EP2097685A1 - Dispositif de production de chaleur de réaction pour un module d'emballage - Google Patents

Dispositif de production de chaleur de réaction pour un module d'emballage

Info

Publication number
EP2097685A1
EP2097685A1 EP07847001A EP07847001A EP2097685A1 EP 2097685 A1 EP2097685 A1 EP 2097685A1 EP 07847001 A EP07847001 A EP 07847001A EP 07847001 A EP07847001 A EP 07847001A EP 2097685 A1 EP2097685 A1 EP 2097685A1
Authority
EP
European Patent Office
Prior art keywords
heat
temperature
solar system
heat storage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07847001A
Other languages
German (de)
English (en)
Inventor
Norbert Fleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Publication of EP2097685A1 publication Critical patent/EP2097685A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a device for generating process heat for a packaging device.
  • EP 1 705 242 describes the use of solar collectors for covering at least part of the heat energy consumption of a brewery plant, in particular for mashing, refining and / or wort boiling, but also for cleaning the plant or for operating a sorptive refrigeration plant.
  • the plant is operated with water as a heat transfer medium, which also serves as process water and is stored in a hot water heat storage. With this system, however, flow temperatures of up to 180 degrees Celsius are possible.
  • Packaging devices in particular in the form of the known shrinking devices, but have so far mostly electrically or occasionally heated with natural gas.
  • packaging devices in the form of shrinking devices For example, DE 35 16 609, DE 35 43 943, EP 1 288 129 or EP 678452 can be seen.
  • packaging plants for example when heating the air in shrinking equipment but must be operated at a much higher temperature than when heating process water or for heating purposes, and it is a stronger control of the temperature necessary, which so far when using no or limited controllable energy sources, as is the case with heat generation in solar or incineration plants, was considered impracticable.
  • the invention is therefore based on the object to expand the scope of alternative energy produced.
  • alternative energies such as, for example, solar energy or combustion energy from renewable raw materials or the like, are suitable for generating process heat for a packaging device.
  • a particularly preferred field of application for the device according to the invention is the generation of heat for a Schrumpfanläge.
  • the range of application is increased by the use of a high-temperature heat accumulator.
  • phase change material is preferably used, which can be selectively selected according to the temperature to be provided.
  • a metal is preferably used, with bismuth being particularly suitable for shrinking plants.
  • salts whose melting point is in the appropriate temperature range, for example crystalline sodium hydroxide.
  • a heat transfer medium is preferably used, which differs from the process medium.
  • the heat transfer medium is preferably a heat transfer oil.
  • pressurized water is also considered.
  • a source of energy is preferably a solar system containing commercially available solar panels.
  • a parabolic collector is particularly suitable, which can reach the necessary temperatures, but also for example by
  • Vacuum tube collectors can be replaced or, for a two-stage operation, a vacuum tube collector can be followed.
  • Collectors with heliostat mirrors also allow a high temperature level.
  • the energy source may further contain a combustion system, especially for renewable materials, however, which can also be used as a single source of energy and is then preferably coupled to the described high-temperature heat storage.
  • FIG. 1 shows a schematic representation of a device 1 for generating process heat.
  • the device 1 for generating process heat for a packaging device 2 in particular a Schrumpfanläge designed.
  • the Schrumpfanläge 2 is designed as a hot air continuous furnace (so-called. Shrink tunnel) through which objects, such as bottles, cans, boxes, loaded pallets or the like. Continuously move, the individually or in groups in a plastic shrink film or welded shrink labels should be provided.
  • Shrink tunnel hot air continuous furnace
  • the Schrumpfanläge any known system can be used.
  • the Schrumpfanläge works preferably with air nozzles through which heated air is blown against the shrink film.
  • the invention is also applicable to other packaging devices, working continuously or discontinuously, where heat is needed for a packaging process.
  • the heat required for packaging is supplied by an energy source 3, which provides its energy not limited or (limited) (not fast) controllable.
  • the power source 3 includes a solar system 4, which is equipped with conventional types of solar panels.
  • the solar system 4 operates in two stages, ie it contains at least one flat or (preferably) vacuum tube collector 4a may be part of a heating or domestic water heating device, for example, already exists or installed together with the device 1 ,
  • the solar system 4 further includes a collector 4b capable of supplying a higher temperature than the collectors 4a.
  • the collector 4b a parabolic trough collector.
  • the solar system 4 is used for direct or indirect (depending on the type of collector) heating a heat transfer medium, in particular a high-temperature heat transfer oil or pressurized water.
  • the heat transfer medium flows via a line 5 of the solar system, preferably via a pump Pl, in a high-temperature heat storage 7. Since experience shows that only part of the rated power is needed in the daily average, the heat storage 7 should store the excess heat for later retrieval.
  • the high-temperature heat storage 7 should be able to provide a temperature above 185 ° C, preferably above 200 ° C, about 300 ° C and most preferably in the range of 250 to 350 ° C, ie to provide a flow temperature that is sufficient to operate the packaging device used, for example, the shrinking plant 2.
  • the flow temperature must be adjusted to the conditions of the device 1 that the air at the outlet of the air nozzles has a temperature of 180 to 250 ° C, wherein the packaging film and / or the shrink label within a time window of nine is brought to a shrinking and softening temperature between 80 and 100 degrees Celsius to twelve seconds, so that the shrink film lays tightly around the objects to be packaged and possibly existing overlapping areas of the film are welded.
  • the heat storage 7, for example, a thermally insulated solid, z. B. one or more solid blocks of gray cast iron, be.
  • the heat accumulator 7 preferably contains a phase change material in which the solidification or melting energy is utilized.
  • the phase change material can be chosen so that even higher temperatures can be stored and when retrieving the stored temperature, the energy remains approximately constant until the completion of the phase change process.
  • phase change material in the heat storage 7 it is thus possible to provide a relatively high temperature and deliver it over a longer period of time constant.
  • Phase change materials are known in a variety of formations in temperature ranges.
  • metals with a low or average melting point are particularly suitable;
  • suitable storage media would be lead (327 ° C at 23J / g), cadmium (321 ° C at 56J / g), bismuth (271 ° C at 52.2J / g), tin (232 ° C at 59.6J / g), zinc (420 ° C at 111J / g) and alloys of these metals.
  • Bismuth is particularly preferred from the temperature range.
  • the heat accumulator 7 is heated by the heat transfer medium, i. the heat transfer oil, which is guided by the line 5 in a queue 6 through the heat accumulator 7, melted and gives its consumed during melting energy during solidification again. Since the heat transfer medium has no direct contact with the phase change material, the system is therefore closed, in principle, toxic phase materials can be used.
  • the heat transfer medium leaves the heat storage 7 via a line 8.
  • the energy source 3 continues to contain a conventional auxiliary heating.
  • Conventional auxiliary heating for example, is suitable for a combustion plant 9 with a boiler, which can also be operated without problems with alternative fuels (eg biomass, production waste, etc.).
  • the line 8 from the heat exchanger 7 enters the boiler of the incinerator 9, wherein the heat transfer medium (oil) in a line coil 10 through the in the boiler located heat transfer medium, usually water, is heated.
  • the heat transfer medium (oil) leaves the incinerator 9 via a line 11 in which in turn a pump P2 can be provided and then enters the packaging device 2, there to provide the necessary heat for the packaging, so for example to heat the air used for shrinking ,
  • the heat transfer medium is passed via a line 12 in the circuit back into the solar system 4 and heated there again.
  • the line 5 is connected to the line 8, bypassing the heat accumulator 7 through a line 13 which is integrated in the line 5 with a valve Vl, via a valve V2 leads and opens into the line 8 with a valve V3.
  • the combustion system 9 is bypassed by a line 14, which via the valve V2 with the line 13 and the valve V3 with the line 8, as well as via a further valve V4 with a line 15 and via the line 15 via a further valve V5 with the Line 10 upstream of the pump P2, is connected.
  • the line 12 is bypassing the solar system 4 via a line 16, the lines 14 and 13 and the valve V3 in a circuit connected to the incinerator 9.
  • the device 1 is to be operated in a wide variety of operating states, wherein the following paths can be switched: Operation without solar panels: energy supply via boiler
  • Heat storage tank 7 is being charged Solar system 3 ⁇ Vl ⁇ Pl ⁇ Heat storage 7 ⁇ V3 ⁇ Heating 9 ⁇ V5 ⁇ V4 ⁇ Solar system 3
  • Pl ⁇ Heat storage 7 In particular, when using a high-temperature heat accumulator 7 of the type described, and a combustion plant with boiler 9 without solar system for generating process heat for all applications can be used in which a high temperature is required. In climatically preferred areas, however, only a solar system can be provided, and also here by the use of high-temperature heat storage, the purpose is not limited to packaging equipment.

Abstract

La présente invention concerne un dispositif (1) servant à produire de la chaleur de réaction pour un module d'emballage (2) qui peut être actionné avec une source d'énergie non réglable ou à réglage très limité. Le dispositif contient dans ce but un produit caloporteur et un accumulateur de chaleur (7).
EP07847001A 2006-12-07 2007-12-05 Dispositif de production de chaleur de réaction pour un module d'emballage Withdrawn EP2097685A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006058025A DE102006058025A1 (de) 2006-12-07 2006-12-07 Vorrichtung zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung
PCT/EP2007/010567 WO2008068008A1 (fr) 2006-12-07 2007-12-05 Dispositif de production de chaleur de réaction pour un module d'emballage

Publications (1)

Publication Number Publication Date
EP2097685A1 true EP2097685A1 (fr) 2009-09-09

Family

ID=39171378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07847001A Withdrawn EP2097685A1 (fr) 2006-12-07 2007-12-05 Dispositif de production de chaleur de réaction pour un module d'emballage

Country Status (5)

Country Link
US (1) US8807130B2 (fr)
EP (1) EP2097685A1 (fr)
CN (1) CN101573567A (fr)
DE (1) DE102006058025A1 (fr)
WO (1) WO2008068008A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD665551S1 (en) 2011-09-19 2012-08-14 Scandinavian Child Llc Heat-sealed waste disposal
CN102654318A (zh) * 2012-04-19 2012-09-05 江苏太阳宝新能源有限公司 太阳能光热发电相变储能介质融化及防凝结技术及装置
CN108699496A (zh) * 2016-03-08 2018-10-23 火花Ip控股有限公司 双容器紧凑型啤酒酿造系统
US11739984B2 (en) * 2020-03-31 2023-08-29 The Florida State University Research Foundation, Inc. Solar energy collection system with symmetric wavy absorber pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204379A (en) * 1978-09-05 1980-05-27 W. R. Grace & Co. Closed circuit shrink tunnel
JPS5824710U (ja) * 1981-08-11 1983-02-16 三菱電機株式会社 収縮包装用装置
EP0597141A1 (fr) * 1992-11-10 1994-05-18 VfI Gesellschaft für Verpackungstechnik mbH Procédé et dispositif pour l'emballage de marchandises empilées sur une palette
US20050109387A1 (en) * 2003-11-10 2005-05-26 Practical Technology, Inc. System and method for thermal to electric conversion

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933885A (en) * 1952-05-31 1960-04-26 Melba L Benedek Individually Heat storage accumulator systems and method and equipment for operating the same
US4124061A (en) 1976-11-01 1978-11-07 Rockwell International Corporation Thermal energy storage unit
DE2805840C2 (de) 1977-02-14 1986-01-02 American Hydrotherm Corp., New York, N.Y. Verfahren zur Abwärmerückgewinnung
JPS5452851A (en) 1977-10-04 1979-04-25 Matsushita Electric Ind Co Ltd Dolst-heat heat pump
US4269263A (en) * 1978-03-02 1981-05-26 Osaka Gas Kabushiki Kaisha Cooling and heating system utilizing solar heat
US4545207A (en) * 1978-04-10 1985-10-08 Neary Michael P Solar energy system
US4424805A (en) * 1978-04-10 1984-01-10 Neary Michael P Solar energy system and method of use
US4446041A (en) * 1978-04-10 1984-05-01 Neary Michael P Solar energy system
US4286141A (en) * 1978-06-22 1981-08-25 Calmac Manufacturing Corporation Thermal storage method and system utilizing an anhydrous sodium sulfate pebble bed providing high-temperature capability
US4237676A (en) * 1979-03-09 1980-12-09 Owens-Illinois, Inc. Method and apparatus for packaging containers
US4449515A (en) * 1979-07-16 1984-05-22 Seige Corporation Apparatus for collecting, intensifying and storing solar energy
US4309986A (en) * 1980-01-21 1982-01-12 Thermacore, Inc. Solar heater
JPS56137097A (en) 1980-03-27 1981-10-26 Mitsubishi Heavy Ind Ltd Heat accumulating medium
US4458669A (en) * 1981-03-02 1984-07-10 Lee Kap Joong Building heating system
FR2504662A1 (fr) * 1981-04-22 1982-10-29 Pavailler Louis Four tunnel, a chauffage par circulation d'huile
US4508101A (en) * 1982-04-09 1985-04-02 Monsanto Company Thermal energy storage system
US4464908A (en) * 1982-08-12 1984-08-14 The United States Of America As Represented By The United States Department Of Energy Solar-powered turbocompressor heat pump system
FR2564033B1 (fr) * 1984-05-10 1987-01-02 Thimon Ste Nouvelle Exploit Procede pour chauffer - en vue de la retracter - une gaine en matiere plastique thermoretractable recouvrant une charge et machine pour la mise en oeuvre du procede
US4579614A (en) * 1985-01-11 1986-04-01 Owens-Illinois, Inc. Label shrink oven
JPS62196597A (ja) 1986-02-24 1987-08-29 Sanyo Electric Co Ltd 熱利用システム
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
US4911232A (en) * 1988-07-21 1990-03-27 Triangle Research And Development Corporation Method of using a PCM slurry to enhance heat transfer in liquids
DE3834519A1 (de) 1988-10-11 1990-04-12 Beumer Maschf Bernhard Verfahren und vorrichtung zum umhuellen von stueckgut mit schrumpffolie
RU2068641C1 (ru) * 1992-10-20 1996-11-10 Общество с ограниченной ответственностью "Астросолар" Печь для выпечки хлеба и кондитерских изделий
FR2719019B1 (fr) * 1994-04-22 1996-05-31 Newtec Int Procédé d'emballage d'une charge à l'aide d'une gaine thermorétractable et machine d'emballage mettant en Óoeuvre un tel procédé.
US6336980B1 (en) * 1999-05-21 2002-01-08 Danieli Technology, Inc. Method for in-line heat treatment of hot rolled stock
JP2002327962A (ja) 2001-05-01 2002-11-15 Yozo Kato 太陽熱蓄熱システム
US7558452B2 (en) * 2001-08-02 2009-07-07 Edward Ho Apparatus and method for collecting energy
US6895145B2 (en) * 2001-08-02 2005-05-17 Edward Ho Apparatus and method for collecting light
ITMI20011825A1 (it) * 2001-08-29 2003-03-01 Smi Spa Forno a tunnel di termoretrazione per la produzione di imballaggi in pellicole di materiale termoretraibile e procedimento di imballaggio re
US7614397B1 (en) * 2004-08-09 2009-11-10 Foi Group, Llc Solar energy storage system
EP1705242A1 (fr) * 2005-03-23 2006-09-27 KRONES Aktiengesellschaft Installation de brasserie et procédé de brassage
IL174262A0 (en) * 2006-03-12 2006-08-01 Pessach Seidel A self-regulated thermal energy system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204379A (en) * 1978-09-05 1980-05-27 W. R. Grace & Co. Closed circuit shrink tunnel
JPS5824710U (ja) * 1981-08-11 1983-02-16 三菱電機株式会社 収縮包装用装置
EP0597141A1 (fr) * 1992-11-10 1994-05-18 VfI Gesellschaft für Verpackungstechnik mbH Procédé et dispositif pour l'emballage de marchandises empilées sur une palette
US20050109387A1 (en) * 2003-11-10 2005-05-26 Practical Technology, Inc. System and method for thermal to electric conversion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008068008A1 *

Also Published As

Publication number Publication date
US20100126498A1 (en) 2010-05-27
DE102006058025A1 (de) 2008-06-19
CN101573567A (zh) 2009-11-04
US8807130B2 (en) 2014-08-19
WO2008068008A1 (fr) 2008-06-12

Similar Documents

Publication Publication Date Title
EP3097368B1 (fr) Centrale solaire avec système de conduites
DE2831017C2 (fr)
EP3102890B1 (fr) Procédé d'exploitation d'une centrale solaire à concentration linéaire ainsi que centrale solaire à concentration linéaire
WO2012140007A2 (fr) Centrale solaire thermique comprenant un réservoir pour un fluide caloporteur et procédé pour faire fonctionner la centrale solaire thermique en mode de déchargement du réservoir
DE102008008652A1 (de) Thermoelektrischer Akkumulator zur Temperaturselektiven Speicherung von Wärme in thermisch getrennten Speichern u. a. zum Zweck der Erzeugung elektrischer Energie auf der Grundlage des Seebeck-Effektes
DE102006023616A1 (de) Anordnung und Verfahren zur Energiegewinnung aus der Sonnenstrahlung
WO2010136381A2 (fr) Dispositif et procédé pour refroidir des cellules solaires au moyen d'un flux d'agent de refroidissement
AT508481B1 (de) Verfahren zur erwärmung von brauchwasser
EP2399071B1 (fr) Dégazeur d'eau d'alimentation d'une centrale héliothermique
EP2097685A1 (fr) Dispositif de production de chaleur de réaction pour un module d'emballage
EP2361006A2 (fr) Système de refroidissement doté d'un ventilateur pour onduleur photovoltaïque
DE19628818A1 (de) Heizungsanlage
WO2014089717A1 (fr) Procédé et dispositif de génération d'un flux de fluide caloporteur
DE102012007210B4 (de) Verfahren und Vorrichtung zur thermischen Speicherung von Elektroenergie
DE102012210957A1 (de) Hochtemperatur-Wärmespeicher mit Induktionsheizung und Metallschmelze und Wärmespeicher-Verbundsystem
DE102007049385A1 (de) Latentwärmespeicher
DE202014101401U1 (de) Wärmespeichereinrichtung
DE1800816B1 (de) Speicherheizungsanlage
WO2013034139A1 (fr) Procédé et dispositif de stockage et de récupération d'une énergie thermique
DE102009038367A1 (de) Verfahren und Vorrichtung zur regenerativen Speicherung von Energie in Energieversorgungssystemen
DE102012018797B4 (de) Wärmeenergieversorgungsanlage und Verfahren zu deren Betrieb
WO2015036318A1 (fr) Accumulateur de chaleur à haute température
DE102009036167B4 (de) Wärmekraftmaschinensystem und Verfahren zum Betreiben einer Wärmekraftmaschine
DE102016001350B4 (de) Verfahren und Vorrichtung zur Bereitstellung von Raumwärme und Warmwasser durch Nutzung solarer Strahlungsenergie
DE2710139A1 (de) Vorrichtung zum erhitzen von brauchwasser in einem fluessigkeitsgefuellten speicherkessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170524