened L1 2 aluminum alloys are stable up to 572°F (300°C).
  • the alloys need to be manufactured by expensive rapid solidification processes with cooling rates in excess of 1.8x10 3 F/sec (10 3 C/sec).
  • US-A-2006/0269437 discloses an aluminum alloy that contains scandium and other elements. While the alloy is effective at high temperatures, it is not capable of being heat treated using a conventional age hardening mechanism.
  • the present invention is heat treatable aluminum alloys that can be cast, wrought, or formed by rapid solidification, and thereafter heat treated.
  • the alloys can achieve high temperature performance and can be used at temperatures up to about 650°F (343°C).
  • the present invention provides a heat treatable aluminum alloy comprising:
  • These alloys comprise silicon, and an Al 3 X L1 2 dispersoid where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
  • X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium
  • X is at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
  • the balance is substantially aluminum.
  • the alloys may also contain magnesium and, optionally, copper, and have less than 1.0 weight percent total impurities.
  • the present invention provides a heat treatable aluminum alloy comprising:
  • the alloys may be formed by a process selected from casting, deformation processing and rapid solidification.
  • the alloys may then be heat treated at a temperature of from about 800°F (426°C) to about 1100°F (593°C) for between about 30 minutes and four hours, followed by quenching in water, and thereafter aged at a temperature from about 200°F (93°C) to about 600°F (315°C) for about two to forty eight hours.
  • the present invention provides a method of forming a heat treatable aluminum alloy, the method comprising:
  • the alloys of this invention are based on the aluminum silicon system.
  • the aluminum silicon phase diagram is shown in FIG. 1 .
  • the binary system is a simple eutectic alloy system with a eutectic reaction at 12.5 weight percent silicon and 1077°F (577°C). There is little solubility of silicon in aluminum at temperatures up to 930°F (500°C) and none of aluminum in silicon.
  • Hypoeutectic alloys with less than 12.6 weight percent silicon solidify with a microstructure consisting of primary aluminum grains in a finely divided aluminum/silicon eutectic matrix phase.
  • Hypereutectic alloys with silicon contents greater than the eutectic composition solidify with a microstructure of primary silicon grains in a finely divided aluminum/silicon eutectic matrix phase.
  • Alloys of this invention include alloys with the addition of about 4 to about 25 weight percent silicon, more preferably about 4 to about 18 weight percent silicon, and even more preferably about 5 to about 11 weight percent silicon.
  • Aluminum copper and aluminum magnesium alloys are heat treatable with Al 2 Cu (0'), Al 2 CuMg (S') and Si crystals precipitating in aluminum-copper-silicon alloys; Mg 2 Si and Si crystals precipitating in aluminum-magnesium-silicon alloys following a solution heat treatment, quench, and age process.
  • strengthening phases are Al 2 Cu ( ⁇ '), Al 2 CuMg (S'), Mg 2 Si and Si crystals following a solution heat treatment, quench, and age process.
  • Mg 2 Al 3 ( ⁇ ) phase precipitates as large intermetallic particle in high magnesium containing aluminum alloys which is not desired from strengthening point of view.
  • the presence of L1 2 phase prevents formation of ⁇ phase in material which improves ductility and toughness of material.
  • the alloys of this invention contain phases consisting of aluminum copper solid solutions, aluminum magnesium solid solutions, and aluminum copper magnesium solid solutions.
  • the solid solutions are dispersions of Al 3 X having an L1 2 structure where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium. Also present is at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
  • Exemplary aluminum alloys of this invention include, but are not limited to (in weight percent):
  • alloys with the addition of about 0.2 to about 3 weight percent Mg more preferably alloys with the addition of about 0.3 to about 1.5 weight percent Mg, and even more preferably alloys with the addition of about 0.5 to about 1.5 weight percent Mg; and alloys with the addition of about 0.5 to about 5 weight percent Cu, more preferably alloys with the addition of about 1 to about 4 weight percent Cu, and even more preferably alloys with the addition of about 2 to about 4 weight percent Cu.
  • the alloy comprises about 0.2 to about 3.0 weight percent magnesium and about 0.5 to about 5.0 weight percent copper, more particularly about 0.3 to about 1.5 weight percent magnesium and about 1.0 to about 4.0 weight percent copper.
  • scandium, erbium, thulium, ytterbium, and lutetium are potent strengtheners that have low diffusivity and low solubility in aluminum. All these elements form equilibrium Al 3 X intermetallic dispersoids where X is at least one of scandium, erbium, ytterbium, lutetium, that have an L1 2 structure that is an ordered face centered cubic structure with the X atoms located at the corners and aluminum atoms located on the cube faces of the unit cell.
  • Al 3 Sc dispersoids forms Al 3 Sc dispersoids that are fine and coherent with the aluminum matrix.
  • Lattice parameters of aluminum and Al 3 Sc are very close (0.405nm and 0.410nm respectively), indicating that there is minimal or no driving force for causing growth of the Al 3 Sc dispersoids.
  • This low interfacial energy makes the Al 3 Sc dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842°F (450°C).
  • Addition of magnesium in solid solution in aluminum increases the lattice parameter of the aluminum matrix, and decreases the lattice parameter mismatch further increasing the resistance of the Al 3 Sc to coarsening.
  • Addition of copper increases the strength of alloys through precipitation of Al 2 Cu ( ⁇ ') and Al 2 CuMg (S') phases.
  • these Al 3 Sc dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al 3 Sc in solution.
  • suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al 3 Sc in solution.
  • Erbium forms Al 3 Er dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
  • the lattice parameters of aluminum and Al 3 Er are close (0.405 nm and 0.417 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Er dispersoids.
  • This low interfacial energy makes the Al 3 Er dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842°F (450°C).
  • Addition of magnesium in solid solution in aluminum increases the lattice parameter of the aluminum matrix, and decreases the lattice parameter mismatch further increasing the resistance of the Al 3 Er to coarsening.
  • Addition of copper increases the strength of alloys through precipitation of Al 2 Cu ( ⁇ ') and Al 2 CuMg (S') phases.
  • these Al 3 Er dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Er in solution.
  • suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Er in solution.
  • Thulium forms metastable Al 3 Tm dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
  • the lattice parameters of aluminum and Al 3 Tm are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Tm dispersoids.
  • This low interfacial energy makes the Al 3 Tm dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842°F (450°C).
  • Addition of magnesium in solid solution in aluminum increases the lattice parameter of the aluminum matrix and decreases the lattice parameter mismatch further increasing the resistance to coarsening of the dispersoid.
  • Al 3 Tm dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Tm in solution.
  • Ytterbium forms Al 3 Yb dispersoids in the aluminum matrix that are fme and coherent with the aluminum matrix.
  • the lattice parameters of Al and Al 3 Yb are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Yb dispersoids.
  • This low interfacial energy makes the Al 3 Yb dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842°F (450°C).
  • Addition of magnesium in solid solution in aluminum increases the lattice parameter of the aluminum matrix and decreases the lattice parameter mismatch further increasing the resistance to coarsening of the Al 3 Yb.
  • Al 3 Yb dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al 3 Yb in solution.
  • Al 3 Lu dispersoids forms Al 3 Lu dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix.
  • the lattice parameters of Al and Al 3 Lu are close (0.405 nm and 0.419 nm respectively), indicating there is minimal driving force for causing growth of the Al 3 Lu dispersoids.
  • This low interfacial energy makes the Al 3 Lu dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842°F (450°C).
  • Addition of magnesium in solid solution in aluminum increases the lattice parameter of the aluminum matrix and decreases the lattice parameter mismatch further increasing the resistance to coarsening of Al 3 Lu.
  • Addition of copper increases the strength of alloys through precipitation of Al 2 Cu ( ⁇ ') and Al 2 CuMg (S') phases.
  • these Al 3 Lu dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al 3 Lu in solution.
  • suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al 3 Lu in solution.
  • Gadolinium forms metastable Al 3 Gd dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition.
  • the Al 3 Gd dispersoids are stable up to temperatures as high as about 842°F (450°C) due to their low diffusivity in aluminum.
  • the Al 3 Gd dispersoids have a D0 19 structure in the equilibrium condition.
  • gadolinium has fairly high solubility in the Al 3 X intermetallic dispersoids (where X is scandium, erbium, thulium, ytterbium or lutetium).
  • Gadolinium can substitute for the X atoms in Al 3 X intermetallic, thereby forming an ordered L1 2 phase which results in improved thermal and structural stability.
  • Yttrium forms metastable Al 3 Y dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 19 structure in the equilibrium condition.
  • the metastable Al 3 Y dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening.
  • Yttrium has a high solubility in the Al 3 X intermetallic dispersoids allowing large amounts of yttrium to substitute for X in the Al 3 X L1 2 dispersoids which results in improved thermal and structural stability.
  • Zirconium forms Al 3 Zr dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and D0 23 structure in the equilibrium condition.
  • the metastable Al 3 Zr dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening.
  • Zirconium has a high solubility in the Al 3 X dispersoids allowing large amounts of zirconium to substitute for X in the Al 3 X dispersoids, which results in improved thermal and structural stability.
  • Titanium forms Al 3 Ti dispersoids in the aluminum matrix that have an Ll 2 structure in the metastable condition and D0 22 structure in the equilibrium condition.
  • the metastable Al 3 Ti dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening.
  • Titanium has a high solubility in the Al 3 X dispersoids allowing large amounts of titanium to substitute for X in the Al 3 X dispersoids, which results in improved thermal and structural stability.
  • Hafnium forms metastable Al 3 Hf dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 23 structure in the equilibrium condition.
  • the Al 3 Hf dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening.
  • Hafnium has a high solubility in the Al 3 X dispersoids allowing large amounts of hafnium to substitute for scandium, erbium, thulium, ytterbium, and lutetium in the above mentioned Al 3 X dispersoids, which results in stronger and more thermally stable dispersoids.
  • Niobium forms metastable Al 3 Nb dispersoids in the aluminum matrix that have an L1 2 structure in the metastable condition and a D0 22 structure in the equilibrium condition.
  • Niobium has a lower solubility in the Al 3 X dispersoids than hafnium or yttrium, allowing relatively lower amounts of niobium than hafnium or yttrium to substitute for X in the Al 3 X dispersoids. Nonetheless, niobium can be very effective in slowing down the coarsening kinetics of the Al 3 X dispersoids because the Al 3 Nb dispersoids are thermally stable. The substitution of niobium for X in the above mentioned Al 3 X dispersoids results in stronger and more thermally stable dispersoids.
  • Al 3 X L1 2 precipitates improve elevated temperature mechanical properties in aluminum alloys for two reasons.
  • the precipitates are ordered intermetallic compounds. As a result, when the particles are sheared by glide dislocations during deformation, the dislocations separate into two partial dislocations separated by an anti-phase boundary on the glide plane. The energy to create the anti-phase boundary is the origin of the strengthening.
  • the cubic L1 2 crystal structure and lattice parameter of the precipitates are closely matched to the aluminum solid solution matrix. This results in a lattice coherency at the precipitate/matrix boundary that resists coarsening. The lack of an interphase boundary results in a low driving force for particle growth and resulting elevated temperature stability. Alloying elements in solid solution in the dispersed strengthening particles and in the aluminum matrix that tend to decrease the lattice mismatch between the matrix and particles will tend to increase the strengthening and elevated temperature stability of the alloy.
  • the amount of scandium present in the alloys of this invention may vary from about 0.1 to about 0.5 weight percent, more preferably from about 0.1 to about 0.35 weight percent, and even more preferably from about 0.1 to about 0.25 weight percent.
  • the Al-Sc phase diagram shown in FIG. 2 indicates a eutectic reaction at about 0.5 weight percent scandium at about 1219°F (659°C) resulting in a solid solution of scandium and aluminum and Al 3 Sc dispersoids.
  • Aluminum alloys with less than 0.5 weight percent scandium can be quenched from the melt to retain scandium in solid solution that may precipitate as dispersed L1 2 intermetallic Al 3 Sc following an aging treatment. Alloys with scandium in excess of the eutectic composition (hypereutectic alloys) can only retain scandium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 °C/second.
  • RSP rapid solidification processing
  • the amount of erbium present in the alloys of this invention may vary from about 0.1 to about 6.0 weight percent, more preferably from about 0.1 to about 4 weight percent, and even more preferably from about 0.2 to 2 weight percent.
  • the Al-Er phase diagram shown in FIG. 3 indicates a eutectic reaction at about 6 weight percent erbium at about 1211°F (655°C).
  • Aluminum alloys with less than about 6 weight percent erbium can be quenched from the melt to retain erbium in solid solutions that may precipitate as dispersed L1 2 intermetallic Al 3 Er following an aging treatment.
  • Alloys with erbium in excess of the eutectic composition can only retain erbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 °C/second. Alloys with erbium in excess of the eutectic composition (hypereutectic alloys) cooled normally will have a microstructure consisting of relatively large Al 3 Er dispersoid in a finely divided aluminum-Al 3 Er eutectic phase matrix.
  • the amount of thulium present in the alloys of this invention may vary from about 0.1 to about 10 weight percent, more preferably from about 0.2 to about 6 weight percent, and even more preferably from about 0.2 to about 4 weight percent.
  • the Al-Tm phase diagram shown in FIG. 4 indicates a eutectic reaction at about 10 weight percent thulium at about 1193°F (645°C).
  • Thulium forms metastable Al 3 Tm dispersoids in the aluminum matrix that have an L1 2 structure in the equilibrium condition.
  • the Al 3 Tm dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening.
  • Aluminum alloys with less than 10 weight percent thulium can be quenched from the melt to retain thulium in solid solution that may precipitate as dispersed metastable L1 2 intermetallic Al 3 Tm following an aging treatment. Alloys with thulium in excess of the eutectic composition can only retain Tm in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 °C/second.
  • RSP rapid solidification processing
  • the amount of ytterbium present in the alloys of this invention may vary from about 0.1 to about 15 weight percent more preferably from about 0.2 to about 8 weight percent, and even more preferably from about 0.2 to about 4 weight percent.
  • the Al-Yb phase diagram shown in FIG. 5 indicates a eutectic reaction at about 21 weight percent ytterbium at about 1157°F (625°C).
  • Aluminum alloys with less than about 21 weight percent ytterbium can be quenched from the melt to retain ytterbium in solid solution that may precipitate as dispersed L1 2 intermetallic Al 3 Yb following an aging treatment. Alloys with ytterbium in excess of the eutectic composition can only retain ytterbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 °C/second.
  • RSP rapid solidification processing
  • the amount of lutetium present in the alloys of this invention may vary from about 0.1 to about 12 weight percent, more preferably from 0.2 to about 8 weight percent, and even more preferably from about 0.2 to about 4 weight percent.
  • the Al-Lu phase diagram shown in FIG. 6 indicates a eutectic reaction at about 11.7 weight percent Lu at about 1202 °F (650°C).
  • Aluminum alloys with less than about 11.7 weight percent lutetium can be quenched from the melt to retain Lu in solid solution that may precipitate as dispersed L1 2 intermetallic Al 3 Lu following an aging treatment. Alloys with Lu in excess of the eutectic composition can only retain Lu in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10 3 °C/second.
  • RSP rapid solidification processing
  • the amount of gadolinium present in the alloys of this invention may vary from about 0.1 to about 4 weight percent, more preferably from 0.2 to about 2 weight percent, and even more preferably from about 0.5 to about 2 weight percent.
  • the amount of yttrium present in the alloys of this invention may vary from about 0.1 to about 4 weight percent, more preferably from 0.2 to about 2 weight percent, and even more preferably from about 0.5 to about 2 weight percent.
  • the amount of zirconium present in the alloys of this invention may vary from about 0.05 to about 1 weight percent, more preferably from 0.1 to about 0.75 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.
  • the amount of titanium present in the alloys of this invention may vary from about 0.05 to 2 about weight percent, more preferably from 0.1 to about 1 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.
  • the amount of hafnium present in the alloys of this invention may vary from about 0.05 to about 2 weight percent, more preferably from 0.1 to about 1 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.
  • the amount of niobium present in the alloys of this invention may vary from about 0.05 to about 1 weight percent, more preferably from 0.1 to about 0.75 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.
  • inventive alloys include at least one of about 0.001 weight percent to about 0.10 weight percent sodium, about 0.001 weight percent to about 0.10 weight percent calcium, about 0.001 to about 0.10 weight percent strontium, about 0.001 to about 0.10 weight percent antimony, 0.001 to 0.10 weight percent barium and about 0.001 to about 0.10 weight percent phosphorus. These are added to refine the microstructure of the eutectic phase and the primary silicon particle morphology and size.
  • These aluminum alloys may be made by any and all consolidation and fabrication processes known to those in the art such as casting (without further deformation), deformation processing (wrought processing), rapid solidification processing, forging, extrusion, rolling, die forging, powder metallurgy and others.
  • the rapid solidification process should have a cooling rate greater that about 10 3 °C/second including but not limited to powder processing, atomization, melt spinning, splat quenching, spray deposition, cold spray, plasma spray, laser melting and deposition, ball milling and cryomilling.
  • Preferred exemplary aluminum alloys of this invention include, but are not limited to (in weight percent):
  • alloys with the addition of about 0.2-3 weight percent Mg more preferably alloys with the addition of about 0.3-1.5 weight percent Mg, and even more preferably alloys with the addition of about 0.5-1.5 weight percent Mg; and alloys with the addition of about 0.5-5 weight percent Cu, more preferably alloys with the addition of about 1-4 weight percent Cu, and even more preferably alloys with the addition of about 2-4 weight percent Cu.
  • alloys with the addition of about 0.2-3 weight percent Mg more preferably alloys with the addition of about 0.3-1.5 weight percent Mg, and even more preferably alloys with the addition of about 0.5-1.5 weight percent Mg; and alloys with the addition of about 0.5-5 weight percent Cu, more preferably alloys with the addition of about 1-4 weight percent Cu, and even more preferably alloys with the addition of about 2-4 weight percent Cu.
EP09251012A 2008-04-18 2009-03-31 Alliages d'aluminium L12 durcissables par traitement thermique Withdrawn EP2112242A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/148,383 US20090260724A1 (en) 2008-04-18 2008-04-18 Heat treatable L12 aluminum alloys

Publications (1)

Publication Number Publication Date
EP2112242A1 true EP2112242A1 (fr) 2009-10-28

Family

ID=40635843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09251012A Withdrawn EP2112242A1 (fr) 2008-04-18 2009-03-31 Alliages d'aluminium L12 durcissables par traitement thermique

Country Status (2)

Country Link
US (2) US20090260724A1 (fr)
EP (1) EP2112242A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251447A1 (fr) * 2009-05-06 2010-11-17 United Technologies Corporation Dépôt par pulvérisation d'alliages d'aluminium L12
WO2012110788A3 (fr) * 2011-02-18 2012-10-26 Brunel University Procédé d'affinage d'alliages métalliques
WO2012171552A1 (fr) * 2011-06-14 2012-12-20 Federal-Mogul Nürnberg GmbH Piston pour moteur à combustion interne, procédé de fabrication d'un piston et utilisation d'un alliage pour la coulée d'un piston
CN104651673A (zh) * 2015-03-09 2015-05-27 苏州圣谱拉新材料科技有限公司 一种耐拉伸的镍铝合金材料及其制备方法
WO2015166167A1 (fr) * 2014-04-29 2015-11-05 Saint Jean Industries Procédé de fabrication de pièces métalliques ou en composite a matrice métallique issues de fabrication additive suivie d'une opération de forgeage desdites pièces
EP3019291A4 (fr) * 2013-07-10 2017-03-01 Alcoa Inc. Procédés de production de produits forgés et d'autres produits travaillés
CN106756305A (zh) * 2017-01-03 2017-05-31 江苏理工学院 一种铝合金变质处理方法
CN106884129A (zh) * 2017-03-14 2017-06-23 广州金邦液态模锻技术有限公司 一种用于挤压铸造铝合金转向节的热处理工艺
EP2582855A4 (fr) * 2010-06-16 2017-10-04 Norsk Hydro ASA Alliage d'aluminium à couler résistant à la chaleur
CN107326228A (zh) * 2017-06-23 2017-11-07 兰州理工大学 一种复合变质过共晶铝硅合金及其制备方法
CN108193096A (zh) * 2017-12-11 2018-06-22 南昌大学 一种高强高韧的亚共晶铝硅铸造合金及其制备方法
CN109576538A (zh) * 2018-11-09 2019-04-05 广州埃烯金属科技有限公司 一种石墨烯稀土钪协同增强铸造铝合金及其在汽车轮毂方面的应用
CN109735748A (zh) * 2019-01-31 2019-05-10 中国兵器科学研究院宁波分院 一种耐热铸造铝合金活塞材料及其制备方法
CN109811164A (zh) * 2019-03-01 2019-05-28 中南大学 一种增材制造铝合金的制备方法
CN110106380A (zh) * 2019-05-21 2019-08-09 天津立中合金集团有限公司 利用Mg激发P和Sb交互作用来提高铝合金力学性能的方法
CN110116211A (zh) * 2019-05-16 2019-08-13 沈阳飞机工业(集团)有限公司 一种选择性激光熔化AlSi10Mg合金制品的热处理方法
WO2020113713A1 (fr) * 2018-12-06 2020-06-11 广东省材料与加工研究所 Alliage d'aluminium-silicium coulé à résistance et ductilité élevées, procédé de fabrication de celui-ci et applications de celui-ci
CN111809085A (zh) * 2020-07-15 2020-10-23 宣城建永精密金属有限公司 高压电气系统传动箱及其铸造工艺
CN112458327A (zh) * 2020-11-09 2021-03-09 哈尔滨理工大学 一种改善zl207铝合金组织与力学性能的方法
US11554443B2 (en) 2016-01-14 2023-01-17 Howmet Aerospace Inc. Methods for producing forged products and other worked products

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021444B (zh) * 2010-12-09 2012-08-22 北京科技大学 一种高导电耐热铝合金导线及其制备方法
ITTO20110257A1 (it) * 2011-03-24 2012-09-25 Avio Spa Metodo per la riparazione di un componente in lega di alluminio
CN102296218A (zh) * 2011-08-24 2011-12-28 吴江市精工铝字制造厂 高强度耐热性镁铝合金
US10174409B2 (en) * 2011-10-28 2019-01-08 Alcoa Usa Corp. High performance AlSiMgCu casting alloy
CN103361524B (zh) * 2013-07-05 2015-05-20 苏州有色金属研究院有限公司 用于过共晶铝硅合金的复合变质方法
CN103627935A (zh) * 2013-12-09 2014-03-12 国家电网公司 一种非热处理型耐热铝合金单丝及其制备方法
JP2017508065A (ja) 2013-12-20 2017-03-23 アルコア インコーポレイテッド 高性能AlSiMgCu鋳造合金
CN106834815B (zh) * 2017-02-27 2018-04-10 广东省材料与加工研究所 一种铝锆碳稀土细化剂及其制备方法
US20200232071A1 (en) * 2019-01-18 2020-07-23 Divergent Technologies, Inc. Aluminum alloys
CN110029250B (zh) * 2019-04-03 2020-05-19 宁波合力模具科技股份有限公司 高延伸率耐热铸造铝合金及其压力铸造制备方法
CN110218918B (zh) * 2019-07-30 2021-02-12 国网河南省电力公司电力科学研究院 高导电率、耐热铝合金及其制备方法
CN111041292A (zh) * 2019-12-25 2020-04-21 宁波旭升汽车技术股份有限公司 一种锻造铝合金及其制备工艺
CN111378876B (zh) * 2020-05-05 2022-02-08 台州职业技术学院 一种真空泵转子用含Sc铝合金及其制备方法
CN111394628B (zh) * 2020-05-15 2021-06-04 浙大宁波理工学院 一种原位双相颗粒增强富Fe活塞铝基复合材料及其制备方法
CN114672701B (zh) * 2022-04-19 2023-05-09 上海交通大学包头材料研究院 一种高强度多元共晶铸造铝合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208631A1 (fr) * 1985-06-28 1987-01-14 Cegedur Societe De Transformation De L'aluminium Pechiney Alliages d'Al à hautes teneurs de Li et Si et un procédé de fabrication
US4874440A (en) * 1986-03-20 1989-10-17 Aluminum Company Of America Superplastic aluminum products and alloys
WO1995032074A2 (fr) * 1994-05-25 1995-11-30 Ashurst Corporation Alliages aluminium-scandium et leurs utilisations
WO1996010099A1 (fr) * 1994-09-26 1996-04-04 Ashurst Technology Corporation (Ireland) Limited Alliages de fonderie d'aluminium a haute resistance pour applications structurelles
JPH11156584A (ja) * 1997-12-01 1999-06-15 Kobe Steel Ltd アルミニウム合金溶接用溶加材及びそれを使用したアルミニウム合金材の溶接方法
US6248453B1 (en) 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
EP1439239A1 (fr) * 2003-01-15 2004-07-21 United Technologies Corporation Alliage à base d'aluminium
WO2005047554A1 (fr) * 2003-11-11 2005-05-26 Eads Deutschland Gmbh Alliage d'aluminium coule al-mg-si a teneur en scandium
US20060269437A1 (en) 2005-05-31 2006-11-30 Pandey Awadh B High temperature aluminum alloys

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) * 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
US4041123A (en) * 1971-04-20 1977-08-09 Westinghouse Electric Corporation Method of compacting shaped powdered objects
US3816080A (en) * 1971-07-06 1974-06-11 Int Nickel Co Mechanically-alloyed aluminum-aluminum oxide
US4259112A (en) * 1979-04-05 1981-03-31 Dwa Composite Specialties, Inc. Process for manufacture of reinforced composites
US4647321A (en) * 1980-11-24 1987-03-03 United Technologies Corporation Dispersion strengthened aluminum alloys
US4463058A (en) * 1981-06-16 1984-07-31 Atlantic Richfield Company Silicon carbide whisker composites
FR2529909B1 (fr) * 1982-07-06 1986-12-12 Centre Nat Rech Scient Alliages amorphes ou microcristallins a base d'aluminium
US4499048A (en) * 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic body
US4469537A (en) * 1983-06-27 1984-09-04 Reynolds Metals Company Aluminum armor plate system
US4661172A (en) * 1984-02-29 1987-04-28 Allied Corporation Low density aluminum alloys and method
US4713216A (en) * 1985-04-27 1987-12-15 Showa Aluminum Kabushiki Kaisha Aluminum alloys having high strength and resistance to stress and corrosion
US4626294A (en) * 1985-05-28 1986-12-02 Aluminum Company Of America Lightweight armor plate and method
US4597792A (en) * 1985-06-10 1986-07-01 Kaiser Aluminum & Chemical Corporation Aluminum-based composite product of high strength and toughness
US5226983A (en) * 1985-07-08 1993-07-13 Allied-Signal Inc. High strength, ductile, low density aluminum alloys and process for making same
US4667497A (en) * 1985-10-08 1987-05-26 Metals, Ltd. Forming of workpiece using flowable particulate
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US4689090A (en) * 1986-03-20 1987-08-25 Aluminum Company Of America Superplastic aluminum alloys containing scandium
US4755221A (en) * 1986-03-24 1988-07-05 Gte Products Corporation Aluminum based composite powders and process for producing same
US4865806A (en) * 1986-05-01 1989-09-12 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix
JPS6447831A (en) * 1987-08-12 1989-02-22 Takeshi Masumoto High strength and heat resistant aluminum-based alloy and its production
US5066342A (en) * 1988-01-28 1991-11-19 Aluminum Company Of America Aluminum-lithium alloys and method of making the same
US4834942A (en) * 1988-01-29 1989-05-30 The United States Of America As Represented By The Secretary Of The Navy Elevated temperature aluminum-titanium alloy by powder metallurgy process
US4834810A (en) * 1988-05-06 1989-05-30 Inco Alloys International, Inc. High modulus A1 alloys
US5462712A (en) * 1988-08-18 1995-10-31 Martin Marietta Corporation High strength Al-Cu-Li-Zn-Mg alloys
US4927470A (en) * 1988-10-12 1990-05-22 Aluminum Company Of America Thin gauge aluminum plate product by isothermal treatment and ramp anneal
US4946517A (en) * 1988-10-12 1990-08-07 Aluminum Company Of America Unrecrystallized aluminum plate product by ramp annealing
AU620155B2 (en) * 1988-10-15 1992-02-13 Koji Hashimoto Amorphous aluminum alloys
US4853178A (en) * 1988-11-17 1989-08-01 Ceracon, Inc. Electrical heating of graphite grain employed in consolidation of objects
US4933140A (en) * 1988-11-17 1990-06-12 Ceracon, Inc. Electrical heating of graphite grain employed in consolidation of objects
US5059390A (en) * 1989-06-14 1991-10-22 Aluminum Company Of America Dual-phase, magnesium-based alloy having improved properties
US4964927A (en) * 1989-03-31 1990-10-23 University Of Virginia Alumini Patents Aluminum-based metallic glass alloys
US4915605A (en) * 1989-05-11 1990-04-10 Ceracon, Inc. Method of consolidation of powder aluminum and aluminum alloys
US4988464A (en) * 1989-06-01 1991-01-29 Union Carbide Corporation Method for producing powder by gas atomization
US5039476A (en) * 1989-07-28 1991-08-13 Ube Industries, Ltd. Method for production of powder metallurgy alloy
US5076340A (en) * 1989-08-07 1991-12-31 Dural Aluminum Composites Corp. Cast composite material having a matrix containing a stable oxide-forming element
US5130209A (en) * 1989-11-09 1992-07-14 Allied-Signal Inc. Arc sprayed continuously reinforced aluminum base composites and method
JP2724762B2 (ja) * 1989-12-29 1998-03-09 本田技研工業株式会社 高強度アルミニウム基非晶質合金
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
JP2619118B2 (ja) * 1990-06-08 1997-06-11 健 増本 粒子分散型高強度非晶質アルミニウム合金
US5133931A (en) * 1990-08-28 1992-07-28 Reynolds Metals Company Lithium aluminum alloy system
US5032352A (en) * 1990-09-21 1991-07-16 Ceracon, Inc. Composite body formation of consolidated powder metal part
JP2864287B2 (ja) * 1990-10-16 1999-03-03 本田技研工業株式会社 高強度高靭性アルミニウム合金の製造方法および合金素材
JPH04218637A (ja) * 1990-12-18 1992-08-10 Honda Motor Co Ltd 高強度高靱性アルミニウム合金の製造方法
US5198045A (en) * 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
JP2911673B2 (ja) * 1992-03-18 1999-06-23 健 増本 高強度アルミニウム合金
JPH0673479A (ja) * 1992-05-06 1994-03-15 Honda Motor Co Ltd 高強度高靱性Al合金
CA2107421A1 (fr) * 1992-10-16 1994-04-17 Steven Alfred Miller Methode de pulverisation a faible pression de gaz
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
US5858131A (en) * 1994-11-02 1999-01-12 Tsuyoshi Masumoto High strength and high rigidity aluminum-based alloy and production method therefor
US5624632A (en) * 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
US6702982B1 (en) * 1995-02-28 2004-03-09 The United States Of America As Represented By The Secretary Of The Army Aluminum-lithium alloy
JP4080013B2 (ja) * 1996-09-09 2008-04-23 住友電気工業株式会社 高強度高靱性アルミニウム合金およびその製造方法
US5882449A (en) * 1997-07-11 1999-03-16 Mcdonnell Douglas Corporation Process for preparing aluminum/lithium/scandium rolled sheet products
US6312643B1 (en) * 1997-10-24 2001-11-06 The United States Of America As Represented By The Secretary Of The Air Force Synthesis of nanoscale aluminum alloy powders and devices therefrom
US6071324A (en) * 1998-05-28 2000-06-06 Sulzer Metco (Us) Inc. Powder of chromium carbide and nickel chromium
AT407404B (de) * 1998-07-29 2001-03-26 Miba Gleitlager Ag Zwischenschicht, insbesondere bindungsschicht, aus einer legierung auf aluminiumbasis
AT407532B (de) * 1998-07-29 2001-04-25 Miba Gleitlager Ag Verbundwerkstoff aus zumindest zwei schichten
DE19838017C2 (de) * 1998-08-21 2003-06-18 Eads Deutschland Gmbh Schweißbare, korrosionsbeständige AIMg-Legierungen, insbesondere für die Verkehrstechnik
DE19838018C2 (de) * 1998-08-21 2002-07-25 Eads Deutschland Gmbh Geschweißtes Bauteil aus einer schweißbaren, korrosionsbeständigen hochmagnesiumhaltigen Aluminium-Magnesium-Legierung
DE19838015C2 (de) * 1998-08-21 2002-10-17 Eads Deutschland Gmbh Gewalztes, stranggepreßtes, geschweißtes oder geschmiedetes Bauteil aus einer schweißbaren, korrosionsbeständigen hochmagnesiumhaltigen Aluminium-Magnesium-Legierung
US6309594B1 (en) * 1999-06-24 2001-10-30 Ceracon, Inc. Metal consolidation process employing microwave heated pressure transmitting particulate
US6139653A (en) * 1999-08-12 2000-10-31 Kaiser Aluminum & Chemical Corporation Aluminum-magnesium-scandium alloys with zinc and copper
US6368427B1 (en) * 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6355209B1 (en) * 1999-11-16 2002-03-12 Ceracon, Inc. Metal consolidation process applicable to functionally gradient material (FGM) compositons of tungsten, nickel, iron, and cobalt
AU2001264646A1 (en) * 2000-05-18 2001-11-26 Smith And Wesson Corp. Scandium containing aluminum alloy firearm
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
US6630008B1 (en) * 2000-09-18 2003-10-07 Ceracon, Inc. Nanocrystalline aluminum metal matrix composites, and production methods
US6524410B1 (en) * 2001-08-10 2003-02-25 Tri-Kor Alloys, Llc Method for producing high strength aluminum alloy welded structures
US6918970B2 (en) * 2002-04-10 2005-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High strength aluminum alloy for high temperature applications
WO2003104505A2 (fr) * 2002-04-24 2003-12-18 Questek Innovations Llc Alliages d'al renforces par precipitation en nanophase traites par le biais de l'etat amorphe
US6880871B2 (en) * 2002-09-05 2005-04-19 Newfrey Llc Drive-in latch with rotational adjustment
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US7048815B2 (en) * 2002-11-08 2006-05-23 Ues, Inc. Method of making a high strength aluminum alloy composition
US7648593B2 (en) * 2003-01-15 2010-01-19 United Technologies Corporation Aluminum based alloy
US6974510B2 (en) * 2003-02-28 2005-12-13 United Technologies Corporation Aluminum base alloys
US7344675B2 (en) * 2003-03-12 2008-03-18 The Boeing Company Method for preparing nanostructured metal alloys having increased nitride content
US20040191111A1 (en) * 2003-03-14 2004-09-30 Beijing University Of Technology Er strengthening aluminum alloy
US6866817B2 (en) * 2003-07-14 2005-03-15 Chung-Chih Hsiao Aluminum based material having high conductivity
US7241328B2 (en) * 2003-11-25 2007-07-10 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
US20050147520A1 (en) * 2003-12-31 2005-07-07 Guido Canzona Method for improving the ductility of high-strength nanophase alloys
US7547366B2 (en) * 2004-07-15 2009-06-16 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
US7393559B2 (en) * 2005-02-01 2008-07-01 The Regents Of The University Of California Methods for production of FGM net shaped body for various applications
JP5079225B2 (ja) * 2005-08-25 2012-11-21 富士重工業株式会社 マグネシウムシリサイド粒を分散した状態で含むマグネシウム系金属粒子からなる金属粉末を製造する方法
US7584778B2 (en) * 2005-09-21 2009-09-08 United Technologies Corporation Method of producing a castable high temperature aluminum alloy by controlled solidification
US20080066833A1 (en) * 2006-09-19 2008-03-20 Lin Jen C HIGH STRENGTH, HIGH STRESS CORROSION CRACKING RESISTANT AND CASTABLE Al-Zn-Mg-Cu-Zr ALLOY FOR SHAPE CAST PRODUCTS
US7875133B2 (en) * 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7811395B2 (en) * 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US8409497B2 (en) * 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208631A1 (fr) * 1985-06-28 1987-01-14 Cegedur Societe De Transformation De L'aluminium Pechiney Alliages d'Al à hautes teneurs de Li et Si et un procédé de fabrication
US4874440A (en) * 1986-03-20 1989-10-17 Aluminum Company Of America Superplastic aluminum products and alloys
WO1995032074A2 (fr) * 1994-05-25 1995-11-30 Ashurst Corporation Alliages aluminium-scandium et leurs utilisations
WO1996010099A1 (fr) * 1994-09-26 1996-04-04 Ashurst Technology Corporation (Ireland) Limited Alliages de fonderie d'aluminium a haute resistance pour applications structurelles
JPH11156584A (ja) * 1997-12-01 1999-06-15 Kobe Steel Ltd アルミニウム合金溶接用溶加材及びそれを使用したアルミニウム合金材の溶接方法
US6248453B1 (en) 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
EP1439239A1 (fr) * 2003-01-15 2004-07-21 United Technologies Corporation Alliage à base d'aluminium
WO2005047554A1 (fr) * 2003-11-11 2005-05-26 Eads Deutschland Gmbh Alliage d'aluminium coule al-mg-si a teneur en scandium
US20060269437A1 (en) 2005-05-31 2006-11-30 Pandey Awadh B High temperature aluminum alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIDDLE, Y. W. ET AL: "A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys", METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY AND MATERIALS SCIENCE , VOLUME DATE 2004, 35A(1), 341-350 CODEN: MMTAEB; ISSN: 1073-5623, 2003, XP002528950 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251447A1 (fr) * 2009-05-06 2010-11-17 United Technologies Corporation Dépôt par pulvérisation d'alliages d'aluminium L12
EP2582855A4 (fr) * 2010-06-16 2017-10-04 Norsk Hydro ASA Alliage d'aluminium à couler résistant à la chaleur
CN103370429B (zh) * 2011-02-18 2016-11-23 布鲁内尔大学 细化金属合金的方法
CN103370429A (zh) * 2011-02-18 2013-10-23 布鲁内尔大学 细化金属合金的方法
US10329651B2 (en) 2011-02-18 2019-06-25 Brunel University London Method of refining metal alloys
WO2012110788A3 (fr) * 2011-02-18 2012-10-26 Brunel University Procédé d'affinage d'alliages métalliques
WO2012171552A1 (fr) * 2011-06-14 2012-12-20 Federal-Mogul Nürnberg GmbH Piston pour moteur à combustion interne, procédé de fabrication d'un piston et utilisation d'un alliage pour la coulée d'un piston
US10307814B2 (en) 2013-07-10 2019-06-04 Arconic Inc. Methods for producing forged products and other worked products
US10220434B2 (en) 2013-07-10 2019-03-05 Arconic Inc. Methods for producing forged products and other worked products
EP3019291A4 (fr) * 2013-07-10 2017-03-01 Alcoa Inc. Procédés de production de produits forgés et d'autres produits travaillés
WO2015166167A1 (fr) * 2014-04-29 2015-11-05 Saint Jean Industries Procédé de fabrication de pièces métalliques ou en composite a matrice métallique issues de fabrication additive suivie d'une opération de forgeage desdites pièces
CN106413946A (zh) * 2014-04-29 2017-02-15 圣让工业公司 由增材制造随后锻造部件的操作制造金属制部件或金属基质复合物制部件的方法
RU2696108C2 (ru) * 2014-04-29 2019-07-31 Сейнт Джин Индастрис Способ изготовления деталей из металла или композиционного материала с металлической матрицей в результате аддитивного производства с последующей операцией, включающей ковку указанных деталей
CN106413946B (zh) * 2014-04-29 2020-01-03 圣让工业公司 由增材制造随后锻造部件的操作制造金属制部件或金属基质复合物制部件的方法
AU2015255150B2 (en) * 2014-04-29 2018-11-08 Saint Jean Industries Method for the production of parts made from metal or metal matrix composite and resulting from additive manufacturing followed by an operation involving the forging of said parts
CN104651673A (zh) * 2015-03-09 2015-05-27 苏州圣谱拉新材料科技有限公司 一种耐拉伸的镍铝合金材料及其制备方法
US11554443B2 (en) 2016-01-14 2023-01-17 Howmet Aerospace Inc. Methods for producing forged products and other worked products
CN106756305A (zh) * 2017-01-03 2017-05-31 江苏理工学院 一种铝合金变质处理方法
CN106884129A (zh) * 2017-03-14 2017-06-23 广州金邦液态模锻技术有限公司 一种用于挤压铸造铝合金转向节的热处理工艺
CN107326228B (zh) * 2017-06-23 2019-09-10 兰州理工大学 一种复合变质过共晶铝硅合金及其制备方法
CN107326228A (zh) * 2017-06-23 2017-11-07 兰州理工大学 一种复合变质过共晶铝硅合金及其制备方法
CN108193096A (zh) * 2017-12-11 2018-06-22 南昌大学 一种高强高韧的亚共晶铝硅铸造合金及其制备方法
CN108193096B (zh) * 2017-12-11 2020-06-16 南昌大学 一种高强高韧的亚共晶铝硅铸造合金及其制备方法
CN109576538A (zh) * 2018-11-09 2019-04-05 广州埃烯金属科技有限公司 一种石墨烯稀土钪协同增强铸造铝合金及其在汽车轮毂方面的应用
WO2020113713A1 (fr) * 2018-12-06 2020-06-11 广东省材料与加工研究所 Alliage d'aluminium-silicium coulé à résistance et ductilité élevées, procédé de fabrication de celui-ci et applications de celui-ci
CN109735748A (zh) * 2019-01-31 2019-05-10 中国兵器科学研究院宁波分院 一种耐热铸造铝合金活塞材料及其制备方法
CN109811164A (zh) * 2019-03-01 2019-05-28 中南大学 一种增材制造铝合金的制备方法
CN109811164B (zh) * 2019-03-01 2020-10-16 中南大学 一种增材制造铝合金的制备方法
CN110116211A (zh) * 2019-05-16 2019-08-13 沈阳飞机工业(集团)有限公司 一种选择性激光熔化AlSi10Mg合金制品的热处理方法
CN110106380A (zh) * 2019-05-21 2019-08-09 天津立中合金集团有限公司 利用Mg激发P和Sb交互作用来提高铝合金力学性能的方法
CN111809085A (zh) * 2020-07-15 2020-10-23 宣城建永精密金属有限公司 高压电气系统传动箱及其铸造工艺
CN112458327A (zh) * 2020-11-09 2021-03-09 哈尔滨理工大学 一种改善zl207铝合金组织与力学性能的方法

Also Published As

Publication number Publication date
US20130240095A1 (en) 2013-09-19
US20090260724A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP2241644B1 (fr) Alliages d'aluminium L12 traitables thermiquement
EP2112242A1 (fr) Alliages d'aluminium L12 durcissables par traitement thermique
US7909947B2 (en) High strength L12 aluminum alloys
EP2112239B1 (fr) Procédé de fabrication d'alliages d'aluminium â haute résistance comprenant des precipités l12
EP2112243B1 (fr) Alliages d'aluminium du type L12 à haute résistance
EP2112244A1 (fr) Alliages d'aluminium L12 à haute résistance
EP2112240B1 (fr) Procédé de fabrication d'alliages d'aluminium l12 renforcés par dispersion
EP2110453B1 (fr) Alliages d'aluminium du type L12
EP2112241B1 (fr) Alliages d'aluminium amorphes renforcés par L12
EP2110450B1 (fr) Procédé de fabrication d'alliages d'aluminium l12 à haute résistance
EP2110451B1 (fr) Alliages d'aluminium L12 à répartition bimodale et trimodale
Pandey et al. High Strength L12 Aluminum Alloys
Pandey et al. Heat treatable L1 2 aluminum alloys
Pandey et al. High strength aluminum alloys with L1 2 precipitates
Pandey et al. Dispersion strengthened L1 2 aluminum alloys
Pandey et al. L1 2 strengthened amorphous aluminum alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100203

17Q First examination report despatched

Effective date: 20100302

AKX Designation fees paid

Designated state(s): DE GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151020