WO2008068008A1 - Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung - Google Patents

Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung Download PDF

Info

Publication number
WO2008068008A1
WO2008068008A1 PCT/EP2007/010567 EP2007010567W WO2008068008A1 WO 2008068008 A1 WO2008068008 A1 WO 2008068008A1 EP 2007010567 W EP2007010567 W EP 2007010567W WO 2008068008 A1 WO2008068008 A1 WO 2008068008A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
solar system
heat storage
heating
Prior art date
Application number
PCT/EP2007/010567
Other languages
English (en)
French (fr)
Inventor
Norbert Fleck
Original Assignee
Krones Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones Ag filed Critical Krones Ag
Priority to EP07847001A priority Critical patent/EP2097685A1/de
Priority to US12/516,580 priority patent/US8807130B2/en
Publication of WO2008068008A1 publication Critical patent/WO2008068008A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a device for generating process heat for a packaging device.
  • EP 1 705 242 describes the use of solar collectors for covering at least part of the heat energy consumption of a brewery plant, in particular for mashing, refining and / or wort boiling, but also for cleaning the plant or for operating a sorptive refrigeration plant.
  • the plant is operated with water as a heat transfer medium, which also serves as process water and is stored in a hot water heat storage. With this system, however, flow temperatures of up to 180 degrees Celsius are possible.
  • Packaging devices in particular in the form of the known shrinking devices, but have so far mostly electrically or occasionally heated with natural gas.
  • packaging devices in the form of shrinking devices For example, DE 35 16 609, DE 35 43 943, EP 1 288 129 or EP 678452 can be seen.
  • packaging plants for example when heating the air in shrinking equipment but must be operated at a much higher temperature than when heating process water or for heating purposes, and it is a stronger control of the temperature necessary, which so far when using no or limited controllable energy sources, as is the case with heat generation in solar or incineration plants, was considered impracticable.
  • the invention is therefore based on the object to expand the scope of alternative energy produced.
  • alternative energies such as, for example, solar energy or combustion energy from renewable raw materials or the like, are suitable for generating process heat for a packaging device.
  • a particularly preferred field of application for the device according to the invention is the generation of heat for a Schrumpfanläge.
  • the range of application is increased by the use of a high-temperature heat accumulator.
  • phase change material is preferably used, which can be selectively selected according to the temperature to be provided.
  • a metal is preferably used, with bismuth being particularly suitable for shrinking plants.
  • salts whose melting point is in the appropriate temperature range, for example crystalline sodium hydroxide.
  • a heat transfer medium is preferably used, which differs from the process medium.
  • the heat transfer medium is preferably a heat transfer oil.
  • pressurized water is also considered.
  • a source of energy is preferably a solar system containing commercially available solar panels.
  • a parabolic collector is particularly suitable, which can reach the necessary temperatures, but also for example by
  • Vacuum tube collectors can be replaced or, for a two-stage operation, a vacuum tube collector can be followed.
  • Collectors with heliostat mirrors also allow a high temperature level.
  • the energy source may further contain a combustion system, especially for renewable materials, however, which can also be used as a single source of energy and is then preferably coupled to the described high-temperature heat storage.
  • FIG. 1 shows a schematic representation of a device 1 for generating process heat.
  • the device 1 for generating process heat for a packaging device 2 in particular a Schrumpfanläge designed.
  • the Schrumpfanläge 2 is designed as a hot air continuous furnace (so-called. Shrink tunnel) through which objects, such as bottles, cans, boxes, loaded pallets or the like. Continuously move, the individually or in groups in a plastic shrink film or welded shrink labels should be provided.
  • Shrink tunnel hot air continuous furnace
  • the Schrumpfanläge any known system can be used.
  • the Schrumpfanläge works preferably with air nozzles through which heated air is blown against the shrink film.
  • the invention is also applicable to other packaging devices, working continuously or discontinuously, where heat is needed for a packaging process.
  • the heat required for packaging is supplied by an energy source 3, which provides its energy not limited or (limited) (not fast) controllable.
  • the power source 3 includes a solar system 4, which is equipped with conventional types of solar panels.
  • the solar system 4 operates in two stages, ie it contains at least one flat or (preferably) vacuum tube collector 4a may be part of a heating or domestic water heating device, for example, already exists or installed together with the device 1 ,
  • the solar system 4 further includes a collector 4b capable of supplying a higher temperature than the collectors 4a.
  • the collector 4b a parabolic trough collector.
  • the solar system 4 is used for direct or indirect (depending on the type of collector) heating a heat transfer medium, in particular a high-temperature heat transfer oil or pressurized water.
  • the heat transfer medium flows via a line 5 of the solar system, preferably via a pump Pl, in a high-temperature heat storage 7. Since experience shows that only part of the rated power is needed in the daily average, the heat storage 7 should store the excess heat for later retrieval.
  • the high-temperature heat storage 7 should be able to provide a temperature above 185 ° C, preferably above 200 ° C, about 300 ° C and most preferably in the range of 250 to 350 ° C, ie to provide a flow temperature that is sufficient to operate the packaging device used, for example, the shrinking plant 2.
  • the flow temperature must be adjusted to the conditions of the device 1 that the air at the outlet of the air nozzles has a temperature of 180 to 250 ° C, wherein the packaging film and / or the shrink label within a time window of nine is brought to a shrinking and softening temperature between 80 and 100 degrees Celsius to twelve seconds, so that the shrink film lays tightly around the objects to be packaged and possibly existing overlapping areas of the film are welded.
  • the heat storage 7, for example, a thermally insulated solid, z. B. one or more solid blocks of gray cast iron, be.
  • the heat accumulator 7 preferably contains a phase change material in which the solidification or melting energy is utilized.
  • the phase change material can be chosen so that even higher temperatures can be stored and when retrieving the stored temperature, the energy remains approximately constant until the completion of the phase change process.
  • phase change material in the heat storage 7 it is thus possible to provide a relatively high temperature and deliver it over a longer period of time constant.
  • Phase change materials are known in a variety of formations in temperature ranges.
  • metals with a low or average melting point are particularly suitable;
  • suitable storage media would be lead (327 ° C at 23J / g), cadmium (321 ° C at 56J / g), bismuth (271 ° C at 52.2J / g), tin (232 ° C at 59.6J / g), zinc (420 ° C at 111J / g) and alloys of these metals.
  • Bismuth is particularly preferred from the temperature range.
  • the heat accumulator 7 is heated by the heat transfer medium, i. the heat transfer oil, which is guided by the line 5 in a queue 6 through the heat accumulator 7, melted and gives its consumed during melting energy during solidification again. Since the heat transfer medium has no direct contact with the phase change material, the system is therefore closed, in principle, toxic phase materials can be used.
  • the heat transfer medium leaves the heat storage 7 via a line 8.
  • the energy source 3 continues to contain a conventional auxiliary heating.
  • Conventional auxiliary heating for example, is suitable for a combustion plant 9 with a boiler, which can also be operated without problems with alternative fuels (eg biomass, production waste, etc.).
  • the line 8 from the heat exchanger 7 enters the boiler of the incinerator 9, wherein the heat transfer medium (oil) in a line coil 10 through the in the boiler located heat transfer medium, usually water, is heated.
  • the heat transfer medium (oil) leaves the incinerator 9 via a line 11 in which in turn a pump P2 can be provided and then enters the packaging device 2, there to provide the necessary heat for the packaging, so for example to heat the air used for shrinking ,
  • the heat transfer medium is passed via a line 12 in the circuit back into the solar system 4 and heated there again.
  • the line 5 is connected to the line 8, bypassing the heat accumulator 7 through a line 13 which is integrated in the line 5 with a valve Vl, via a valve V2 leads and opens into the line 8 with a valve V3.
  • the combustion system 9 is bypassed by a line 14, which via the valve V2 with the line 13 and the valve V3 with the line 8, as well as via a further valve V4 with a line 15 and via the line 15 via a further valve V5 with the Line 10 upstream of the pump P2, is connected.
  • the line 12 is bypassing the solar system 4 via a line 16, the lines 14 and 13 and the valve V3 in a circuit connected to the incinerator 9.
  • the device 1 is to be operated in a wide variety of operating states, wherein the following paths can be switched: Operation without solar panels: energy supply via boiler
  • Heat storage tank 7 is being charged Solar system 3 ⁇ Vl ⁇ Pl ⁇ Heat storage 7 ⁇ V3 ⁇ Heating 9 ⁇ V5 ⁇ V4 ⁇ Solar system 3
  • Pl ⁇ Heat storage 7 In particular, when using a high-temperature heat accumulator 7 of the type described, and a combustion plant with boiler 9 without solar system for generating process heat for all applications can be used in which a high temperature is required. In climatically preferred areas, however, only a solar system can be provided, and also here by the use of high-temperature heat storage, the purpose is not limited to packaging equipment.

Abstract

Es wird eine Vorrichtung (1) zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung (2) beschrieben, die mit einer nicht oder nur begrenzt regelbaren Energiequelle betrieben werden kann. Zu diesem Zweck enthält die Vorrichtung ein Wärmeträgermedium und einen Wärmespeicher (7).

Description

Vorrichtung zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung
Beschreibung
Die Erfindung bezieht sich auf eine Vorrichtung zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung.
Energiekosten für das Betreiben von Anlagen sind ein nicht zu unterschätzender Kostenfaktor, der bei Verwendung fossiler Brennstoffe darüber hinaus auf lange Sicht nicht kalkuliert werden kann. Es sind deshalb bereits auf den verschiedensten Gebieten Anstrengungen unternommen worden, die benötigte Energie aus anderen, alternativen Quellen zu beziehen, wie beispielsweise aus einer Solaranlage oder einer Verbrennungsanlage für nachwachsende Rohstoffe. Bislang wurden diese Energiequellen jedoch nur dann eingesetzt, wenn es darum ging, Flüssigkeit, insbesondere Wasser, zu erwärmen. So beschreibt beispielsweise die EP 1 705 242 die Verwendung von Sonnenkollektoren zum Abdecken zumindest eines Teils des Wärmeenergieverbrauchs einer Brauereianlage, insbesondere zum Maischen, Läutern und/oder Würzekochen, aber auch zum Reinigen der Anlage oder zum Betreiben einer sorptiven Kälteanlage. Die Anlage wird mit Wasser als Wärmeträgermedium betrieben, das gleichzeitig als Prozesswasser dient und in einem Heißwasser-Wärmespeicher gespeichert wird. Mit dieser Anlage sind jedoch Vorlauftemperaturen von maximal 180 Grad Celsius möglich.
Verpackungseinrichtungen, insbesondere in Form der bekannten Schrumpfeinrichtungen, wurden jedoch bislang meist elektrisch bzw. vereinzelt auch mit Erdgas beheizt. Beispiele von Verpackungseinrichtungen in Form von Schrumpfeinrichtungen sind beispielsweise der DE 35 16 609, der DE 35 43 943, der EP 1 288 129 oder der EP 678452 zu entnehmen. In Verpackungsanlagen, beispielsweise beim Erwärmen der Luft in Schrumpfeinrichtungen muss jedoch mit einer weit höheren Temperatur gearbeitet werden als beim Erwärmen von Prozesswasser oder für Heizungszwecke, und es ist eine stärkere Kontrolle der Temperatur notwendig, was bisher bei Verwendung von nicht oder nur begrenzt regelbaren Energiequellen, wie dies bei einer Wärmeerzeugung in Solaroder Verbrennungsanlagen der Fall ist, als nicht praktikabel angesehen wurde.
Der Erfindung liegt somit die Aufgabe zu Grunde, den Einsatzbereich alternativ erzeugter Energie zu erweitern.
Erfindungsgemäß wurde festgestellt, dass sich alternative Energien, wie beispielsweise Sonnenenergie oder Verbrennungsenergie aus nachwachsenden Rohstoffen oder dergleichen, doch zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung eignen.
Ein besonders bevorzugtes Anwendungsgebiet für die erfindungsgemäße Vorrichtung ist die Erzeugung der Wärme für eine Schrumpfanläge .
Der Einsatzbereich wird erhöht durch die Verwendung eines Hochtemperatur-Wärmespeichers .
Zum Erreichen der erforderlichen hohen Temperaturen und um sicher zu stellen, dass die bereitgestellten
Vorlauftemperaturen im wesentlichen konstant gehalten werden können, wird bevorzugt ein Phasenwechselmaterial eingesetzt, das gezielt nach der bereitzustellenden Temperatur ausgewählt werden kann. Zum Bereitstellen höhere Temperaturen wird bevorzugt ein Metall eingesetzt, wobei sich für Schrumpfanlagen besonders Bismut eignet. Denkbar ist auch die Verwendung von Salzen, deren Schmelzpunkt im geeigneten Temperaturbereich liegt, z.B. kristallines Natriumhydroxid.
Zu Bereitstellung höhere Temperaturen wird bevorzugt ein Wärmeträgermedium eingesetzt, das sich vom Prozessmedium unterscheidet. Das Wärmeträgermedium ist bevorzugt ein Wärmeträgeröl. Alternativ ist auch Druckwasser in Betracht ziehbar.
Als Energiequelle dient bevorzugt eine Solaranlage, die handelsübliche Sonnenkollektoren enthält. Zum Erreichen höhere Temperaturen eignet sich besonders ein Parabolkollektor, der die notwendigen Temperaturen erreichen kann, jedoch auch beispielsweise durch
Vakuumröhrenkollektoren ersetzt werden kann oder, für einen zweistufigen Betrieb, einem Vakuumröhrenkollektor nachgeschaltet werden kann. Kollektoren mit Heliostatenspiegeln ermöglichen ebenfalls ein hohes Temperaturniveau .
Zum Überbrücken von Zeiten fehlender oder geringer Sonneneinstrahlung, kann die Energiequelle weiterhin eine Verbrennungsanlage insbesondere für nachwachsende Rohrstoffe enthalten, die jedoch auch als einzige Energiequelle eingesetzt werden kann und dann bevorzugt mit dem beschriebenen Hochtemperatur-Wärmespeicher gekoppelt wird.
Die Erfindung wird nachfolgend anhand der einzigen Fig. 1 beschrieben, die in schematischer Darstellung eine Vorrichtung 1 zum Erzeugen von Prozesswärme zeigt. Im dargestellten Ausführungsbeispiel ist die Vorrichtung 1 zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung 2, insbesondere eine Schrumpfanläge, ausgelegt. Die Schrumpfanläge 2 ist als Heißluft-Durchlaufofen (sog. Schrumpftunnel) ausgebildet, durch den sich nicht dargestellte Gegenstände, z.B. Flaschen, Dosen, Kartons, beladene Paletten oder dgl. kontinuierlich bewegen, die einzeln oder gruppenweise in eine Kunststoff-Schrumpffolie eingeschweißt oder mit Schrumpfetiketten versehen werden sollen. Als Schrumpfanläge kann jede bekannte Anlage eingesetzt werden. Die Schrumpfanläge arbeitet bevorzugt mit Luftdüsen, durch die erwärmte Luft gegen die Schrumpffolie geblasen wird. Die Erfindung ist jedoch auch bei anderen Verpackungseinrichtungen, kontinuierlich oder diskontinuierlich arbeitend, einzusetzen, bei denen Wärme für einen Verpackungsprozess benötigt wird.
Die zum Verpacken notwendige Wärme wird von einer Energiequelle 3 geliefert, die ihre Energie nicht oder nur begrenzt (nicht schnell) regelbar bereitstellt. Im dargestellten Ausführungsbeispiel enthält die Energiequelle 3 eine Solaranlage 4, die mit herkömmlichen Sonnenkollektorarten bestückt ist. Im dargestellten Ausführungsbeispiel arbeitet die Solaranlage 4 zwei-stufig, d.h. sie enthält wenigstens einen Flach- oder (bevorzugt) Vakuum-Röhren-Kollektor 4a der beispielsweise Teil einer Heizungs- oder Brauchwassererwärmungseinrichtung sein kann, die bereits besteht oder zusammen mit der Vorrichtung 1 installiert wird. Die Solaranlage 4 enthält jedoch weiterhin einen Kollektor 4b der in der Lage ist, eine höhere Temperatur als die Kollektoren 4a zu liefern. Bevorzugt ist der Kollektor 4b, ein Parabolrinnenkollektor . Die Solaranlage 4 dient zum direkten oder indirekten (je nach Typ des Kollektors) Erwärmen eines Wärmeträgermediums, insbesondere eines hoch temperaturfesten Wärmeträgeröls oder Druckwasser. Das Wärmeträgermedium fließt über eine Leitung 5 von der Solaranlage, bevorzugt über eine Pumpe Pl, in einen Hochtemperatur-Wärmespeicher 7. Da erfahrungsgemäß im Tagesmittel nur ein Teil der Nennleistung benötigt wird, sollte der Wärmespeicher 7 die anfallende Überschusswärme für einen späteren Abruf speichern. Der Hochtemperatur- Wärmespeicher 7 sollte in der Lage sein, eine Temperatur oberhalb von 185° Celsius, bevorzugt oberhalb von 200° Celsius, etwa 300° Celsius und insbesondere bevorzugt im Bereich von 250 bis 350° Celsius, zu liefern, d.h. eine Vorlauftemperatur zu liefern, die ausreicht, die eingesetzte Verpackungseinrichtung, beispielsweise die Schrumpfanlage 2 zu betreiben. Zum Betreiben der Schrumpfanläge 2 mit Luftdüsen muss die Vorlauftemperatur so auf die Gegebenheiten der Vorrichtung 1 abgestimmt werden, dass die Luft am Austritt der Luftdüsen eine Temperatur von 180 bis 250° Celsius hat, wobei die Verpackungsfolie und/oder das Schrumpfetikett innerhalb eines Zeitfensters von neun bis zwölf Sekunden auf eine Schrumpf- und Erweichungs-Temperatur zwischen 80 und 100 Grad Celsius gebracht wird, so dass sich die Schrumpffolie eng um die zu verpackenden Gegenstände legt und ggf. vorhandene Überlappungsbereiche der Folie verschweißt werden.
Der Wärmespeicher 7 kann beispielsweise ein wärmegedämmter Festkörper, z. B. ein oder mehrere massive Blöcke aus Grauguss, sein. Bevorzugt enthält der Wärmespeicher 7 jedoch ein Phasenwechselmaterial bei dem die Erstarrungs-/ bzw. Schmelzenergie ausgenutzt wird. Das Phasenwechselmaterial kann so gewählt werden, dass auch höhere Temperaturen gespeichert werden können und bei Abruf der gespeicherten Temperatur die Energie jeweils bis zum Abschluss des Phasenwechselvorgangs annähernd konstant bleibt. Durch die Verwendung von Phasenwechselmaterial im Wärmespeicher 7 ist es somit möglich, eine relativ hohe Temperatur bereit zu stellen und diese über einen längeren Zeitraum konstant abzugeben. Phasenwechselmaterialen sind in den unterschiedlichsten Ausbildungen in Temperaturbereichen bekannt. Für die erfindungsgemäße Vorrichtung 1 zum Bereitstellen von Schrumpfwärme kommen besonders Metalle mit niedrigem bzw. mittlerem Schmelzpunkt in Frage; so wären geeignete Speichermedien beispielsweise Blei (327° Celsius bei 23J/g) , Kadmium (321° Celsius bei 56J/g) , Bismut (271° Celsius bei 52,2J/g), Zinn (232° Celsius bei 59,6J/g), Zink (420° Celsius bei lllJ/g) und Legierungen aus diesen Metallen. Vom Temperaturbereich her besonders bevorzugt ist Bismut .
Der Wärmespeicher 7 wird durch das Wärmeträgermedium, d.h. das Wärmeträgeröl, das von der Leitung 5 in einer Schlange 6 durch den Wärmespeicher 7 geführt wird, aufgeschmolzen und gibt seine beim Aufschmelzen verbrauchte Energie während des Erstarrens wieder ab. Da das Wärmeträgermedium keinen direkten Kontakt mit dem Phasenwechselmaterial hat, das System demnach geschlossen ist, können in Prinzip auch toxische Phasenmaterialen eingesetzt werden.
Das Wärmeträgermedium verlässt den Wärmespeicher 7 über eine Leitung 8. Für Schlechtwetterperioden und den Produktionsstart vor Sonnenaufgang enthält die Energiequelle 3 weiterhin eine konventionelle Zuheizung. Als konventionell Zuheizung eignet sich beispielsweise eine Verbrennungsanlage 9 mit einem Kessel, die problemlos auch mit alternativen Brennstoffen (z. B. Biomasse, Produktionsabfälle, usw.) betrieben werden kann. Die Leitung 8 vom Wärmetauscher 7 tritt in den Kessel der Verbrennungsanlage 9 ein, wobei das Wärmeträgermedium (Öl) in einer Leitungsschlange 10 durch das sich im Kessel befindliche Wärmeträgermedium, meist Wasser, erwärmt wird. Das Wärmeträgermedium (Öl) verlässt die Verbrennungsanlage 9 über eine Leitung 11 in der wiederum eine Pumpe P2 vorgesehen werden kann und tritt dann in die Verpackungseinrichtung 2 ein, um dort die für die Verpackung notwendige Wärme bereitzustellen, also beispielsweise die zum Schrumpfen verwendete Luft zu erwärmen.
Nach der Verpackungseinrichtung 2 wird das Wärmeträgermedium über eine Leitung 12 im Kreislauf zurück in die Solaranlage 4 geleitet und dort wiederum aufgeheizt.
Für einen möglichst flexiblen Betriebsablauf der erfindungsgemäßen Vorrichtung 1 sind eine Mehrzahl von Umgehungs- oder Unterkreisläufe vorgesehen. So wird beispielsweise die Leitung 5 mit der Leitung 8 unter Umgehung des Wärmespeichers 7 durch eine Leitung 13 verbunden, die in der Leitung 5 mit einem Ventil Vl eingebunden ist, über ein Ventil V2 führt und in die Leitung 8 mit einem Ventil V3 einmündet. Die Verbrennungsanlage 9 wird durch eine Leitung 14 umgangen, die über das Ventil V2 mit der Leitung 13 und das Ventil V3 mit der Leitung 8, sowie über ein weiteres Ventil V4 mit einer Leitung 15 und über die Leitung 15 über ein weiteres Ventil V5 mit der Leitung 10 stromaufwärts der Pumpe P2, verbunden ist.
Um auch einen Betrieb ohne die Solaranlage 4 sicherzustellen, ist die Leitung 12 unter Umgehung der Solaranlage 4 über eine Leitung 16, die Leitungen 14 und 13 und das Ventil V3 in einem Kreislauf mit der Verbrennungsanlage 9 verbunden.
Durch die beschriebene Ausgestaltung ist die Vorrichtung 1 in den unterschiedlichsten Betriebszuständen zu betreiben, wobei die folgenden Pfade geschaltet werden können: Betrieb ohne Sonnenkollektoren: Energiezufuhr über Kessel
Pfad 1 („Heizung EIN"):
Zuheizung 9 → V5 → P2 → Schrumpfanlage 2 → V4 → V2→ V3 →
Zuheizung 9
Pfad 2 („Heizung AUS") : Überschusswärme in den Wärmespeicher 7
Zuheizung 9 → V5 → V4 → V2 → Vl → Pl → Wärmespeicher 7 → V3 → Zuheizung 9
Solarbetrieb mit Zuheizung:
Energiezufuhr über Zuheizung und Sonnenkollektoren
Pfad 1 („Heizung EIN") :
Solaranlage 3 → Vl → V2 → V3 → Zuheizung 9 → V5 → P2 →
Schrumpftunnel 2 → Solaranlage 3
Pfad 2 („Heizung AUS"): Wärmespeicher 7 wird geladen. Solaranlage 3 → Vl → Pl → Wärmespeicher 7 → V3 → Zuheizung 9 → V5 → V4 → Solaranlage 3
Solarbetrieb ohne Zuheizung: Energiezufuhr über Sonnenkollektoren
Pfad Ia („Heizung EIN") : (bei kaltem Wärmespeicher) Solaranlage 3 → Vl → V2 → V4 → V5 → P2 → Schrumpfanläge → Solaranlage 3
Pfad Ib („Heizung EIN"): mit vorgeheiztem Wärmespeicher zur Temperaturstabilisierung
Solaranlage 3 → Vl → Pl → Wärmespeicher 7 → V3 → V2 → V4 → V5 →P2 → Solaranlage 3 → Schrumpfanlage 3
Pfad 2 („Heizung AUS") : Wärmespeicher wird geladen Solaranlage 3 → Vl → Pl → Wärmespeicher 7 → V3 → V2 → V4 -+ Solaranlage 3
4. Wärmespeicherbetrieb:
Energiezufuhr über Wärmespeicher (und Zuheizung)
Pfad 1 („Heizung EIN"):
Wärmespeicher 7 → V3 → Zuheizung 9 → V5 → P2 →
Schrumpfanlage 7 → V4 → V2 → Vl → Pl -» Wärmespeicher 7
Pfad 2 („Heizung AUS") :
Wärmespeicher 7 → V3 → Zuheizung 9 → V5 → V4 → V2 → Vl
Pl → Wärmespeicher 7 Insbesondere bei Verwendung eines Hochtemperatur- Wärmespeichers 7 der beschriebenen Art, kann auch eine Verbrennungsanlage mit Kessel 9 ohne Solaranlage zum Erzeugen von Prozesswärme für alle Einsatzzwecke verwendet werden, in denen eine hohe Temperatur erforderlich ist. In klimatisch bevorzugten Gebieten kann jedoch auch lediglich eine Solaranlage vorgesehen sein, wobei auch hier durch die Verwendung des Hochtemperatur-Wärmespeichers der Einsatzzweck nicht auf Verpackungseinrichtungen beschränkt ist.

Claims

Patentansprüche
1. Vorrichtung (1) zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung (2), mit einer nicht oder nur begrenzt regelbaren Energiequelle (3), einem Wärmeträgermedium und einem Wärmespeicher (7).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Verpackungseinrichtung (2) eine Schrumpfanläge enthält.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärmespeicher (7) ein Hochtemperatur-Wärmespeicher ist .
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Hochtemperatur-Wärmespeicher ein Phasenwechselmaterial enthält.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Wärmespeicher (7) ein Metall, insbesondere Bismut, enthält.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wärmeträgermedium ein Wärmeträgeröl oder Druckwasser ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Energiequelle (3) eine Solaranlage (4) enthält.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Solaranlage (4) einen Vakuumröhrenkollektor (4a) enthält.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Solaranlage (4) einen Parabolkollektor (4b) enthält.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Solaranlage (4) zweistufig ausgebildet ist.
11. Vorrichtung nach einem der Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Energiequelle (3) eine Verbrennungsanlage (9), insbesondere für nachwachsende Rohstoffe, enthält.
12. Vorrichtung (1) zum Erzeugen von Prozesswärme, mit einer nicht oder nur begrenzt regelbaren Energiequelle (3), einem Wärmeträgermedium und einem Hochtemperatur- Wärmespeicher (7) zum Bereitstellen einer Temperatur von wenigstens 185°C, bevorzugt zwischen 250 und 3500C.
PCT/EP2007/010567 2006-12-07 2007-12-05 Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung WO2008068008A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07847001A EP2097685A1 (de) 2006-12-07 2007-12-05 Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung
US12/516,580 US8807130B2 (en) 2006-12-07 2007-12-05 Apparatus for generating process heat for a packaging arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006058025A DE102006058025A1 (de) 2006-12-07 2006-12-07 Vorrichtung zum Erzeugen von Prozesswärme für eine Verpackungseinrichtung
DE102006058025.7 2006-12-07

Publications (1)

Publication Number Publication Date
WO2008068008A1 true WO2008068008A1 (de) 2008-06-12

Family

ID=39171378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010567 WO2008068008A1 (de) 2006-12-07 2007-12-05 Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung

Country Status (5)

Country Link
US (1) US8807130B2 (de)
EP (1) EP2097685A1 (de)
CN (1) CN101573567A (de)
DE (1) DE102006058025A1 (de)
WO (1) WO2008068008A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD665551S1 (en) 2011-09-19 2012-08-14 Scandinavian Child Llc Heat-sealed waste disposal
CN102654318A (zh) * 2012-04-19 2012-09-05 江苏太阳宝新能源有限公司 太阳能光热发电相变储能介质融化及防凝结技术及装置
AU2016397057B2 (en) * 2016-03-08 2020-08-13 Spark Ip Holdings Pty Ltd Two vessel compact beer brewing system
US11739984B2 (en) * 2020-03-31 2023-08-29 The Florida State University Research Foundation, Inc. Solar energy collection system with symmetric wavy absorber pipe

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933885A (en) * 1952-05-31 1960-04-26 Melba L Benedek Individually Heat storage accumulator systems and method and equipment for operating the same
DE2748635A1 (de) * 1976-11-01 1978-05-11 Mc Donnell Douglas Corp Thermische energiespeicher-einrichtung
JPS5452851A (en) * 1977-10-04 1979-04-25 Matsushita Electric Ind Co Ltd Dolst-heat heat pump
GB1585748A (en) * 1977-02-14 1981-03-11 American Hydrotherm Corp Waste heat recovery process
JPS56137097A (en) * 1980-03-27 1981-10-26 Mitsubishi Heavy Ind Ltd Heat accumulating medium
US4309986A (en) * 1980-01-21 1982-01-12 Thermacore, Inc. Solar heater
JPS62196597A (ja) * 1986-02-24 1987-08-29 Sanyo Electric Co Ltd 熱利用システム
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
DE3834519A1 (de) * 1988-10-11 1990-04-12 Beumer Maschf Bernhard Verfahren und vorrichtung zum umhuellen von stueckgut mit schrumpffolie
JP2002327962A (ja) * 2001-05-01 2002-11-15 Yozo Kato 太陽熱蓄熱システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269263A (en) * 1978-03-02 1981-05-26 Osaka Gas Kabushiki Kaisha Cooling and heating system utilizing solar heat
US4545207A (en) * 1978-04-10 1985-10-08 Neary Michael P Solar energy system
US4424805A (en) * 1978-04-10 1984-01-10 Neary Michael P Solar energy system and method of use
US4446041A (en) * 1978-04-10 1984-05-01 Neary Michael P Solar energy system
US4286141A (en) * 1978-06-22 1981-08-25 Calmac Manufacturing Corporation Thermal storage method and system utilizing an anhydrous sodium sulfate pebble bed providing high-temperature capability
US4204379A (en) * 1978-09-05 1980-05-27 W. R. Grace & Co. Closed circuit shrink tunnel
US4237676A (en) * 1979-03-09 1980-12-09 Owens-Illinois, Inc. Method and apparatus for packaging containers
US4449515A (en) * 1979-07-16 1984-05-22 Seige Corporation Apparatus for collecting, intensifying and storing solar energy
US4458669A (en) * 1981-03-02 1984-07-10 Lee Kap Joong Building heating system
FR2504662A1 (fr) * 1981-04-22 1982-10-29 Pavailler Louis Four tunnel, a chauffage par circulation d'huile
JPS5824710U (ja) * 1981-08-11 1983-02-16 三菱電機株式会社 収縮包装用装置
US4508101A (en) * 1982-04-09 1985-04-02 Monsanto Company Thermal energy storage system
US4464908A (en) * 1982-08-12 1984-08-14 The United States Of America As Represented By The United States Department Of Energy Solar-powered turbocompressor heat pump system
FR2564033B1 (fr) * 1984-05-10 1987-01-02 Thimon Ste Nouvelle Exploit Procede pour chauffer - en vue de la retracter - une gaine en matiere plastique thermoretractable recouvrant une charge et machine pour la mise en oeuvre du procede
US4579614A (en) * 1985-01-11 1986-04-01 Owens-Illinois, Inc. Label shrink oven
US4911232A (en) * 1988-07-21 1990-03-27 Triangle Research And Development Corporation Method of using a PCM slurry to enhance heat transfer in liquids
RU2068641C1 (ru) * 1992-10-20 1996-11-10 Общество с ограниченной ответственностью "Астросолар" Печь для выпечки хлеба и кондитерских изделий
EP0597141A1 (de) * 1992-11-10 1994-05-18 VfI Gesellschaft für Verpackungstechnik mbH Verfahren und Vorrichtung zum Verpacken von gestapelten Gütern auf Paletten
FR2719019B1 (fr) * 1994-04-22 1996-05-31 Newtec Int Procédé d'emballage d'une charge à l'aide d'une gaine thermorétractable et machine d'emballage mettant en Óoeuvre un tel procédé.
US6336980B1 (en) * 1999-05-21 2002-01-08 Danieli Technology, Inc. Method for in-line heat treatment of hot rolled stock
US7558452B2 (en) * 2001-08-02 2009-07-07 Edward Ho Apparatus and method for collecting energy
US6895145B2 (en) * 2001-08-02 2005-05-17 Edward Ho Apparatus and method for collecting light
ITMI20011825A1 (it) * 2001-08-29 2003-03-01 Smi Spa Forno a tunnel di termoretrazione per la produzione di imballaggi in pellicole di materiale termoretraibile e procedimento di imballaggio re
US7767903B2 (en) * 2003-11-10 2010-08-03 Marshall Robert A System and method for thermal to electric conversion
US7614397B1 (en) * 2004-08-09 2009-11-10 Foi Group, Llc Solar energy storage system
EP1705242A1 (de) * 2005-03-23 2006-09-27 KRONES Aktiengesellschaft Brauereianlage und Brauverfahren
IL174262A0 (en) * 2006-03-12 2006-08-01 Pessach Seidel A self-regulated thermal energy system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933885A (en) * 1952-05-31 1960-04-26 Melba L Benedek Individually Heat storage accumulator systems and method and equipment for operating the same
DE2748635A1 (de) * 1976-11-01 1978-05-11 Mc Donnell Douglas Corp Thermische energiespeicher-einrichtung
GB1585748A (en) * 1977-02-14 1981-03-11 American Hydrotherm Corp Waste heat recovery process
JPS5452851A (en) * 1977-10-04 1979-04-25 Matsushita Electric Ind Co Ltd Dolst-heat heat pump
US4309986A (en) * 1980-01-21 1982-01-12 Thermacore, Inc. Solar heater
JPS56137097A (en) * 1980-03-27 1981-10-26 Mitsubishi Heavy Ind Ltd Heat accumulating medium
JPS62196597A (ja) * 1986-02-24 1987-08-29 Sanyo Electric Co Ltd 熱利用システム
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
DE3834519A1 (de) * 1988-10-11 1990-04-12 Beumer Maschf Bernhard Verfahren und vorrichtung zum umhuellen von stueckgut mit schrumpffolie
JP2002327962A (ja) * 2001-05-01 2002-11-15 Yozo Kato 太陽熱蓄熱システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2097685A1 *

Also Published As

Publication number Publication date
DE102006058025A1 (de) 2008-06-19
CN101573567A (zh) 2009-11-04
US8807130B2 (en) 2014-08-19
US20100126498A1 (en) 2010-05-27
EP2097685A1 (de) 2009-09-09

Similar Documents

Publication Publication Date Title
EP3097368B1 (de) Solarkraftwerk mit rohrleitungssystem
DE2831017C2 (de)
EP3102890B1 (de) Verfahren zum betrieb eines linear konzentrierenden solarkraftwerks sowie linear konzentrierendes solarkraftwerk
DE102008008652A1 (de) Thermoelektrischer Akkumulator zur Temperaturselektiven Speicherung von Wärme in thermisch getrennten Speichern u. a. zum Zweck der Erzeugung elektrischer Energie auf der Grundlage des Seebeck-Effektes
WO2012140007A2 (de) Solarthermisches kraftwerk mit speicher für ein wärmeträgermedium und verfahren zum betreiben des solarthermischen kraftwerks im entlademodus des speichers
WO2010136381A2 (de) Vorrichtung und verfahren zum kühlen von solarzellen mittels eines strömenden kühlmediums
AT508481B1 (de) Verfahren zur erwärmung von brauchwasser
EP2399071B1 (de) Speisewasserentgaser eines solarthermischen kraftwerks
WO2008068008A1 (de) Vorrichtung zum erzeugen von prozesswärme für eine verpackungseinrichtung
EP2361006A2 (de) Kühlsystem mit Lüfter für Photovoltaik-Wechselrichter
DE19628818A1 (de) Heizungsanlage
DE2757306A1 (de) Energiespeicher
WO2014089717A1 (de) Verfahren und vorrichtung zum erzeugen eines stroms von wärme transportierendem fluid
DE102012007210B4 (de) Verfahren und Vorrichtung zur thermischen Speicherung von Elektroenergie
DE102012210957A1 (de) Hochtemperatur-Wärmespeicher mit Induktionsheizung und Metallschmelze und Wärmespeicher-Verbundsystem
DE102007049385A1 (de) Latentwärmespeicher
DE102015100568B4 (de) Wärmespeichereinrichtung
DE102014202633B4 (de) Verfahren zum Betrieb eines solarthermischen Kraftwerks sowie solarthermisches Kraftwerk
DE1800816B1 (de) Speicherheizungsanlage
WO2013034139A1 (de) Verfahren und vorrichtung zur speicherung und rückgewinnung von thermischer energie
DE102009038367A1 (de) Verfahren und Vorrichtung zur regenerativen Speicherung von Energie in Energieversorgungssystemen
EP3044519A1 (de) Hochtemperaturwärmespeicher
DE102009036167B4 (de) Wärmekraftmaschinensystem und Verfahren zum Betreiben einer Wärmekraftmaschine
DE102016001350B4 (de) Verfahren und Vorrichtung zur Bereitstellung von Raumwärme und Warmwasser durch Nutzung solarer Strahlungsenergie
DE2710139A1 (de) Vorrichtung zum erhitzen von brauchwasser in einem fluessigkeitsgefuellten speicherkessel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045079.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07847001

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007847001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007847001

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12516580

Country of ref document: US