EP2100007A1 - Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie - Google Patents

Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie

Info

Publication number
EP2100007A1
EP2100007A1 EP07846893A EP07846893A EP2100007A1 EP 2100007 A1 EP2100007 A1 EP 2100007A1 EP 07846893 A EP07846893 A EP 07846893A EP 07846893 A EP07846893 A EP 07846893A EP 2100007 A1 EP2100007 A1 EP 2100007A1
Authority
EP
European Patent Office
Prior art keywords
piston
plant according
working medium
generator
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07846893A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gerhard Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynatronic GmbH
Original Assignee
Dynatronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynatronic GmbH filed Critical Dynatronic GmbH
Publication of EP2100007A1 publication Critical patent/EP2100007A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • H02K7/1884Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts structurally associated with free piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/041Linear electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for converting thermodynamic energy into electrical energy.
  • the object of the invention is to provide a simple and inexpensive device for generating electric power, which works exclusively with high efficiency.
  • Piston-cylinder unit having a pressure cylinder and arranged in the pressure cylinder and linearly movable by volume change of a working fluid piston, a generator having a coil and a magnet, wherein the magnet or the coil is coupled to the piston so that a linear movement of the piston causes a linear movement of the magnet relative to the coil, and a controller which controls a working stroke of the device in response to at least one measured process parameter.
  • the operation of the device according to the invention is not subject to a periodic system clock, but is based on a controlled sequence of individual operating clocks, so that each working cycle can proceed under optimum energy conversion efficiency.
  • the controller specifies the time sequence of the equivalent work cycles on the basis of a continuous evaluation of the measured process parameter.
  • the working cycle time is not proportional to the clock frequency.
  • the energy conversion process always takes place with the same efficiency, regardless of how often it is performed per unit of time.
  • FIG. 1 shows the schematic structure of a system for generating electrical power
  • FIG. 4 shows the schematic structure of an installation for generating electricity according to another embodiment.
  • thermodynamic part 10 with a working medium and a linear part 12 and a controller 14 acting on both parts.
  • the linear part 12 has, as main components, a one-stroke "motor” with a linear expansion device in the form of a piston-cylinder unit 16 and a linear generator 18 with a magnet 20 and a coil 22
  • the piston-cylinder unit 16 consists essentially of a pressure cylinder 24 and a piston 26 displaceable therein, which is coupled to the magnet 20 of the linear generator 18.
  • a first working space 28 of the pressure cylinder 24 formed on the magnet 20 side facing the piston 26, a second working space 30th
  • Main components of the thermodynamic part 10 are essentially a pump 32, a heat exchanger 34, an optional heat accumulator 36 and a condenser 38. From FIGS.
  • thermodynamic part 10 of the plant is connected to the linear part via two lines 40, 42 12, more specifically coupled to the single-ended motor.
  • the two lines 40, 42 which are connected to the heat exchanger 34 (or more generally with a heat reservoir of higher temperature) or with the condenser 38 (or more generally with a heat reservoir lower temperature), respectively leading to the two variable working spaces 28, 30 of the Pressure cylinder 24.
  • the four ports 44, 46, 48, 50, with which the lines 40, 42 are coupled to the working spaces 28, 30 can be selectively opened or closed by the controller 14.
  • thermo energy heat energy
  • vapor pressure thermodynamic energy
  • kinetic energy mechanical kinetic energy
  • the working medium is heated by the supply of thermal energy and evaporated, resulting in a large volume expansion of the working medium.
  • heat exchangers 34 serve e.g. Solar panels, which absorb heat from the sun and release it to the working fluid flowing past, which evaporates as a result of the heating.
  • a coolant as a working fluid with a lower boiling point than that of water, an efficiency of an estimated ⁇ > 20% can be achieved for this partial process.
  • the required for the cycle process volume contraction of the working medium by cooling and condensation takes place in the condenser 38 in colder environment.
  • the pump 32 the liquid working medium is compressed and fed back to the heat exchanger 34.
  • thermodynamic cycle when an ORC (Organic Rankine Cycle) process is provided as the thermodynamic cycle, a medium suitable for use in such an ORC process is preferably used as the working medium used, eg R245fa or a specially designed for the application described synthetic working medium, the good
  • Heat transfer properties and is also characterized by the fact that in the required ORC temperature range in the working medium no negative pressure relative to the ambient pressure arises because the technically difficult to avoid in the long run due to a negative pressure penetrating air reduces the ORC efficiency. Furthermore, before the expansion, only the slightest possible overheating of the vaporized gas should be necessary, since the energy added during the overheating only slightly increases the ORC energy yield.
  • the heating / evaporation of the working medium is based on the
  • thermodynamic part 10 As a working medium for the thermodynamic part 10, other fluids, such as e.g. Hydraulic oil, or gases are used.
  • the very high degree of efficiency is also favored by the use of a smooth running design optimized for the aforementioned requirements. Piston-cylinder unit 16 with low friction and low thermal losses, so that high expansion speeds can be realized.
  • the magnet 20 of the linear generator 18 which is directly coupled by means of a rigid piston rod 52, moves within the coil 22, so that a voltage pulse is induced in the coil 22.
  • the magnet 20 may also, as shown in Figure 1, be connected via a hinge 55 to the piston 26.
  • the joint 55 absorbs transverse forces, which are due to installation tolerances. A linear movement in the printing cylinder 24 and in the linear generator 18 on exactly one axis is only theoretically possible.
  • FIG. 3 shows the counterclockwise operating cycle following the work cycle described above.
  • the controller 14 closes the open ports 44, 50 and opens the closed ports 46, 48 so that an oppositely directed piston force - F stroke and movement of the piston 26 to the left results. This results in a voltage pulse with the opposite sign.
  • the two work cycles described above are completely independent of each other (in particular in terms of time), so there is no predetermined periodic clock sequence provided as in known multi-stroke engines. Rather, a single work cycle is initiated depending on the situation, i. only if certain criteria are met (in particular a sufficient pressure of the working medium), the controller 14 by opening or closing of the terminals 44, 46, 48, 50 provides for the performance of a power stroke. Which of the two working strokes (normal or opposite) is performed depends on the current position of the piston 26.
  • piston stroke and area of the piston-cylinder unit 16 and the dimensions of the magnet 20 and the coil 22 of the linear generator 18 are matched.
  • amount of energy transferred and the total energy transfer efficiency has been shown that a piston-cylinder unit 16 with a relatively large stroke (Langhubzylinder) is best suited.
  • Disconnection lossless rotation generator such.
  • the RMT generator can be simulated, provides that a rotor of the rotation generator at each stroke in the printing cylinder (24) performs a 180 ° rotation and remains in this position until the counter-clocked cycle carried out due to a satisfied process criterion and the rotor then either until
  • the control of the thermodynamic cycle and the single-ended motor with a variety of suitable sensors (pressure, temperature, level sensors, etc.) and the controller 14, which may have a plurality of subordinate control devices.
  • the controller 14 continuously monitors the overall situation, taking into account all relevant process variables (thermal energy supply, pressure and temperature of the working medium and the environment, levels, etc). To achieve optimum overall efficiency, the controller 14 performs various process controls, such as fill level settings, fluid flow rates, power amount / expansion volume of a power stroke, clock frequency, clock stroke size, clock duration, etc. Under certain circumstances, the controller 14 may Completely suspend the energy conversion process if, based on the sensor data, this can be expected to result in a higher overall energy conversion efficiency.
  • HCarnot 1 - ToUT / " HN, with T
  • N Temperature of the working fluid in the heat reservoir higher
  • a reduction in the flow rate of the working medium in the solar panels caused by the controller 14 leads to higher T
  • thermodynamic part 10 of the system heated / vaporized working fluid over a longer period (between) can be stored.
  • This is particularly useful in the case of uneven thermal energy supply (eg changing sunlight) and allows in a certain frame independent of the period of thermal energy supply energy conversion without significant deterioration in efficiency. In this way, in particular minimum starting quantities can be ensured so as to allow a clocking of the printing cylinder over a minimum period.
  • a development of the thermodynamic part 10 of the system provides for the use of multiple working media (coolant) with different boiling temperatures.
  • the different ones Boiling temperatures of the coolant make it possible, depending on the currently maximum achievable medium temperature, to use the coolant or the mixture of two (or more) coolants with which the highest efficiency is currently achieved in the thermodynamic cycle.
  • a suitable for a Kalina cycle process mixture can be used, for example, an ammonia-water mixture. If necessary, to separate coolant mixtures again, a separation stage in the condenser 38 is provided in this case.
  • thermo energy sources e.g., thermal source
  • suitable heat exchanger 34 the otherwise unused waste heat of technical equipment or plants can be utilized.
  • the conversion of the irregular voltage pulses generated by the linear generator 18 in a suitable for feeding into a power supply AC voltage is effected in that each individual voltage pulse is transformed directly into a mains-synchronous AC voltage.
  • a direct coupling of the output of the linear generator 18 with the input of an inverter 54 is provided.
  • a filter and rectifier unit 56 indicated, which is used in an alternative embodiment explained later. Requirements for this type of conversion are:
  • the voltage pulses are (clearly) longer than the reciprocal of the power frequency to be generated and move in a voltage range, which requires the inverter 54 as an input voltage.
  • the power supply network to be fed must be able to absorb sporadically generated network power. This type of voltage conversion is therefore not suitable for self-sufficient power supply systems in its simple form.
  • the inverter 54 used generates in a wide input voltage range even with rapidly changing input power output power with constant, mains-synchronous AC voltage with high efficiency. If the input voltage is missing or too low, the inverter 54 suspends the conversion. As soon as the input voltage has again exceeded a threshold value, the inverter 54 continues its work and instantly restores the mains-synchronous AC voltage (with low losses) to the grid.
  • idle times of a generator or fluctuations in the grid feed can be at least partially compensated by an arrangement of multiple generators having staggered power strokes.
  • the generators can either form alternator-inverter pairs in parallel with one inverter at a time, or they can all be cost-effectively coupled to the same inverter, but this leads to lower efficiency.
  • a number of voltage pulses per unit time dependent on the currently prevailing power throughput is output.
  • the output of the linear generator 18 is coupled to the input of an inverter 54 via a filter and rectifier unit 56, which converts the pulses into DC voltage usable by the inverter 54.
  • the output of the inverter 54 is coupled to the power supply network to be fed, so that the inverter 54 continuously converts into a suitable for feeding into the power grid AC voltage.
  • the filter and rectifier unit 56 which converts the pulses in usable for the inverter 54 DC voltage is dimensioned so that it is the resulting minimum energy throughputs converts low frequency of voltage pulses into a DC level that the inverter 54 can convert into a suitable for feeding into the power grid AC without further significant losses or interruptions.
  • Linear generator 18 here is not coupled to an inverter for a power grid but to a generator of suitable battery charging voltages and currents (charger) 60, e.g. for lithium-ion or nickel-cadmium batteries for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP07846893A 2006-11-29 2007-11-29 Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie Withdrawn EP2100007A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006056349A DE102006056349A1 (de) 2006-11-29 2006-11-29 Vorrichtung zur Umwandlung thermodynamischer Energie in elektrische Energie
PCT/EP2007/010368 WO2008064889A1 (de) 2006-11-29 2007-11-29 Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie

Publications (1)

Publication Number Publication Date
EP2100007A1 true EP2100007A1 (de) 2009-09-16

Family

ID=39204729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07846893A Withdrawn EP2100007A1 (de) 2006-11-29 2007-11-29 Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie

Country Status (9)

Country Link
US (1) US8432047B2 (zh)
EP (1) EP2100007A1 (zh)
KR (1) KR20090110891A (zh)
CN (1) CN101583776B (zh)
AU (1) AU2007324873A1 (zh)
CA (1) CA2673826A1 (zh)
DE (1) DE102006056349A1 (zh)
RU (1) RU2444633C2 (zh)
WO (1) WO2008064889A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690199B2 (en) * 2006-01-24 2010-04-06 Altor Limited Lc System and method for electrically-coupled thermal cycle
WO2009082372A1 (en) * 2007-12-21 2009-07-02 Utc Power Corporation Operating a sub-sea organic rankine cycle (orc) system using individual pressure vessels
DE102008008832A1 (de) * 2008-02-13 2009-08-27 Dynatronic Gmbh Strom produzierendes Heizsystem
US9124154B2 (en) 2009-04-22 2015-09-01 Dynamic Energy Technologies, Llc Kinetic energy conversion device with variable output
WO2011012299A2 (de) 2009-07-28 2011-02-03 Dynatronic Gmbh Energieumwandlungsvorrichtung
DE102009034995A1 (de) 2009-07-28 2011-02-03 Dynatronic Gmbh Energieumwandlungsvorrichtung
DE102009036461A1 (de) 2009-08-06 2011-02-10 Dynatronic Gmbh Steuerung einer linearen Wärme-Kraft-Maschine
GB2472604A (en) * 2009-08-12 2011-02-16 Alastair Gordon Laurence Hunter Free piston thermo electrical power generator
US8726857B2 (en) 2010-01-19 2014-05-20 Altor Limited Lc System and method for electrically-coupled heat engine and thermal cycle
DE102010019718A1 (de) * 2010-05-07 2011-11-10 Orcan Energy Gmbh Regelung eines thermischen Kreisprozesses
US8674527B2 (en) 2010-05-20 2014-03-18 Energy Cache, Inc. Apparatuses and methods for energy storage
DE102010033934B4 (de) * 2010-05-28 2018-05-09 Roland Stieb Energieumwandlungssystem
BR112012031120A2 (pt) 2010-06-07 2016-11-01 Dynamic Energy Technologies Llc sistema de conversão de energia cinética rotacional
ITFI20110051A1 (it) * 2011-03-31 2012-10-01 Falletta Gioacchino Produzione di energia alternativa anche con il recupero delle perdite di calore.
CN102926827B (zh) * 2012-10-17 2015-06-10 吉林大学 潜能利用式自由活塞有机朗肯循环能量转化装置
GB201315497D0 (en) * 2013-08-30 2013-10-16 Microgen Engine Corp Holding Bv Regulation of electrical generator output
SE541880C2 (sv) * 2015-01-19 2020-01-02 Noditech Ab Anordning i en värmecykel för omvandling av värme till elektrisk energi
US10539045B2 (en) * 2015-11-03 2020-01-21 Carlos Alberto Hernandez Abarca System for recovering thermal energy produced in pyrometallurgical process plants or similar, to convert same into, or generate, electrical energy
US10145354B2 (en) * 2016-08-11 2018-12-04 Oscilla Power Inc. Fluid power gearbox and drivetrain for a wave energy converter
RU2645107C1 (ru) * 2017-03-20 2018-02-15 Общество с ограниченной ответственностью "Наука-Энерготех" (ООО "Наука-Энерготех") Автономная микро-тэц на газовом топливе с использованием свободнопоршневого двигателя стирлинга
EP4063628A1 (en) * 2017-04-24 2022-09-28 General Electric Company Adaptive linear linked piston electric power generator
RU2659598C1 (ru) * 2017-07-14 2018-07-03 Анатолий Александрович Рыбаков Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником
CN108110950A (zh) * 2017-12-21 2018-06-01 重庆麦纳昇科技有限公司 节能配电柜用发电系统
IT201800005697A1 (it) * 2018-05-25 2019-11-25 Algerino Patrignani Generatore elettrico lineare con cartucce
WO2020018329A2 (en) 2018-07-19 2020-01-23 Energy Vault, Inc. Energy storage system and method
KR20220129574A (ko) 2020-01-22 2022-09-23 에너지 볼트 인코포레이티드 댐핑 셀프-센터링 메커니즘을 포함하는 그래버
IL299073A (en) 2020-06-30 2023-02-01 Energy Vault Inc A system and method for energy storage and its supply
CN112134404B (zh) * 2020-10-14 2023-06-23 成都飞英思特科技有限公司 一种基于温度变化的自发电装置
CN115485227A (zh) 2021-02-02 2022-12-16 能源库公司 具有升降机提升系统的能量储存系统
DE102021114792B4 (de) * 2021-06-09 2023-02-02 Audi Aktiengesellschaft Elektrofahrzeug mit Energierückgewinnungssystem
CN116262588A (zh) 2021-12-13 2023-06-16 能源库公司 能量储存和输送系统及方法
CN115102319B (zh) * 2022-08-24 2022-11-18 杭州高卡机械有限公司 一种节能新能源汽车用驱动装置
US20240141875A1 (en) 2023-04-10 2024-05-02 Energy Vault, Inc. Energy storage and delivery system and method

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105153A (en) * 1960-08-05 1963-09-24 Exxon Research Engineering Co Free-piston generator of electric current
FR2068093A5 (zh) * 1969-11-27 1971-08-20 Commissariat Energie Atomique
US4484082A (en) 1980-10-15 1984-11-20 Bucknam Donald C Power plant and process utilizing gravitational force
FR2510181A1 (fr) * 1981-07-21 1983-01-28 Bertin & Cie Convertisseur d'energie thermique en energie electrique a moteur stirling et generateur electrique integre
US4454426A (en) * 1981-08-17 1984-06-12 New Process Industries, Inc. Linear electromagnetic machine
DE3139357C2 (de) * 1981-10-02 1984-02-02 Zuv "Progress", Sofija Verfahren für die Stromerzeugung bei einem zyklischen Verbrennungsprozeß
US4480599A (en) * 1982-09-09 1984-11-06 Egidio Allais Free-piston engine with operatively independent cam
US4649283A (en) * 1985-08-20 1987-03-10 Sunpower, Inc. Multi-phase linear alternator driven by free-piston Stirling engine
DE4219498A1 (de) 1992-06-13 1993-12-16 Georg Haase Solar-Generator
DE4243401C2 (de) 1992-12-21 1995-03-09 Axel Berger Verfahren zur Umwandlung thermischer Energie in Elektroenergie
RU2107233C1 (ru) * 1994-06-24 1998-03-20 Валентин Федорович Шевцов Способ преобразования энергии и энергоузел для его реализации
US6381958B1 (en) * 1997-07-15 2002-05-07 New Power Concepts Llc Stirling engine thermal system improvements
DE19943993A1 (de) * 1999-09-14 2001-03-15 Volkswagen Ag Brennkraftmaschine
US6876094B2 (en) * 1999-11-12 2005-04-05 Sarcos, Lc Resonant electrical generation system
US6809486B2 (en) * 2000-12-15 2004-10-26 Stirling Technology Company Active vibration and balance system for closed cycle thermodynamic machines
FR2819555B1 (fr) * 2001-01-17 2003-05-30 Conservatoire Nat Arts Groupe electrogene a mouvement lineaire alternatif a base de moteur stirling, et procede mis en oeuvre dans ce groupe electrogene
US6484498B1 (en) * 2001-06-04 2002-11-26 Bonar, Ii Henry B. Apparatus and method for converting thermal to electrical energy
US6933629B2 (en) * 2001-12-14 2005-08-23 Stirling Technology Company Active balance system and vibration balanced machine
US7082909B2 (en) * 2002-04-25 2006-08-01 Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. Free-piston device with electric linear drive
ITTO20020375A1 (it) * 2002-05-07 2003-11-07 Fiat Ricerche ,,microgeneratore di energia elettrica,,
DE10242141A1 (de) * 2002-09-03 2004-03-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Freikolben-Verbrennungsvorrichtung mit elektrischem Lineartrieb
SE525796C2 (sv) * 2002-09-16 2005-04-26 Volvo Technology Corp Energiomvandlare inrättad så att den anpassar sin uteffekt beroende på den erforderliga lasten
JP2007527479A (ja) * 2003-07-02 2007-09-27 タイアックス エルエルシー 自由ピストンスターリングエンジン制御
JP2005318708A (ja) 2004-04-28 2005-11-10 Shikoku Res Inst Inc フリーピストン発電装置
CA2700301A1 (en) * 2004-08-24 2006-03-02 Infinia Corporation Double acting thermodynamically resonant free-piston multicylinder stirling system and method
US8091519B2 (en) * 2006-05-12 2012-01-10 Bennion Robert F Paired-piston linear engine
US7492052B2 (en) * 2006-11-21 2009-02-17 Northrop Grumman Corporation Electronically moderated expansion electrical generator
US7453241B2 (en) * 2006-11-29 2008-11-18 Sunpower, Inc. Electronic controller matching engine power to alternator power and maintaining engine frequency for a free-piston stirling engine driving a linear alternator
US7950356B2 (en) * 2007-10-09 2011-05-31 The Invention Science Fund I, Llc Opposed piston electromagnetic engine
US7622814B2 (en) * 2007-10-04 2009-11-24 Searete Llc Electromagnetic engine
US7856714B2 (en) * 2007-10-10 2010-12-28 The Invention Science Fund I, Llc Method of retrofitting an engine
US7777357B2 (en) * 2007-10-05 2010-08-17 The Invention Fund I, LLC Free piston electromagnetic engine
DE102008008832A1 (de) * 2008-02-13 2009-08-27 Dynatronic Gmbh Strom produzierendes Heizsystem
US8096118B2 (en) * 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
US20110221206A1 (en) * 2010-03-11 2011-09-15 Miro Milinkovic Linear power generator with a reciprocating piston configuration
US8640453B2 (en) * 2010-04-20 2014-02-04 Alpha Plus Power Inc. Heat engine
US20110271676A1 (en) * 2010-05-04 2011-11-10 Solartrec, Inc. Heat engine with cascaded cycles
US8616162B2 (en) * 2010-11-04 2013-12-31 GM Global Technology Operations LLC Opposed free piston linear alternator
US8413617B2 (en) * 2010-11-23 2013-04-09 Etagen, Inc. High-efficiency two-piston linear combustion engine
US8453612B2 (en) * 2010-11-23 2013-06-04 Etagen, Inc. High-efficiency linear combustion engine
US8662029B2 (en) * 2010-11-23 2014-03-04 Etagen, Inc. High-efficiency linear combustion engine
US20120227925A1 (en) * 2011-03-08 2012-09-13 Daniel Sweeney Thermal energy storage system with heat energy recovery sub-system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008064889A1 *

Also Published As

Publication number Publication date
US8432047B2 (en) 2013-04-30
RU2009124482A (ru) 2011-01-10
WO2008064889A1 (de) 2008-06-05
CA2673826A1 (en) 2008-06-05
RU2444633C2 (ru) 2012-03-10
CN101583776A (zh) 2009-11-18
US20100283263A1 (en) 2010-11-11
DE102006056349A1 (de) 2008-06-05
KR20090110891A (ko) 2009-10-23
AU2007324873A1 (en) 2008-06-05
CN101583776B (zh) 2012-10-17
WO2008064889B1 (de) 2008-07-10

Similar Documents

Publication Publication Date Title
EP2100007A1 (de) Vorrichtung zur umwandlung thermodynamischer energie in elektrische energie
EP1323222B1 (de) Inselnetz und verfahren zum betrieb eines inselnetzes
EP1485978B1 (de) Inselnetz und verfahren zum betrieb eines inselnetzes
EP1310644A1 (de) Verfahren zur energierückgewinnung einer gasentspannung und vorrichtung für das verfahren
EP2252835A2 (de) Strom produzierendes heizsystem
EP2661549B1 (de) Vorrichtung zur energieerzeugung
DE202008008747U1 (de) Photovoltaikanlage
WO2009077163A2 (de) Strom produzierendes heizsystem
DD145659A1 (de) Verfahren zur erzeugung von waermeenergie fuer heizzwecke durch kombination der kraft-waerme-kopplung mit der waermepumpe
DE102012103617B4 (de) Fossilbefeuertes Kraftwerk mit Wärmespeicher
WO2011153971A1 (de) Kraft-wärme-kopplungsanlage
AT512850A1 (de) Range-Extender-System mit einem verbesserten Kühlkreislauf
WO2006097089A2 (de) Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen
EP3330499B1 (de) System und verfahren zur energierückgewinnung in industrieanlagen
DE102006056348A1 (de) Vorrichtung zur Umwandlung thermischer Energie in mechanische Bewegungsenergie
WO2005026511A2 (de) Brennstoff-kleinkraftwerk und verwendung davon in einem verbundsystem sowie gegenkolbenmotor dafür
EP1962362A1 (de) Kraft-Wärme-Kopplungsanlage
DE102011101665B4 (de) Wärmeeinheit zum Erzeugen elektrischer Energie und Verfahren zur Erzeugung von Strom aus Wärme
DE102006056347A1 (de) Vorrichtung zur Einspeisung elektrischer Energie in ein Stromversorgungsnetz
DE3000044A1 (de) Verfahren und vorrichtung zur rueckgewinnung von verlustenegie aus der kombination eines gaskompressors und eines antriebsmotors fuer den kompressor
DE10261171B3 (de) Verbund von Kraft-Wärme-Kopplungsanlagen
DE102006004917B4 (de) Vorrichtung und Verfahren zur Kühlung und zur Erzeugung elektrischer Energie sowie Bearbeitungsverfahren und Einrichtung hierfür
EP2600058A1 (de) Vorrichtung zur Überführung eines flüssigen Arbeitsmediums in den gas- bzw. dampfförmigen Zustand, insbesondere zur Erzeugung von Wasserdampf
WO2011134784A2 (de) Kopplungssystem für eine hybridenergieanlage
WO2010102953A1 (de) Energieversorgungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602