EP2108032B1 - Compositions de carburant sans plomb - Google Patents
Compositions de carburant sans plomb Download PDFInfo
- Publication number
- EP2108032B1 EP2108032B1 EP06846540.0A EP06846540A EP2108032B1 EP 2108032 B1 EP2108032 B1 EP 2108032B1 EP 06846540 A EP06846540 A EP 06846540A EP 2108032 B1 EP2108032 B1 EP 2108032B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vol
- fuel composition
- unleaded fuel
- octane
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 196
- 239000000446 fuel Substances 0.000 title claims description 142
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 88
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 77
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 claims description 47
- 150000004982 aromatic amines Chemical class 0.000 claims description 41
- 239000000654 additive Substances 0.000 claims description 38
- 125000000217 alkyl group Chemical group 0.000 claims description 36
- 125000004432 carbon atom Chemical group C* 0.000 claims description 35
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 claims description 32
- 230000000996 additive effect Effects 0.000 claims description 29
- 150000001555 benzenes Chemical class 0.000 claims description 27
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 claims description 17
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 claims description 15
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 12
- 239000003599 detergent Substances 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 150000005215 alkyl ethers Chemical class 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 claims description 3
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 claims description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 22
- 235000006708 antioxidants Nutrition 0.000 description 11
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 10
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 4
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 150000001983 dialkylethers Chemical group 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- HRXZRAXKKNUKRF-UHFFFAOYSA-N 4-ethylaniline Chemical compound CCC1=CC=C(N)C=C1 HRXZRAXKKNUKRF-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000003987 high-resolution gas chromatography Methods 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- -1 tert-amyl groups Chemical group 0.000 description 2
- OMMLUKLXGSRPHK-UHFFFAOYSA-N tetramethylbutane Chemical compound CC(C)(C)C(C)(C)C OMMLUKLXGSRPHK-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- QUKOJKFJIHSBKV-UHFFFAOYSA-N 2,2,3,3-tetramethylpentane Chemical compound CCC(C)(C)C(C)(C)C QUKOJKFJIHSBKV-UHFFFAOYSA-N 0.000 description 1
- DGQQLJUOIVFNLX-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1.CC1=CC=CC(N)=C1 DGQQLJUOIVFNLX-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000899793 Hypsophrys nicaraguensis Species 0.000 description 1
- 241000221096 Simmondsia chinensis Species 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000003254 gasoline additive Substances 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FLTJDUOFAQWHDF-UHFFFAOYSA-N trimethyl pentane Natural products CCCCC(C)(C)C FLTJDUOFAQWHDF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/023—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/10—Use of additives to fuels or fires for particular purposes for improving the octane number
Definitions
- the present application relates to unleaded fuel compositions.
- the octane rating of the fuel must be high enough to prevent knocking.
- Gasolines sold at service stations typically have an octane rating of from about 87 to about 93. Fuels having such octane ratings are satisfactory for most automotive engines.
- EP 1 650 289 , US 2006/0123696 , US 5 470 358 and US 5 284 984 disclose unleaded duel compositions.
- An unleaded fuel composition comprising: 25 vol.% or more of alkylated benzenes comprising alkyl groups having from 1 to 4 carbon atoms; 5 vol.% or more of one or more aromatic amines; and, an isoparaffin composition selected from the group consisting of alkylate, a combination of isoparaffins having a total number of carbon atoms of 11 or less, and combinations thereof.
- the present application provides unleaded fuel compositions having an octane rating of 105 or more.
- the present application provides unleaded fuel compositions having an octane rating greater than 105.
- the present application provides unleaded fuel compositions having an octane rating of 106 or more.
- the present application also provides unleaded fuel compositions having an octane rating of 110 or more.
- the present application also provides an unleaded fuel composition
- an unleaded fuel composition comprising: 25 vol.% or more of alkylated benzenes comprising alkyl groups having from 1 to 4 carbon atoms; 5 vol.% or more of one or more aromatic amines; and, an isoparaffin composition selected from the group consisting of alkylate, a combination of isoparaffins having a total number of carbon atoms of 11 or less, and combinations thereof.
- the present application also provides an unleaded fuel composition comprising: from about 40 vol.% to about 50 vol.% alkylate; from about 30 vol.% to about 40 vol.% toluene; from about 10 vol.% to about 20 vol.% m-xylene; and, from 2 vol.% to about 12 vol.% aniline.
- the present application also provides an unleaded fuel composition comprising: about 44 vol.% alkylate comprising about 70 vol.% or more isoparaffins having a total of 8 carbon atoms; about 34 vol.% toluene; about 15 vol.% m-xylene; and, about 7 vol.% aniline.
- the present application provides unleaded fuel compositions having an octane rating which is higher than typically demonstrated by similar unleaded fuels.
- the unleaded fuels of the present application comprise aromatic amine, which is believed to contribute to a higher octane rating.
- the unleaded fuel compositions it is advantageous for the unleaded fuel compositions to have an octane rating sufficiently high to prevent knocking. In high performance applications, it is advantageous for unleaded fuel compositions to have an octane rating sufficiently high to boost power output from the high performance engine. In one embodiment, the application provides an unleaded racing fuel having an octane rating sufficiently high to boost the power output from a racing engine.
- the octane rating of a fuel composition generally is calculated as the sum of the Research Octane Number (RON) and the Motor Octane Number (MON) divided by 2, i.e., (R+M)/2. Unless otherwise indicated, the Research Octane Number (RON) is determined according to method ASTM D-2699-04a (2004) and the Motor Octane Number (MON) is determined according to method ASTM D-2700-04a (2004), both incorporated by reference.
- the unleaded fuel composition of the present application has an octane rating of about 105 or more. In one embodiment, the unleaded fuel composition has an octane rating of greater than 105. In another embodiment, the unleaded fuel composition of the present application has an octane rating of about 106 or more. In one embodiment, the unleaded fuel composition has an octane rating of about 110 or more.
- the unleaded fuel composition optionally comprises one or more oxygenate octane booster.
- the unleaded fuel composition also optionally comprises one or more additional additives.
- the unleaded fuel composition comprises a combination of alkylated benzenes.
- the unleaded fuel composition comprises about 25 vol.% or more of a combination of alkylated benzenes.
- vol.% is based on the total volume of the unleaded fuel composition, unless otherwise indicated.
- the unleaded fuel composition comprises about 40 vol.% or more alkylated benzenes.
- the unleaded fuel composition comprises about 60 vol.% or less alkylated benzenes. In one embodiment, the unleaded fuel composition comprises about 55 vol.% or less alkylated benzenes. In yet another embodiment, the unleaded fuel composition comprises about 50 vol.% or less alkylated benzenes.
- Suitable alkylated benzenes have the following general structure: wherein R, R 1 , and R 2 are selected from the group consisting of hydrogen and alkyl groups having from 1 to 4 carbon atoms, provided that at least one of R, R 1 , and R 2 is an alkyl group. In one embodiment, R, R 1 , and R 2 are selected from the group consisting of hydrogen and alkyl groups having from 1 to 2 carbon atoms. In one embodiment, R, R 1 , and R 2 are selected from the group consisting of hydrogen and methyl groups. In one embodiment, the alkylated benzene is mono-alkylated benzene. In another embodiment, the alkylated benzene is a di-alkylated benzene. In another embodiment, the alkylated benzene is a tri-alkylated benzene. In one embodiment, one or more of R, R 1 , and R 2 are methyl groups.
- the alkylated benzenes are a combination of mono-alkylated benzene, di-alkylated benzene, and tri-alkylated benzene.
- the unleaded fuel composition comprises a combination of monomethyl benzene and dimethyl benzene. In one embodiment, the combination further comprises trimethyl benzene. In one embodiment, the unleaded fuel composition comprises a combination of xylene and toluene. In one embodiment, the unleaded fuel composition further comprises 1,3,5-trimethylbenzene.
- the unleaded fuel composition also comprises one or more aromatic amine.
- the unleaded fuel composition For lower performance applications, it is possible for the unleaded fuel composition to comprise about 0.1 vol.% or more of one or more aromatic amine. This is particularly true where the isoparaffin comprises the less expensive alkylate.
- the unleaded fuel composition comprises 5 vol.% or more of the aromatic amine. In one embodiment, the unleaded fuel composition comprises greater 5 vol.% of the aromatic amine. In one embodiment, the unleaded fuel composition comprises about 6 vol.% or more of the aromatic amine. In another embodiment, the unleaded fuel composition comprises about 7 vol.% or more of the aromatic amine.
- the unleaded fuel composition comprises about 15 vol.% or less of the aromatic amine. In one embodiment, the unleaded fuel composition comprises from about 10 vol.% or less of the aromatic amine. In one embodiment, the unleaded fuel composition comprises 8 vol.% or less of the aromatic amine. In one embodiment, the unleaded fuel composition contains about 7 vol.% of the aromatic amine.
- aromatic amine refers to one or more aromatic amines having the following general structure: wherein R 3 , R 4 and R 5 independently are selected from the group consisting of hydrogen and alkyl groups having from about 1 to 4 carbon atoms.
- R 3 is hydrogen.
- the alkyl groups have from about 1 to 2 carbon atoms.
- the alkyl groups are methyl groups.
- R 3 , R 4 and R 5 are hydrogens.
- the aromatic amine has one or more alkyl substituents on the aromatic ring.
- the alkyl group may be at any position relative to the nitrogen containing substituent.
- the alkyl group is at a meta- position relative to the nitrogen containing substituent.
- the alkyl group is at a para- position relative to the nitrogen containing substituent.
- the nitrogen bears an alkyl group.
- the octane rating of the unleaded fuel may not be as high.
- Aromatic amines used in the examples have the following general structure:
- the isoparaffin composition isoparaffin composition
- the unleaded fuel composition also comprises an isoparaffin composition.
- the unleaded fuel composition comprises about 40 vol.% or more of the isoparaffin composition. In one embodiment, the unleaded fuel composition comprises about 45 vol.% or more of the isoparaffin composition. In one embodiment, the unleaded fuel composition comprises about 50 vol.% or more of the isoparaffin composition.
- the unleaded fuel composition comprises about 80 vol.% or less of the isoparaffin composition. In one embodiment, the unleaded fuel composition comprises from about 70 vol.% or less of the isoparaffin composition. In one embodiment, the unleaded fuel composition comprises about 60 vol.% or less of the isoparaffin composition.
- Suitable isoparaffin compositions comprise alkylate, a combination of isoparaffins, and combinations thereof.
- the isoparaffin composition comprises alkylate.
- alkylate typically refers to branched-chain paraffin.
- the branched-chain paraffin typically is derived from the reaction of isoparaffin with olefin. Alkylation is described, for example, in J. Gary, et al. Petroleum Refining, Technology and Economics (2d Ed. 1984) Chapter 10, pp. 159-183 , and in Kirk Othmer. Concise Encyclopedia of Chemical Technology (4th Ed. 1999) Vol. 1, p. 75-76 .
- alkylate refers to hydrocarbon compositions used for fuel applications (a) having at least 55 normalized vol.% C5 - C10 iso-paraffins measured pursuant to ASTM test method D-6730-01 (2001), or having at least 55 vol.% C5-C10 iso-paraffins measured pursuant to ASTM test method D-6733-01 (2001).
- the alkylate is a refinery grade alkylate formed by the reaction of a C3-C5 stream with isobutene.
- the alkylate advantageously comprises about 70 vol.% or more isoparaffins having a total of 8 carbon atoms. In one embodiment, the alkylate advantageously comprises greater than 70 vol.% isoparaffins having a total of 8 carbon atoms. In one embodiment, the alkylate advantageously comprises about 73 vol.% or more isoparaffins having a total of 8 carbon atoms. In one embodiment, the alkylate comprises about 90 vol.% or less isoparaffins having a total of 8 carbon atoms. In yet another embodiment, the alkylate comprises about 85 vol.% or less isoparaffins.
- the alkylate comprises less than 5 vol.% isoparaffins having a total of 6-7 carbon atoms.
- Suitable alkylate typically has a RON of, for example, from about 90 to about 95.
- Suitable alkylate typically has a MON of, for example, from about 88 to about 95.
- Suitable alkylate typically has an octane rating of, for example, from about 90 to about 95.
- Suitable alkylates can be obtained from a variety of sources, including Solvents & Chemicals, Pearland, Texas; Equistar Chemicals; and, Texas Petrochemicals.
- the isoparaffin composition comprises a combination of isoparaffins.
- Suitable isoparaffins have the following general structure: wherein R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 independently are selected from the group consisting of hydrogen and alkyl groups having from about 1 to about 7 carbon atoms, provided that the total number of carbon atoms is 11 or less.
- R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 independently are selected from the group consisting of hydrogen and methyl groups.
- the unleaded fuel comprises a combination of iso-pentane and iso-octane.
- the unleaded fuel composition comprises primarily trimethyl pentane.
- the unleaded fuel composition comprises primarily 2,2,4-trimethyl pentane.
- the isoparaffins are commercially available from a variety of sources and/or may be made by known processes. Examples of suitable preparations are described in F. L. Howard, et al. J. Res. Nat. Bur. Standards Research Paper RP1779, Vol. 38 (March 1947) pp. 365-395 , incorporated herein by reference. The isoparaffins made by the above processes may be used as a blend or purified further.
- the isoparaffins may be obtained by fractional distillation of refinery streams, e.g., straight run gasolines, or alkylation products.
- Other known methods of making the isoparaffins include, for example, reaction of alkyl metallic compounds (Grignard reagents) with carbonyl compounds, such as aldehydes, ketones, esters, or anhydrides, to form branched chain carbinols, which are dehydrated to the corresponding olefin and thereafter hydrogenated to the alkane.
- alkyl metallic compounds such as aldehydes, ketones, esters, or anhydrides
- the unleaded fuel composition optionally comprises oxygenate octane booster.
- the oxygenate octane booster may be any liquid organic molecule containing one or more alkyl group and one or more oxygen atom. Suitable oxygenate octane boosters include, for example, ethers and alcohols.
- the oxygenate octane booster is one or more alkyl ether.
- the alkyl ether comprises an alkyl group having from 1 to 6 carbon atoms.
- the alkyl group has from 3 to 6 carbon atoms.
- the alkyl group is a branched chain alkyl group having from 3 to 6 carbon atoms.
- the alkyl group is a tertiary alkyl group having from 4 to 6 carbon atoms. Suitable tertiary alkyl groups include, for example, tert-butyl groups and tert-amyl groups.
- the alkyl ether is dialkyl ether. In one embodiment, the alkyl ether is asymmetric dialkyl ether. In one embodiment, the dialkyl ether comprises a tertiary alkyl group and a second alkyl group having from 1 to 6 carbon atoms. In one embodiment, the dialkyl ether comprises a first tertiary alkyl group and second alkyl group having from 1 to 3 carbon atoms. In one embodiment, the second alkyl group is a linear alkyl group. In one embodiment, the second alkyl group is selected from the group consisting of a methyl group and an ethyl group. Specific examples of suitable alkyl ethers include methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether, and methyl tertiary amyl ether.
- MTBE methyl tertiary butyl ether
- ethyl tertiary butyl ether
- the use of an oxygenate octane booster in the unleaded fuel composition is optional.
- the unleaded fuel composition may comprise, for example, 25 vol.% or less oxygenate octane booster. In one embodiment, the unleaded fuel composition comprises about 20 vol.% or less oxygenate octane booster. In one embodiment, the unleaded fuel composition comprises about 16 vol.% or less oxygenate octane booster. In one embodiment, the unleaded fuel composition comprises about 8 vol.% or more oxygenate octane booster. In one embodiment, the unleaded fuel composition comprises about 10 vol.% or more oxygenate octane booster. In another embodiment, the unleaded fuel composition comprises about 12 vol.% or more oxygenate octane booster.
- Suitable oxygenate octane boosters are made using known processes and are available commercially from a variety of sources.
- the unleaded fuel composition optionally may comprise a variety of other components as long as they are suitable for combustion in an automotive spark ignition engine and they do not have a significant impact on octane number.
- a component does not have a significant impact on octane number if, in the concentration(s) employed, the octane number is not raised or lowered by more than about 1.0 unit, as calculated by ASTM D-2699-04a (2004).
- Suitable components include, for example, motor gasoline additives as listed in ASTM D-4814-04 or as specified by a regulatory body, e.g., U.S. California Air Resources Board (CARB) or the U.S. Environmental Protection Agency (EPA).
- a regulatory body e.g., U.S. California Air Resources Board (CARB) or the U.S. Environmental Protection Agency (EPA).
- Examples of other components suitable for use in the unleaded fuel composition include other paraffins, aromatic hydrocarbons, alcohols, ethers, and/or esters.
- Refinery streams that may be used in the unleaded fuel include, for example, distillation products and reaction products from a refinery such as catalytic reformate, heavy catalytic cracked spirit, light catalytic cracked spirit, straight run gasoline, isomerate, light reformate, light hydrocrackate, and naphtha.
- Other gasoline components include olefins (in particular with one double bond per molecule). Examples include liquid alkene having from 5 to 10 carbon atoms. In one embodiment, the liquid alkene has from 6 to 8 carbon atoms. The liquid alkene may be linear or branched. Specific examples of suitable liquid alkenes include pentene, isopentene, hexene, isohexene, heptene, and mixtures thereof.
- paraffins examples include, for example, straight-chain paraffins and cyclic paraffins.
- Straight chain paraffins are sometimes also referred to as normal paraffins.
- the fuel also may contain lead replacement additives and/or other common additives which have no significant impact on octane value, for example, dyes, deicing agents, agents for preventing exhaust valve seat wear, anti-oxidants, corrosion inhibitors, anti-static additives, detergents and the like.
- lead replacement additives and/or other common additives which have no significant impact on octane value, for example, dyes, deicing agents, agents for preventing exhaust valve seat wear, anti-oxidants, corrosion inhibitors, anti-static additives, detergents and the like.
- the unleaded fuel composition may not comprise any additive.
- the unleaded fuel composition also may comprise one or more additives.
- the unleaded fuel composition typically comprises about 1000 ppm or less total amount of additives.
- each additive typically is present in an amount of about 0.1 ppm or more.
- each additive is present in an amount of about 0.5 ppm or more.
- each additive is present in an amount of about 1 ppm or more.
- each additive is present in an amount of 100 ppm or less.
- each additive is present in an amount of 50 ppm or less.
- each additive is present in an amount of 20 ppm or less.
- the unleaded fuel composition comprises lead replacement additive. In one embodiment, the unleaded fuel composition comprises antioxidant. In one embodiment, the unleaded fuel composition comprises detergent additive. In one embodiment, the unleaded fuel composition comprises a combination of lead replacement additive, antioxidant, and detergent additive.
- the unleaded fuel composition typically comprises, for example, about 20 mg/kg or more lead replacement additive. In one embodiment, the unleaded fuel composition comprises from about 25 mg/kg or more lead replacement additive. In one embodiment, the unleaded fuel composition comprises about 30 mg/kg or more lead replacement additive. In one embodiment, the unleaded fuel composition comprises about 60 mg/kg or less lead replacement additive. In one embodiment, the unleaded fuel composition comprises about 55 mg/kg or less lead replacement additive. In one embodiment, the unleaded fuel composition comprises about 50 mg/kg or less lead replacement additive.
- the unleaded fuel composition typically comprises, for example, about 10 mg/kg or more antioxidant. In one embodiment, the unleaded fuel composition comprises about 15 mg/kg or more antioxidant. In one embodiment, the unleaded fuel composition comprises about 20 mg/kg or more antioxidant. In one embodiment, the unleaded fuel composition comprises about 50 mg/kg or less antioxidant. In one embodiment, the unleaded fuel composition comprises about 45 mg/kg or less antioxidant. In one embodiment, the unleaded fuel composition comprises about 40 mg/kg or less antioxidant.
- the unleaded fuel composition typically comprises, for example, about 0.011 kg/m 3 (0.05 g/gallon) or more detergent additive. In one embodiment, the unleaded fuel composition comprises about 0.018 kg/m 3 (0.08 g/gallon) or more detergent additive. In one embodiment, the unleaded fuel composition comprises about 0.022 kg/m 3 (0.1 g/gallon) or more detergent additive. In one embodiment, the unleaded fuel composition comprises about 0.88 kg/m 3 (4g/ gallon) or less detergent additive. In one embodiment, the unleaded fuel composition comprises about 0.77 kg/m 3 (3.5 g/gallon) or less detergent additive. In one embodiment, the unleaded fuel composition comprises about 0.66kg/m 3 (3 g/gallon) or less detergent additive.
- the unleaded fuel composition comprises: about 40 mg/kg lead replacement additive; about 30 mg/kg antioxidant; and, from about 1 to about 2 g/gallon detergent additive.
- Suitable additives are made using known processes and are available commercially from a variety of sources.
- the unleaded fuel composition comprises: 25 vol.% or more of alkylated benzenes comprising alkyl groups having from 1 to 4 carbon atoms; 5 vol. % or more of one or more aromatic amines; and, an isoparaffin composition selected from the group consisting of alkylate, a combination of isoparaffins having a total number of carbon atoms of 11 or less, and combinations thereof.
- An unleaded fuel composition not according to the invention comprises: from about 20 vol.% to about 60 vol.% of the combination of alkylated benzenes; from greater than 5 vol.% to about 15 vol.% of the one or more aromatic amine; and, from about 40 vol.% to about 80 vol.% of the isoparaffin composition.
- the unleaded fuel composition comprises greater than 5 vol.% of the aromatic amine.
- the unleaded fuel composition comprises about 7 vol.% or more of the aromatic amine.
- the unleaded fuel composition comprises about 10 vol.% or less of the aromatic amine.
- the unleaded fuel composition comprises about 7 vol.% or less of the aromatic amine.
- the unleaded fuel composition contains about 7 vol.% of the aromatic amine. In one embodiment, the unleaded fuel composition further comprises one or more oxygenate octane booster. In one embodiment, the combination of alkylated benzene comprises from 21 vol.% to 25 vol.% toluene; and from 19 vol.% to 24 vol.% m-xylene, based on the total weight of the unleaded fuel composition.
- the alkylate comprises 70 vol.% or more isoparaffins having a total of 8 carbon atoms.
- the unleaded fuel composition comprises from 40 vol.% to 60 vol.% of the combination of alkylated benzene; 15 vol..% or less of the one or more aromatic amines; and, from 40 vol. % to 50 vol. % alkylate.
- the unleaded fuel composition comprises: alkylate; a combination of alkylated benzenes; and, one or more aromatic amines.
- the unleaded fuel composition comprises: from about 40 vol.% to about 50 vol.% alkylate, preferably 42 vol.% to 50 vol.% alkylate; from about 30 vol.% to about 40 vol.% toluene, preferably 32 vol.% to 36 vol.% toluene; from about 10 vol.% to about 20 vol.% m-xylene, preferably 13 vol. % to 17 vol.% m-xylene; and, from about 2 vol.% to about 12 vol.% aniline, prefereably from 5 vol.% to 9 vol.% aniline.
- the unleaded fuel comprises: 44 vol.% alkylate comprising 70 vol.% or more isoparaffins having a total of 8 carbon atoms; 34 vol.% toluene; 15 vol.% m-xylene, and 7 vol.% aniline. In one embodiment, the unleaded fuel composition comprises about 5 vol% or more aniline.
- the unleaded fuel composition comprises additional additives.
- the unleaded fuel composition a combination of lead replacement additive, antioxidant, and detergent additive.
- the unleaded fuel composition also optionally may comprise one or more oxygenate octane booster.
- Jessup relates to fuels for high performance engines and for racing engines in particular.
- Jessup describes fuel compositions having octane ratings of "at least about 100 ... comprised of toluene and alkylate and at least two further components selected from the group consisting of [isopentane], n-butane and methyl tertiary butyl ether.”
- Jessup Tables 4 and 7 show ingredients and concentration ranges which meet minimum octane rating requirements of about 100. The highest “Actual Octane Value" that Jessup appears to achieve using the blends is 101.
- Bazzani U.S.Patent Application 2003/0183554 to R. Bazzani, et al.
- the composition may comprise at least one aromatic compound, for example having 6-9 carbons, preferably an alkyl aromatic compound such as toluene or o, m, or p xylene or a mixture thereof or a trimethyl benzene.
- Aromatic amines may be used "in an amount of less than 5% by volume for mogas or avgas, and are preferably substantially absent ... e.g., less than 100 ppm.” Bazzani, paragraph [0051] .
- Bazzani states with respect to the compositions of Bazzani's "part (a)" that the ROAD value (or octane rating) "is usually 85-115 e.g. 98-115 or preferably 85-98 such as 85-95 e.g. 85-90, or 90-95 or 95-98.
- Preferred gasoline compositions have ...ROAD 85-90 ...ROAD 85-95 or ... ROAD 90-95.”
- the highest ROAD value actually reported in the Examples relevant to "part (a)” is 97.25 (Table 1, p. 12).
- Bazzani states with respect to the compositions in "part (b)" that "the ROAD value is usually 85-107 e.g. 98-106 or preferably 85-98 such as 85-95 e.g. 85-90, or 90-95 or 95-98.
- Preferred gasoline compositions have ... ROAD 85-90, or .. . ROAD 85-95 or ...ROAD 91-96.”
- Bazzani paragraph [0238].
- Bazzani states that the compositions of "part (b)” can reach a ROAD value over 105
- Bazzani does not state that the compositions tested in the relevant Examples either (a) contained 5 vol.% or more aromatic amine, or (b) had a ROAD value of greater than 105.
- the RON and MON values reported in the Examples relevant to part (b) are below 100, and therefore the ROAD value is below 100.
- Bazzani pp. 31-34.
- Bazzani states with respect to the compositions in "part (c)" that "the ROAD value is usually 85-110 or 85-107 e.g. 98-106 or 102-108 or 85-95. Preferred gasoline compositions have ... ROAD 89-96 but especially ROAD 98-106.” Bazzani, paragraph [0342] A ROAD value of 105 is reported for two of the compositions in the Examples relevant to part (c)(Table 23); however, Bazzani does not state that the compositions tested in the relevant Examples either: (a) contained 5 vol.% or more aromatic amine; (b) had a ROAD value of greater than 105; and/or, (c) comprised isoparaffin composition comprising alkylate.
- Blend 5 the relatively expensive iso-octane and isopentane were replaced with relatively inexpensive alkylate. This embodiment has the advantage of rendering the unleaded fuel composition list costly to produce.
- a first blend had the following general formula:
- Example 1 The RON was 116.67, the MON was 106.33, and the octane number was 111.5.
- the foregoing results demonstrate that the formulas of Example 1 and Example 2 are effective to produce an octane number of 110 or more.
- a second blend had the following general formula.
- a third blend had the following general formula.
- a fourth blend had the following general formula.
- the numbers in the Table represent the normalized volume %, based on the total volume of the composition, pursuant to ASTM test method D 6730-01, "Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100-Metre Capillary (with Precolumn) High-Resolution Gas Chromatography," incorporated herein by reference: Number of carbon atoms Naphthene Iso-paraffins Normal paraffins Aromatics 4 0.36 5 4.07 6 3.79 7 3.93 0.07 8 27.41 54.17 9 1.73 10 0.53 11 0.70 boiling point>200°C 3.24 The RON was 118.5, the MON was 101.9, and the octane number was 110.2.
- a fifth blend had the following general formula.
- the numbers in the Table represent volume %, based on the total volume of the composition, pursuant to ASTM test method D 6733-01, "Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 50-Metre Capillary High-Resolution Gas Chromatography," incorporated herein by reference: Number of carbon atoms Naphthene iso-paraffins normal paraffins aromatics 4 1.01 3.75 5 10.47 0.18 6 0.01 1.27 0.02 7 1.96 8 0.10 73.50 9 0.30 1.80 10 2.41 0.02 11 2.79 The RON was 114, the MON was 105, and the octane number was 110.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Liquid Carbonaceous Fuels (AREA)
Claims (12)
- Composition de carburant sans plomb comprenant :25 % en volume ou plus de benzènes alkylés comprenant des groupes alkyle présentant de 1 à 4 atomes de carbone ;5 % en volume ou plus d'une ou de plusieurs amines aromatiques ; et,une composition d'isoparaffine sélectionnée parmi des alkylats et/ou des combinaisons d'isoparaffines présentant un nombre total d'atomes de carbone de 11 ou moins.
- Composition de carburant sans plomb selon la revendication 1 présentant un indice d'octane supérieur à 105.
- Composition de carburant sans plomb selon les revendications 1 ou 2 présentant un indice d'octane de 110 ou plus.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 3 dans laquelle la composition est exempte de tout autre ingrédient ou combinaison d'ingrédients qui augmente l'indice d'octane de la composition de carburant par plus de 1,0 unité.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 3 comprenant en outre un ou plusieurs améliorants d'indice d'octane oxygénés.
- Composition de carburant sans plomb selon la revendication 5, dans laquelle l'un ou plusieurs améliorants d'indice d'octane oxygénés comprennent des éthers alkyliques sélectionnés parmi le groupe composé de méthyltert-butyléther, d'éthyltert-butyléther et de méthyltert-amyléther.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 6 dans laquelle les benzènes alkylés comprennent des groupes alkyles présentant de 1 à 2 atomes de carbone.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 7, dans laquelle le ou les amines aromatiques présentent la structure suivante :
- Composition de carburant sans plomb selon la revendication 8, dans laquelle R3, R4 et R5 sont sélectionnés de manière indépendante parmi le groupe composé d'hydrogène et de groupes méthyle.
- Composition de carburant sans plomb selon les revendications 8 ou 9, dans laquelle R4 est de l'hydrogène et R5 est un groupe alkyle situé à une position relative au groupe -HNR3 sélectionné parmi le groupe composé de métaposition et de paraposition.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 10 comprenant :dans la plage de 45 à 50 % en volume d'isooctane ;dans la plage de 21 à 26 % en volume de toluène ;dans la plage de 19 à 24 % en volume de m-xylène ;dans la plage de 3 à 7 % en volume d'isopentane ; etdans la plage de 5 à 10 % en volume d'amine aromatique.
- Composition de carburant sans plomb selon l'une quelconque des revendications 1 à 11 comprenant :40 mg/kg d'additif de plomb de remplacement ;30 mg/kg d'antioxydant ; etde 0,22 à 0,44 kg/m3 (de 1 à 2 g/gallon) d'additif détergent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12185306A EP2537913A1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2006/061825 WO2008073118A1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12185306A Division-Into EP2537913A1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2108032A1 EP2108032A1 (fr) | 2009-10-14 |
EP2108032B1 true EP2108032B1 (fr) | 2018-09-12 |
Family
ID=38442290
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12185306A Withdrawn EP2537913A1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
EP06846540.0A Active EP2108032B1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12185306A Withdrawn EP2537913A1 (fr) | 2006-12-11 | 2006-12-11 | Compositions de carburant sans plomb |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP2537913A1 (fr) |
AU (1) | AU2006351908B2 (fr) |
CA (1) | CA2672211C (fr) |
WO (1) | WO2008073118A1 (fr) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080134571A1 (en) | 2006-12-12 | 2008-06-12 | Jorg Landschof | Unleaded fuel compositions |
US10260016B2 (en) | 2009-12-01 | 2019-04-16 | George W. Braly | High octane unleaded aviation gasoline |
US8628594B1 (en) | 2009-12-01 | 2014-01-14 | George W. Braly | High octane unleaded aviation fuel |
US10550347B2 (en) | 2009-12-01 | 2020-02-04 | General Aviation Modifications, Inc. | High octane unleaded aviation gasoline |
US8324437B2 (en) * | 2010-07-28 | 2012-12-04 | Chevron U.S.A. Inc. | High octane aviation fuel composition |
CA2797163A1 (fr) | 2011-12-01 | 2013-06-01 | Shell Internationale Research Maatschappij B.V. | Compositions de carburant sans plomb equilibrees |
US9315754B2 (en) | 2012-12-27 | 2016-04-19 | Shell Oil Company | Compositions |
US9382490B2 (en) | 2012-12-27 | 2016-07-05 | Shell Oil Company | Compositions |
WO2014172659A1 (fr) | 2013-04-18 | 2014-10-23 | Swift Fuels, Llc | Traitement de courants d'alimentation aromatiques en c8 à c10 pour préparer et récupérer des benzènes triméthylés |
WO2015023559A1 (fr) * | 2013-08-12 | 2015-02-19 | Shell Oil Company | Procédés pour modifier les propriétés d'auto-allumage d'une composition d'huile de base ou de lubrifiant |
MX362567B (es) * | 2013-10-31 | 2019-01-25 | Shell Int Research | Gasolina de aviacion sin plomo, de octanaje elevado. |
EP2868734B1 (fr) * | 2013-10-31 | 2017-01-11 | Shell Internationale Research Maatschappij B.V. | Carburant aviation sans plomb à indice d'octane élevé |
BR102014018407B1 (pt) * | 2013-10-31 | 2020-09-29 | Shell Internationale Research Maatschappij B.V | Composição de combustível de aviação sem chumbo |
CN104593098B (zh) | 2013-10-31 | 2019-04-09 | 国际壳牌研究有限公司 | 高辛烷值无铅航空汽油 |
CA2857847C (fr) * | 2013-10-31 | 2021-11-16 | Shell Internationale Research Maatschappij B.V. | Essence d'aviation sans plomb a indice d'octane eleve |
EA024581B1 (ru) * | 2015-04-07 | 2016-09-30 | Джавахар Сингх | Октаноповышающая добавка к бензину |
CN110382450B (zh) | 2017-01-06 | 2023-02-28 | 斯威夫特燃料有限责任公司 | 处理c8-c10芳族进料流以制备和回收三甲基化苯 |
US10364399B2 (en) | 2017-08-28 | 2019-07-30 | General Aviation Modifications, Inc. | High octane unleaded aviation fuel |
US10377959B2 (en) | 2017-08-28 | 2019-08-13 | General Aviation Modifications, Inc. | High octane unleaded aviation fuel |
EP4286496A1 (fr) * | 2022-06-01 | 2023-12-06 | Haltermann Carless Deutschland GmbH | Composition de carburant pour petits moteurs avec teneur spécifique en iso-octane |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4812146A (en) | 1988-06-09 | 1989-03-14 | Union Oil Company Of California | Liquid fuels of high octane values |
US5284984A (en) * | 1992-12-29 | 1994-02-08 | Mobil Oil Corporation | Gasoline upgrading by aromatics amination |
US5470358A (en) * | 1993-05-04 | 1995-11-28 | Exxon Research & Engineering Co. | Unleaded aviation gasoline |
US7462207B2 (en) | 1996-11-18 | 2008-12-09 | Bp Oil International Limited | Fuel composition |
BRPI0404605B1 (pt) * | 2004-10-22 | 2013-10-15 | Formulação de gasolina de aviação | |
US7740668B2 (en) * | 2004-11-30 | 2010-06-22 | Exxonmobil Research & Engineering Company | Unleaded aminated aviation gasoline exhibiting control of toluene insoluble deposits |
-
2006
- 2006-12-11 EP EP12185306A patent/EP2537913A1/fr not_active Withdrawn
- 2006-12-11 EP EP06846540.0A patent/EP2108032B1/fr active Active
- 2006-12-11 CA CA2672211A patent/CA2672211C/fr active Active
- 2006-12-11 WO PCT/US2006/061825 patent/WO2008073118A1/fr active Application Filing
- 2006-12-11 AU AU2006351908A patent/AU2006351908B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2108032A1 (fr) | 2009-10-14 |
AU2006351908B2 (en) | 2011-03-10 |
CA2672211A1 (fr) | 2008-06-19 |
CA2672211C (fr) | 2014-06-10 |
WO2008073118A1 (fr) | 2008-06-19 |
AU2006351908A1 (en) | 2008-06-19 |
EP2537913A1 (fr) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2108032B1 (fr) | Compositions de carburant sans plomb | |
US9074153B2 (en) | Unleaded fuel compositions | |
US7897034B2 (en) | Aviation gasoline formulation | |
JP4611048B2 (ja) | 無鉛高オクタン価ガソリン | |
JP2013079394A (ja) | 無鉛高オクタン価ガソリン | |
JP5147914B2 (ja) | 無鉛ガソリンの製造方法 | |
JP4913448B2 (ja) | 無鉛高オクタン価ガソリン | |
JP5147913B2 (ja) | 無鉛高オクタン価ガソリンの製造方法 | |
JP4913441B2 (ja) | 無鉛ガソリン | |
JP4913440B2 (ja) | 無鉛ガソリン | |
JP4155752B2 (ja) | 燃料油組成物 | |
JP4913433B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913430B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913431B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913432B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913445B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913438B2 (ja) | 無鉛ガソリン | |
JP4913439B2 (ja) | 無鉛ガソリン | |
JP4913447B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913446B2 (ja) | 無鉛高オクタン価ガソリン | |
JP4913429B2 (ja) | 無鉛高オクタン価ガソリン | |
JP2006160922A (ja) | ガソリン組成物 | |
JP2007246756A (ja) | 無鉛高オクタン価ガソリン | |
JP2007246757A (ja) | 無鉛高オクタン価ガソリン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100920 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180410 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006056336 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1040578 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181213 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1040578 Country of ref document: AT Kind code of ref document: T Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006056336 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20190101 |
|
26N | No opposition filed |
Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190101 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20061211 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231013 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231009 Year of fee payment: 18 Ref country code: DE Payment date: 20231017 Year of fee payment: 18 |