EP2084397A1 - Dispositif et procede de production d'electricite - Google Patents

Dispositif et procede de production d'electricite

Info

Publication number
EP2084397A1
EP2084397A1 EP07822052A EP07822052A EP2084397A1 EP 2084397 A1 EP2084397 A1 EP 2084397A1 EP 07822052 A EP07822052 A EP 07822052A EP 07822052 A EP07822052 A EP 07822052A EP 2084397 A1 EP2084397 A1 EP 2084397A1
Authority
EP
European Patent Office
Prior art keywords
compartment
water
gas
descent
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07822052A
Other languages
German (de)
English (en)
Inventor
Didier Galvez Thiange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP07822052A priority Critical patent/EP2084397A1/fr
Publication of EP2084397A1 publication Critical patent/EP2084397A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/04Alleged perpetua mobilia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/02Geometry variable

Definitions

  • the present invention relates to a method of generating electricity, in particular, to a power generating device utilizing water pressure, gravity and buoyancy to generate motion to drive a generator.
  • the invention provides a method that does not require expensive infrastructure, without exaggerated civil engineering, that does not disfigure the surrounding landscape, clean, using only natural resources, without producing carbon oxides and a remarkable simplicity.
  • a method for producing electricity comprising:
  • An ascent of said at least one first movable element initially by entrainment and then by progressive decrease in pressure of the water with expansion of said gas in said second compartment and a decrease in said density, said ascent being simultaneous with a descent of said at least one another moving element, and a transformation of this movement into electrical energy.
  • a plurality of movable elements move in a closed circuit and are integral in motion, generating a movement that can be transmitted to a generator for the purpose of generating electricity.
  • a moving element goes down, another goes back, and so on.
  • the moving elements train each other and having an even number of movable elements placed symmetrically makes it possible to reach the state of equilibrium.
  • the weights are canceled out and only the buoyancy of Archimedes remains greater on the mobile elements upwards by decreasing the said weight.
  • the first mobile element according to the method according to the invention descends into water under the effect of its own weight and therefore of gravity.
  • the moving parts are designed to be as friction free as possible so that their descent is practically unbraked
  • a moving element When a moving element arrives at said predetermined depth, it has a kinetic energy that is equal to the potential energy it possessed before the descent.
  • the density of the first movable element decreases because for a given mass, the volume of the movable element increases and it thus rises to the surface. As the movable member rises, at least the pressure is exerted on it, and at most the movable member rises. Indeed, the gas under pressure is free to occupy a larger volume since space was offered to him following the communication of the first and second compartments. In addition, since the external pressure, and therefore that exerted on the pressurized gas decreases with the ascent, the pressurized gas is less and less compressed and therefore passes into the second compartment in the expanded or ex-sub state. . This causes the mobile element in question to rise (like a submerged balloon that rises to the surface).
  • This movement of ascent and descent of the moving elements generates a movement which is transmitted to a generator for the production of electricity.
  • This is an entirely clean process, which uses gases dissolved in water in a natural way, which does not produce oxides of carbon and which does not harm the environment at all.
  • One of the advantageous aspects is that it is mainly air that is extracted from the seabed and when the gas released into the atmosphere is mainly air.
  • the invention provides for collecting them for the purpose of recovering them (for example, methane).
  • the amount of dissolved gas was much higher than theoretically expected.
  • the amount of air that is in solution in water at said predetermined depth is very important and as soon as it is allowed to leave the liquid phase by offering a larger volume (communication of the first and of the second compartment) and by decreasing the pressure of the water due to the only lowering of the height of the water column, the dissolved gas escapes into the second compartment, which causes the movable element upwards.
  • the method according to the invention comprises between said descent and said ascent of each movable element, a substantially horizontal displacement of said movable element during which said placing of the two compartments in communication simultaneously or not with the isolation of the whole of the external medium and / or, between said ascent and said descent of each mobile element, a substantially horizontal displacement of said movable element during which takes place said isolation of said second compartment relative to the first compartment, simultaneously or not with the opening of the first compartment towards the outside environment.
  • the method comprises agitating the water contained in said first compartment so as to facilitate the expansion of the dissolved gas therein.
  • the agitation can be carried out directly in the first compartment, or along the ascent by external devices and / or internal agitation.
  • the expanded gas is expelled from said movable member after ascending said movable member.
  • the expanded gas is released underwater and rises to the surface to release into the air above the surface of the water or is released on the surface of the water.
  • the method according to the invention further comprises, prior to said ascent (and thus at the predetermined depth and pressure), an introduction of an amount of air also under-pressure through a porous material, aimed at facilitating the ex-solution of the dissolved gas molecules, incorporated into the water molecules that were taken at said depth.
  • the invention also relates to a power generation device comprising:
  • the device according to the invention comprises only clean elements, giving rise to no pollutants and particularly simple to implement, which use the force of gravity, the buoyancy of Archimedes and the water pressure to a predetermined depth.
  • Other embodiments of the device according to the invention are indicated in the appended claims.
  • Figure 1 is a sectional view of a movable element of an embodiment of the device according to the invention.
  • Figure 2 is a sectional view of a movable element of a variant embodiment of the device according to the invention.
  • FIGS. 3A and 3B are sectional views along the line III-III in FIG. 1 or 2 of the connecting means and the first means of closing between the first compartment and the second compartment of the movable element illustrated in Figure 1 or 2, respectively in the open position ( Figure 3A) and in the closed position ( Figure 3B).
  • FIGS. 4A and 4B are sectional views along the line IV-IV in FIG. 1 or 2 of the second closure means between the first compartment and the surrounding water of the movable element illustrated in FIG. 1 or 2, respectively in the open position (FIG. 4A) and in the closed position
  • FIG. 5 is a perspective view of the device according to the invention comprising two movable elements as illustrated in FIG.
  • FIG. 6 is a front view of a particularly preferred embodiment of the device according to the invention comprising a plurality of movable elements as illustrated in FIG.
  • Figure 7 is a schematic representation of an experimental device for illustrating the phenomenon of ex-solution.
  • the mobile element 1 comprises a first compartment 2 and a second compartment 3.
  • the second compartment 3 is an extensible element protected by a sleeve-type protection structure 9.
  • the protective structure of type sleeve 9 may have a square, rectangular, triangular, round, oval or other imaginable cross-section, such as a hexagon, a pentagon, etc.
  • the movable element illustrated in FIG. 1 comprises a connection means 5 (rotary slide valve consisting of the parts R 1 R '), a first closure means (part R "of a rotary slide valve). "is illustrated with the connecting means 5 in Figures 3A and 3B.
  • the portion R ' comprises 8 fins 6' and 8 orifices 8 'in its circumferential portion which extends from the attachment zone 33 of the second compartment (3) at the first compartment (2) to the circumference of the part R '.
  • the portion R ' has substantially the same diameter as the first compartment 2 of which it is integral.
  • the portion R also comprises 8 fins 6 and 8 orifices 8 in its central portion extending from the center to the attachment zone 33.
  • the portion R of said rotary slide has a diameter identical to that of the narrowing of the attachment zone 33 illustrated in Figure 1 between the first compartment 2 and the second compartment 3.
  • the portion R 'and R are integral with each other with the attachment zone 33.
  • the portion R" is the movable portion of the aforementioned rotary slide, also has substantially the same diameter as said first compartment 2 and allows open the passage of the surrounding water in the first compartment 2.
  • the orifices 8 'and 11 are also 3 in this configuration, the first compartment 2 is isolated from the second compartment 3, the fins 10 and the fins 6 'close off the communication orifice between the two compartments 2 (see FIG. compartments 2 and 3.
  • the part R ' is integral with the part R and offset from the latter so that when the part R is in the open position to allow communication between the first 2 and the second compartment 3, the fins 10 of the part R "are juxtaposed with those of the part R 'so as to prevent the communication between the surrounding water and the first compartment 2.
  • the connecting means 5 rotary valve comprising the parts R and R "
  • the first closure means part R 'and part R'
  • the portion R "further comprises closing / opening cleats 12 which by a shock on a fixed point will cause the rotation of the portion R".
  • the fins are in number
  • the cleats will therefore rotate the portion R "of a sixteenth of a turn relative to the portion R 'integral with said first compartment 2.
  • the parts R and R 'each comprise 8 fins 6, 6' separated by 8 orifices 8, 8 'and the passage from the communication position to the communication position is made by a rotation of the movable portion R of a sixteenth of a turn relative to the fixed integral portion R 'of the first compartment 2. It goes without saying that a rotation of 3/16, 5/16, 7/16, 9/16, 11/16, 13/16 or 15/16 will have the same effect and that these rotations are therefore within the scope of the claimed invention.
  • each portion R, R 'and R may comprise 4 or 6 fins -separated 4 or 6 orifices respectively and the passage of the communication position to the isolation position will then be by a rotation of the movable part R of an eighth or a twelfth of a turn relative to the fixed integral part R 'of the first compartment 2
  • Figure 3a illustrates a variant of a movable element 1 of the device according to the invention
  • the first compartment 2 also comprises a second closure means 13 constituted by another rotary slide (illustrated in FIGS. 4A and 4B) As can be seen in FIGS. 4A and 4B, the second closure means 13 is situated at the bottom of said first compartment 2.
  • the second closure means also comprises a fixed portion 14 and a movable portion 15.
  • the fixed portion 14 is integral with the first compartment 2 and the movable portion 15 pivots on a pivot point 16 secured to the fixed portion 14.
  • the diameter of these parts 14 and 15 es t is substantially identical to the diameter of said first compartment 2.
  • the parts 14 and 15 are identical to the parts R 'and R "(without the part R) so as to easily synchronize the openings and closures and so as not to generate force stresses in the first compartment 2 and the number of fins and orifices are identical.
  • Said second closure means 13 and the first closure means R " are arranged to be simultaneously in the closed or open position so that when the first compartment 2 is isolated from the surrounding water by the first closure means R" ", it is also by the second closure means 13 and the first compartment 2 is in communication with the second compartment s.
  • the portions R ', R "and the portions 14 and 15 are slightly curved at the lateral ends so that the container is constituted by the aforesaid parts.
  • 14 which are the fixed parts are connected by a flexible membrane 17.
  • the parts R "and 15 are the moving parts and are each connected to a lug 12 for the rotation thereof.
  • the device according to the invention comprises a transport path 19 immersed in water comprising at least one descent section 19a and an ascending section 19b.
  • the first compartment 2 is isolated from the second compartment 3 and is in communication with the surrounding water because the first and second closure means are in the open position.
  • the water passes freely through the movable member 1.
  • the protective structure 9 is sleeve type, that is to say, not closed.
  • said second expandable compartment 3 is fixed at a point to said sleeve to maintain it in the most favorable position.
  • said movable member 1 When said movable member 1 reaches a predetermined depth (at the bottom of the descent section 19a), it surrounds a predetermined quantity of water present at the predetermined depth. At this predetermined depth, the rotation of the part R "and the part 15 is controlled and the first compartment 2 is isolated from the surrounding water The first compartment 2 of the mobile element 1 thus confines a quantity of water taken At this predetermined depth, this confined water has a large amount of dissolved gas, as mentioned above.
  • the rotation of the R "part took place at the same time as the opening of the communication between the first 2 and the second compartment 3.
  • the aforesaid opening therefore offers the dissolved gas space to occupy, namely the second compartment 3. The gas will therefore expand during the ascent and fill the second compartment 3.
  • the density of the mobile element 1 decreases since the gas occupies a space (in the balloon 3) which causes for the same mass, an increase in volume.
  • the density decreases and the ascension of the movable element 1 begins and the Archimedes thrust that it undergoes increases.
  • At most the movable member 1 rises at least the pressure due to the depth is high, and at most the gas increases in volume and at most the gas dissolved in water or incorporated returns to its gaseous form, or leaves the liquid phase . This phenomenon continues until the arrival at the highest point of the ascension section 19 b.
  • the first and second compartments are together in communication with the surrounding water.
  • This allows the expulsion of gas and water relatively together.
  • the expanded gas is released under water, which has the advantage of completely emptying the second compartment of the expanded gas by the pressure of the surrounding water exerted on him. It can also be released when the second compartment is on the surface.
  • Its high purge valve will then be kept open until the beginning of the descent so that it empties completely under the effect of entry into the water.
  • the closure of the high purge being controlled by any means, for example a float type toilet flush.
  • the rotation of the portion R " is controlled so as to isolate the second compartment 3 of the first compartment 2 before the descent, to prevent the balloon 3 fills with water and the cycle can begin again.
  • the movable element 1 is secured to a belt 20 moving on said transport path 19.
  • the belt 20 is supported during its movement by pulleys 21.
  • the device according to the invention comprises in in addition to transmission means 23 of the movement of said movable element to at least one generator 22 capable of transforming this movement into electrical energy.
  • These transmission means are known per se and are here schematized roughly.
  • the movable elements 1 are connected to two identical belts 20 so as to maintain the movable member 1 in the same position during its movement. Indeed, during the descent, the movable member 1, it causes the movement of the belt 20.
  • the movable member is preferably placed between the two belts not to hinder the passage of the latter around the pulleys.
  • the two illustrated movable elements are located symmetrically on the belt so that the weight forces (gravity) balance and cancel each other out. It is the buoyancy of Archimedes which is exerted with a greater force on the moving element in ascension which causes the movement of the belt, initiated by the kinetic energy and gravity of a moving element downhill.
  • the vibrating means would be agitators intended to increase the degassing speed. They may comprise slats interconnected by springs and will be shaken by small shakes printed to the assembly by passing on vibrators. The slats can also rotate about an axis in sealed communication with, outside the movable member, a roller rubbing on a cable and thus continuously rotating the internal stirrers.
  • FIG. 2 illustrates a variant embodiment of a mobile element according to the invention.
  • a compressible-extensible reservoir 25 is connected to the first compartment 2. The communication between the latter is controlled and can be for example a rotary slide or a valve (not shown).
  • the compressible-extensible reservoir 25 is a piston.
  • This reservoir 25 comprises a predetermined quantity of atmospheric air. As the descent progresses, the air it contains will be subjected to the pressure corresponding to the depth reached by the movable element (1), and therefore compressed. Indeed, the pressure prevailing at the predetermined depth is exerted in all existing directions and will compress the amount of air (or any other compressible fluid) content. As a result, the piston arm will slide in the direction of compression until the pressure balance is reached.
  • the amount of atmospheric air contained is small relative to the weight of the assembly so as not to prevent the descent of the movable element and the compressible-extensible reservoir 25 also has a closable orifice (not shown) which allows the renewal atmospheric air content.
  • the first compartment (2) is filled with water.
  • the upper surface of the volume of water contained thus coincides with that of the first compartment 2 of the movable element (1). Indeed, the first compartment 2 being immersed, the surrounding water occupy the available space in it.
  • the communication between the compressible-extensible reservoir 25 and the first compartment 2 is carried out. This results in a penetration of the compressed air of the compressible-extensible reservoir 25 into the first compartment 2 of the mobile element 1 via a porous material 34.
  • the reservoir is connected to a porous material 34 adhered to the vanes of the rotating wheel 15 of the rotary slide.
  • a hollow central axis 35 is also present. The latter is secured to the movable wheel 15 of the rotary slide.
  • the porous material 34 is located outside the hollow axis and the hollow axis portion 35 is gastight.
  • Another central axis 36 is when secured to the fixed wheel R 'and R.
  • the two central axes 35 and 36 are connected by a thread.
  • This spacing via the flexible membrane 17 allows an increase in volume of the first compartment and therefore, the gas tends to move upwards, the exchange surface of the water contained is lowered (the volume of the first compartment increases and so the level goes down) and then the exchange is improved.
  • the exchange surface is increased and the ex-solution even more favored.
  • FIG. 6 illustrates a particularly preferred embodiment according to the invention.
  • the operation of the device is similar to that mentioned for FIG. 5.
  • the transport path 19 therefore the descent section 19a, the ascending section 19b, the substantially horizontal high section 19c and the substantially horizontal low section 19d.
  • the transport path comprises a plurality of bearing 19e acting as a decompression stop to improve the vaporization of the dissolved gas contained in the water.
  • FIG. 7 illustrates an experimental device that made it possible to quantify, for a predetermined quantity of water, the quantity of dissolved gas likely to undergo the ex-solution.
  • the experimental device comprises a first reservoir 26 overhung by a pipe 27.
  • the pipe 27 has a valve 28 having an open position and a closed position. In the open position, the reservoir 26 is in communication with the pipe 27. Between the reservoir 26 and the valve 28, the pipe 27 has a bypass 29.
  • the upper part of the pipe 27 ends in a receptacle 30 having a section greater than that of the pipe and in which also the bypass 29.
  • the branch 29 further comprises a branch ending with an expandable container 31 (a balloon).
  • the container 30 is provided with a closure lid 32.
  • the extinguishing gas will increase the volume of the expandable container 31 (the balloon) and it will inflate under the effect of the ex-solution (situation C). It will then be possible to measure the volume of ex-vent gas, for example by immersion of the flask in a known volume of water. The results obtained are presented in a table below.
  • the quantities of ex-sout gas are very high compared to the amount of water used as well as compared to the expected amount.
  • the amount of gas that will undergo the ex-solution from a water present at said predetermined depth for example 250 or 300 m is very high and causes from then on a rise of the mobile elements undergoing a proportional Archimedes thrust (generating a production of electricity also greater).
  • This device has been developed to particularly illustrate the effectiveness of the device according to the invention.
  • the water at the bottom of the column (in the pipe 27) is subjected to a pressure corresponding to the height of the column H, in the manner of the water taken from the seabed at the predetermined depth.
  • the transfer into a container having a much larger section which submits therefore said water at a lower pressure corresponding to the height h ( ⁇ H) simulates the rise of the movable element.
  • the quantity of gas that spontaneously expands corresponds to that which would be collected in the flask (second compartment). It therefore seems very clear that the device according to the invention is particularly effective for the creation of a movement for driving a generator and thus to produce electricity.
  • the vibration means comprise porous elements that promote the ex-solution.
  • the upper part of the second compartment comprises a gas outlet orifice.
  • the portions R 'and R have a thickness which is reduced at the center and greater at the ends, in which case the parts R' and R" serve as a means of guiding the gas. through the slope created by the reduced thickness in the center. This further avoids the stagnation of the expanded gas in the first compartment. It is also provided according to the invention that said two compartments of the movable element is a single compartment whose characteristics are to be able to change volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Procédé de production d'électricité comprenant un déplacement dans l'eau d'une pluralité d'éléments mobiles (1) solidaires en mouvement présentant chacun un premier compartiment (2) contenant au moins un gaz dissous et un deuxième compartiment (3) reliés l'un à l'autre, ce déplacement comportant pour chaque élément mobile (1) une descente dudit au moins élément mobile (1) jusqu'à une profondeur prédéterminée sous l'effet de la gravité, une mise en communication des deux compartiments, une ascension dudit au moins un élément mobile (1) par expansion dudit gaz dans ledit deuxième compartiment (3), et une transformation de ce mouvement en une énergie électrique.

Description

"DISPOSITIF ET PROCEDE DE PRODUCTION D'ELECTRICITE"
La présente invention se rapporte à un procédé de production d'électricité, en particulier, à un dispositif de production d'électricité utilisant la pression de l'eau, la gravité et la poussée d'Archimède pour générer un mouvement permettant d'entraîner un générateur.
L'invention procure un procédé qui ne nécessite pas d'infrastructure coûteuse, sans génie civil exagéré, qui ne défigure pas le paysage environnant, propre, utilisant uniquement des ressources naturelles, sans production d'oxydes de carbone et d'une simplicité remarquable.
Il est prévu suivant l'invention, un procédé de production d'électricité comprenant :
- un déplacement dans l'eau d'une pluralité d'éléments mobiles solidaires en mouvement présentant chacun un premier compartiment et un deuxième compartiment reliés l'un à l'autre de manière à permettre alternativement un isolement et une communication entre eux, ce déplacement comportant pour chaque élément mobile : une descente jusqu'à une profondeur prédéterminée, pendant laquelle le premier compartiment est isolé dudit deuxième compartiment comprenant :
• une ouverture d'un passage vers l'extérieur dudit premier compartiment qui contient ainsi de l'eau dans laquelle ledit élément mobile est immergé et dans laquelle un gaz est dissous, le gaz dans ledit premier compartiment présentant, au moins à ladite profondeur prédéterminée, une pression prédéterminée, ledit premier élément mobile présentant à ladite profondeur prédéterminée un poids volumique correspondant à ladite pression prédéterminée, et • une fermeture dudit passage à ladite profondeur prédéterminée, ladite descente étant simultanée à une ascension d'au moins un autre élément mobile,
• une mise en communication dudit premier compartiment avec ledit deuxième compartiment, à ladite profondeur prédéterminée,
• une ascension dudit au moins un premier élément mobile initialement par entraînement et ensuite par diminution progressive de pression de l'eau avec expansion dudit gaz dans ledit deuxième compartiment et une diminution dudit poids volumique, ladite ascension étant simultanée à une descente dudit au moins un autre élément mobile, et - une transformation de ce mouvement en une énergie électrique.
Selon l'invention, une pluralité d'éléments mobiles se déplacent en circuit fermé et sont solidaires en mouvement, générant un mouvement qui peut être transmis à un générateur dans le but de produire de l'électricité. Lorsqu'un élément mobile descend, un autre remonte, et ainsi de suite.
Les éléments mobiles s'entraînent mutuellement et le fait d'avoir un nombre pair d'éléments mobiles placés symétriquement permet d'atteindre l'état d'équilibre. Les poids s'annulent et il ne reste que la poussée d'Archimède plus importante sur les éléments mobiles en remontée par diminution dudit poids .volumique
Le premier élément mobile suivant le procédé selon l'invention descend dans l'eau sous l'effet de son propre poids et donc de la gravité.
Les éléments mobiles sont conçus pour subir le moins de frottement possible et dès lors pour que leur descente ne soit pratiquement pas freinée
(ni par les frottements, ni par la viscosité de l'eau). Simultanément, un autre élément mobile remonte. Dès lors les poids des deux éléments mobiles placés symétriquement s'annulent et la poussée d'Archimède s'exerce avec une force supérieure sur I' élément en ascension que sur l'élément en descente. L'élément mobile situé à la profondeur prédéterminée est soumis à la pression qui s'exerce sur lui et il contient une quantité d'eau saturée (ou proche de la saturation) en gaz dissous (état d'équilibre) qui a été prélevée à ladite profondeur prédéterminée et dès lors, il contient une quantité de gaz sous pression confinée dans le premier compartiment et maintenus dissous par la pression de l'eau. Lorsqu'un élément mobile arrive à ladite profondeur prédéterminée, il possède une énergie cinétique qui est égale à l'énergie potentielle qu'il possédait avant la descente. L'énergie cinétique que l'élément mobile possède, ainsi que le fait que les forces de poids de cet élément mobile et de l'autre élément mobile s'annulent, lui procure une inertie suffisante pour l'entraîner dans son ascension conjointement avec la descente d'un autre élément mobile.
Entre la descente et l'ascension de chaque élément mobile, une mise en communication du premier compartiment avec le deuxième se produit. Dès lors, en offrant un volume plus grand au gaz dissous dans l'eau (gaz sous pression), le gaz dissous aura tendance à se volatiliser lorsque la pression diminuera (au fur et à mesure de la remontée) et à occuper tout l'espace disponible, ce qui entraîne une ascension dudit élément mobile. En effet, la pression s'exerçant sur l'élément mobile diminue en même temps que la profondeur diminue et puisque la communication entre les deux compartiments offre un volume plus important au gaz sous pression, il peut alors occuper tout l'espace. Le gaz dissous subit dès lors une ex-solution et les molécules de gaz mélangées à l'eau prélevée à ladite profondeur prédéterminée s'échappent vers l'espace disponible. La masse volumique du premier élément mobile diminue puisque pour une masse donnée, le volume de l'élément mobile augmente et celui-ci remonte donc vers la surface. Au fur et à mesure que l'élément mobile remonte, au moins grande est la pression s'exerçant sur celui-ci, et au plus l'élément mobile remonte. En effet, le gaz sous pression est libre d'occuper un volume plus grand puisque de l'espace lui a été offert suite à la mise en communication du premier et du deuxième compartiment. De plus comme la pression extérieure, et donc celle qui s'exerce sur le gaz sous pression diminue avec la remontée, le gaz sous pression est de moins en moins comprimé et passe donc dans le deuxième compartiment à l'état expansé ou ex-sous. Ceci entraine l'élément mobile en question vers le haut (comme un ballon immergé qui remonte à la surface). Ce mouvement d'ascension et de descente des éléments mobiles génère un mouvement qui est transmis à un générateur pour la production d'électricité. Ceci est un procédé donc entièrement propre, qui utilise des gaz dissous dans l'eau de manière naturelle, qui ne produit pas d'oxydes de carbone et qui ne nuit absolument pas à l'environnement. Un des aspects avantageux réside dans le fait que c'est principalement de l'air qui est extrait des fonds marins et dès lors que le gaz libéré dans l'atmosphère est principalement de l'air. Lorsque d'autres gaz sont collectés, l'invention prévoit de les collecter dans le but de les récupérer (par exemple, le méthane).
Toutefois, de manière très surprenante, il a été montré suivant l'invention que la quantité de gaz dissous était bien supérieure à celle qui était attendue théoriquement. En effet, la quantité d'air qui est en solution dans l'eau à ladite profondeur prédéterminée est très importante et dès que l'on lui permet de quitter la phase liquide en lui offrant un volume plus grand (mise en communication du premier et du deuxième compartiment) et en diminuant la pression de l'eau du fait du seul abaissement de la hauteur de la colonne d'eau, le gaz dissous s'échappe dans le deuxième compartiment, ce qui entraîne l'élément mobile vers le haut.
Il a en effet été trouvé de manière surprenante (voir exemple décrit simultanément avec la figure 9) que dans le cas d'une eau de surface, au départ sous saturée en gaz, l'eau de surface devient plus dense par le fait qu'elle dissout de l'air. Cette augmentation de densité a été observée en laissant une quantité d'eau dans un récipient et en effectuant des pesées répétées. Le poids de l'ensemble augmente au cours du temps. S'il n'y avait pas d'augmentation de densité à cause de la dissolution du gaz (incorporation de molécules dans le réseau moléculaire de l'eau liquide) et par le fait que l'ensemble se trouve dans ce même gaz qui se fait dissoudre (le récipient contenant de l'eau est en contact avec l'air atmosphérique), la poussée d'Archimède compenserait très exactement cette dissolution.
Puisque cette eau de surface augmente en densité, elle coule dans l'eau moins dense (eau sous-jacente) et cette eau moins dense la remplace à la surface. En descendant dans l'eau moins dense, la pression qui s'exerce sur cette dernière est plus élevée qu'en surface, il y a donc un phénomène de compression qui se produit et un échauffement. Celui-ci a pour résultat une libération du gaz incorporé qui est directement capturé par l'eau alentour qui est en outre plus froide et donc plus encline à absorber du gaz. De cette façon la densité de l'eau alentour augmente et elle coule jusqu'à rencontrer de l'eau qui a la même densité. Une compression se produit à nouveau et le phénomène va continuer jusqu'à l'obtention de la saturation pour la pression correspondante à chaque profondeur. Il y a donc une alimentation en gaz du fond de l'eau. C'est donc pour cette raison que la quantité d'air dissous dans de l'eau à une profondeur prédéterminée est plus élevée que ce qui était attendu par les modèles existants qui utilisent un modèle linéaire pour approximer cette quantité basé sur la loi de Henry. De plus, ces gaz, étant mélangés à l'eau, sont limité par cette eau dans leur agitation et doivent donc être présent en plus grande quantité pour exercer une même pression que s'ils étaient sous forme gazeuse. Ils agissent en effet comme s'ils étaient seuls, (loi de Dalton).
Avantageusement, le procédé selon l'invention comprend entre ladite descente et ladite ascension de chaque élément mobile, un déplacement sensiblement horizontal dudit élément mobile au cours duquel a lieu ladite mise en communication des deux compartiments simultanément ou non à l'isolement de l'ensemble du milieu extérieur et/ou, entre ladite ascension et ladite descente de chaque élément mobile, un déplacement sensiblement horizontal dudit élément mobile au cours duquel a lieu ledit isolement dudit deuxième compartiment par rapport au premier compartiment, simultanément ou non à l'ouverture du premier compartiment vers le milieu extérieur.
Ceci permet que la pression s'exerçant sur l'élément mobile lorsque le premier compartiment et le deuxième compartiment entrent en communication soit constante pendant la durée de la mise en communication.
Dans une forme de réalisation préférentielle, le procédé comprend une agitation de l'eau contenue dans ledit premier compartiment de façon à faciliter l'expansion du gaz dissous dans cette eau. L'agitation peut être réalisée directement dans le premier compartiment, ou le long de l'ascension par des dispositifs externes et/ou internes d'agitation.
De préférence, le gaz expansé est expulsé dudit élément mobile après l'ascension dudit élément mobile. Le gaz expansé est donc libéré sous l'eau et remonte à la surface afin de se libérer dans l'air surplombant la surface de l'eau ou est libéré à la surface de l'eau.
Avantageusement, le procédé selon l'invention comprend en outre avant ladite ascension (et donc à la profondeur et pression prédéterminée) une introduction d'une quantité d'air également sous- pression au travers d'un matériau poreux, visant à faciliter l'ex-solution des molécules de gaz dissous, incorporées dans les molécules d'eau qui ont été prélevées à ladite profondeur.
D'autres formes de réalisation du procédé suivant l'invention sont indiquées dans les revendications annexées. L'invention se rapporte également à un dispositif de production d'électricité comprenant:
- une voie de transport immergée dans l'eau comprenant au moins un tronçon de descente et un tronçon d'ascension, - une pluralité d'éléments mobiles (1 ) solidaire en mouvement sur ladite voie de transport, chaque élément mobile comprenant un premier et un deuxième compartiment et des moyens de liaison permettant une communication ou un isolement de ces compartiments entre eux et avec le milieu alentour, et - des moyens de transmission du mouvement dudit élément mobile à au moins un générateur capable de transformer ce mouvement en une énergie électrique par absorption de l'énergie engendrée par la poussée d'Archimède (démultiplication en surface au niveau du lien entre le système et un générateur) II ressort clairement de ceci que le dispositif selon l'invention comprend uniquement des éléments propres, ne donnant naissance à aucun polluant et particulièrement simples à mettre en œuvre, qui utilisent la force de la gravité, la poussée d'Archimède et la pression de l'eau à une profondeur prédéterminée. D'autres formes de réalisation du dispositif suivant l'invention sont indiquées dans les revendications annexées.
D'autres caractéristiques, détails et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et en faisant référence aux dessins annexés. La figure 1 est une vue en coupe d'un élément mobile d'une forme de réalisation du dispositif selon l'invention.
La figure 2 est une vue en coupe d'un élément mobile d'une forme de réalisation variante du dispositif selon l'invention.
Les figures 3A et 3B sont des vues en coupe selon la ligne III- III à la figure 1 ou 2 des moyens de liaison et du premier moyen de fermeture entre le premier compartiment et le deuxième compartiment de l'élément mobile illustré à la figure 1 ou 2, respectivement en position ouverte (figure 3A) et en position fermée (figure 3B).
Les figures 4A et 4B sont des vues en coupe selon la ligne IV- IV à la figure 1 ou 2 du deuxième moyen de fermeture entre le premier compartiment et l'eau environnante de l'élément mobile illustré à la figure 1 ou 2, respectivement en position ouverte (figure 4A) et en position fermée
(figure 4B).
La figure 5 est une vue en perspective du dispositif selon l'invention comprenant deux éléments mobiles tels qu'illustrés à la figure 1.
La figure 6 est une vue de face d'une forme de réalisation particulièrement préférentielle du dispositif selon l'invention comprenant une pluralité d'éléments mobiles tels qu'illustrés à la figure 1.
La figure 7 est une représentation schématique d'un dispositif expérimental permettant d'illustrer le phénomène d'ex-solution.
Sur les figures, les éléments identiques ou analogues portent les mêmes références.
Comme on peut le voir à la figure 1 , l'élément mobile 1 comprend un premier compartiment 2 et un deuxième compartiment 3. Le deuxième compartiment 3 est un élément extensible protégé par une structure de protection de type manchon 9. La structure de protection de type manchon 9 peut présenter une section transversale carrée, rectangulaire, triangulaire, ronde, ovale ou encore d'autres formes imaginables, telles qu'un hexagone, un pentagone, etc. L'élément mobile illustré à la figure 1 comprend, un moyen de liaison 5 (tiroir rotatif constitué des parties R1R'), un premier moyen de fermeture (partie R" d'un tiroir rotatif). Le premier moyen de fermeture R" est illustré avec les moyens de liaison 5 aux figures 3A et 3B.
La partie R' comprend 8 ailettes 6' et 8 orifices 8' dans sa partie circonférentielle qui s'étend de la zone d'attache 33 du deuxième compartiment (3) au premier compartiment (2) jusqu'à la circonférence de la partie R'. De préférence, la partie R' présente sensiblement le même diamètre que le premier compartiment 2 duquel elle est solidaire. La partie R comprend également 8 ailettes 6 et 8 orifices 8 dans sa partie centrale s'étendant du centre à la zone d'attache 33. La partie R dudit tiroir rotatif présente un diamètre identique à celui du rétrécissement de la zone d'attache 33 illustré à la figure 1 entre le premier compartiment 2 et le deuxième compartiment 3.
La partie R' et R sont solidaires entre elles avec la zone d'attache 33.
Sous le moyen de liaison 5 se trouve une partie R" comprenant également 8 ailettes 10 et 8 orifices 11. La partie R" est la partie mobile du tiroir rotatif susdit, présente également sensiblement le même diamètre que ledit premier compartiment 2 et permet d'ouvrir le passage de l'eau environnante dans le premier compartiment 2. Lorsque les ailettes 6' de la partie R' solidaire dudit premier compartiment 2 sont superposées à celles (10) de la partie R", les orifices 8' et 11 sont également superposés (voir figure 3B) et le premier compartiment 2 communique avec l'eau environnante. Dans cette configuration, le premier compartiment 2 est isolé du deuxième compartiment 3, les ailettes 10 et les ailettes 6' obturent l'orifice de communication entre les deux compartiments 2 et 3.
La partie R' est solidaire de la partie R et décalée de cette dernière de telle façon que lorsque la partie R est en position ouverte pour permettre la communication entre le premier 2 et le deuxième compartiment 3, les ailettes 10 de la partie R" sont juxtaposées à celles de la partie R' de façon à empêcher la communication entre l'eau environnante et le premier compartiment 2. Les moyens de liaison 5 (tiroir rotatif comprenant les parties R et R") et le premier moyen de fermeture (partie R' et partie R") sont donc agencés pour que l'un soit dans ladite position ouverte lorsque l'autre est dans la position fermée et vice versa.
La partie R" comprend en outre des taquets de fermeture/ouverture 12 qui par un choc sur un point fixe entraîneront le rotation de la partie R". Dans le cas présent, les ailettes sont au nombre de
8, les taquets entraîneront donc une rotation de la partie R" d'un seizième de tour par rapport à la partie R', solidaire dudit premier compartiment 2.
A titre d'exemple, dans cette forme de réalisation, les parties R et R' comprennent chacune 8 ailettes 6,6' séparées de 8 orifices 8,8' et le passage de la position de communication à la position de communication se fait par une rotation de la partie mobile R d'un seizième de tour par rapport à la partie fixe solidaire R' du premier compartiment 2. Il va de soi qu'une rotation de 3/16, de 5/16, de 7/16, de 9/16, de 11/16, de 13/16 ou de 15/16 aura le même effet et que ces rotations sont donc comprises dans la portée de l'invention revendiquée. De même, chaque partie R, R' et R" peut comporter 4 ou 6 ailettes -séparées de 4 ou 6 orifices respectivement et le passage de la position de communication à la position d'isolement se fera alors par une rotation de la partie mobile R d'un huitième ou d'un douxième de tour par rapport à la partie fixe solidaire R' du premier compartiment 2 La figure 3a illustre une variante d'un élément mobile 1 du dispositif selon l'invention. Le premier compartiment 2 comprend également un deuxième moyen de fermeture 13 constitué d'un autre tiroir rotatif (illustré aux figures 4A et 4B). Comme on peut le voir aux figures 4A et 4B, le deuxième moyen de fermeture 13 est situé au bas dudit premier compartiment 2. Le deuxième moyen de fermeture comprend également une partie fixe 14 et une partie mobile 15. La partie fixe 14 est solidaire du premier compartiment 2 et la partie mobile 15 pivote sur un point de pivot 16 solidaire de la partie fixe 14. Le diamètre de ces parties 14 et 15 est sensiblement identique au diamètre dudit premier compartiment 2. De préférence, les parties 14 et 15 sont identiques aux parties R' et R" (sans la partie R) de façon à synchroniser aisément les ouvertures et fermetures et de façon à ne pas générer de contraintes de forces dans le premier compartiment 2 et le nombre d'ailettes et d'orifices sont identiques.
Ledit deuxième moyen de fermeture 13 et le premier moyen de fermeture R" sont agencés pour être simultanément en position de fermeture ou d'ouverture de telle manière que lorsque le premier compartiment 2 est isolé de l'eau environnante par le premier moyen de fermeture R", il l'est également par le deuxième moyen de fermeture 13 et le premier compartiment 2 est en communication avec le deuxième compartiment s.
Comme on peut le voir aisément à la figure 1 ou 2, les parties R', R" et les parties 14 et 15 sont légèrement courbées aux extrémités latérales de telle façon que le récipient soit constitué par les parties susdites. Les parties R' et 14 qui sont les parties fixes sont reliées par une membrane souple 17. les parties R" et 15 sont les parties mobiles et sont chacune reliées à un taquet 12 permettant la rotation de celle-ci.
Ceci étant une forme de réalisation, tous autres moyens de fermeture et ouverture, connus en soi, peuvent bien entendu être utilisés sans quitter le cadre de l'invention (vannes, couvercles basculants, couvercles glissants,...)
Comme on peut le voir à la figure 5, le dispositif selon l'invention comprend une voie de transport 19 immergée dans l'eau comprenant au moins un tronçon de descente 19a et un tronçon d'ascension 19b. Lors de la descente, le premier compartiment 2 est isolé du deuxième compartiment 3 et est en communication avec l'eau environnante car les premier et deuxième moyens de fermeture sont en position ouverte. L'eau passe donc librement au travers de l'élément mobile 1. Rappelons que la structure de protection 9 est de type manchon, c'est-à-dire non fermée. Avantageusement, ledit deuxième compartiment 3 extensible est fixé en un point audit manchon afin de le maintenir dans la position la plus favorable.
Lorsque ledit élément mobile 1 arrive à une profondeur prédéterminée (en bas du tronçon de descente 19a), il entoure une quantité prédéterminée d'eau présente à la profondeur prédéterminée. A cette profondeur prédéterminée, la rotation de la partie R" et de la partie 15 est commandée et le premier compartiment 2 est isolé de l'eau environnante. Le premier compartiment 2 de l'élément mobile 1 confine donc une quantité d'eau prélevée à ladite profondeur prédéterminée. Cette eau confinée présente une grande quantité de gaz dissous, comme on l'a mentionné précédemment. La rotation de la partie R" a eu lieu en même temps que l'ouverture de la communication entre le premier 2 et le deuxième compartiment 3. L'ouverture susdite offre donc au gaz dissous un espace à occuper, à savoir le deuxième compartiment 3. Le gaz va donc entrer en expansion lors de l'ascension et remplir le deuxième compartiment 3. La masse volumique de l'élément mobile 1 diminue puisque le gaz occupe un espace (dans le ballon 3) qui provoque pour une même masse, une augmentation de volume. La masse volumique diminue et l'ascension de l'élément mobile 1 commence et la poussée d'Archimède qu'il subit augmente. Au plus l'élément mobile 1 remonte, au moins la pression due à la profondeur est élevée, et au plus le gaz augmente de volume et au plus le gaz dissous dans l'eau ou incorporé reprend sa forme gazeuse, ou quitte la phase liquide. Ce phénomène continue jusqu'à l'arrivée au point le plus haut du tronçon d'ascension 19 b. Lorsque l'élément mobile 1 est en haut, la rotation de la partie
15 est commandée et le premier et le deuxième compartiment sont ensemble en communication avec l'eau environnante. Ceci permet l'expulsion du gaz et de l'eau relativement ensemble. Avantageusement, le gaz expansé est libéré sous l'eau, ce qui présente l'avantage de vider complètement le deuxième compartiment du gaz expansé par la pression de l'eau environnante exercée sur lui. Il peut aussi être libéré lorsque le deuxième compartiment est en surface. Sa vanne de purge haute sera alors maintenue ouverte jusqu'au début de la descente afin qu'il se vide complètement sous l'effet de l'entrée dans l'eau. La fermeture de la purge haute étant commandée par tous moyens, par exemple un flotteur type chasse de WC.
La rotation de la partie R" est commandée de façon à isoler le deuxième compartiment 3 du premier compartiment 2 avant la descente, pour éviter que le ballon 3 ne se remplisse d'eau et le cycle peut à nouveau commencer.
L'élément mobile 1 est solidaire d'une courroie 20 en mouvement sur ladite voie de transport 19. Dans la forme de réalisation illustrée, la courroie 20 est soutenue lors de son mouvement par des poulies 21. Le dispositif selon l'invention comprend en outre des moyens de transmission 23 du mouvement dudit élément mobile à au moins un générateur 22 capable de transformer ce mouvement en une énergie électrique. Ces moyens de transmission sont connus en soi et sont ici schématisés grossièrement.
Dans la forme de réalisation illustrée à la figure 6, les élément mobiles 1 sont reliés à deux courroies 20 identiques de façon à maintenir l'élément mobile 1 dans la même position pendant son mouvement. En effet, lors de la descente, l'élément mobile 1 , il entraîne le mouvement de la courroie 20. L'élément mobile est de préférence placé entre les deux courroies pour ne pas gêner le passage de ces dernières autour des poulies.
Les deux éléments mobiles illustrés sont situées symétriquement sur la courroie de façon à ce que les forces de poids (gravité) s'équilibrent et s'annulent. C'est la poussée d'Archimède qui s'exerce avec une force supérieure sur l'élément mobile en ascension qui entraîne le mouvement de la courroie, initié par l'énergie cinétique et la gravité d'un élément mobile en descente.
A la figure 1 ou 2, on peut également voir qu'il est avantageux de prévoir une membrane 17 dans le premier compartiment pour permettre une certaine dilatation due au changement entre les différentes profondeurs par lesquelles passe le dispositif selon l'invention et de profiter de la souplesse qui permet d'obtenir une plus grande surface d'évaporation dès que la pression dans le premier compartiment devient plus grande que la pression extérieure. On peut également envisager une paroi double que l'on peut amincir mécaniquement dans le but d'obtenir une surface d'évaporation aussi grande que possible.
Egalement, il est envisagé selon l'invention de prévoir des moyens de vibration 18 du même type que ceux illustrés à la figure 8, mais dans le premier compartiment de façon à favoriser l'expansion et la vaporisation des gaz dissous. Par exemple, les moyens de vibration seraient des agitateurs destinés à augmenter la vitesse de dégazage. Ils peuvent comprendre des lamelles reliées entre elles par des ressorts et seront agitées par de petites secousses imprimées à l'ensemble par le passage sur des vibreurs. Les lamelles peuvent également tourner autour d'un axe en communication étanche avec, à l'extérieur de l'élément mobile, un galet frottant sur un câble et faisant donc tourner en permanence les agitateurs internes.
La figure 2 illustre une forme de réalisation variante d'un élément mobile selon l'invention. Dans cette variante, un réservoir compressible-extensible 25 est relié au premier compartiment 2. La communication entre ces derniers est commandée et peut être par exemple un tiroir rotatif ou un clapet (non illustré). Dans la variante, le réservoir compressible-extensible 25 est un piston. Ce réservoir 25 comprend une quantité prédéterminée d'air atmosphérique. Au fur et à mesure de la descente, l'air qu'il contient sera soumis à la pression correspondant à la profondeur atteinte par l'élément mobile (1 ), et donc comprimé. En effet, la pression régnant à la profondeur prédéterminée s'exerce dans toutes les directions existantes et comprimera la quantité d'air (ou de tout autre fluide compressible) contenu. Dès lors, le bras du piston coulissera dans le sens de la compression jusqu'à ce que l'équilibre des pressions soit atteint.
La quantité d'air atmosphérique contenue est faible par rapport au poids de l'ensemble de manière à ne pas empêcher la descente de l'élément mobile et le réservoir compressible-extensible 25 présente également un orifice obturable (non représenté) qui permet le renouvellement de l'air atmosphérique contenu.
A la profondeur prédéterminée susdite, le premier compartiment (2) est rempli d'eau. La surface supérieure du volume d'eau contenu coïncide donc avec celle du premier compartiment 2 de l'élément mobile (1 ). En effet, le premier compartiment 2 étant immergé, l'eau environnante occuperait l'espace disponible dedans.
Afin d'augmenter la surface d'échange et de faciliter l'ex- solution du gaz dissous, à la profondeur prédéterminée, la communication entre le réservoir compressible-extensible 25 et le premier compartiment 2 est réalisée. Ceci a pour résultat une pénétration de l'air comprimé du réservoir compressible-extensible 25 dans le premier compartiment 2 de l'élément mobile 1 par l'intermédiaire d'un matériau poreux 34.
Comme on peut le voir à la figure 2, le réservoir est relié à un matériau poreux 34 collé sur les ailettes de la roue 15 mobile du tiroir rotatif. Un axe central creux 35 est également présent. Ce dernier est solidaire de la roue mobile 15 du tiroir rotatif. Le matériau poreux 34 est situé à l'extérieur de l'axe creux et la partie dans l'axe creux 35 est étanche au gaz. Un autre axe central 36 est quand à lui solidaire de la roue fixe R' et R. Les deux axes centraux 35 et 36 sont reliés par un pas de vis. Lorsque la roue mobile 15 effectue une rotation d'un seizième de tour, par exemple, l'axe central creux 35 effectue également une rotation qui a pour effet d'écarter le tiroir rotatif du haut de celui du bas (écartement rendu également possible par les membranes souples 17). Cet écartement via la membrane souple 17 permet une augmentation de volume de ce premier compartiment et dès lors, le gaz ayant tendance à se diriger vers le haut, la surface d'échange de l'eau contenue est abaissée (le volume du premier compartiment augmente et donc le niveau descend) et dès lors, l'échange est amélioré. De plus, étant donné la forme particulière des parois, la surface d'échange est augmentée et l'ex-solution encore plus favorisée.
Les bulles créées par la détente du gaz dissous (qui subit l'ex- solution) et/ou de l'air comprimé, ainsi que par les éléments poreux deviennent à leur tour des surfaces d'échange ainsi qu'un agitateur et ceci amplifie de manière synergique l'ex-solution par le phénomène connu des bulles d'un liquide pétillant qui grossissent au fur et à mesure de leur remontée). La figure 6 illustre une forme de réalisation particulièrement préférentielle selon l'invention. Le fonctionnement du dispositif est similaire à celui mentionné pour la figure 5. La voie de transport 19 donc le tronçon de descente 19a, le tronçon d'ascension 19b, le tronçon haut sensiblement horizontal 19c et le tronçon bas sensiblement horizontal 19d. De plus, la voie de transport comprend une pluralité de palier 19e jouant le rôle de palier de décompression afin d'améliorer la vaporisation du gaz dissous contenu dans l'eau. Plusieurs éléments mobiles 1 sont entraînés l'un par l'autre, c'est-à-dire que ceux se trouvant dans des paliers horizontaux 19 c,d,e sont entraînés par ceux en ascension ou en descente. Les éléments mobiles 1 se déplacent dans l'eau, de manière solidaire l'un de l'autre par l'intermédiaire de la courroie 20. A chaque palier on peut observer des moyens de vibration qui augmente le rendement de l'évaporation de gaz dissous. Avantageusement, ces paliers peuvent être en légère montée, ceci afin que les paliers ne deviennent pas consommateurs d'énergie. La figure 7 illustre un dispositif expérimental ayant permis de quantifier pour une quantité d'eau prédéterminée, la quantité de gaz dissous susceptible de subir l'ex-solution.
Le dispositif expérimental comprend un premier réservoir 26 surplombé d'un tuyau 27. Le tuyau 27 présente une vanne 28 ayant une position ouverte et une position fermée. En position ouverte, le réservoir 26 est en communication avec le tuyau 27. Entre le réservoir 26 et la vanne 28, le tuyau 27 comporte une dérivation 29. La partie supérieure du tuyau 27 aboutit dans un récipient 30 ayant une section supérieure à celle du tuyau et dans lequel aboutit également la dérivation 29.
La dérivation 29 comporte en outre une ramification se terminant par un récipient extensible 31 (un ballon).
Le récipient 30 est muni d'un couvercle de fermeture 32.
On a ôté le couvercle 32 et on a fermé la vanne 28. On a versé une quantité d'eau prédéterminée X dans le tuyau 27 et on a laissé l'équilibre s'établir. L'eau dans le tuyau 27 présente une hauteur de colonne
H. On laisse en fait le gaz atmosphérique se dissoudre dans l'eau contenu dans le tuyau 27 (si le niveau de l'eau contenu dans la colonne atteint le fond du récipient 30, les échanges et donc la dissolution du gaz atmosphérique est accéléré par augmentation de la surface d'échange
(situation A).
Après une heure environ (le quart si le niveau de l'eau contenu dans la colonne atteint le fond du récipient 30), on a replacé le couvercle 32 sur le récipient 30, le récipient 31 étant à l'état "dégonflé" ou "comprimé". On ouvre la vanne 28 et l'eau contenue dans le tuyau 27 s'écoule dans le réservoir 26 et présente à ce moment une hauteur h. On laisse le gaz dissous dans l'eau subir l'ex-solution (situation B).
Puisque le système est fermé, le gaz qui s'ex-sout va augmenter le volume du récipient extensible 31 (le ballon) et celui-ci va gonfler sous l'effet de l'ex-solution (situation C). II sera alors possible de mesurer le volume de gaz ex-sout par exemple par immersion du ballon dans un volume connu d'eau. Les résultats obtenus sont présentés dans un tableau ci-dessous.
Tableau
Comme on peut le voir, les quantités de gaz ex-sout sont très élevées par rapport à la quantité d'eau utilisée ainsi que par rapport à la quantité attendue. En outre, de cet exemple, on peut s'attendre à ce que la quantité de gaz qui va subir l'ex-solution à partir d'une eau présente à ladite profondeur prédéterminée, par exemple 250 ou 300 m soit très élevée et provoque dès lors une remontée des éléments mobiles subissant une poussée d'Archimède proportionnelle (générant une production d'électricité également plus grande). Ce dispositif a été mis au point afin d'illustrer particulièrement l'efficacité du dispositif selon l'invention. L'eau qui se trouve en bas de colonne (dans le tuyau 27) est soumise à une pression correspondant à la hauteur de la colonne H, à la façon de l'eau prélevée dans les fonds marins à la profondeur prédéterminée. Le transvasement dans un récipient présentant une section bien plus grande qui soumet donc ladite eau à une pression inférieure correspondant à la hauteur h (<H) simule la remontée de l'élément mobile.
La quantité de gaz qui s'ex-sout spontanément correspond à celle qui serait récoltée dans le ballon (deuxième compartiment). II semble dès lors très claire que le dispositif selon l'invention est particulièrement efficace pour la création d'un mouvement permettant d'entrainer un générateur et donc de produire de l'électricité.
Il est bien entendu que la présente invention n'est en aucune façon limitée aux formes de réalisations décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées.
Alternativement, les moyens de vibrations comprennent des éléments poreux qui favorisent l 'ex-solution.
De même à titre d'exemple, la partie haute du deuxième compartiment comprend un orifice de sortie des gaz. Dans ce cas, la partie
15 et la partie R" se ferment simultanément et non plus consécutivement et les gaz s'échappent par l'orifice de sortie lorsque l'élément mobile 1 entame le tronçon haut horizontal.
Dans une autre variante, il est avantageux de prévoir que les parties R' et R" présentent une épaisseur qui est réduite au centre et plus importante aux extrémités. Dans ce cas, les parties R' et R" serviraient de moyen de guidage au gaz par l'intermédiaire de la pente crée par l'épaisseur réduite au centre. Ceci évite de plus la stagnation du gaz expansé dans le premier compartiment. II est également prévu selon l'invention que lesdits deux compartiments de l'élément mobile soit un seul compartiment dont les caractéristiques sont de pouvoir changer de volume.

Claims

REVENDICATIONS
1. Procédé de production d'électricité comprenant - un déplacement dans l'eau d'une pluralité d'éléments mobiles (1 ) solidaires en mouvement présentant chacun un premier compartiment (2) et un deuxième compartiment (3) reliés l'un à l'autre de manière à permettre alternativement un isolement et une communication entre eux, ce déplacement comportant pour chaque élément mobile (1 ) : une descente jusqu'à une profondeur prédéterminée, pendant laquelle le premier compartiment (2) est isolé dudit deuxième compartiment (3) comprenant :
• une ouverture d'un passage vers l'extérieur dudit premier compartiment (2) qui contient ainsi de l'eau dans laquelle ledit élément mobile (1 ) est immergé et dans laquelle un gaz est dissous, le gaz dans ledit premier compartiment (2) présentant, au moins à ladite profondeur prédéterminée, une pression prédéterminée, ledit élément mobile (1 ) présentant à ladite profondeur prédéterminée un poids volumique correspondant à ladite pression prédéterminée, et
• une fermeture dudit passage à ladite profondeur prédéterminée, ladite descente étant simultanée à une ascension d'au moins un autre élément mobile,
• une mise en communication dudit premier compartiment (2) avec ledit deuxième compartiment (3), à ladite profondeur prédéterminée,
• une ascension dudit au moins un élément mobile (1 ) initialement par entraînement et ensuite par diminution progressive de pression de l'eau avec expansion dudit gaz dans ledit deuxième compartiment (3) et une diminution dudit poids volumique, ladite ascension étant simultanée à une descente dudit au moins un autre élément mobile (1 ), et - une transformation de ce mouvement en une énergie électrique.
2. Procédé selon la revendication 1 , comprenant en outre entre ladite descente et ladite ascension de chaque élément mobile (1 ), un déplacement sensiblement horizontal dudit élément mobile (1 ) au cours duquel a lieu ladite mise en communication des deux compartiments (2,3).
3. Procédé selon la revendication ou la revendication 2, comprenant en outre, entre ladite ascension et ladite descente de chaque élément mobile, un déplacement sensiblement horizontal dudit élément mobile (1 ) au cours duquel a lieu ledit isolement dudit deuxième compartiment (3) par rapport au premier compartiment (2).
4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre une agitation de l'eau contenue dans ledit premier compartiment (2) de façon à faciliter l'expansion du gaz dissous dans cette eau.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit gaz expansé est expulsé dudit élément mobile après l'ascension dudit élément mobile (1 ).
6. Procédé selon l'une des revendications précédentes comprenant en outre, avant ladite ascension une introduction d'une quantité d'air également sous-pression au travers d'un matériau poreux (34)
7. Dispositif de production d'électricité comprenant:
- une voie de transport (19) immergée dans l'eau comprenant au moins un tronçon de descente (19a) et un tronçon d'ascension (19b),
- une pluralité d'éléments mobiles (1 ) solidaires en mouvement sur ladite voie de transport (19), chaque élément mobile (1 ) comprenant un premier (2) et un deuxième compartiment (3) et des moyens de liaison (5) permettant une communication ou un isolement de ces compartiments (2,3), et
- des moyens de transmission du mouvement (23) dudit élément mobile à au moins un générateur (22) capable de transformer ce mouvement en une énergie électrique.
8. Dispositif selon la revendication 7, dans lequel ladite voie de transport (19) comprend en outre, entre ledit tronçon de descente (19a) et ledit tronçon d'ascension (19b), un tronçon haut (19c) sensiblement horizontal situé à proximité d'un interface entre ladite eau et une atmosphère environnante et/ou, entre ledit tronçon de descente (19a) et ledit tronçon d'ascension (19b), un tronçon bas (19d) sensiblement horizontal situé à une profondeur prédéterminée.
9. Dispositif selon la revendication 7 ou la revendication 8, dans lequel lesdits moyens de liaisons (5) sont constitué d'un tiroir rotatif.
10. Dispositif selon l'une quelconque des revendications 7 à 9, comprenant un premier moyen de fermeture (R") et un deuxième moyen de fermeture (13), tous deux agencés pour permettre un passage d'eau dans ledit premier compartiment (2), lesdits moyens de fermeture (R", 13) présentant chacun une position ouverte et une position fermée, ledit premier (R") et ledit deuxième moyen de fermeture (13) étant agencés pour être dans ladite position ouverte lorsque lesdits moyens de liaison (5) sont en position d'isolement et pour être dans ladite position fermée lorsque les moyens de liaison (5) sont en la position de communication.
11. Dispositif selon l'une quelconque des revendications 7 à 10, dans lequel ledit deuxième compartiment (3) est un élément extensible protégé par une structure de protection (9) de type manchon.
12. Dispositif selon l'une quelconque des revendications 7 à 11 , comprenant en outre des éléments de vibration (18).
13. Dispositif selon l'une quelconque des revendications 6 à 12, comprenant en outre un matériau poreux placé dans le premier compartiment, relié à un réservoir de gaz sous pression (25).
EP07822052A 2006-10-31 2007-10-30 Dispositif et procede de production d'electricite Withdrawn EP2084397A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07822052A EP2084397A1 (fr) 2006-10-31 2007-10-30 Dispositif et procede de production d'electricite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06123256A EP1918580A1 (fr) 2006-10-31 2006-10-31 Dispositif et procédé de production d'électricité
EP07822052A EP2084397A1 (fr) 2006-10-31 2007-10-30 Dispositif et procede de production d'electricite
PCT/EP2007/061698 WO2008052994A1 (fr) 2006-10-31 2007-10-30 Dispositif et procede de production d'electricite

Publications (1)

Publication Number Publication Date
EP2084397A1 true EP2084397A1 (fr) 2009-08-05

Family

ID=37907497

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06123256A Withdrawn EP1918580A1 (fr) 2006-10-31 2006-10-31 Dispositif et procédé de production d'électricité
EP07822052A Withdrawn EP2084397A1 (fr) 2006-10-31 2007-10-30 Dispositif et procede de production d'electricite

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06123256A Withdrawn EP1918580A1 (fr) 2006-10-31 2006-10-31 Dispositif et procédé de production d'électricité

Country Status (4)

Country Link
US (1) US20100001537A1 (fr)
EP (2) EP1918580A1 (fr)
CA (1) CA2667405A1 (fr)
WO (1) WO2008052994A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167627A1 (en) * 2013-04-10 2015-06-18 Amadeo Caro Villanueva, JR. H2O Gravity Flow Generator
US9166459B1 (en) * 2014-03-26 2015-10-20 Omar BAHAMDAIN Gravitational energy powered generator
US11441533B2 (en) * 2017-08-30 2022-09-13 Fernando Gracia Lopez Power generation by continuous floatation
FR3084412A1 (fr) * 2018-08-31 2020-01-31 Jean Claude Galland Procedes et dispositifs d'utilisation de l'energie disponible en profondeur dans les eaux
LU101736B1 (fr) * 2020-04-16 2021-10-19 Jean Claude Galland Dispositifs d'utilisation et d'economie de l'energie disponible en profondeur dans les eaux

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818341A1 (de) * 1978-04-26 1979-11-08 Harry Gensch Vorrichtung zur umwandlung von energie
FR2502254A1 (fr) * 1980-12-09 1982-09-24 Philadelphe Gerard Hydraulienne
DE3726199A1 (de) * 1987-08-06 1987-12-17 Gerhard Mauritsch Vorrichtung zur umwandlung potentieller energie in nutzbare mechanische arbeit
JP2684471B2 (ja) * 1991-07-29 1997-12-03 二生 永田 圧縮空気の作成方法及び作成装置
DE29822696U1 (de) * 1998-12-19 1999-04-22 Spronken Alexander Helena L Gerät zur Herstellung von kohlensäurehaltigem Wasser
RU2197639C1 (ru) * 2001-12-19 2003-01-27 Павлович Константин Серафимович Способ получения энергии

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008052994A1 *

Also Published As

Publication number Publication date
US20100001537A1 (en) 2010-01-07
CA2667405A1 (fr) 2008-05-08
WO2008052994A1 (fr) 2008-05-08
EP1918580A1 (fr) 2008-05-07

Similar Documents

Publication Publication Date Title
WO2008052994A1 (fr) Dispositif et procede de production d&#39;electricite
US7928594B2 (en) Apparatus for receiving and transferring kinetic energy from a flow and wave
EP2035766A2 (fr) Procede et dispositif de nettoyage des surfaces de ruissellement d&#39;eau dans un echangeur thermique air/eau
WO2013160617A2 (fr) Dispositif de recuperation d&#39;energie
EP2087231A1 (fr) Dispositif de recuperation de l&#39;energie de la houle
WO2014170723A1 (fr) Unite de conversion de l&#39;energie gravitationnelle et de la poussee d&#39;archimede en energie mecanique et/ou electrique
EP3060793B1 (fr) Convertisseur de puissance houlomotrice exploitant le mouvement orbital d&#39;un chariot pesant
FR2545439A1 (fr) Dispositif d&#39;amarrage
WO2006056694A1 (fr) Arrangement mecanique
CA2822394A1 (fr) Production autoregulee, en condition immergee, d&#39;un gaz genere par reaction chimique entre un liquide et un solide; dispositif associe
BE1013125A5 (fr) Systeme qui impose alternativement la force de gravite puis, le principe d&#39;archimede a un objet flottant afin de produire un mouvement quasi-perpetuel donc une energie.
BE1012160A7 (fr) Systeme qui impose alternativement la force de gravite puis, le principe d&#39;archimede a un objet flottant, a fin de produire un mouvement quaisi- perpetuel, donc une energie.
FR2486165A1 (fr) Machine utilisant la houle pour emmagasiner l&#39;energie
FR2757905A1 (fr) Convertisseurs d&#39;energie hydrodynamiques asymetriques
BE1011767A7 (fr) Systeme qui impose alternativement la force de gravite-fg-puis le principe d&#39;archimede a un objet flottant afin de produire un mouvement quasi-perpetuel et de l&#39;energie.
FR2501795A1 (fr) Dispositif de production d&#39;energies mecanique et electrique par transformation de l&#39;energie engendree par la houle, les vagues et l&#39;effet d&#39;ondes de la mer
FR2466636A1 (fr) Dispositif pour produire de l&#39;energie electrique a partir de l&#39;energie de la houle et des marees
EP4036313B1 (fr) Procédé de stockage et restitution d&#39;hydrogène dans une structure offshore gravitaire et structure gravitaire associée
FR3029886A1 (fr) Support flottant comportant un compartiment rempli de gaz et de liquide
CN111315979A (zh) 转矩生成装置
FR2782346A1 (fr) Rotation perpetuelle domestique (rpd)
EP4117424A1 (fr) Système flottant de production de microalgues sous forme de biofilm
WO2023237720A1 (fr) Procedes et dispositifs de production d&#39;electricite par l&#39;action des pistons liquides de reservoirs electrogenes
FR2852064A1 (fr) Centrale aero-mecanique
FR3021710A1 (fr) Dispositif autonome generateur d&#39;un mouvement de rotation autour de son axe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130503