EP2095300A2 - Transpondeur miniature et systeme d'identification comportant un tel transpondeur et un lecteur adapte - Google Patents
Transpondeur miniature et systeme d'identification comportant un tel transpondeur et un lecteur adapteInfo
- Publication number
- EP2095300A2 EP2095300A2 EP07847432A EP07847432A EP2095300A2 EP 2095300 A2 EP2095300 A2 EP 2095300A2 EP 07847432 A EP07847432 A EP 07847432A EP 07847432 A EP07847432 A EP 07847432A EP 2095300 A2 EP2095300 A2 EP 2095300A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- bar
- transponder
- winding
- flat
- transponder according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004804 winding Methods 0.000 claims abstract description 43
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 21
- 241001465754 Metazoa Species 0.000 claims abstract description 10
- 238000010171 animal model Methods 0.000 claims abstract description 4
- 239000002356 single layer Substances 0.000 claims abstract description 4
- 239000002775 capsule Substances 0.000 claims description 10
- 239000002966 varnish Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 238000010292 electrical insulation Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 241000699670 Mus sp. Species 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 241000700159 Rattus Species 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K11/00—Marking of animals
- A01K11/006—Automatic identification systems for animals, e.g. electronic devices, transponders for animals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/06—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/06—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
- H01Q7/08—Ferrite rod or like elongated core
Definitions
- Miniature transponder and identification system comprising such a transponder and a suitable reader.
- the present invention relates to a miniature transponder and an identification system comprising such a transponder and a suitable reader, operating according to radio frequency identification technology, called RFID technology (English: Radio Frequency Identification).
- RFID technology International: Radio Frequency Identification
- An RFID identification system is composed of the transponder and a read / write set called "reader” to ensure data exchange with the transponder by radio waves.
- a transponder comprises an electronic circuit, or "chip”, able to receive, store and / or transmit data, whose communication with the reader is provided via an antenna connected to said chip.
- the energy required for the operation of the chip is supplied to the transponder by the reader, which comprises for this purpose a transmitting antenna capable of supplying this energy and transmitting data to the transponder, and a receiving antenna able to receive the data.
- the transponders targeted by the invention are more particularly, but not exclusively, intended for applications such as the identification of animals and, for this purpose, intended to be implanted in the body of an animal, generally in close proximity under his skin.
- the system according to the invention is thus particularly intended to ensure the identification of very small animals such as mice, xenopus, small fish, etc.
- the transponder must then be very small and integrated in a hermetic glass capsule or other bio compatible material thus allowing its implantation in vivo.
- system can also be used for the remote identification of any other object or element that can not integrate existing transponders. more bulky, for reasons of available space, discretion, dimensional compatibility, etc.
- transponder consists of a winding of several hundred turns of an insulated wire wound on a ferrite bar and connected to an RFID chip.
- transponders are described in particular in US-5025550, FR2736240, WO-92/22827, US-5963132, WO-8704900, CA-2478975, US-5281855.
- the transponder once encapsulated in a cylindrical glass capsule has a minimum external space requirement of the order of 2 mm in diameter and 8 mm in length.
- the connections between the antenna and the chip use intermediate wiring means, such as printed circuit or connection pads, whose minimum space inevitable does not reduce sufficiently the overall size of the transponder.
- these dimensions remain too large and it is desirable to be able to reduce them as much as possible.
- this miniaturization of the transponder poses problems to ensure good communication between the reader and the transponder, and requires in particular a transmission power, and therefore an intensity of the magnetic field emitted by the reader, relatively high to ensure the operation of the transponder.
- the signals transmitted in return by the transponder are of low power and therefore the reader must be very sensitive in reception, which poses problems of selectivity because of its high transmission power.
- Known technologies do not make it possible to obtain transponders that are compatible with the applications referred to above, taking into account, in particular, the very small dimensions required for the transponder and the minimum reading distance imposed by the non-direct accessibility of the latter.
- the present invention aims to solve these problems, and aims in particular to provide a transponder of very small size able in particular to be easily integrated subcutaneously in an animal or easily and discreetly adapted to various objects.
- the invention also aims to provide a system adapted to work with such transponders and in particular it aims to provide a reader particularly adapted to communicate with these miniaturized transponders.
- the subject of the invention is a transponder comprising a winding of conductive wire wound on a bar of generally cylindrical ferrite shape and connected to an integrated radio frequency identification circuit, characterized in that the winding is made in a single layer of non-contiguous turns, formed with a non-insulated wire, and the integrated circuit is arranged to operate at a frequency greater than 10 MHz and is fixed directly on the ferrite bar so as not to exceed the volume cylindrical determined by the bar and the winding.
- the operating frequency of the integrated circuit is 13.56 MHz, this frequency being particularly suitable because it is available in the spectrum of radio frequencies for general use, and already commonly used in RFID technology for access control or tickets for example.
- the fact of working at high frequency for transmission between transponder and reader makes it possible to use a winding having only a very small number of turns, of a few tens at the most, for example about thirty turns.
- the winding can thus be made with non-contiguous turns, and consequently with a non-insulated thin wire, which is impossible in the prior art which requires a large number of turns necessarily in contact with each other and in superposed layers.
- non-insulated wire with a diameter of less than 30 ⁇ m, made of aluminum or gold, these metals also having the advantage of facilitating their welding on the integrated circuit.
- the embodiment of the winding in a single layer of turns and the use of such a non-insulated wire makes it possible, by the absence of any insulating coating, to reduce the diametral size of the winding, and therefore of the entire transponder, whose diameter may be less than 0.7 mm, for a maximum length of 4.5 mm for example.
- the overall dimensions of the capsule can be less than 1 mm in diameter and 6 mm long.
- the integrated circuit is fixed, by gluing or brazing, on a flat surface formed on the ferrite bar, towards one of its ends.
- this flat surface is a flat formed in the cylindrical bar, substantially at its axis and parallel thereto. This flat surface could also be made obliquely at the end of the bar. Fixing the circuit directly on the bar allows you to remove any other support and therefore avoid the clutter generated by it. It will be noted that, for reasons of transmission with the reader, the volume and therefore the length of the bar must remain sufficient, which allows the use of one end of the bar, axially protruding from the coil, as support of the integrated circuit without increasing the minimum size of said bar.
- At least one end of the bar protrudes from the winding in order to maintain the bar during the winding operation of the wire.
- the two ends of the bar axially exceed the coil, one end serving as a support for the integrated circuit and the other end for gripping the bar during winding.
- the integrated circuit used is fixed on the bar upside down, that is to say with its connection terminals located on the opposite side to the surface of the bar on which the circuit is fixed.
- This arrangement makes it possible to dispense with any intermediate connection of the antenna wires, and these can thus be soldered or bonded directly to the terminals of the circuit.
- the wire since the wire is thin and has no insulation, it can be positioned accurately on the terminals of the circuit, and does not require connection plates as would be necessary if the wire of the antenna was of larger diameter and / or isolated.
- the precise positioning of the circuit can be ensured during the welding or bonding operation thanks to the fact that it is advantageously provided that the circuit is fixed on the ferrite bar by projecting at least slightly from the axial end of the said bar.
- the precise positioning of the circuit can be ensured by putting the circuit itself in mechanical abutment against a fixed reference of the manufacturing machine, and thus avoids the inevitable small dimensional defects of the bar. Given the very small dimensions of the elements concerned, this is an important advantage to ensure a reliable connection between antenna and circuit, avoiding shifts between the position of the ends of the conductors and that of the terminals of the circuit.
- the turns are wound so as to conform to the shape of a flat made on the bar for this purpose, and a varnish or insulating resin provides electrical insulation between the turns and the return conductor that passes over of these, at the level of said flat so as not to cause a significant additional bulk.
- the winding with non-contiguous turns can be achieved by winding means used in microelectronics to ensure the required spacing of the turns, a varnish can be used to ensure the spaced positioning of the turns thereafter. It is also possible to make on the ferrite bar a throat or a thread of pitch and depth adapted to receive the turns of the winding and ensure their relative positioning and isolation.
- the transponder is used placed in a capsule, hermetically sealed or not.
- This capsule can be made of glass or plastic material. It is also possible to protect the transponder by overmolding plastic, resin, silicone, PVC, etc. made directly around the transponder, or by an outer layer of varnish.
- the invention also relates to an identification system comprising such a transponder and a suitable reader, characterized in that the reader comprises a transmitting antenna formed of a plane winding of predetermined diameter and a receiving antenna comprising at least two sets of threads arranged in planar spirals, each set comprising substantially in the same plane and adjacent, two planar spirals wound in opposite directions.
- the transmitting antenna and the receiving antenna constituting the radiating element of the reader are produced by etching on the same substrate.
- the intensity of the radiation emitted by the reader must be relatively high, the magnetic field typically having a value between 20 and 30 amps / meter, or between 3 and 6 times greater than the readers previously known, for remote power supply transponder reliably.
- the signals returned by it are relatively small.
- the geometrical shape given to the etching of the antennas makes it possible to minimize the level of the receiving antenna the electromagnetic fields generated directly by the transmitting antenna, and consequently makes it possible to better discriminate the signals coming from the transponder.
- the emission signal is generated filtered, adapted and amplified via an amplifier of at least one class C.
- a band pass filtering is used to filter the signal received in return from the transponder, this filtering being performed in such a way as to retain only one sideband the received signal, which is sufficient to obtain the required information from the transponder, but to retain all the energy contained in said sideband, so that the information can be read later by the demodulation circuit.
- the voltages in play are very low, and a pre-amplification is therefore performed before the demodulation of the received signal, the amplifier circuit of the reader for amplifying sufficiently the signal transmitted by the transponder to obtain a reading without error information of said transponder.
- FIG. 1 is a perspective view of the transponder according to the invention
- FIG. 2 is a front end view of the transponder, with an enlarged detail view showing the arrangement and isolation of the return wire;
- FIG. 3 illustrates the integration of the transponder in a hermetically sealed glass capsule; closed
- FIG. 4 is a partial perspective view of a first embodiment of the transponder
- FIG. 5 is a perspective view of a second embodiment of the transponder
- FIG. 6 is a perspective view of the ferrite bar alone for a third embodiment of the transponder
- FIGS. 7 to 9 are views corresponding to FIGS. 1 to 3 according to a fourth variant embodiment
- FIG. 10 is a simplified representation of the radiating element of the reader.
- the transponder shown in FIGS. 1 and 2 comprises a ferrite bar 1 of generally axially elongate cylindrical shape, a winding 2 formed around the bar, and an integrated circuit 3 of a type known per se for RFID applications.
- the ferrite rod 1 comprises at one end a flat part 11, whose flat surface is located substantially at the axis of the bar, and on which the circuit 3 is fixed by bonding or soft soldering, the electrical connection terminals 35 of the circuit being located upwards, when the bar is positioned as in the figures, and allowing a direct soldering of the ends of the winding son.
- the bar 1 also comprises another flat portion 12 which extends along the length of the bar, but of smaller dimension in section, as will be explained later.
- the winding 2 is formed by winding on the bar 1 a few tens of non-contiguous turns, a fine conductive wire 21 without insulating coating, for example gold.
- the winding 2 may for example comprise about thirty turns of wire of 25 .mu.m diameter, wound with a suitable pitch, for example about 0.07 mm. This winding 2 extends from the flat 11 and towards its other end leaves a protruding end portion 13 of the bar, allowing in particular to hold the bar during the realization of the winding.
- the end 21b of the conductor wire 21 located on the side of the flat is connected directly by soldering to one of the terminals 35 of the integrated circuit 3.
- the return conductor wire 21a is folded, passes under the coiled turns, along the flat part 12, and is also connected to the circuit 3.
- An insulating thin film strip 4 is arranged between the return wire 21a and coils wound for electrical insulation.
- the cross-sectional dimension of the flat part 12 is determined so as to correspond to the overall cross-section of the return wire and the insulating film 4, so that the wound windings remain on a constant winding radius, with no excess thickness in their passage. above the return wire. It will also be noted, as is clearly seen in FIG. 2, that the integrated circuit does not overflow, seen in section, beyond the periphery of the winding 2.
- the transponder as defined hereinbelow above is integrated, as shown in Figure 3, and already known manner in a cylindrical glass capsule 9 hermetically closed at both ends.
- the flat portion 12 is replaced by a groove 14 of V or U section extending along a generatrix of the cylindrical bar 1, and wherein the return wire 21a is housed. If the depth of this groove is sufficient, and possibly with occasional maintenance of the return wire at the bottom of the groove by a few spots of glue or varnish, it can thus avoid the use of the insulating film.
- the coil is formed from the end face of the bar 1 opposite the end bearing the circuit.
- the flat 11 on which the circuit 3 is glued can then be extended by a free end portion 15 and used in particular for maintaining the bar during the manufacture of the transponder.
- the passage flat of the return wire 21a is no longer located, as in Figure 1, parallel to the flat portion 11 of the support circuit 3, but angularly offset.
- FIG. 6, which shows only the ferrite rod 1 without the winding 2 and the integrated circuit 3, illustrates yet another variant in which a thread 16, for example 0.05 m deep and not adapted, is dug in the bar portion carrying the winding to accommodate the wire constituting the turns of the winding. If necessary, this net can also extend over the entire length of the bar including its end portion having the flat.
- a thread 16 for example 0.05 m deep and not adapted
- this net can also extend over the entire length of the bar including its end portion having the flat.
- the passage of the return wire 21a this passage being achieved by means of a relatively deep groove 17, for example up to the axis of the bar this depth thus avoiding any need for means for holding or insulating the return wire.
- the ferrite bar 1 also comprises a flat part 12, the thin wire turns 21 are wound on the bar by being applied against the said flat part, and a varnish, glue or insulating resin 41 is deposited on the portion of the turns located at said flat portion 12 so as to coat this portion of the turns and ensure electrical insulation.
- the return wire 21a then passes above this insulating coating 41 which, because it is formed on the flat part 12, does not create a greater diameter space than that of the ferrite bar alone, and therefore the return wire itself does not create any space significantly greater than that of the winding as a whole.
- the circuit 3 is fixed on the flat part 11 of the bar so as to overflow a little beyond the end of the bar.
- the face 31 of the circuit located towards the axial end of the bar, as well as the edge of the lateral face 32 of the circuit can be used as abutment surfaces for precise indexing in position of the circuit on the manufacturing machine during the welding of the son 21a and 21b on the connection terminals 35, so that, despite the great fineness of the wires and the small size of the terminals or connection pads, the electrical connection can be made automatically from very reliable way.
- the reader adapted to communicate with a transponder according to the invention comprises conventional electronic elements for transmitting, generate a current for transmitting by radio wave to the transponder energy necessary for the operation of its integrated circuit, and to combine the signals sent from the reader to the transponder, and, in reception, detect the signals back and extract the information provided by the transponder.
- the reader had to be improved so as to be able to transmit enough energy to the transponder, and to reliably read the transponder.
- the radiating element of a reader according to the invention and as represented in FIG.
- the transmitting antenna 5 consists of a few turns of large diameter.
- the receiving antenna comprises two sets 61, 62 of conductive tracks arranged in plane spirals inside the turns of the transmitting antenna, each set comprising, substantially in the same plane and adjacent, two planar spirals 61a, 61b in continuity with each other but wound in opposite directions, the central ends of these spirals being further connected to the electronic reception circuit, not shown in the drawing . This allows a reduction of several dB in the direct transmission of the transmitting magnetic field to the receiving circuit.
- the invention is not limited to the embodiments described above solely by way of examples, and in particular to the particular application of an implantable transponder, in particular for small animals.
- the invention can thus be applied in particular to the identification of art objects or valuables (paintings, jewelery, luxury goods ...), the identification of weapons, single-use equipment (Endoscope , etc.), and industrial traceability of serialized products (electronic cards, electronic pipettes, etc.).
- the transponder module may in particular, instead of being placed in a glass envelope, be coated with a mechanical protection material, non-metallic epoxy resin, silicone, PVC or varnish, carbon fiber, kevlar® or inserted in a non-metallic hermetic capsule or not according to the applications.
- the invention will apply in particular to the identification and tracing of very small laboratory animals, such as laboratory baby mice aged 5 days or less, or 1 day old rats. for example.
- very small dimensions that the invention achieves allow such uses, without the need for suture after injection or anesthesia.
- the reliability of the traceability that results can for example allow to remove DNA verification operations of some animals.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Zoology (AREA)
- Birds (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Near-Field Transmission Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Le transpondeur comporte un bobinage de fil conducteur bobiné sur un barreau (1) de forme générale cylindrique en ferrite et connecté à un circuit intégré (3) d'identification par ondes radiofréquences. Le bobinage (2) est réalisé en une seule couche de spires non jointives, avec un fil (21) non isolé, et le circuit intégré (3) est agencé pour fonctionner à une fréquence supérieure à 10 MHz et il est fixé directement sur le barreau en ferrite (1), par exemple sur un méplat (11) formé à une extrémité du barreau, de manière à ne pas dépasser du volume cylindrique déterminé par le barreau et le bobinage. Le lecteur comporte une antenne d'émission (5) formée d'un enroulement plan et une antenne de réception (6) comportant au moins deux ensembles (61, 62) de fil disposés en spirales planes, chaque ensemble comportant deux spirales (61a, 61b) planes enroulées en sens opposés. Application aux systèmes d'identification par onde radio, notamment pour des animaux de laboratoires.
Description
Transpondeur miniature et système d/ identification comportant un tel transpondeur et un lecteur adapté.
La présente invention concerne un transpondeur miniature et un système d' identification comportant un tel transpondeur et un lecteur adapté, fonctionnant selon la technologie d'identification par radio fréquence, appelée technologie RFID (de l'anglais : Radio Frequency Identification) . Un système d' identification RFID est composé du transpondeur et d'un ensemble de lecture/écriture nommé « lecteur » permettant d'assurer des échanges de données avec le transpondeur par ondes radio. De manière générale, un transpondeur comporte un circuit électronique, ou « puce », apte à recevoir, stocker et/ou transmettre des données, dont la communication avec le lecteur est assurée via une antenne connectée à la dite puce. L'énergie nécessaire au fonctionnement de la puce est fournie au transpondeur par le lecteur, qui comporte à cet effet une antenne d'émission apte à fournir cette énergie et à transmettre des données au transpondeur, et une antenne de réception apte à recevoir les données fournies par le transpondeur. Les transpondeurs visés par l'invention sont plus particulièrement, mais non limitativement, destinés à des applications telles que l'identification d'animaux et, à cette fin, destinés à être implanté dans le corps d'un animal, généralement à proximité directe sous sa peau. Le système selon l'invention est ainsi notamment destiné à assurer l'identification des très petits animaux tels que souris, xénopes, poissons de petite dimension, etc. Le transpondeur doit alors être de très faibles dimensions et intégré dans une capsule en verre hermétique ou autre matériau bio compatible permettant ainsi son implantation in vivo.
Le système peut toutefois être aussi utilisé en vue de l'identification à distance de tout autre objet ou élément ne pouvant intégrer des transpondeurs existants
de plus fort encombrement, pour des raisons d'encombrement disponible, de discrétion, de compatibilité dimensionnelle, etc.
On connaît déjà de tels systèmes dont la réalisation est basée sur la technologie RFID fonctionnant à des fréquences inférieures à 1 MHz, généralement au voisinage de 125 KHz, ou de quelques centaines de KHz tout au plus, comme indiqué dans FR- 2726926 ou EP-258415. Le transpondeur est constitué d'un bobinage de plusieurs centaines de spires d'un fil isolé bobiné sur un barreau de ferrite et relié à une puce RFID. De tels transpondeurs sont notamment décrits dans US-5025550, FR2736240, WO-92/22827, US-5963132, WO- 8704900, CA-2478975, US-5281855. Du fait notamment du grand nombre requis de spires du bobinage, le transpondeur une fois encapsulé dans une capsule en verre de forme cylindrique a un encombrement extérieur minimum de l'ordre de 2 mm de diamètre et 8 mm de longueur. De plus, dans les deux derniers documents cités ci-dessus, les connexions entre l'antenne et la puce utilisent des moyens de câblage intermédiaires, tels que circuit imprimé ou plages de connexion, dont l'encombrement minimal inévitable ne permet pas de réduire suffisamment l'encombrement général du transpondeur .
Dans le cadre des applications particulièrement visées par la présente invention, ces dimensions restent trop importantes et il est souhaitable de pouvoir les réduire le plus possible. Par ailleurs, cette miniaturisation du transpondeur pose des problèmes pour assurer une bonne communication entre le lecteur et le transpondeur, et requiert notamment une puissance d'émission, et donc une intensité du champ magnétique émis par le lecteur, relativement forte pour assurer le fonctionnement du transpondeur. Par contre, les signaux
émis en retour par le transpondeur sont de faible puissance et en conséquence le lecteur doit être très sensible en réception, ce qui pose des problèmes de sélectivité du fait de sa forte puissance en émission. Les technologies connues ne permettent pas d' obtenir des transpondeurs compatibles avec les applications visées ci-dessus, tenant compte notamment des très petites dimensions recherchées pour le transpondeur et de la distance de lecture minimale imposée par la non accessibilité directe de celui-ci.
La présente invention a pour but de résoudre ces problèmes, et vise en particulier à fournir un transpondeur de très petites dimensions apte notamment à être facilement intégré en sous-cutané dans un animal ou adapté aisément et discrètement à divers objets. L' invention vise aussi à fournir un système adapté pour travailler avec de tels transpondeurs et notamment elle vise à fournir un lecteur particulièrement adapté à communiquer avec ces transpondeurs miniaturisés.
Avec ces objectifs en vue, l'invention a pour objet un transpondeur comportant un bobinage de fil conducteur bobiné sur un barreau de forme générale cylindrique en ferrite et connecté à un circuit intégré d' identification par ondes radiofréquences, caractérisé en ce que le bobinage est réalisé en une seule couche de spires non jointives, formées avec un fil non isolé, et le circuit intégré est agencé pour fonctionner à une fréquence supérieure à 10 MHz et il est fixé directement sur le barreau en ferrite de manière à ne pas dépasser du volume cylindrique déterminé par le barreau et le bobinage.
Préférentiellement, la fréquence de fonctionnement du circuit intégré est de 13,56 MHz, cette fréquence étant particulièrement adaptée du fait qu'elle est
disponible dans le spectre des fréquences radio pour une utilisation générale, et déjà couramment utilisée en technologie RFID pour du contrôle d'accès ou des titres de transport par exemple. Le fait de travailler à haute fréquence pour la transmission entre transpondeur et lecteur permet d'utiliser un bobinage n'ayant qu'un nombre de spires très réduit, de quelques dizaines au plus, par exemple une trentaine de spires. Le bobinage peut ainsi être réalisé à spires non jointives, et en conséquence avec un fil fin non isolé, ce qui est impossible dans la technique antérieure qui nécessite un grand nombre de spires obligatoirement en contact les unes avec les autres et en couches superposées. On pourra par exemple utiliser un fil non isolé de diamètre inférieur à 30 μm, en aluminium ou en or, ces métaux présentant de plus l'avantage de faciliter leur soudage sur le circuit intégré. La réalisation du bobinage en une seule couche de spires et l'utilisation d'un tel fil non isolé permet, par l'absence de tout revêtement isolant, de réduire l'encombrement diamétral du bobinage, et donc de l'ensemble du transpondeur, dont le diamètre peut être de moins de 0,7 mm, pour une longueur maximale de 4,5 mm par exemple . Ainsi, lorsque le transpondeur est encapsulé, les dimensions hors tout de la capsule peuvent être inférieures à lmm en diamètre et 6 mm de long.
Selon une disposition préférentielle, le circuit intégré est fixé, par collage ou brasage, sur une surface plane réalisée sur le barreau de ferrite, vers l'une de ses extrémités. Préférentiellement encore, cette surface plane est un méplat formé dans le barreau cylindrique, sensiblement au niveau de son axe et parallèlement à celui-ci. On pourrait aussi réaliser cette surface plane obliquement à l'extrémité du barreau. La fixation du circuit directement sur le barreau permet de supprimer
tout autre support et donc éviter l'encombrement généré par celui-ci. On notera en effet que, pour des raisons de transmission avec le lecteur, le volume et donc la longueur du barreau doit rester suffisante, ce qui autorise l'utilisation d'une extrémité du barreau, dépassant axialement du bobinage, comme support du circuit intégré sans accroître l'encombrement minimal dudit barreau. De plus, il est aussi nécessaire qu'au moins une extrémité du barreau dépasse du bobinage pour pouvoir maintenir le barreau lors de l'opération d'enroulement du fil. Ainsi, il est possible de laisser les deux extrémités du barreau dépasser axialement du bobinage, une extrémité servant de support au circuit intégré et l'autre extrémité servant à la préhension du barreau lors du bobinage. Il est également possible de réaliser le bobinage à proximité directe d'une extrémité du barreau et d'utiliser l'extrémité opposée pour le support du circuit et pour la préhension du barreau, en conservant au besoin une certaine surlongueur du barreau, au-delà de sa surface plane de support du circuit, pour la préhension ou les besoins magnétiques.
De manière avantageuse, le circuit intégré utilisé est fixé sur le barreau à l'envers, c'est à dire avec ses bornes de connexion situées du coté opposé à la surface du barreau sur laquelle le circuit est fixé. Cette disposition permet de s'affranchir de tout intermédiaire de connexion des fils de l'antenne, et ceux ci peuvent ainsi être soudés ou collés directement sur les bornes du circuit. De plus, comme le fil est fin et ne comporte pas d'isolant, il peut être ainsi positionné de manière précise sur les bornes du circuit, et ne nécessite pas de plaques de connexion telles qu'elles seraient nécessaires si le fil de l'antenne était de plus gros diamètre et/ou isolé . On notera encore que pour obtenir ce positionnement précis des fils par rapport aux bornes de connexion du
circuit, le positionnement précis du circuit peut être assuré lors de l'opération de soudage ou collage grâce au fait qu' il est avantageusement prévu que le circuit est fixé sur le barreau de ferrite en débordant au moins légèrement de l'extrémité axiale du dit barreau. De la sorte, lors de l'opération de soudage ou collage, le positionnement précis du circuit peut être assuré en mettant le circuit lui même en butée mécanique contre un repère fixe de la machine de fabrication, et on s'affranchit ainsi des inévitables petits défauts dimensionnels du barreau. Compte tenu des très faibles dimensions des éléments concernés, ceci est un avantage important pour assurer une connexion fiable entre antenne et circuit, en évitant des décalages entre la position des extrémités des conducteurs et celle des bornes du circuit .
Par ailleurs, pour relier au circuit intégré l'extrémité du bobinage qui est situé vers l'extrémité du barreau opposée à celle portant le dit circuit, il est nécessaire de faire passer une portion de retour du fil conducteur selon la direction axiale le long du barreau.
On peut réaliser pour cela un petit méplat s' étendant sur la longueur du barreau, de dimension suffisante pour y placer le fil de retour, passant ainsi à l'intérieur des spires du bobinage, sans que cela ne crée une augmentation de la dimension radiale du bobinage. De plus, pour isoler cette portion de fil conducteur de retour par rapport aux spires, il est prévu de recouvrir la dite portion de fil d'un isolant électrique en couche mince, par exemple colle isolante ou film mince. On peut aussi remplacer le méplat par une rainure ou saignée longitudinale, par exemple de section en V, au fond de laquelle le fil de retour est logé. On peut encore réaliser une rainure étroite, de largeur juste suffisante pour y passer le fil de retour, mais plus profonde, de sorte que fil de retour soit assuré de
ne pas entrer en contact avec les spires, et ainsi qu'il ne soit plus nécessaire de prévoir une couche d' isolation électrique .
On peut aussi faire passer le conducteur de retour au dessus des spires, c'est à dire à l'extérieur des spires. Dans ce cas, les spires sont bobinées de manière à épouser la forme d'un méplat réalisé sur le barreau à cet effet, et un vernis ou résine isolante assure l'isolation électrique entre les spires et le conducteur de retour qui passe au-dessus de celles-ci, au niveau du dit méplat pour ne pas provoquer un encombrement supplémentaire sensible.
Le bobinage à spires non jointives peut être réalisé par des moyens de bobinage utilisés en microélectronique permettant d'assurer l'espacement requis des spires, un vernis pouvant être utilisé pour garantir le positionnement espacé des spires par la suite. On peut aussi réaliser sur le barreau de ferrite une gorge ou un filet de pas et profondeur adaptés pour recevoir les spires du bobinage et assurer leur positionnement et leur isolement relatifs.
De manière classique, le transpondeur est utilisé placé dans une capsule, scellée hermétiquement ou non. Cette capsule peut être en verre ou matière plastique. On peut aussi assurer la protection du transpondeur par un surmoulage en matière plastique, résine, silicone, PVC, etc. réalisé directement autour du transpondeur, ou par une couche extérieure de vernis.
L'invention a aussi pour objet un système d' identification comportant un tel transpondeur et un lecteur adapté, caractérisé en ce que le lecteur comporte une antenne d'émission formée d'un enroulement plan de diamètre prédéterminé et une antenne de réception comportant au moins deux ensembles de fil disposés en spirales planes, chaque ensemble comportant, sensiblement
dans un même plan et adjacentes, deux spirales planes enroulées en sens opposés.
Préférentiellement, l'antenne émission et l'antenne de réception constituant l'élément rayonnant du lecteur sont réalisées par gravage sur le même substrat.
Ces dispositions permettent d'assurer un fonctionnement optimal du lecteur, en permettant d'adapter le niveau d'émission au transpondeur miniature précédemment défini, c'est-à-dire de fournir un niveau d'émission relativement élevé, et les antennes de réception et d'émission étant disposées de manière que l'antenne de réception ne soit pas éblouie par la partie émission, afin de pouvoir discriminer au mieux le signal de réception.
En effet, du fait des petites dimensions du transpondeur, l'intensité du rayonnement émis par le lecteur doit être relativement forte, le champ magnétique ayant typiquement une valeur comprise entre 20 et 30 Ampères/mètre, soit entre 3 et 6 fois supérieur aux lecteurs précédemment connus, permettant de téléalimenter le transpondeur de manière fiable. Mais d'autre part du fait des petites dimensions du transpondeur, les signaux renvoyés par celui-ci sont relativement faibles. La forme géométrique donnée à la gravure des antennes permet de minimiser au niveau de l'antenne de réception les champs électromagnétiques engendrés directement par l'antenne émission, et en conséquence permet de mieux discriminer les signaux provenant du transpondeur.
Le signal émission est généré filtré, adapté et amplifié par l'intermédiaire d'un amplificateur d'une classe au moins C.
Un filtrage passe bande permet filtrer le signal reçu en retour du transpondeur, ce filtrage étant réalisé de manière notamment à ne conserver qu'une bande latérale
du signal reçu, ce qui est suffisant pour obtenir les informations requises en provenance du transpondeur, mais à conserver toute l'énergie contenue dans ladite bande latérale, afin que les informations soient bien lisibles ensuite par le circuit de démodulation.
Au niveau des circuits de réception, les tensions en jeu sont très faibles, et une pré-amplification est donc réalisée avant la démodulation du signal reçu, le circuit amplificateur du lecteur permettant d'amplifier suffisamment le signal émis par le transpondeur pour obtenir une lecture sans erreur des informations dudit transpondeur .
D'autres caractéristiques et avantages apparaîtront dans la description qui va être faite d'un transpondeur conforme à l'invention et de différentes variantes de réalisation .
On se reportera aux dessins annexés dans lesquels : - la figure 1 est une vue en perspective du transpondeur selon l'invention,
- la figure 2 est une vue d'extrémité frontale du transpondeur, avec une vue de détail à échelle agrandie montrant la disposition et l'isolation du fil de retour, - la figure 3 illustre l'intégration du transpondeur dans une capsule en verre hermétiquement fermée,
- la figure 4 est une vue partielle en perspective d'une première variante de réalisation du transpondeur, - la figure 5 est une vue en perspective d'une deuxième variante de réalisation du transpondeur,
- la figure 6 est une vue en perspective du barreau de ferrite seul pour une troisième variante de réalisation du transpondeur,
- les figures 7 à 9 sont des vues correspondant aux figures 1 à 3 selon une quatrième variante de réalisation,
- la figure 10 est une représentation simplifiée de l'élément rayonnant du lecteur.
Le transpondeur représenté figures 1 et 2 comporte un barreau de ferrite 1 de forme générale cylindrique axialement allongé, un bobinage 2 formé autour du barreau, et un circuit intégré 3 de type connu en soi pour des applications RFID.
Le barreau de ferrite 1 comporte à une extrémité un méplat 11, dont la surface plane est située sensiblement au niveau de l'axe du barreau, et sur lequel le circuit 3 est fixé par collage ou brasage tendre, les bornes 35 de raccordement électriques du circuit étant situées vers le haut, lorsque le barreau est positionné comme sur les figures, et permettant une soudure directe des extrémités des fils du bobinage. Le barreau 1 comporte aussi un autre méplat 12 qui s'étend sur la longueur du barreau, mais de plus petite dimension en section, comme cela sera expliqué par la suite.
Le bobinage 2 est formé par enroulement sur le barreau 1 de quelques dizaines de spires non jointives, d'un fil conducteur fin 21 sans revêtement isolant, par exemple en or. Le bobinage 2 peut par exemple comporter une trentaine de spires de fil de 25μm de diamètre, bobinées avec un pas adapté, par exemple d'environ 0.07 mm. Ce bobinage 2 s'étend à partir du méplat 11 et vers son autre extrémité laisse subsister une partie d'extrémité débordante 13 du barreau, permettant notamment de tenir le barreau lors de la réalisation du bobinage. L'extrémité 21b du fil conducteur 21 située du côté du méplat est raccordée directement par soudure sur une des bornes 35 du circuit intégré 3. A l'autre
extrémité du bobinage, le fil conducteur de retour 21a est replié, passe sous les spires bobinées, le long du méplat 12, et est aussi raccordé sur le circuit 3. Une bande de film mince isolant 4 est disposé entre le fil de retour 21a et les spires bobinées pour assurer l'isolation électrique. La dimension en section du méplat 12 est déterminée de manière à correspondre à l'encombrement en section du fil de retour et du film isolant 4, de sorte que les spires bobinées restent sur un rayon de bobinage constant, sans surépaisseur au niveau de leur passage au-dessus du fil de retour. On notera également, comme on le voit bien figure 2, que le circuit intégré ne déborde pas, vu en section, au-delà de la périphérie du bobinage 2. Dans l'application particulière de transpondeur implantable, le transpondeur tel que défini ci-dessus est intégré, comme illustré figure 3, et de manière déjà connue en soi, dans une capsule 9 en verre de forme cylindrique hermétiquement fermée à ses deux extrémités. Dans la variante représentée figure 4, le méplat 12 est remplacé par une rainure 14 de section en V ou U s' étendant selon une génératrice du barreau cylindrique 1, et dans laquelle le fil de retour 21a est logé. Si la profondeur de cette rainure est suffisante, et moyennant éventuellement un maintien ponctuel du fil de retour au fond de la rainure par quelques points de colle ou vernis, on peut ainsi éviter l'utilisation du film isolant .
Dans la variante de la figure 5, le bobinage est formé à partir de la face frontale du barreau 1 opposée à l'extrémité portant le circuit. Le méplat 11 sur lequel le circuit 3 est collé peut alors être prolongé par une partie d'extrémité 15 libre et servant notamment au maintien du barreau lors de la fabrication du transpondeur. On notera aussi sur cette figure, à titre de variante complémentaire, que le méplat de passage du
fil de retour 21a n'est plus situé, comme dans la figure 1, parallèlement au méplat 11 de support du circuit 3, mais décalé angulairement .
La figure 6, qui ne montre que le barreau de ferrite 1 sans le bobinage 2 et le circuit intégré 3, illustre encore une autre variante dans laquelle un filet 16, par exemple de 0,05 m de profondeur et de pas adapté, est creusé dans la portion de barreau portant le bobinage pour y loger le fil constituant les spires du bobinage. Au besoin, ce filet peut d'ailleurs aussi s'étendre sur toute la longueur du barreau y compris sur sa portion d'extrémité comportant le méplat. De plus, on a représenté sur cette figure encore une autre variante de réalisation pour le passage du fil de retour 21a, ce passage étant réalisé au moyen d'une gorge 17 relativement profonde, par exemple jusqu'au niveau de l'axe du barreau, cette profondeur évitant ainsi tout besoin de moyens de maintien ou d' isolation du fil de retour .
Dans la variante de réalisation des figures 7 à 9, le barreau de ferrite 1 comporte aussi un méplat 12, les spires de fil fin 21 sont bobinées sur le barreau en étant appliquées contre le dit méplat, et un vernis, colle ou résine isolant 41 est déposé sur la partie des spires située au niveau du dit méplat 12 de manière à enrober cette partie des spires et en assurer l'isolation électrique. Le fil de retour 21a passe alors au dessus de cet enrobage isolant 41 qui, grâce au fait qu'il est formé sur le méplat 12, ne crée pas d'encombrement diamétral plus important que celui du barreau de ferrite seul, et de ce fait le fil de retour lui même ne crée pas non plus d'encombrement sensiblement supérieur à celui du bobinage dans son ensemble. Par ailleurs, on notera que le circuit 3 est fixé sur le méplat 11 du barreau de manière à déborder un peu
au delà de l'extrémité du barreau. Ainsi, comme cela a déjà été expliqué, la face 31 du circuit située vers l'extrémité axiale du barreau, ainsi que le bord de la face latérale 32 du circuit peuvent être utilisées comme surfaces de butée pour une indexation précise en position du circuit sur la machine de fabrication lors de la soudure des fils 21a et 21b sur les bornes de raccordement 35, de sorte que, malgré la très grande finesse des fils et la petite dimension des bornes ou plages de connexion, la jonction électrique puisse être réalisée automatiquement de manière très fiable.
Le lecteur adapté pour communiquer avec un transpondeur selon l'invention comporte des éléments classiques d'électronique pour, en émission, générer un courant permettant de transmettre par onde radio au transpondeur l'énergie nécessaire au fonctionnement de son circuit intégré, et pour y combiner les signaux envoyés du lecteur au transpondeur, et pour, en réception, détecter les signaux en retour et en extraire les informations fournies par le transpondeur. Toutefois, ainsi que cela a déjà été indiqué, du fait de la forte miniaturisation du transpondeur selon l'invention, le lecteur a dû être amélioré de manière à pouvoir transmettre suffisamment d'énergie au transpondeur, et à pouvoir lire fiablement le transpondeur. A ces fins, l'élément rayonnant d'un lecteur selon l'invention, et tel que représenté figure 7, est essentiellement constitué d'une antenne d'émission 5 et d'une antenne de réception 6 réalisées sur le même substrat, par exemple par une technique classique de réalisation de circuits imprimés. L'antenne d'émission 5 est constituée de quelques spires de grand diamètre. L'antenne de réception comporte deux ensembles 61, 62 de pistes conductrices disposés en spirales planes à l'intérieur des spires de l'antenne d'émission, chaque ensemble comportant,
sensiblement dans un même plan et adjacentes, deux spirales planes 61a, 61b en continuité l'une avec l'autre mais enroulées en sens opposés, les extrémités centrales de ces spirales étant raccordées par ailleurs au circuit électronique de réception, non représenté sur le dessin. Ceci permet une réduction de plusieurs dB dans la transmission directe du champ magnétique d'émission vers le circuit de réception.
L'invention n'est pas limité aux modes de réalisations décrits précédemment uniquement à titre d'exemples, ni notamment à l'application particulière d'un transpondeur implantable, en particulier pour des petits animaux. L'invention peut ainsi s'appliquer notamment à l'identification d'objets d'art ou de valeur (tableaux, bijoux, produits de luxe...), à l'identification d'armes, de matériel à usage unique (Endoscope, etc ...) , et à la traçabilité en milieu industriel de produits sérialisés (cartes électroniques, pipettes électroniques, etc.). Dans de telles applications, le module transpondeur pourra notamment, au lieu d'être placé dans une enveloppe de verre, être enrobé d'un matériau de protection mécanique, non métallique de type résine époxy, silicone, PVC ou vernis, fibre de carbone, kevlar® ou inséré dans une capsule non métallique hermétique ou non selon les applications.
De manière avantageuse, l'invention s'appliquera en particulier à l'identification et au traçage d'animaux de laboratoires de très petite taille, tels que de bébés souris de laboratoire âgés de 5 jours ou moins, ou des rats âgés de 1 jour par exemple. Les très faibles dimensions que l'invention permet d'atteindre permettent de telles utilisations, sans besoin de suture après injection ni d' anesthésie . La fiabilité de la traçabilité qui en résulte peut par exemple permettre de supprimer des opérations de vérification ADN de certains animaux.
Claims
1. Transpondeur comportant un bobinage de fil conducteur bobiné sur un barreau (1) de forme générale cylindrique en ferrite et connecté à un circuit intégré (3) d'identification par ondes radiofréquences, caractérisé en ce que le bobinage (2) est réalisé en une seule couche de spires non jointives, avec un fil
(21) non isolé, et le circuit intégré (3) est un circuit fonctionnant à une fréquence supérieure à 10 MHz et il est fixé directement sur le barreau en ferrite (1) de manière à ne pas dépasser du volume cylindrique déterminé par le barreau et le bobinage.
2. Transpondeur selon la revendication 1, caractérisé en ce que le bobinage (2) est réalisé en fil de diamètre inférieur à 30 μm, en aluminium ou en or.
3. Transpondeur selon la revendication 1, caractérisé en ce que le circuit intégré (3) est fixé sur une surface plane (11) réalisée sur le barreau de ferrite (1), vers l'une de ses extrémités.
4. Transpondeur selon la revendication 3, caractérisé en ce que la surface plane est un méplat (11) formé dans le barreau cylindrique (1), sensiblement au niveau de son axe et parallèlement à celui-ci.
5. Transpondeur selon la revendication 3, caractérisé en ce que le circuit intégré (3) est fixé sur le barreau (1) avec ses bornes de connexion (35) situées du coté opposé à la surface du (11) barreau sur laquelle le circuit est fixé.
6. Transpondeur selon la revendication 3, caractérisé en ce que le circuit (3) est fixé sur le barreau de ferrite (1) en débordant de l'extrémité axiale du dit barreau.
7. Transpondeur selon la revendication 3, caractérisé en ce que le bobinage (2) est réalisé à proximité directe d'une extrémité du barreau (1) et le circuit intégré (3) est fixé vers l'extrémité opposée du barreau .
8. Transpondeur selon la revendication 1, caractérisé en ce que le barreau de ferrite (1) comporte un méplat (12) ou une rainure (14, 17) s'étendant sur la longueur du barreau et un fil de retour (21a) du bobinage
(2) passe sur ce méplat ou dans la rainure, à l'intérieur des spires du bobinage.
9. Transpondeur selon la revendication 1, caractérisé en ce que le barreau de ferrite (1) comporte une gorge ou un filet (16) de pas et profondeur adaptés pour recevoir les spires du bobinage (2) et assurer leur positionnement et leur isolement relatifs.
10. Transpondeur selon la revendication 1, caractérisé en ce que le barreau de ferrite (1) comporte un méplat (12), les spires sont bobinées de manière à épouser la forme du méplat, et un vernis ou résine isolante (41) assure l'isolation électrique entre les spires et le conducteur de retour (21a) qui passe au- dessus de celles-ci, au niveau du dit méplat.
11. Transpondeur selon la revendication 1, caractérisé en ce qu'il est placé dans une capsule (9) scellée en verre ou matière plastique.
12. Transpondeur selon la revendication 1, caractérisé en ce qu'il est enrobé d'un matériau de protection mécanique en résine époxy, silicone, PVC ou vernis, ou inséré dans une capsule non métallique hermétique ou non.
13. Système d'identification comportant un transpondeur selon l'une quelconque des revendications précédentes, et un lecteur, caractérisé en ce que le lecteur comporte une antenne d'émission (5) formée d'un enroulement plan de diamètre prédéterminé et une antenne de réception (6) comportant au moins deux ensembles (61, 62) de fil disposés en spirales planes, chaque ensemble comportant, sensiblement dans un même plan et adjacentes, deux spirales (61a, 61b) planes enroulées en sens opposés .
14. Système d'identification selon la revendication 13, caractérisé en ce que l'antenne d'émission (5) et l'antenne de réception (6) du lecteur sont réalisées par gravage sur le même substrat.
15. Système d'identification selon la revendication 13, caractérisé en ce que l'antenne de réception (6) comporte deux ensembles 61, 62 de pistes conductrices disposés en spirales planes à l'intérieur des spires de l'antenne d'émission (5)
16. Application du transpondeur selon l'une des revendications 1 à 12 à l'identification et/ou au traçage d'animaux de laboratoires.
17. Application selon la revendication 16 à l'identification et/ou au traçage d'animaux de laboratoires de très petite taille, tels que des bébés souris de laboratoire âgés de 5 jours ou moins, ou des rats âgés de 1 jour.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0655212A FR2909258B1 (fr) | 2006-11-30 | 2006-11-30 | Transpondeur miniature et systeme d'identification comportant un tel transpondeur et un lecteur adapte. |
PCT/EP2007/062907 WO2008065127A2 (fr) | 2006-11-30 | 2007-11-27 | Transpondeur miniature et système d'identification comportant un tel transpondeur et un lecteur adapté |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2095300A2 true EP2095300A2 (fr) | 2009-09-02 |
Family
ID=37951509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07847432A Withdrawn EP2095300A2 (fr) | 2006-11-30 | 2007-11-27 | Transpondeur miniature et systeme d'identification comportant un tel transpondeur et un lecteur adapte |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100084464A1 (fr) |
EP (1) | EP2095300A2 (fr) |
JP (1) | JP2010511238A (fr) |
CA (1) | CA2671042A1 (fr) |
FR (1) | FR2909258B1 (fr) |
WO (1) | WO2008065127A2 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101208894B1 (ko) | 2010-05-24 | 2012-12-06 | 주식회사 엠아이텍 | 생체이식형 의료기기의 데이터 송수신 장치 및 방법 |
JP5639607B2 (ja) * | 2012-02-27 | 2014-12-10 | 三智商事株式会社 | 無線icタグ |
ES2745003T3 (es) * | 2012-12-11 | 2020-02-27 | Incide S A | Etiqueta de RFID, sistema y método para la identificación de muestras a temperaturas criogénicas |
JP6024488B2 (ja) * | 2013-01-31 | 2016-11-16 | Tdk株式会社 | 電子ペン用コイル装置 |
JP6032016B2 (ja) * | 2013-01-10 | 2016-11-24 | Tdk株式会社 | 電子ペン用コイル装置 |
JP6451176B2 (ja) | 2014-09-25 | 2019-01-16 | アイシン精機株式会社 | バーアンテナ用のボビン、及び、このボビンを備えるバーアンテナ |
JP2016136571A (ja) * | 2015-01-23 | 2016-07-28 | Necトーキン株式会社 | 磁芯及び共振回路モジュール |
US20170111128A1 (en) * | 2015-10-15 | 2017-04-20 | Infineon Technologies Ag | Localization System and Animal Cage Comprising the Same |
JP6737984B2 (ja) * | 2016-09-16 | 2020-08-12 | 国立大学法人京都大学 | 読み取り装置のアンテナ |
CN107318739A (zh) * | 2017-07-04 | 2017-11-07 | 浙江海洋大学 | 一种深海鱼类金属磁性线标 |
CN107439452A (zh) * | 2017-07-04 | 2017-12-08 | 浙江海洋大学 | 一种用于金枪鱼金属磁性线标 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3782888T2 (de) | 1986-02-25 | 1993-07-08 | Destron Idi Inc | Mit einer spritze implantierbarer identifikationstransponder. |
US4759120A (en) * | 1986-05-30 | 1988-07-26 | Bel Fuse Inc. | Method for surface mounting a coil |
US5025550A (en) | 1990-05-25 | 1991-06-25 | Trovan Limited | Automated method for the manufacture of small implantable transponder devices |
EP0573469B1 (fr) * | 1991-02-25 | 1994-07-27 | GUSTAFSON, Ake | Procede de fixation d'un bobinage a un circuit electronique |
US5223851A (en) | 1991-06-05 | 1993-06-29 | Trovan Limited | Apparatus for facilitating interconnection of antenna lead wires to an integrated circuit and encapsulating the assembly to form an improved miniature transponder device |
US5281855A (en) * | 1991-06-05 | 1994-01-25 | Trovan Limited | Integrated circuit device including means for facilitating connection of antenna lead wires to an integrated circuit die |
US5767792A (en) | 1994-10-13 | 1998-06-16 | Bio Medic Data Systems Inc. | Method for calibrating a temperature sensing transponder |
JPH08166446A (ja) * | 1994-12-13 | 1996-06-25 | Kubota Corp | トランスポンダ |
US5840148A (en) | 1995-06-30 | 1998-11-24 | Bio Medic Data Systems, Inc. | Method of assembly of implantable transponder |
US5963132A (en) | 1996-10-11 | 1999-10-05 | Avid Indentification Systems, Inc. | Encapsulated implantable transponder |
JP2000293655A (ja) * | 1999-04-05 | 2000-10-20 | Mitsubishi Materials Corp | 物品の識別用タグ及びこれを用いた物品の識別装置 |
JP2001067451A (ja) * | 1999-08-27 | 2001-03-16 | Sumitomo Electric Ind Ltd | 非接触icタグ及びそれに用いるコイル |
CA2478975A1 (fr) * | 2000-01-11 | 2001-07-19 | Digital Angel Corporation | Etiquette de transpondeur integre passif comportant un noyau d'antenne autonome |
US6400338B1 (en) * | 2000-01-11 | 2002-06-04 | Destron-Fearing Corporation | Passive integrated transponder tag with unitary antenna core |
EP1136033B1 (fr) * | 2000-03-21 | 2004-11-10 | Radi Medical Systems Ab | Biotélémétrie passive |
JP2002261536A (ja) * | 2001-03-02 | 2002-09-13 | Alps Electric Co Ltd | 小型アンテナ及びその製造方法 |
KR100406352B1 (ko) * | 2001-03-29 | 2003-11-28 | 삼성전기주식회사 | 안테나 및 그 제조방법 |
US6887374B2 (en) * | 2002-09-10 | 2005-05-03 | Mary Humprehy | Collapsible digester |
EP1585191A4 (fr) * | 2002-09-30 | 2007-03-14 | Furukawa Electric Co Ltd | Etiquette rfid et son procede de production |
JP2005078268A (ja) * | 2003-08-29 | 2005-03-24 | Nec Tokin Corp | Rfidタグ |
EP1681010B1 (fr) * | 2003-10-27 | 2012-10-10 | Olympus Corporation | Dispositif medical du type capsule |
JP2005136901A (ja) * | 2003-10-31 | 2005-05-26 | Sony Corp | Icカード用アンテナモジュール及びその製造方法、並びに、icカード及びその製造方法 |
JP2005142403A (ja) * | 2003-11-07 | 2005-06-02 | Nec Tokin Corp | コイル部品及びその製造方法 |
US9623208B2 (en) * | 2004-01-12 | 2017-04-18 | Varian Medical Systems, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
US7825869B2 (en) * | 2007-07-03 | 2010-11-02 | Masin Joseph V | Miniature transponders |
-
2006
- 2006-11-30 FR FR0655212A patent/FR2909258B1/fr not_active Expired - Fee Related
-
2007
- 2007-11-27 WO PCT/EP2007/062907 patent/WO2008065127A2/fr active Application Filing
- 2007-11-27 JP JP2009538699A patent/JP2010511238A/ja active Pending
- 2007-11-27 EP EP07847432A patent/EP2095300A2/fr not_active Withdrawn
- 2007-11-27 US US12/516,875 patent/US20100084464A1/en not_active Abandoned
- 2007-11-27 CA CA002671042A patent/CA2671042A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2008065127A2 * |
Also Published As
Publication number | Publication date |
---|---|
CA2671042A1 (fr) | 2008-06-05 |
WO2008065127A2 (fr) | 2008-06-05 |
FR2909258A1 (fr) | 2008-06-06 |
FR2909258B1 (fr) | 2012-08-03 |
WO2008065127A3 (fr) | 2008-07-24 |
JP2010511238A (ja) | 2010-04-08 |
US20100084464A1 (en) | 2010-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2095300A2 (fr) | Transpondeur miniature et systeme d'identification comportant un tel transpondeur et un lecteur adapte | |
EP0875039B1 (fr) | Module electronique sans contact pour carte ou etiquette | |
EP1660953B1 (fr) | Montre a boitier metallique comprenant un module electronique pour la memorisation d'informations | |
CA2752716C (fr) | Carte nfc sensible aux courants de foucault | |
FR2621147A1 (fr) | Carte a circuits integres du type sans contact et dispositif de lecture/ecriture de cartes du type sans contact | |
EP3613076B1 (fr) | Dispositif d'emission reception radiofrequence | |
WO1998059319A1 (fr) | Micromodule electronique, notamment pour carte a puce | |
WO2001080173A1 (fr) | Etiquette electronique | |
EP1158603A1 (fr) | Antenne de génération d'un champ électromagnétique pour transpondeur | |
WO2016009142A1 (fr) | Entite electronique a transpondeur rfid | |
WO2020115375A2 (fr) | Carte à puce en métal à double interface de communication | |
EP0917101B1 (fr) | Bobine d'antenne à champ électrique réduit | |
EP1164535B1 (fr) | Dispositif de production d'un champ électromagnétique pour transpondeur | |
CA3006642A1 (fr) | Dispositif radiofrequence a circuit lc ajustable comprenant un module electrique et/ou electronique | |
WO1997034249A1 (fr) | Dispositif d'echange d'informations sans contact avec un ticket electronique | |
CA2968070C (fr) | Procede de fabrication d'un module electronique simple face comprenant des zones d'interconnexion | |
WO2017102749A1 (fr) | Module antenne simple face avec composant cms | |
WO2020099747A1 (fr) | Dispositif et procédé de détection d'une ouverture ou d'une tentative d'ouverture d'un récipient fermé | |
EP2720175A1 (fr) | Module électronique, dispositif à module électronique et procédé de fabrication. | |
EP3433938B1 (fr) | Objet portable et son antenne nfc | |
WO2017191373A1 (fr) | Module électronique de taille réduite pour carte à puce | |
EP2471028B1 (fr) | Procede de realisation d'un dispositif comprenant un circuit radiofrequence, et dispositif obtenu | |
EP3815183B1 (fr) | Circuit imprimé pour la communication de données | |
FR2861483A1 (fr) | Procede de fabrication d'une cle electronique a connecteur usb et cle electronique obtenue | |
EP3182338A1 (fr) | Procede de fabrication d'un dispositif comprenant un module electronique radiofrequence et un indicateur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090528 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091015 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140602 |