EP4117424A1 - Système flottant de production de microalgues sous forme de biofilm - Google Patents

Système flottant de production de microalgues sous forme de biofilm

Info

Publication number
EP4117424A1
EP4117424A1 EP21709444.0A EP21709444A EP4117424A1 EP 4117424 A1 EP4117424 A1 EP 4117424A1 EP 21709444 A EP21709444 A EP 21709444A EP 4117424 A1 EP4117424 A1 EP 4117424A1
Authority
EP
European Patent Office
Prior art keywords
support
frame
web
liquid
supports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21709444.0A
Other languages
German (de)
English (en)
Inventor
Axel WAKEFIELD
Freddy Guiheneuf
Olivier Bernard
Hubert BONNEFOND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de Recherche en Informatique et en Automatique INRIA
Inalve SAS
Original Assignee
Institut National de Recherche en Informatique et en Automatique INRIA
Inalve SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de Recherche en Informatique et en Automatique INRIA, Inalve SAS filed Critical Institut National de Recherche en Informatique et en Automatique INRIA
Publication of EP4117424A1 publication Critical patent/EP4117424A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/56Floating elements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/20Ribbons

Definitions

  • the present invention relates to the field of the culture of microalgae. It finds a particularly advantageous application in the field of the culture of microalgae in the form of biofilm.
  • microalgae and their cultures are different.
  • planktonic microalgae and microalgae organized in biofilm The object of the present invention is to produce a system allowing the culture of microalgae exclusively in the form of biofilm.
  • the methods for harvesting and treating microalgae cultivated in biofilm are totally different and incompatible with the techniques for cultivating microalgae in planktonic form (ie, free in water).
  • planktonic microalgae are cultivated in suspension in a liquid medium, which is incompatible with a culture in the form of a biofilm.
  • An object of the present invention is therefore to provide a system allowing the culture of microalgae in the form of a biofilm which can be more easily implemented.
  • an assembly for the production of microalgae in the form of a biofilm comprising at least one support and a web intended to receive the biofilm and in which the at least one support is configured to have a movement. of rotation around an axis of rotation and to support and impart the rotational movement on the web, the web is configured to at least partially surround the at least one support, characterized in that the assembly has a non-negative buoyancy in liquid.
  • the support and the sheet each have a non-negative buoyancy.
  • the assembly being floating, the mass to be moved for the rotation of the support is reduced, limiting costs.
  • the assembly follows the height level of the liquid, also facilitating the monitoring of the immersion of the microalgae over time. Even in the event of evaporation of the liquid, the support and the sheet will be in negative buoyancy and will make it possible to ensure a constant immersion of the microalgae.
  • a system for the production of microalgae in the form of a biofilm comprising a frame and an assembly as described above in which the frame is configured to receive the at least one support.
  • the frame is configured to receive the at least one support.
  • at least one of the support and the frame is configured so that the system has non-negative buoyancy in a liquid.
  • a system for the production of microalgae in the form of a biofilm comprising a frame, at least one support and a web intended to receive the biofilm and in which:
  • the frame is configured to receive the at least one support
  • the at least one support is configured to have a rotational movement around an axis of rotation and to support and print the rotational movement on the web;
  • the web is configured to at least partially surround the at least one support, and in which at least one of the support and the frame is configured so that the system has non-negative buoyancy in a liquid.
  • the whole system is floating in a liquid.
  • the frame, the at least one support and the web receiving the biofilm form an assembly having a non-negative buoyancy in a liquid.
  • the system is lighter and more easily assembled and dismantled.
  • the first advantage of this mass reduction is to limit the energy consumption for setting the supports in motion.
  • the temperature control by evapotranspiration of the biofilm is made possible by the thermal inertia of the mass of the liquid on which the system floats. This allows better temperature control by evapotranspiration of the biofilm and savings in energy consumption.
  • the water becomes the supporting structure of the system, this reduces the need to create a large structure and allows a lightening of the system as a whole as well as a simplification of its implementation and a reduction in costs.
  • the system is configured so that the support and the web form an assembly having non-negative buoyancy.
  • the support and the sheet form an assembly which floats in a liquid, advantageously at least the support has a non-negative buoyancy, preferentially, the support and the sheet respectively have a non-negative buoyancy.
  • FIG. 1 represents a first embodiment of the system comprising a sheet stretched by several supports, and in which the supports are horizontal and float in a liquid.
  • Figure 2 shows an embodiment of the system similar to that of Figure 1 but in which said system is completely submerged and floats in suspension in a liquid.
  • FIG. 3 represents an embodiment of the system comprising several supports in which the supports are horizontal and float on the surface in a liquid and in which the web is stretched.
  • FIG. 4 shows an embodiment comprising several supports in which the supports are vertical and float in a liquid, and in which each support supports its own web.
  • FIG. 5 represents an embodiment of a system comprising a motor supplied with energy by the movement of the waves on the liquid.
  • FIG. 6 represents an embodiment comprising a single support floating on the surface of a liquid and in which the frame supporting the motor is fixed on a solid surface. The impression of movement on the support is transmitted from the motor to the support in particular by means of a belt.
  • FIG. 7 shows an embodiment of the system in which the motor is included in the support.
  • the drawings are given by way of example and are not limiting of the invention. They constitute schematic representations of principle intended to facilitate understanding of the invention and are not necessarily on the scale of practical applications.
  • the system is configured to be at least partially submerged in the liquid
  • the system comprises a displacement module configured to allow the system to take alternately a position completely submerged in the liquid and a position partially submerged;
  • the at least one support is substantially cylindrical and is preferably taken from a roll or a strand;
  • the system comprises a motor configured to impart the rotational movement around an axis of rotation of the support;
  • the displacement module comprises at least one ballast configured to vary and stabilize the buoyancy of the system in the liquid.
  • the at least one ballast is arranged in the at least one support
  • the axis of rotation of the support is mobile with respect to the frame and follows the change in the height of water over which the support and / or the water table and / or the frame are in non-negative buoyancy
  • the axis of rotation of the support is movable according to a movement comprising a non-zero vertical component with respect to the frame
  • the system comprises a guide arm arranged between the frame and the support, preferably the guide arm is fixed to the frame by an attachment point,
  • the guide arm is movable around its point of attachment to the frame
  • the guide arm is movable around its point of attachment with the frame following a movement comprising a non-zero vertical component relative to the frame, preferably the guide arm is movable in rotation around its point of attachment to the frame,
  • the system includes several supports configured to be driven by at least one motor
  • the system includes several supports configured to be driven by several motors;
  • the system comprises several supports and at least one web and in which each of the supports is configured to support and print its movement on at least one web;
  • the system comprises several supports and a number of layers equal to the number of support in which each of the supports is configured to support and print its movement on a single layer;
  • the system comprises a single support and a single tablecloth;
  • the motor is a power supply device configured to recover energy from the movement of waves on the surface of the liquid;
  • the at least one support is inflatable
  • Buoyancy is understood to mean the vertical thrust, directed from bottom to top, that a fluid exerts on an immersed volume. Buoyancy always acts in the opposite direction to gravity.
  • Buoyancy can be zero, that is, gravity and pressure on the object are equal to Archimedes' thrust. In this case, the object is suspended in the fluid.
  • Buoyancy can be negative, that is, gravity and pressure exert a force greater than Archimedes' thrust. In this case, the object sinks into the fluid and sinks. Finally, buoyancy can be positive, that is, gravity and pressure exert a force less than Archimedes' thrust. In this case, the object rises in the fluid.
  • to float is understood to mean its definition in that it allows an object to be carried by a liquid, and that it can remain there by. surface or in suspension "between two waters” without sinking into it. That is, the object has a non-negative buoyancy in this liquid.
  • buoyancy is in particular a function of the density of the object relative to the density of the fluid in which it is totally or partially immersed.
  • the term “motor” is understood to mean an organ transforming energy of a different nature into mechanical energy.
  • the motor can be powered by kinetic energy such as the movement of waves or even the wind, by electrical, thermal energy or any other type of energy.
  • the motor can for example take the form of a mill, a turbine, or any other form making it possible to transmit a mechanical movement with an input energy.
  • the system 1 for the production of microalgae in the form of a biofilm comprises at least one frame 100, advantageously a motor 200, at least one support 300 advantageously configured to float in a liquid 2 and support a web 400, the web 400 is configured to support microalgae as a biofilm.
  • the motor 200 is configured to impart movement to the support 300 and therefore to the web 400.
  • system 1 allows the cultivation of any type of microalgae, and preferably at least one of the varieties among the following: Tisochisis lutea, Chlorella vulgaris, Navicula sp, Tetraselmis sp, Phaeodactylum tricornutum.
  • the system 1 can also include at least one sprinkler device 500.
  • the system 1 is exposed to a light source 3.
  • the web 400 comprises several portions. Thus, certain portions of the web 400 are in a direct exposure zone 3a allowing them to be exposed directly to the light source 3 while other portions are in an indirect exposure zone 3b not allowing them to be exposed. be directly exposed to the light source 3.
  • the portions of the web 400 in the indirect exposure zone 3b benefit from reduced or even non-existent light.
  • the system 1 is configured so that the movement of the support 300 allows the different portions of the web 400 to pass from the direct exposure zone 3a to the indirect exposure zone 3b and vice versa.
  • the system 1 When the system 1 is partially submerged, the system 1 is preferably configured so that the portions of the web 400 are successively in a submerged position and in an emerged position. This submerged / emerged position alternation is carried out at a more or less regular and preferably regular frequency. This is particularly illustrated in Figures 1, 3, 5 and 6.
  • the system 1 can have between 0% and 99% of its emerged surface and preferably close to 95% of its emerged surface and preferably close to of 99% of its emerged surface.
  • the immersion is total as illustrated in Figure 2.
  • parts of the support 300 are always submerged or emerged, and spray devices 500 moisten the emerged parts. .
  • the frame 100 is configured to support at least the motor 200.
  • the motor 200 is advantageously fixed integrally to the frame 100 so as to ensure the operation of the motor.
  • the frame 100 can be fixed to a rigid surface, as shown in Figure 6 for example, or fully supported by at least one support 300, as shown in Figures 1 to 4 for example, or be supported in part by at least a support 300 and by a rigid surface, not shown in the figures.
  • the frame 100 is configured so that the system has a non-negative buoyancy and is therefore buoyant.
  • the frame 100 can have a non-negative buoyancy, that is to say that the frame 100 is itself floating.
  • the frame 100 can advantageously comprise a hollow shape filled or not with a gas or a low density foam. This feature makes it possible to increase the buoyancy of the system.
  • the frame 100 has negative buoyancy in itself.
  • the system floats through the presence of at least one support 300 exhibiting non-negative buoyancy, preferably at least one support 300 and a web 400, and optionally at least one float 320.
  • the frame 100 additionally links the supports together.
  • the frame 100 comprises side members 110.
  • the side members 110 make it possible to maintain between them in particular a plurality of supports 300 and / or at least one ballast 310 or at least one float 320.
  • the frame 100 is advantageously configured to maintain the distance between the different supports 300, for example at a substantially distance regular and preferably fixed. Maintaining a regular and preferably fixed distance from the supports 300 is preferably achieved by the side members 110.
  • the brackets 300 and / or at least one ballast and / or float are fixed to the side members 110.
  • a spar 110 connecting several supports and / or ballasts and / or floats is configured to allow mobility comprising a non-zero component along a vertical axis between the connected elements.
  • the system follows the movement and / or the level of the liquid 2, the system and more preferably the support 300 floats.
  • the support 300 is kept in contact with the liquid 2.
  • the frame has in particular a flexibility allowing substantially vertical movements of the connected elements including in particular the support 300.
  • the frame 100 is configured so that the support (s) 300 which present (s) a non-negative buoyancy, floats in the liquid 2.
  • the frame 100 is advantageously configured for the position of the at least one support follows. the level of the liquid 2 in which the system and preferably the support 300 floats.
  • the frame 100 more preferably the attachment between the engine 200 and the frame 100 constitutes a fixed reference frame relative to the support 300.
  • the support 300 has mobility relative to the frame 100, more precisely relative to the attachment between the engine 200 and the frame 100, comprising a non-zero component along a vertical axis.
  • the frame 100 comprises at least one compartment making it possible to frame the support 300.
  • the frame 100 may include, in embodiments where a single sheet 400 covers several supports 300, as illustrated for example in Figures 1 to 3, devices for guiding the sheet 400 (not shown in the figures). These devices make it possible, for example, in FIGS. 1 and 2, to bring the web 400 closer to the frame 100. This makes it possible, for example, to more easily control the total volume of the system.
  • the frame 100 comprises the transmission arm 240 and at least one float 230.
  • the frame 100 comprises an upright 120, on which the motor 200 is advantageously mounted.
  • the motor 200 is fixed on the upright 120.
  • the system comprises a guide arm 210 ensuring the connection between the frame 100, more precisely the upright 120, and the support 200.
  • the frame 100 is for example fixed to a solid surface.
  • the solid surface can be a ground such as the edge or the bottom of a basin or the bank or the bottom of a watercourse or the coast or the bottom of a sea.
  • the solid surface can also be a surface. floating solid such as a pontoon, boat, barge, etc.
  • the system comprises a support 300.
  • the system comprises several supports 300. The rest of the description refers to a support without being limiting and can apply to all the supports.
  • the support 300 is advantageously configured to float in a liquid 2. This is understood to mean that the support 300 floats on the surface or between two waters. By floating on the surface is meant when at least part of the support 300 has emerged.
  • the support 300 is advantageously of cylindrical shape and / or of axial symmetry and / or substantially conical.
  • the support includes an outer surface. The outer surface extends along the longitudinal dimension.
  • the term “longitudinal dimension” of the support 300 is understood to mean its largest dimension or also referred to as its axis of longitudinal extension.
  • the support includes two side surfaces corresponding to its bases at the ends of the outer surface. The two side surfaces and the outer surface define an interior volume. Preferably, the side surfaces are of the same size and the same shape.
  • the support 300 is advantageously a roll.
  • the support 300 is advantageously an inflatable rod.
  • the support 300 is configured to have a rotational movement about an axis of rotation.
  • the movement of the support 300 is preferably a rotation about an axis of rotation.
  • the axis of rotation of the support 300 is arranged parallel to the longitudinal dimension of the support 300.
  • the axis of rotation passes through the center of each of the side surfaces.
  • the outer surface is configured to receive the web 400.
  • the outer surface is intended to be at least partially covered with a web 400.
  • the outer surface may include means for adhering and / or fixing the web 400.
  • the external surface can comprise successions of cavities and roughness making it possible to increase the adhesion with the web 400.
  • Fastening means can for example and without limitation be a surface with bridges configured to cooperate with hooks carried by the web 400.
  • the fixing and adhesion elements can be many and varied and are not limited to the above examples.
  • the support 300 is configured to print its movement on at least one web 400.
  • the support 300 comprises a length of between 2 and 500 meters and preferably between 2 and 200, preferably between 2 and 100 meters, more precisely between 5 and 200 meters, more precisely between 5 and 50 meters. meters.
  • the support 300 has a diameter of between 0.10 and 3 meters and preferably between 0.5 meters and 1.5 meters.
  • the support 300 is in an impermeable material such as polyvinyl chloride for example.
  • the support 300 is in a flexible inflatable material such as a fabric for example.
  • the pressure inside the support 300 is greater than 10 millibars (mBar), and preferably greater than 30 mBar.
  • mBar millibars
  • This advantageous construction makes it possible to improve the reduction in mass of the support 300.
  • the energy required for setting the support 300 in motion is greatly reduced.
  • the inflatable support 300 allows easy assembly, disassembly, transport and storage of the entire system 1.
  • the support 300 is permeable to gas, in particular to carbon dioxide (C0 2) to allow the diffusion of C0 2 from the support towards the algae biofilm.
  • the support 300 is permeable to a concentrated nutrient medium. In this possibility, the nutrient medium is stored in the support 300.
  • the interior volume of the support 300 is full.
  • the internal volume of the support 300 is filled with a material allowing it to float, such as for example a polyester or polystyrene foam. It is possible to vary the buoyancy of the support 300 by varying the density of the foam. In fact, the lower the density of the foam, the higher the buoyancy of the support 300 will be. On the other hand, with a foam having a greater density, the buoyancy of the support 300 will be reduced.
  • the internal volume of the support 300 is hollow and filled with gas, preferably under pressure (pressure greater than 10 mbar).
  • the buoyancy of the support 300 is variable depending on the amount of pressurized gas injected into the interior volume of the support 300.
  • the embodiment has the advantage of being easily implemented and transportable.
  • the support 300 is advantageously inflatable.
  • the support 300 advantageously has sufficient rigidity to ensure transmission of the rotational movement over its entire longitudinal dimension.
  • the support 300 preferably has a hardness allowing the scraping of the algae biofilm present on the surface of the web.
  • support 300 may include devices configured to function as a ballast.
  • the support 300 can comprise at least one valve and / or at least one air pump and / or a water pump making it possible to vary the volume of gas inside the support 300.
  • This variation can for example make it possible system 1 to vary its buoyancy between positive buoyancy, that is to say that the support is partially submerged, for example with less than 5 centimeters of the support 300 submerged and zero buoyancy, that is to say that the support 300 is in equilibrium in a liquid, that is to say that it is according to the expression the support 300 is in suspension in a liquid "between two waters".
  • the change from a partially submerged position to a fully submerged position can be achieved by granting the system 1 negative buoyancy.
  • Such negative buoyancy is transient and has the sole objective of varying the immersion of the system 1.
  • the entire support In the case where the support 300 is in equilibrium in a liquid, the entire support can be submerged or else in any intermediate position. This variation can make it possible to adapt the conditions for producing microalgae according to their needs in air, light or liquid 2.
  • the immersion of the system 1 in the event of difficult weather conditions such as strong winds or a large swell, for example total immersion can make it possible to avoid damage to the system.
  • the support 300 has a fixed density and the system comprises at least one ballast 310 or at least one float 320 advantageously positioned on the frame 100.
  • the support 300 is arranged so that its longitudinal dimension is vertical. By vertical is meant parallel to the direction of gravity.
  • the support 300 is arranged so that its longitudinal dimension is horizontal. By horizontal is meant the direction normal to the vertical.
  • the mass of the support 300 is advantageously between 2 and 50 kilograms per m 2 of footprint and preferably between 5 and 20 kilograms per m 2 of footprint.
  • the system includes multiple supports 300 as exemplified in Figures 1 to 4.
  • the supports 300 can be positioned substantially horizontally ( Figures 1 to 3) or substantially vertically ( Figure 4).
  • the supports 300 are preferably, but not limited to, substantially parallel to each other.
  • the supports 300 are held together by means of the frame 100.
  • the support is preferably carried out by at least one of the lateral faces of the supports 300 and may be carried out by both faces.
  • the supports 300 can comprise weights on and / or in their submerged parts.
  • the weights are configured to stabilize the supports 300.
  • a ballast is a device equipped with means making it possible to vary its buoyancy.
  • a ballast can in its interior volume vary the pressure of a gas or the proportion of gas / liquid in order to modify its own buoyancy and the buoyancy of the system to which it is connected.
  • the latter may or may not communicate with each other.
  • each ballast 310 can communicate its buoyancy to the other ballasts 310, or to an external buoyancy management module of the system 1.
  • the communication can also be a fluidic communication making it possible to vary between them the gas / liquid levels present in the ballasts 310. This makes it possible in particular to vary the buoyancy of only part of the system 1 in order for example to modify the attitude.
  • a ballast 310 can be configured to act both as a float and as a ballast. In its ballast function, the ballast 310 allows better stability of the floating system 1.
  • a float 320 is a floating device making it possible to improve the buoyancy of the system 1. Its buoyancy is fixed. This is the case, for example, of a buoy. To do this, the float 320 is either filled with a gas or with a low density foam. Advantageously, the float 320 is fixed on the frame 100.
  • the web 400 is configured to at least partially cover the support 300 and more preferably the external surface of the support 300.
  • the support 300 and the web can be one and the same element.
  • the web 400 is configured to allow the attachment of microalgae in the form of biofilm.
  • the web 400 is either configured to receive the algae biofilm directly or the web 400 comprises a coating which can be formed by a complementary web at least partially covering the web 400.
  • the complementary web is for its part configured to receive the algae biofilm.
  • the web 400 is at least partially below the surface of the liquid 2.
  • the web 400 comprises several portions of which at least some portions are submerged. There may also be some emergent parts. The submerged and emerged parts vary as a function of time and of the movement of the water table 400.
  • the sheet 400 has a non-negative buoyancy, that is to say that the sheet floats. More preferably, the support 300 and web 400 assembly has non-negative buoyancy.
  • the microalgae have a thermal preference, that is to say that the temperature of the medium in which they are cultivated has a direct influence with the speed of their growth.
  • the sheet is completely immersed in the liquid 2 but retains neutral or positive buoyancy.
  • each of the ends of the web 400 is interconnected in order to form a loop.
  • each of the ends of the web 400 is fixed to the external surface of a support 300 and is therefore stationary relative to the support.
  • the web 400 comprises a first face 410 and a second face 420.
  • the first and second faces 410, 420 can be produced by a single layer or by several layers superimposed therebetween.
  • the first face 410 is vis-à-vis at least one support 300.
  • the first face 410 is configured to allow contact and adhesion with said support 300.
  • the first face 410 is preferably made with a material allowing the adhesion to the support 300 such as for example a fabric, a canvas, a sheet of polyester or polyurethane, etc.
  • the adhesion can, for example, be achieved by friction, or alternatively with roughness / cavity alternatives in the first face 410.
  • any other material allowing the production of a web 400 can be used for this face.
  • the adhesion of the first face 410 to the support 300 allows said support 300 to imprint its movement on the web 400.
  • the web 400 is mobile at least relative to the frame 100. In certain embodiments as shown in FIGS. 1 to 3, the web 400 is also movable relative to the support 300.
  • the first face 410 is configured to adhere sufficiently with the support 300 to allow the transmission of movement from the support 300 to the web 400 while allowing mobility of the web 400 with respect to said support 300
  • the first face 410 is fixed relative to the support 300.
  • the first face 410 then comprises elements for fixing to the support 300.
  • the fixing elements can for example be an adhesive, a surface in the form of a bridge cooperating with a surface comprising hooks on the support 300, staples, nails, screws or any other element allowing fixing between the web 400 and the support 300.
  • the fixing is reversible in order to be able to separate the web 400 and the support 300.
  • the second face 420 is configured to be on the side opposite the first face.
  • the second face 420 is either configured to allow the attachment of the microalgae in the form of a biofilm or to receive a preformed coating of a complementary sheet suitable for receiving the algae.
  • the second face 420 advantageously has no contact with the support 300.
  • the material serving for fixing the microalgae in the form of a biofilm is preferably rough with cavities or microcavity.
  • the second face can be in one of the following materials: cotton, burlap, polyethylene, polyurethane, biopolymer or even polyester.
  • the first and second faces 410; 420 of the web 400 are spaced from each other to form an internal volume.
  • a gas is injected into the internal volume in order to inflate the web 400.
  • a nutrient medium is injected into the internal volume.
  • the web 400, and more particularly the second face 420 is then porous to the nutrient medium in order to nourish the microalgae.
  • the web 400 comprises at least one device, such as for example a valve and / or an air pump, making it possible to vary the quantity of gas in the interior volume in order to be able to vary the buoyancy.
  • a single web 400 can surround several supports 300 so as to form a conveyor belt.
  • the web 400 can be stretched at least partially between the supports 300, as illustrated in the figures and 1 and 2, or be stretched between the supports 300 such as in figure 3.
  • the system 1 comprises elements for tensioning the web 400.
  • the tensioning elements for the web 400 are configured to allow the web 400 to be tensioned in order to facilitate the scraping of the microalgae.
  • One advantage of this solution is to increase the culture surface for a given system 1.
  • each support 300 when there are several, is completely surrounded by a single web 400.
  • This advantageous solution makes it possible for example to vary the characteristics of the tablecloths 400 in depending on the type of production on each of said webs 400.
  • the web 400 is configured to allow scraping of the microalgae. Thus, even in the case where the web is stretched, the tension elements make it possible to ensure the scraping.
  • the engine 200 is the engine 200
  • the motor 200 being for its part configured to impart on the at least one support 300 a preferentially rotational movement relative to the frame 100.
  • the frame 100 receives the motor 200.
  • the frame 100 advantageously receiving the motor 200, forms a frame of reference. relative to the movement of the support.
  • the motor is configured to have a preferential rotational movement at the output.
  • the system 1 can include a single motor 200 or a plurality of motors 200 for one or more supports 300.
  • system 1 comprises a single motor for several supports 300.
  • system 1 comprises several motors 200 for several supports 300.
  • system 1 comprises one motor per support 300.
  • a single motor 200 is present on a single support 300.
  • Other combinations are of course possible, for example and without limitation, the fact of having several motors 200 per support 300, in particular connected to each of the side surfaces of the support 300.
  • the system comprises a connecting device between the motor 200 and at least one support 300.
  • the connecting device is configured to ensure the transmission of the movement of the motor 200 to the support 300 and more preferably to print a rotational movement. to the support 300.
  • the motor 200 is connected to the external surface of at least one support 300.
  • the motor 200 is connected to at least one of the side surfaces of the support 300.
  • the device for link 220 can for example be a belt, a cable, a chain, a rack or even a toothed wheel or any other connecting element.
  • the connection can for example be provided by means of a disc positioned protruding from said side surface or by a toothed wheel (not shown in the figures).
  • FIG. 6 shows an embodiment of the connection between the motor 200 and the support 300.
  • a guide arm 210 maintains the support 300 in position at the level of its axis of rotation at a predefined distance from the motor 200.
  • a connecting device 220 provides a connection between the motor 200 and a lateral surface of the support 300.
  • the connecting device 220 can be for example here a belt.
  • the connection can for example be provided by means of a disc positioned protruding from said side surface or by a toothed wheel (not shown in the figure).
  • the connecting device 220 allows the transmission of the rotational movement of the motor 200 to the support 300.
  • the connecting device 220 can be replaced by a chain, for example.
  • the guide arm 210 does not support the support 300 and only has a guiding function. Said support 300 is supported by the liquid thanks to its buoyancy.
  • the guide arm 210 has only a function of guide 210 allowing the establishment of the connecting device 220 and the transmission of the movement.
  • the guide arm 210 has a mobility relative to the frame 100 and in this case to the upright 120.
  • the guide arm 210 connects the frame 100 to the support 300.
  • the guide arm 210 is movable according to a movement having a non vertical component. zero with respect to the frame 100 and more particularly to the upright 120. The mobility of the guide arm takes place at its point of attachment to the frame 100, more precisely to the upright 120.
  • the support 300 is advantageously movable relative to the frame 100.
  • the position of the support 300 relative to the frame 100 is variable depending on the buoyancy of the support 300. More precisely, it is the position of the axis of rotation of the support 300 relative to the frame 100 which is variable depending on the buoyancy of the support 300.
  • the position of the support 300 relative to the frame 100 is variable depending on the level of the liquid 2 in which the system and preferably the support 300 floats. This arrangement allows the support to follow the level of the liquid 2 and in particular in the case of a liquid basin 2, the level of the liquid may vary due to the evaporation of the latter, the level of buoyancy of the support therefore remains identical without the need for complex control.
  • the support 300 exhibits mobility relative to the frame 100 comprising a non-zero component along a vertical axis. The vertical axis being perpendicular to the surface of the liquid 2.
  • the connecting device is configured to allow mobility of the support 300 relative to the frame 100 comprising a non-zero component along a vertical axis. This configuration allows the system to ensure that the support 300 floats in the liquid and thus follows the variations in the level of the liquid.
  • the output of the motor 200 can be directly connected to a side surface of the support 300 as illustrated for example in FIGS. 1 to 5.
  • the connection between the motor 200 and the support 300 can for example be made to the through pinions, but also by means of rollers resting on the support 300 or any other means making it possible to transmit the movement of the motor 200 on the support 300.
  • the frame 100 can be mounted to rotate freely inside the support 300.
  • the motor 200 supported by the frame 100, can be configured to have an outlet connected to the internal face of the. support 300 and thus cause the support 300 to rotate relative to the frame 100, by virtue of the connection device 220.
  • This solution makes it possible to have a system with a minimal footprint.
  • An example of this embodiment is visible in FIG. 7.
  • the motor 200 is associated with a ballast and is enclosed inside the support 300.
  • the support 300 is rigid, either thanks to the composition of its materials. or thanks to its internal pressure.
  • the support 300 is preferably waterproof and comprises, along its internal wall, a connecting device 220 in the form of a rack and / or a cable.
  • the motor 200 being configured to cooperate with the rack and / or the cable and to drive the support 300 in rotation.
  • the weight of the motor is configured to rotate the structure.
  • a connection with a sealed rotating collector makes it possible to bring electricity to the motor 200 inside the support 300.
  • the motor 200 is an electric motor comprising a stator and a rotor.
  • the stator is preferably fixed to the frame 100.
  • the rotor connected directly or indirectly to the support 300 allows the rotation of the said support 300 relative to the frame 100.
  • the motor 200 can also be solely mechanical as illustrated in FIG. 5.
  • the supply of electrical energy to the motor can be diverse and varied.
  • the motor can be connected to batteries (lithium-ion, lead, etc.), or to any electrical network.
  • the energy supply directly to the motor 200 or to a battery can also be done by means of renewable energy, for example solar or wind energy, by the movement of waves or tides.
  • FIG. 5 illustrates an embodiment of the energy supply by a solution for recovering the energy generated by waves.
  • a float 230 is connected to a transmission arm 240 to a toothed wheel 250.
  • the transmission arm 240 preferably has a length greater than the radius of the lateral surface of the support 300.
  • the transmission arm carries a pawl 260. .
  • the pawl 260 is configured to allow rotation of the toothed wheel 250 in a first direction of rotation, and to prevent the rotation of the toothed wheel 250 in a second direction of rotation opposite to the first direction of rotation.
  • the toothed wheel 250 can be connected to the support 300 either directly to the frame 100, or through an energy recovery device in order to supply the motor with energy.
  • the float 230 follows the movement of the waves of the liquid 2 with a slight offset with respect to the support 300. This difference in movement is transmitted by the transmission arm 240 to the toothed wheel 250 by leverage and makes it possible to actuate the rotation of the toothed wheel 250. Depending on the length of the transmission arm 240, it is possible to vary the difference in movement of the float 230 relative to the support 300. This difference makes it possible to set the toothed wheel 250 in motion.
  • the greater the length of the transmission arm 240 the smaller the difference in movement required between the float 230 and the support 300 to set the toothed wheel 250 in motion. In other words, a weak swell will allow the setting in motion of the toothed wheel 250.
  • This embodiment uses the principles of recharging automatic watches comprising a mechanical motor.
  • the entire wave energy recovery system can be considered as the motor 200.
  • a switch can allow the motor 200 to be powered either by a renewable energy source or by a battery in order to be able to adapt to different weather conditions.
  • the Surplus energy produced by the renewable energy source can be used to recharge the batteries.
  • the system 1 can comprise at least one and preferably several devices for spraying a liquid.
  • sprinkler devices preferably at least one per support 300, make it possible to guarantee the good supply of liquid, in particular of a nutritive mixture and therefore good humidification of the second face. 420 of the web 400.
  • This supply of liquid and / or nutrients makes it possible to better control the characteristics necessary for the production of microalgae in the form of a biofilm.
  • the sprinkler device can be fixed to the frame 100 or have its own structure.
  • the sprinkler device 500 is equipped with a pump making it possible to draw the emitted liquid from a reserve.
  • the reserve can be liquid 2 in which system 1 floats.
  • Liquid 2 is a liquid allowing the culture of microalgae in the form of a biofilm.
  • the liquid 2 is water which can be salty or sweet with or without additives such as nutrients for example.
  • the liquid 2 can be contained in a natural expanse such as a lake, a stream or even the sea.
  • the liquid 2 can also be contained in an artificial basin, that is to say in a human construction, for example a masonry tank or in wood or in any other material.
  • an artificial basin allows in particular better control of the characteristics of the liquid 2 such as its hydrogen potential (pH), its temperature, or its composition in nutrients and / or waste or even its level or the presence of bacteria in the liquid 2.
  • the artificial basin is open in its upper part and at least partially exposed to at least one light source 3.
  • the light source 3 can be a natural source such as the sun or an artificial light allowing in particular a supply in particular of ultraviolet necessary for the culture of microalgae.
  • the system can include an additional light source 3 in addition to the main light source 3, thus making it possible to reinforce the luminosity or the ultraviolet supply when the climatic conditions are not optimal and / or to expose different portions to light. those exposed by the main light source 3.
  • FIG. 1 illustrates an embodiment of the system 1.
  • the system 1 floats in a liquid.
  • the system 1 comprises a first and a second support 300 connected and positioned substantially horizontally and parallel to each other.
  • the first and second supports 300 are interconnected by the frame 100 via the side surfaces of the two supports 300.
  • the frame 100 and the first and second supports 300 are connected at the level of the axis of rotation of the supports 300.
  • the support 300 is movable in rotation about its axis of rotation.
  • the support 300 is movable according to a movement having a non-zero vertical component with respect to the frame.
  • the longitudinal axis of the support 300 is movable, advantageously according to a movement having a non-zero vertical component, relative to the frame 100, more precisely to the frame at the level of its attachment to a float or to the second support.
  • a motor 200 is arranged on the frame 100, for example at one end. The motor 200 is configured to drive the first support 300 in rotation.
  • the frame 100 comprises between the two supports 300 several floats 320 and / or ballast 310.
  • a web 400 extends between the two supports 300 and drives them at least partially.
  • the web 400 is rotated around the two supports 300 by the rotation of the first support 300 so that the portions in the direct exposure zone 3a alternate their positions with the portions in the indirect exposure zone 3b.
  • the web 400 is relatively stretched between the first and second supports 300.
  • the web 400 extends along a plane in contact with the outer surface of the supports 300.
  • the web 400 extends in a straight line between two outer surfaces of two supports 300. In this embodiment, portions of the web 400 are exposed to the open air and other portions of the web 400 are immersed in the liquid 2.
  • FIG. 2 illustrates an embodiment identical to that illustrated in FIG. 1 but in which the whole of the system 1 has zero buoyancy.
  • System 1 floats between two waters.
  • Advantageously all of the web 400 is submerged.
  • a second motor 200 drives the second support 300 in rotation.
  • FIG. 3 represents an embodiment similar to the first two with the difference that the floating system 1 comprising four supports 300 and no float.
  • the supports 300 integrate the function of float and / or ballast.
  • the web 400 comprises portions exposed to the open air and submerged portions.
  • the web 400 is stretched between the two most extreme supports 300.
  • the web 400 is loose between two outer surfaces of two supports 300.
  • FIG. 4 shows an embodiment with four supports 300 positioned substantially vertically and parallel to each other.
  • the supports 300 comprise an immersed part and an emerged part respectively according to the buoyancy of the support 300.
  • the supports are interconnected by the frame 100.
  • Spray devices 500 make it possible to moisten the non-submerged parts of the supports 300.
  • a sheet 400 surrounds each support 300.
  • weights (not shown in the figure) can be positioned on the submerged parts in order to stabilize the system 1.
  • FIG. 6 shows an embodiment in which the system 1 comprises a single support 300 positioned substantially horizontally.
  • the frame 100 is attached to a solid surface and the support 300 floats.
  • the support 300 is for example partially submerged (five centimeters).
  • a single web 400 preferably completely surrounds the support 300.
  • the motor 200 allows the support 300 to be rotated so that the portions of the web 400 located in the open air and in the direct exposure zone 3a of light alternate their positions with the portions of sheet 400 located in the submerged part of the support 300 and / or in the indirect exposure zone 3b.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un système (1) pour la production de microalgues sous forme de biofilm comprenant un bâti (100), un moteur (200), au moins un support (300) et une nappe (400) destinée à recevoir le biofilm et dans lequel : • le bâti (100) est configuré pour supporter le moteur (200), • le moteur (200) est configuré pour imprimer un mouvement de rotation à au moins un support (300); • le au moins un support (300) est configuré pour avoir un mouvement de rotation autour d'un axe de rotation et pour supporter et imprimer le mouvement de rotation sur la nappe (400); • la nappe (400) est configurée pour entourer au moins partiellement le au moins un support (300), caractérisé en ce que le support (300) est configuré pour avoir une flottabilité non négative dans un liquide (2).

Description

«Système flottant de production de microalgues sous forme de biofilm» DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne le domaine de la culture des microalgues. Elle trouve pour application particulièrement avantageuse le domaine de la culture des microalgues sous forme de biofilm.
ETAT DE LA TECHNIQUE II existe plusieurs types de microalgues et leurs cultures sont différentes. Par exemple il existe des microalgues planctoniques et des microalgues organisées en biofilm. La présente invention a pour objectif la réalisation d'un système permettant la culture des microalgues sous forme de biofilm exclusivement. En effet, les méthodes pour récolter et traiter les microalgues cultivées en biofilm sont totalement différentes et incompatibles avec les techniques de culture de microalgues sous forme planctonique (c-à-d, libre dans l’eau). De fait, les techniques de production de microalgues planctoniques sont cultivées en suspension dans un milieu liquide ce qui est incompatible avec une culture sous forme de biofilm.
Une des techniques de culture de microalgues sous forme de biofilm est divulguée dans le document WO2015007724 A1. Ce document divulgue un système comportant un bâti, un bassin d'eau, des rouleaux d'entrainement d'un biofilm et un moteur permettant d'entrainer les rouleaux. L'objectif de ce document est d'améliorer la culture des microalgues sous forme de biofilm en permettant une exposition régulière à une lumière naturelle et/ou artificielle de l'ensemble des cellules du biofilm. Pour ce faire, les rouleaux sont fixés sur le bâti qui est lui- même fixé sur le bassin à des profondeurs d'immersion variable. Le biofilm étant entraîné par les différents rouleaux depuis la partie immergée du bassin à une partie émergée. Le système divulgué dans ce document est très lourd à mettre en place en ce qu'il nécessite une structure complexe, volumineuse, massive et donc coûteuse et énergivore.
Un objet de la présente invention est donc de proposer un système permettant la culture des microalgues sous forme de biofilm pouvant être plus aisément mis en oeuvre.
Les autres objets, caractéristiques et avantages de la présente invention apparaîtront à l'examen de la description suivante et des dessins d'accompagnement. Il est entendu que d'autres avantages peuvent être incorporés.
RESUME DE L’INVENTION
Pour atteindre cet objectif, selon un mode de réalisation on prévoit un ensemble pour la production de microalgues sous forme de biofilm comprenant au moins un support et une nappe destinée à recevoir le biofilm et dans lequel le au moins un support est configuré pour avoir un mouvement de rotation autour d'un axe de rotation et pour supporter et imprimer le mouvement de rotation sur la nappe, la nappe est configurée pour entourer au moins partiellement le au moins un support , caractérisé en ce que l'ensemble présente une flottabilité non négative dans un liquide. Préférentiellement, le support et la nappe présentent chacun une flottabilité non négative.
L'ensemble étant flottant, la masse à déplacer pour la rotation du support est réduite limitant les coûts. De plus, l'ensemble suit le niveau de hauteur du liquide facilitant également le suivi de l'immersion des microalgues au cours du temps. Même en cas d'évaporation du liquide, le support et la nappe seront en flottabilité négative et permettront d'assurer une immersion constante des microalgues.
Suivant un autre aspect, on prévoit un système pour la production de micro algues sous forme de biofilm comprenant un bâti et un ensemble tel que décrit ci-dessus dans lequel le bâti est configuré pour recevoir le au moins un support. Préférentiellement, au moins l'un parmi le support et le bâti est configuré pour que le système ait une flottabilité non négative dans un liquide.
Selon un autre aspect, on prévoit un système pour la production de microalgues sous forme de biofilm comprenant un bâti, au moins un support et une nappe destinée à recevoir le biofilm et dans lequel :
• le bâti est configuré pour recevoir le au moins un support,
• le au moins un support est configuré pour avoir un mouvement de rotation autour d'un axe de rotation et pour supporter et imprimer le mouvement de rotation sur la nappe ;
• la nappe est configurée pour entourer au moins partiellement le au moins un support, et dans lequel au moins l'un parmi le support et le bâti est configuré pour que le système ait une flottabilité non négative dans un liquide.
Le système dans son ensemble est flottant dans un liquide. Le bâti, le au moins un support et la nappe recevant le biofilm forment un ensemble ayant une flottabilité non négative dans un liquide. Du fait d'avoir par exemple un support et/ou un bâti flottant, le système est plus léger et plus facilement montable et démontable. Cette réduction de masse comprend comme premier avantage de limiter la consommation d'énergie pour la mise en mouvement des supports. De plus, le contrôle de la température par évapotranspiration du biofilm est rendu possible de par l'inertie thermique de la masse du liquide sur laquelle le système flotte. Cela permet un meilleur contrôle de la température par évapotranspiration du biofilm et des économies de consommations d'énergie. Enfin, l'eau devient la structure portante du système, cela réduit les besoins de création d'une structure importante et permet un allègement du système dans son ensemble ainsi qu'une simplification de sa mise en oeuvre et une réduction des coûts.
Suivant un autre aspect, le système est configuré pour que le support et la nappe forment un ensemble présentant une flottabilité non négative. Préférentiellement, le support et la nappe forment un ensemble qui flotte dans un liquide, avantageusement au moins le support présente une flottabilité non négative, préférentiellement, le support et la nappe présentent respectivement une flottabilité non négative.
BRÈVE DESCRIPTION DES FIGURES
Les buts, objets, ainsi que les caractéristiques et avantages de l’invention ressortiront mieux de la description détaillée d’un mode de réalisation de cette dernière qui est illustrée par les dessins d’accompagnement suivants dans lesquels :
La figure 1 représente un premier mode de réalisation du système comprenant une nappe tendue par plusieurs supports, et dans lequel les supports sont horizontaux et flottent dans un liquide.
La figure 2 représente un mode de réalisation du système similaire à celui de la figure 1 mais dans lequel ledit système est complètement immergé et flotte en suspension dans un liquide.
La figure 3 représente un mode de réalisation du système comprenant plusieurs supports dans lequel les supports sont horizontaux et flottent en surface dans un liquide et dans lequel la nappe est distendue.
La figure 4 représente un mode de réalisation comprenant plusieurs supports dans lequel les supports sont verticaux et flottent dans un liquide, et dans lequel chaque support supporte sa propre nappe.
La figure 5 représente un mode de réalisation d'un système comprenant un moteur alimenté en énergie par le mouvement des vagues sur le liquide.
La figure 6 représente un mode de réalisation comprenant un seul support flottant en surface d'un liquide et dans lequel le bâti supportant le moteur est fixé sur une surface solide. L'impression d'un mouvement sur le support est transmise depuis le moteur au support notamment par l'intermédiaire d'une courroie.
La figure 7 montre une réalisation du système dans lequel le moteur est inclus dans le support. Les dessins sont donnés à titre d'exemples et ne sont pas limitatifs de l’invention. Ils constituent des représentations schématiques de principe destinées à faciliter la compréhension de l’invention et ne sont pas nécessairement à l'échelle des applications pratiques.
DESCRIPTION DÉTAILLÉE
Avant d’entamer une revue détaillée de modes de réalisation de l’invention, sont énoncées ci- après des caractéristiques optionnelles qui peuvent éventuellement être utilisées en association ou alternativement : • le support et la nappe forment un ensemble présentant une flottabilité non négative,
• le support et la nappe présentent chacun une flottabilité non négative,
• le système est configuré pour être au moins partiellement immergé dans le liquide;
• le système est configuré pour être entièrement immergé dans le liquide et avoir une flottabilité nulle;
• le système comprend un module de déplacement configuré pour permettre au système de prendre alternativement une position complètement immergée dans le liquide et une position partiellement immergée;
• le au moins un support est sensiblement cylindrique et est de préférence pris parmi un rouleau ou un boudin;
• l'axe de rotation du support est parallèle à la dimension longitudinale du support;
• le système comprend un moteur configuré pour imprimer le mouvement de rotation autour d'un axe de rotation du support;
• le module de déplacement comprend au moins un ballast configuré pour faire varier et stabiliser la flottabilité du système dans le liquide.
• le au moins un ballast est agencé dans le au moins un support;
• l'axe de rotation du support est mobile par rapport au bâti,
• l’axe de rotation du support est mobile par rapport au bâti et suit l’évolution de la hauteur d’eau sur laquelle le support et/ou la nappe et/ou le bâti sont en flottabilité non négative,
• l'axe de rotation du support est mobile suivant un mouvement comprenant une composante verticale non nulle par rapport au bâti,
• le système comprend un bras de guidage agencé entre le bâti et le support, préférentiellement le bras de guidage est fixé au bâti par un point de fixation,
• le bras de guidage est mobile autour de son point de fixation avec le bâti,
• le bras de guidage est mobile autour de son point de fixation avec le bâti suivant un mouvement comprenant une composante verticale non nulle par rapport au bâti, préférentiellement le bras de guidage est mobile en rotation autour de son point de fixation avec le bâti,
• le système comprend plusieurs supports configurés pour être entraînés par au moins un moteur;
• le système comprend plusieurs supports configurés pour être entraînés par plusieurs moteurs;
• le système comprend plusieurs supports et au moins une nappe et dans lequel chacun des supports est configuré pour supporter et imprimer son mouvement sur au moins une nappe;
• le système comprend plusieurs supports et un nombre de nappes égal au nombre de support dans lequel chacun des supports est configuré pour supporter et imprimer son mouvement sur une seule nappe;
• le système comprend un seul support et une seule nappe; • le moteur est un dispositif d'alimentation configuré pour récupérer l'énergie du mouvement des vagues en surface du liquide;
• le au moins un support est gonflable;
• l'axe de rotation du au moins un support est sensiblement horizontal;
• l'axe de rotation du au moins un support est sensiblement vertical.
On entend par flottabilité la poussée verticale, dirigée de bas en haut, qu'un fluide exerce sur un volume immergé. La flottabilité agit toujours dans la direction opposée à la gravité.
La flottabilité peut être nulle, c'est-à-dire que la gravité et la pression sur l'objet sont égales à la poussée d'Archimède. Dans ce cas, l'objet est en suspension dans le fluide.
La flottabilité peut être négative, c'est-à-dire que la gravité et la pression exercent une force supérieure à la poussée d'Archimède. Dans ce cas, l'objet s'enfonce dans le fluide et coule. Enfin, la flottabilité peut être positive, c'est-à-dire que la gravité et la pression exercent une force inférieure à la poussée d'Archimède. Dans ce cas, l'objet s'élève dans le fluide.
Il est précisé que dans le cadre de la présente invention, le verbe "flotter" s'entend de sa définition en ce qu'il permet à un objet d'être porté par un liquide, et qu'il peut s'y maintenir en surface ou en suspension "entre deux eaux" sans s'y enfoncer. C'est-à-dire que l'objet a une flottabilité non négative dans ce liquide.
Il est connu que la flottabilité est notamment fonction de la masse volumique de l'objet relativement à la masse volumique du fluide dans lequel est immergé totalement ou partiellement.
Enfin, on précise que l'on entend par "moteur" un organe transformant en énergie mécanique une énergie de nature différente. Par exemple, le moteur peut être alimenté par une énergie cinétique telle que le mouvement des vagues ou encore le vent, par une énergie électrique, thermique ou tout autre type d'énergie. Le moteur peut par exemple prendre la forme d'un moulin, d'une turbine, ou toute autre forme permettant de transmettre un mouvement mécanique avec une énergie en entrée.
Le système 1 pour la production de microalgues sous forme de biofilm selon la présente invention comprend au moins un bâti 100, avantageusement un moteur 200, au moins un support 300 avantageusement configuré pour flotter dans un liquide 2 et supporter une nappe 400, la nappe 400 est configurée pour supporter des microalgues sous forme de biofilm. Le moteur 200 est configuré pour imprimer un mouvement sur le support 300 et par conséquent sur la nappe 400.
Avantageusement, le système 1 permet la culture de tout type de microalgues, et de préférence au moins l'une des variétés parmi les suivantes : Tisochisis lutea, Chlorella vulgaris, Navicula sp, Tetraselmis sp, Phaeodactylum tricornutum.
Le système 1 peut aussi comprendre au moins un dispositif d'aspersion 500.
Le système 1 est exposé à une source lumineuse 3. La nappe 400 comprend plusieurs portions. Ainsi, certaines portions de la nappe 400 sont dans une zone d'exposition directe 3a leur permettant d'être exposées directement à la source lumineuse 3 tandis que d'autres portions sont dans une zone d'exposition indirecte 3b ne leur permettant pas d'être directement exposées à la source lumineuse 3. Les portions de la nappe 400 dans la zone d'exposition indirecte 3b bénéficient d'une luminosité réduite voire inexistante.
Le système 1 est configuré pour que le mouvement du support 300 permette aux différentes portions de la nappe 400 de passer de la zone d'exposition directe 3a à la zone d'exposition indirecte 3b et vice versa.
Lorsque le système 1 est partiellement immergé, le système 1 est de préférence configuré pour que les portions de la nappe 400 soient successivement dans une position immergée et dans une position émergée. Cette alternance de position immergée/émergée est réalisée à une fréquence plus ou moins régulière et de préférence régulière. Cela est notamment illustré aux figures 1 , 3, 5 et 6. Dans ces modes de réalisations, le système 1 peut avoir entre 0% et 99% de sa surface émergée et de préférence proche de 95% de sa surface émergée et de préférence proche de 99% de sa surface émergée.
Dans certaines réalisations, l'immersion est totale telle qu'illustrée en figure 2. Dans d'autres réalisations comme illustrées en figure 4, des parties du support 300 sont toujours immergées ou émergées, et des dispositifs d'aspersion 500 humidifient les parties émergées. Ces différents modes de réalisations et leurs conceptions sont détaillés ci-dessous.
Le bâti 100
Avantageusement, le bâti 100 est configuré pour supporter au moins le moteur 200. Le moteur 200 est avantageusement fixé solidairement au bâti 100 de sorte à assurer le fonctionnement du moteur.
Le bâti 100 peut être fixé sur une surface rigide, tel que présenté en figure 6 par exemple, ou totalement supportée par au moins un support 300, tel que présenté en figures 1 à 4 par exemple, ou encore être supporté en partie par au moins un support 300 et par une surface rigide, non représentée dans les figures.
Selon une possibilité, le bâti 100 est configuré pour que le système présente une flottabilité non négative et soit donc flottant. Selon une possibilité, le bâti 100 peut présenter une flottabilité non négative, c'est-à-dire que le bâti 100 est en lui-même flottant. Le bâti 100 peut comprendre avantageusement une forme creuse remplie ou non d'un gaz ou d'une mousse à faible densité. Cette caractéristique permet d'augmenter la flottabilité du système.
Selon une autre possibilité, le bâti 100 présente une flottabilité négative en lui-même. Le système flotte par la présence d'au moins un support 300 présentant une flottabilité non négative, préférentiellement d'au moins un support 300 et d'une nappe 400, et éventuellement au moins un flotteur 320.
Dans certains modes de réalisation, tels que présentés par exemple dans les figures 1 à 4, le bâti 100 lie en plus les supports entre eux.
Dans les modes de réalisation présentés dans les figures 1 à 4 le bâti 100 comprend des longerons 110. Les longerons 110 permettent de maintenir entre eux notamment une pluralité de supports 300 et/ou au moins un ballast 310 ou au moins un flotteur 320. Lorsque le système comprend plusieurs supports 300, le bâti 100 est avantageusement configuré pour maintenir l'écartement entre les différents supports 300 par exemple à une distance sensiblement régulière et de préférence fixe. Le maintien à une distance régulière et de préférence fixe des supports 300 est de préférence réalisé par les longerons 110. À titre d’exemple, les supports 300 et/ou au moins un ballast et/ou flotteur sont fixés sur les longerons 110. Préférentiellement, un longeron 110 reliant plusieurs supports et/ou ballasts et/ou flotteurs est configuré pour permettre une mobilité comprenant une composante non nulle suivant un axe vertical entre les éléments reliés. Ainsi, le système suit le mouvement et/ou le niveau du liquide 2, le système et plus préférentiellement le support 300 flotte. Le support 300 est maintenu en contact du liquide 2. Le bâti présente notamment une souplesse autorisant des déplacements sensiblement verticaux des éléments reliés dont notamment le support 300.
Selon une possibilité avantageuse, le bâti 100 est configuré pour que le ou les supports 300 qui présent(ent) une flottabilité non négative, flotte dans le liquide 2. Le bâti 100 est avantageusement configuré pour la position de l'au moins un support suive le niveau du liquide 2 dans lequel le système et préférentiellement le support 300 flotte. Préférentiellement, le bâti 100, plus préférentiellement la fixation entre le moteur 200 et le bâti 100 constitue un référentiel fixe par rapport au support 300. Le support 300 présente une mobilité relativement au bâti 100, plus précisément relativement à la fixation entre le moteur 200 et le bâti 100, comprenant une composante non nulle suivant un axe vertical.
Dans la figure 4 notamment, le bâti 100 comprend au moins un compartiment permettant d'encadrer le support 300.
Le bâti 100 peut comprendre, dans les réalisations où une seule nappe 400 recouvre plusieurs supports 300, comme illustré par exemple en figures 1 à 3, des dispositifs permettant de guider la nappe 400 (non représenté sur les figures). Ces dispositifs permettent par exemple dans les figures 1 et 2 de rapprocher la nappe 400 du bâti 100. Cela permet par exemple de maîtriser plus facilement le volume total du système.
En figure 5, le bâti 100 comprend le bras de transmission 240 et au moins un flotteur 230.
En figure 6, le bâti 100 comprend un montant 120, sur lequel est avantageusement monté le moteur 200. Le moteur 200 est fixe sur le montant 120. Le système comprend un bras de guidage 210 assurant la liaison entre le bâti 100, plus précisément le montant 120, et le support 200. Le bâti 100 est par exemple fixé sur une surface solide. La surface solide peut être un sol tel que le bord ou le fond d'un bassin ou la rive ou le fond d'un cours d'eau ou la cote ou le fond d'une mer. La surface solide peut également être une surface solide flottante telle qu'un ponton, un bateau, une barge, etc.
Le support 300
Le système comprend selon une première possibilité un support 300. Selon une deuxième possibilité, le système comprend plusieurs supports 300. La suite de la description fait référence à un support sans être limitative et peut s’appliquer à l’ensemble des supports.
Le support 300 est avantageusement configuré pour flotter dans un liquide 2. On entend par là que le support 300 flotte en surface ou entre deux eaux. On entend par flotter en surface lorsqu'une partie au moins du support 300 est émergée. Le support 300 est avantageusement de forme cylindrique et/ou de symétrie axiale et/ou sensiblement conique. Le support comprend une surface externe. La surface externe s’étend selon la dimension longitudinale. On entend par dimension longitudinale du support 300 sa plus grande dimension ou encore dénommée son axe d'extension longitudinale. Le support comprend deux surfaces latérales correspondant à ses bases aux extrémités de la surface externe. Les deux surfaces latérales et la surface externe définissent un volume intérieur. De préférence, les surfaces latérales sont de même dimension et de même forme.
Le support 300 est avantageusement un rouleau.
Le support 300 est avantageusement un boudin gonflable.
Le support 300 est configuré pour avoir un mouvement de rotation autour d'un axe de rotation. Le mouvement du support 300 est de préférence une rotation autour d'un axe de rotation. Avantageusement, l’axe de rotation du support 300 est agencé parallèlement à la dimension longitudinale du support 300. De préférence, l'axe de rotation traverse le centre de chacune des surfaces latérales.
La surface externe est configurée pour recevoir la nappe 400. La surface externe est destinée à être au moins partiellement recouverte d’une nappe 400. La surface externe peut comprendre des moyens d'adhérence et/ou de fixation de la nappe 400. Par exemple non limitatif, la surface externe peut comprendre des successions de cavités et d'aspérité permettant d'augmenter l'adhérence avec la nappe 400. Des moyens de fixation peuvent par exemple et non limitativement être une surface avec des ponts configurés pour coopérer avec des crochets portés par la nappe 400. Les éléments de fixation et d'adhérence peuvent être divers et variés et ne sont pas limité aux exemples ci-dessus. Le support 300 est configuré pour imprimer son mouvement sur au moins une nappe 400.
Dans une réalisation de l'invention, le support 300 comprend une longueur comprise entre 2 et 500 mètres et de préférence entre 2 et 200, de préférence entre 2 et 100 mètres, plus précisément entre 5 et 200 mètres, plus précisément entre 5 et 50 mètres. À titre d’exemple, le support 300 présente un diamètre compris entre 0,10 et 3 mètres et de préférence entre 0,5 mètre et 1 ,5 mètres.
Avantageusement, le support 300 est dans une matière imperméable telle que du polychlorure de vinyle par exemple.
De préférence, le support 300 est dans une matière souple gonflable telle qu'un tissu par exemple. Dans cette réalisation, la pression à l'intérieur du support 300 est supérieure à 10 millibars (mBar), et de préférence supérieure à 30 mBar. Cette construction avantageuse permet d'améliorer la réduction de masse du support 300. Ainsi, l'énergie nécessaire pour la mise en mouvement du support 300 est largement réduite. De plus, le support 300 gonflable permet un montage, un démontage, un transport et un stockage de l'ensemble du système 1 facilité.
Selon une possibilité, le support 300 est perméable au gaz, notamment au dioxyde de carbone (C02) pour permettre la diffusion du C02 du support vers le biofilm d'algues. Selon une autre possibilité compatible avec la précédente, le support 300 est perméable à un milieu nutritif concentré. Dans cette possibilité, le milieu nutritif est stocké dans le support 300.
Dans un mode de réalisation, le volume intérieur du support 300 est plein. Dans ce mode de réalisation, le volume intérieur du support 300 est rempli dans un matériau permettant sa flottaison tel que par exemple une mousse polyester ou polystyrène. Il est possible de faire varier la flottabilité du support 300 en faisant varier la densité de la mousse. En effet, plus la mousse aura une densité faible, plus la flottabilité du support 300 sera élevée. En revanche, avec une mousse ayant une densité plus importante, la flottabilité du support 300 sera amoindrie.
Dans un autre mode de réalisation, le volume intérieur du support 300 est creux et rempli de gaz de préférence sous pression (pression supérieure à 10 mbar). Dans ce mode de réalisation, la flottabilité du support 300 est variable en fonction de quantité de gaz sous pression injecté dans le volume intérieur du support 300. Le mode de réalisation présente l’avantage d’être facilement mis en œuvre et transportable. Le support 300 est avantageusement gonflable. Le support 300 présente avantageusement une rigidité suffisante pour assurer une transmission du mouvement de rotation sur toute sa dimension longitudinale. Le support 300 présente préférentiellement une dureté permettant le raclage du biofilm d’algue présent à la surface de la nappe.
Dans ce mode de réalisation, le support 300 peut comprendre des dispositifs configurés pour fonctionner comme un ballast. Par exemple, le support 300 peut comprendre au moins une valve et/ou au moins une pompe à air et/ou une pompe à eau permettant de faire varier le volume de gaz à l'intérieur du support 300. Cette variation peut par exemple permettre au système 1 de faire varier sa flottabilité entre une flottabilité positive, c’est-à-dire que le support est partiellement immergé, par exemple avec moins de 5 centimètres du support 300 immergés et une flottabilité nulle, c'est-à-dire que le support 300 est en équilibre dans un liquide, c'est-à- dire qu'il est selon l'expression le support 300 est en suspension dans un liquide "entre deux eaux". Le passage d'une position partiellement émergée à une position totalement immergée peut être réalisé par l'octroi au système 1 d'une flottabilité négative. Une telle flottabilité négative est transitoire et à uniquement pour objectif la variation de l'immersion du système 1. Dans le cas où le support 300 est en équilibre dans un liquide, l'ensemble du support peut être submergé ou encore à toute position intermédiaire. Cette variation peut permettre d'adapter les conditions de production des microalgues en fonction de leurs besoins en air, en luminosité ou en liquide 2. De même, en cas d'installation en milieu naturel tel que par exemple en mer ou en lac, l'immersion du système 1 en cas de conditions météorologiques difficiles telles que des vents violents ou une houle importante par exemple une immersion totale peut permettre d'éviter des endommagements du système.
Dans une autre réalisation de l'invention, le support 300 a une densité fixe et le système comprend au moins un ballast 310 ou au moins un flotteur 320 avantageusement positionné sur le bâti 100. Selon un mode de réalisation, le support 300 est agencé de sorte que sa dimension longitudinale soit verticale. On entend par vertical parallèle à la direction de la pesanteur. Selon un autre mode de réalisation, le support 300 est agencé de sorte que sa dimension longitudinale soit horizontale. On entend par horizontale, la direction normale à la verticale.
La masse du support 300 est avantageusement comprise entre 2 et 50 kilogrammes par m2 d’empreinte au sol et de préférence entre 5 et 20 kilogrammes par m2 d’empreinte au sol.
Dans certains modes de réalisation, le système comprend plusieurs supports 300 tels que présentés à titre d'exemples en figures 1 à 4.
Dans ces modes de réalisation, les supports 300 peuvent être positionnés sensiblement horizontalement (figure 1 à 3) ou sensiblement verticalement (figure 4). Les supports 300 sont de préférence, mais non limitativement, sensiblement parallèle entre eux.
Dans ces modes de réalisations, les supports 300 sont maintenus ensemble par l'intermédiaire du bâti 100. Le maintien est de préférence réalisé par au moins une des faces latérales des supports 300 et peut-être réalisé par les deux faces.
Dans le mode de réalisation illustré en figure 4 et dans lequel les supports 300 sont verticaux, les supports 300 peuvent comprendre des lests sur et/ou dans leurs parties immergées. Les lests sont configurés pour stabiliser les supports 300.
Le ballast 310 et le flotteur 320
Un ballast est un dispositif équipé de moyens permettant de faire varier sa flottabilité. Classiquement, un ballast peut dans son volume intérieur faire varier la pression d'un gaz ou la proportion de gaz/liquide afin de modifier sa propre flottabilité et la flottabilité du système sur lequel il est raccordé. Dans certains modes de réalisation équipés d'au moins un et de préférence de plusieurs ballasts 310, ces derniers peuvent communiquer entre eux ou non. Ainsi, chaque ballast 310 peut communiquer sa flottabilité aux autres ballasts 310, ou à un module externe de gestion de la flottabilité du système 1 . La communication peut aussi être une communication fluidique permettant de faire varier entre eux les niveaux de gaz/liquide présent dans les ballasts 310. Cela permet notamment de faire varier la flottabilité d'une partie uniquement du système 1 afin par exemple de modifier l'assiette du système. Autrement dit, pour faire varier l'inclinaison du système relativement un plan comprenant la surface du liquide 2. Un ballast 310 peut être configuré pour avoir le rôle à la fois de flotteur et celui de lest. Dans sa fonction lest, le ballast 310 permet une meilleure stabilité du système 1 flottant.
Un flotteur 320 est un dispositif flottant permettant d'améliorer la flottabilité du système 1 . Sa flottabilité est fixe. C'est le cas par exemple d'une bouée. Pour ce faire, le flotteur 320 est soit rempli d'un gaz, soit d'une mousse à faible densité. Avantageusement, le flotteur 320 est fixé sur le bâti 100.
La nappe 400
La nappe 400 est configurée pour recouvrir au moins partiellement le support 300 et plus préférentiellement la surface externe du support 300. Le support 300 et la nappe peuvent être un seul et même élément. La nappe 400 est configurée pour permettre la fixation des microalgues sous forme de biofilm. À cet effet, la nappe 400 est soit configurée pour recevoir directement le biofilm d’algues soit la nappe 400 comprend un revêtement pouvant être formé par une nappe complémentaire recouvrant au moins partiellement la nappe 400. La nappe complémentaire est quant à elle configurée pour recevoir le biofilm d’algues. La nappe 400 est au moins partiellement sous la surface du liquide 2. La nappe 400 comprend plusieurs portions dont au moins certaines portions sont immergées. Il peut également y avoir des parties émergées. Les parties immergées et émergées varient en fonction du temps et du mouvement de la nappe 400.
Selon une possibilité, la nappe 400 présente une flottabilité non négative, c'est-à-dire que la nappe flotte. Plus préférentiellement, l'ensemble support 300 et nappe 400 présente une flottabilité non négative.
Avantageusement, les microalgues ont un préférendum thermique, c'est-à-dire que la température du milieu dans lequel elles sont cultivées à une influence directe avec la vitesse de leur croissance.
Ainsi, si la température est trop faible ou trop importante relativement à leur préférendum thermique, la croissance des microalgues ralentie voir la population décroit.
De fait, il est préférentiel de conserver une température stable lors de la croissance des microalgues.
On notera que deux mécanismes contribuent à maintenir la température dans un préférendum thermique compatible avec la croissance, et tout cas en évitant les températures létales : l’évapotranspiration et l'inertie thermique de la masse d’eau dans laquelle le système 1 flotte. Avantageusement, le fait d'alterner l'immersion et l'émersion de la nappe 400 permet un meilleur contrôle du préférendum thermique de l'habitat des microalgues.
Dans certains modes de réalisation, la nappe est entièrement plongée dans le liquide 2 mais conserve une flottabilité neutre ou positive.
De préférence, les deux extrémités de la nappe 400 sont reliées entre elles afin de former une boucle. Dans une autre réalisation non préférée de l'invention, chacune des extrémités de la nappe 400 est fixée sur la surface externe d'un support 300 et est donc immobile relativement au support.
La nappe 400 comprend une première face 410 et une deuxième face 420. Les première et deuxième faces 410, 420 peuvent être réalisées par une seule couche ou par plusieurs couches superposées entre elles.
La première face 410 est en vis-à-vis avec au moins un support 300. La première face 410 est configurée pour permettre le contact et l'adhérence avec ledit support 300. La première face 410 est de préférence réalisée avec un matériau permettant l'adhésion au support 300 tel que par exemple un tissu, une toile, une nappe de polyester ou de polyuréthane, etc. L'adhésion peut, par exemple, être réalisée par frottement, ou encore avec des alternatives d'aspérité/cavité dans la première face 410. Cependant, tout autre matériau permettant la réalisation d'une nappe 400 peut être utilisé pour cette face.
L'adhésion de la première face 410 au support 300 permet audit support 300 d'imprimer son mouvement sur la nappe 400. Ainsi la nappe 400 est mobile au moins relativement au bâti 100. Dans certains modes de réalisation tels que présentés en figure 1 à 3, la nappe 400 est aussi mobile relativement au support 300.
Dans ces modes de réalisation, la première face 410 est configurée pour adhérer suffisamment avec le support 300 afin de permettre la transmission du mouvement du support 300 à la nappe 400 tout en permettant une mobilité de la nappe 400 vis-à-vis dudit support 300. Dans d'autres modes de réalisation tels que présentés par exemple en figure 4 et 6, la première face 410 est fixe relativement au support 300. Dans ces modes de réalisation, la première face 410 comprend alors des éléments de fixation au support 300. Les éléments de fixation peuvent par exemple être une colle, une surface en forme de pont coopérant avec une surface comprenant des crochets sur le support 300, des agrafes, clous, vis ou tout autre élément permettant une fixation entre la nappe 400 et le support 300. Avantageusement la fixation est réversible afin de pouvoir séparer la nappe 400 et le support 300.
La deuxième face 420 est configurée pour être du côté opposé à la première face. La deuxième face 420 est soit configurée pour permettre la fixation des microalgues sous forme de biofilm soit pour recevoir un revêtement préformé d’une nappe complémentaire apte à recevoir les algues. La deuxième face 420 n'a avantageusement pas de contact avec le support 300. Avantageusement, le matériau servant de fixation des microalgues sous forme de biofilm est de préférence rugueux présentant des cavités ou microcavité. Par exemple, la deuxième face peut être en l'un des matériaux suivants : coton, toile de jute, polyéthylène, polyuréthane, biopolymère ou encore en polyester.
Dans un mode de réalisation les premières et deuxièmes faces 410;420 de la nappe 400 sont espacées l'une de l'autre afin de former un volume interne. Dans ce mode de réalisation, un gaz est injecté dans le volume interne afin de gonfler la nappe 400. Selon une possibilité compatible avec la précédente, un milieu nutritif est injecté dans le volume interne. La nappe 400, et plus particulièrement la deuxième face 420 est alors poreuse au milieu nutritif afin de nourrir les microalgues. Cette réalisation permet d'améliorer la flottabilité du système 1 en ajoutant un volume de gaz au système. Dans ce mode de réalisation, la nappe 400 comprend au moins un dispositif, tel que par exemple une valve et/ou une pompe à air, permettant de faire varier la quantité de gaz dans le volume intérieur afin de pouvoir faire varier la flottabilité.
Dans un mode de réalisation comprenant plusieurs supports 300, une seule nappe 400 peut entourer plusieurs supports 300 de manière à former un tapis roulant. Dans ce mode de réalisation, la nappe 400 peut être tendue au moins partiellement entre les supports 300, telle qu'illustrée dans les figures et 1 et 2, ou être distendue entre les supports 300 tels que dans la figure 3. Dans cette réalisation particulièrement, le système 1 comprend des éléments de tension de la nappe 400. Les éléments de tension de la nappe 400 sont configurés pour permettre de tendre la nappe 400 afin de faciliter le raclage des microalgues. Un avantage de cette solution est d'augmenter la surface de culture pour un système 1 donné.
Dans un autre mode de réalisation, tel qu'illustré par exemple en figures 4 et 6, chaque support 300, lorsqu'il y en a plusieurs, est complètement entouré d'une seule nappe 400. Cette solution avantageuse permet par exemple de faire varier les caractéristiques des nappes 400 en fonction du type de production sur chacune desdites nappes 400. La nappe 400 est configurée pour permettre le raclage des microalgues. Ainsi, même dans le cas où la nappe est distendue, les éléments de tension permettent d’assurer le raclage.
Le moteur 200
Le moteur 200 étant quant à lui configuré pour imprimer sur le au moins un support 300 un mouvement préférentiellement de rotation relativement au bâti 100. Avantageusement, le bâti 100 reçoit le moteur 200. Le bâti 100, recevant avantageusement le moteur 200, forme un référentiel par rapport au mouvement du support.
Le moteur est configuré pour avoir en sortie un mouvement préférentiel de rotation.
Le système 1 peut comprendre un seul moteur 200 ou une pluralité de moteur 200 pour un ou plusieurs supports 300.
Par exemple tel qu'illustré dans la figure 1 , le système 1 comprend un seul moteur pour plusieurs supports 300. Dans la figure 2 par exemple le système 1 comprend plusieurs moteurs 200 pour plusieurs supports 300. Dans la figure 4, le système 1 comprend un moteur par support 300. Enfin, dans la figure 6, un seul moteur 200 est présent sur un seul support 300. D'autres combinaisons sont bien entendu possibles, par exemple et non limitativement, le fait d'avoir plusieurs moteurs 200 par support 300, notamment raccordés à chacune des surfaces latérales du support 300.
Selon un mode de réalisation, le système comprend un dispositif de liaison entre le moteur 200 et au moins un support 300. Le dispositif de liaison est configuré pour assurer la transmission du mouvement du moteur 200 au support 300 et plus préférentiellement imprimer un mouvement de rotation au support 300. Selon une possibilité, le moteur 200 est raccordé à la surface externe d'au moins un support 300. Selon une possibilité, le moteur 200 est raccordé à au moins l'une des surfaces latérales du support 300. Le dispositif de liaison 220 peut par exemple être une courroie, un câble, une chaîne, une crémaillère ou encore une roue dentée ou tout autre élément de liaison. La liaison peut par exemple être assurée par l'intermédiaire d'un disque positionné en protubérance de ladite surface latérale ou d'une roue dentée (non représentée sur les figures).
La figure 6 montre un mode de réalisation de la liaison entre le moteur 200 et le support 300. Dans cette réalisation, un bras de guidage 210 maintient en position le support 300 au niveau de son axe de rotation à une distance prédéfini du moteur 200. Un dispositif de liaison 220 assure une liaison entre le moteur 200 et une surface latérale du support 300. Le dispositif de liaison 220 peut être par exemple ici une courroie. La liaison peut par exemple être assurée par l'intermédiaire d'un disque positionné en protubérance de ladite surface latérale ou d'une roue dentée (non représentée sur la figure). Le dispositif de liaison 220 permet la transmission du mouvement de rotation du moteur 200 au support 300. Le dispositif de liaison 220 peut être remplacé par une chaîne par exemple. Dans cette réalisation, le bras de guidage 210 ne supporte par le support 300 et a uniquement une fonction de guidage. Ledit support 300 est supporté par le liquide grâce à sa flottabilité. Le bras de guidage 210 n'a qu'une fonction de guide 210 permettant la mise en place du dispositif de liaison 220 et la transmission du mouvement. Le bras de guidage 210 présente une mobilité par rapport au bâti 100 et en l'espèce au montant 120. Le bras de guidage 210 relie le bâti 100 au support 300. Le bras de guidage 210 est mobile suivant un mouvement présentant une composante verticale non nulle par rapport au bâti 100 et plus particulièrement au montant 120. La mobilité du bras de guidage se fait au niveau de son point de fixation sur le bâti 100, plus précisément sur le montant 120.
Le support 300 est avantageusement mobile relativement au bâti 100.
Selon un mode de réalisation, la position du support 300 par rapport au bâti 100 est variable en fonction de la flottabilité du support 300. Plus précisément, c'est la position de l'axe de rotation du support 300 par rapport au bâti 100 qui est variable en fonction de la flottabilité du support 300. La position du support 300 par rapport au bâti 100 est variable en fonction du niveau du liquide 2 dans lequel le système et préférentiellement le support 300 flotte. Cette disposition permet que le support suit le niveau du liquide 2 et en particulier dans le cas d'un bassin de liquide 2, le niveau du liquide peut varier en du fait de l'évaporation de celui-ci, le niveau de flottabilité du support reste donc identique sans nécessité de contrôle complexe. Préférentiellement, le support 300 présente une mobilité relativement au bâti 100 comprenant une composante non nulle suivant un axe vertical. L'axe vertical étant perpendiculaire à la surface du liquide 2.
Selon une possibilité, le dispositif de liaison est configuré pour permettre une mobilité du support 300 relativement au bâti 100 comprenant une composante non nulle suivant un axe vertical. Cette configuration permet au système de s'assurer que le support 300 flotte dans le liquide et suit ainsi les variations de niveau du liquide.
D'autres réalisations sont bien entendu possibles. Par exemple, la sortie du moteur 200 peut être directement connectée à une surface latérale du support 300 comme illustré par exemple dans les figures 1 à 5. Dans ces réalisations, la connexion entre le moteur 200 et le support 300 peut par exemple se faire au travers de pignons, mais encore par l'intermédiaire de rouleaux en appui sur le support 300 ou tout autre moyen permettant de transmettre le mouvement du moteur 200 sur le support 300.
Par exemple dans une réalisation, le bâti 100 peut être monté libre en rotation à l'intérieur du support 300. Dans ce cas, le moteur 200, supporté par le bâti 100, peut être configuré pour avoir une sortie raccordée à la face interne du support 300 et ainsi entraîner une rotation du support 300 relativement au bâti 100, grâce au dispositif de liaison 220. Cette solution permet d'avoir un système avec un encombrement minimalisé. Un exemple de cette réalisation est visible en figure 7. Dans cette réalisation, le moteur 200 est associé à un lest et est enfermé à l’intérieur du support 300. De préférence le support 300 est rigide, soit grâce à la composition de ses matériaux soit grâce à sa pression interne. De plus, le support 300 est de préférence étanche et comprend, le long de sa paroi interne un dispositif de liaison 220 prenant la forme d'une crémaillère et/ou d'un câble. Le moteur 200 étant configuré pour coopérer avec la crémaillère et/ou le câble et entraîner en rotation le support 300. Le poids du moteur est configuré pour faire tourner la structure. Une connexion avec un collecteur tournant étanche permet d’amener l’électricité au moteur 200 à l’intérieur du support 300. De préférence, le moteur 200 est un moteur électrique comprenant un stator et un rotor. Le stator est de préférence fixé sur le bâti 100. Le rotor relié directement ou indirectement au support 300 permet la rotation dudit support 300 relativement au bâti 100. Le moteur 200 peut aussi être uniquement mécanique tel qu’illustré en figure 5. L'emmagasinement et la restitution d'énergie se faisant par exemple au travers d'au moins un ressort configuré pour libérer son énergie dans le temps.
L'apport d'énergie électrique au moteur peut être divers et varié. Par exemple, le moteur peut être raccordé à des batteries (lithium-ion, plombs, etc.), ou à un réseau électrique quelconque. Par ailleurs, l'apport d'énergie directement dans le moteur 200 ou à une batterie peut se faire aussi par le biais d'énergie renouvelable par exemple l'énergie solaire, éolienne, par le mouvement des vagues ou des marées.
La figure 5 illustre un mode de réalisation de l'apport en énergie par une solution de récupération de l'énergie générée par des vagues. Dans cette réalisation, un flotteur 230 est relié à un bras de transmission 240 à une roue dentée 250. Le bras de transmission 240 possède de préférence une longueur supérieure au rayon de la surface latérale du support 300. Le bras de transmission porte un cliquet 260.
Le cliquet 260 est configuré pour permettre une rotation de la roue dentée 250 selon un premier sens de rotation, et pour interdire la rotation de la roue dentée 250 dans un second sens de rotation opposé au premier sens de rotation.
La roue dentée 250 pouvant est reliée au support 300 soit directement au bâti 100, soit au travers d'un dispositif de récupération d'énergie afin d'alimenter en énergie le moteur. Dans cette réalisation, le flotteur 230 suit le mouvement des vagues du liquide 2 avec un léger décalage par rapport au support 300. Cette différence de mouvement est transmise par le bras de transmission 240 à la roue dentée 250 par effet de levier et permet d'actionner la rotation de la roue dentée 250. En fonction de la longueur du bras de transmission 240, il est possible de faire varier la différence de mouvement du flotteur 230 relativement au support 300. Cette différence permet de mettre en mouvement la roue dentée 250.
Ainsi, plus le bras de transmission 240 aura une longueur importante, plus la différence de mouvement nécessaire entre le flotteur 230 et le support 300 pour mettre en mouvement la roue dentée 250 sera minime. Autrement dit, une faible houle permettra la mise en mouvement de la roue dentée 250.
Cette réalisation reprend les principes du rechargement des montres automatiques comprenant un moteur mécanique.
Dans le cas où la roue dentée est portée par le bâti et transmet directement son mouvement de rotation au support 300, alors l'ensemble du système de récupération de l'énergie des vagues peut être considéré comme le moteur 200.
Enfin, il est possible de coupler les alimentations du moteur 200. Par exemple, un commutateur peut permettre au moteur 200 d'être alimenté soit par une source d'énergie renouvelable, soit par une batterie afin de pouvoir s'adapter aux différentes conditions météorologiques. Le surplus d'énergie produit par la source d'énergie renouvelable peut être utilisé pour recharger les batteries.
Dispositif d'aspersion 500
Le système 1 peut comprendre au moins un et de préférence plusieurs dispositifs d'aspersion d'un liquide. Par exemple, dans le mode de réalisation présenté en figure 4, des dispositifs d'aspersion, préférentiellement au moins un par support 300, permettent de garantir la bonne alimentation en liquide notamment d'un mélange nutritif et donc la bonne humidification de la deuxième face 420 de la nappe 400. Cet apport en liquide et/ou en éléments nutritifs permet de mieux contrôler les caractéristiques nécessaires à la production de microalgues sous forme de biofilm.
Le dispositif d'aspersion peut être fixé au bâti 100 ou avoir sa propre structure.
Le dispositif d'aspersion 500 est équipé d'une pompe permettant de puiser dans une réserve le liquide émit. La réserve peut être le liquide 2 dans lequel flotte le système 1 .
Le liquide 2
Le liquide 2 est un liquide permettant la culture de microalgues sous forme de biofilm. Avantageusement, le liquide 2 est de l'eau qui peut être salée ou douce avec ou sans additif tel que des apports en nutriments par exemple. Le liquide 2 peut être contenu dans une étendue naturelle telle qu'un lac, un cours d'eau ou encore la mer.
Le liquide 2 peut aussi être contenu dans un bassin artificiel, c'est à dire dans une construction humaine par exemple une cuve maçonnée ou en bois ou en tous autres matériaux. La réalisation d'un bassin artificiel permet notamment un meilleur contrôle des caractéristiques du liquide 2 tel que son potentiel d'hydrogène (pH), sa température, ou encore sa composition en éléments nutritifs et/ou en déchets ou bien encore son niveau ou la présence de bactéries dans le liquide 2. Le bassin artificiel est ouvert dans sa partie supérieure et exposée au moins partiellement à au moins une source lumineuse 3.
La source lumineuse 3
La source lumineuse 3 peut être une source naturelle telle que le soleil ou une lumière artificielle permettant notamment une alimentation notamment en ultraviolet nécessaire à la culture des microalgues.
Lors de l'utilisation d'une étendue d'eau naturelle, l'apport en luminosité est réalisé principalement par le soleil. Cependant, le système peut comprendre une source lumineuse 3 additionnelle en plus de la source lumineuse 3 principale permettant ainsi de renforcer la luminosité ou l'apport en ultraviolet lorsque les conditions climatiques ne sont pas optimales et/ou pour exposer à la lumière des portions différentes de celles exposées par la source lumineuse 3 principale.
Certains modes de réalisations spécifiques
La figure 1 illustre un mode de réalisation du système 1. Le système 1 flotte dans un liquide. Le système 1 comprend un premier et un deuxième support 300 reliés et positionnés sensiblement horizontalement et parallèle entre eux. Les premier et deuxième supports 300 sont reliés entre eux par le bâti 100 par l'intermédiaire des surfaces latérales des deux supports 300. Avantageusement, le bâti 100 et le premier et le deuxième supports 300 sont reliés au niveau de l'axe de rotation des supports 300. Préférentiellement, le support 300 est mobile en rotation autour de son axe de rotation. Préférentiellement, le support 300 est mobile suivant un mouvement présentant une composante verticale non nulle par rapport au bâti. Plus précisément, l'axe longitudinal du support 300 préférentiellement confondu avec l'axe de rotation du support est mobile, avantageusement suivant un mouvement présentant une composante verticale non nulle, par rapport au bâti 100, plus précisément au bâti au niveau de sa fixation à un flotteur ou au deuxième support. Un moteur 200 est agencé sur le bâti 100 par exemple à une extrémité. Le moteur 200 est configuré pour entraîner en rotation le premier support 300. Le bâti 100 comprend entre les deux supports 300 plusieurs flotteurs 320 et/ou ballast 310. Une nappe 400 s’étend entre les deux supports 300 et les entraîne au moins partiellement. La nappe 400 est entraînée en rotation autour des deux supports 300 par la rotation du premier support 300 afin que les portions dans la zone d'exposition directe 3a alternent leurs positions avec les portions dans la zone d'exposition indirecte 3b. La nappe 400 est relativement tendue entre les premier et deuxième supports 300. La nappe 400 s'étend suivant un plan en contact avec la surface externe des supports 300. La nappe 400 s'étend en ligne droite entre deux surfaces externes de deux supports 300. Dans cette réalisation des portions de la nappe 400 sont exposées à l'air libre et d'autres portions de la nappe 400 sont immergées dans le liquide 2.
La figure 2 illustre un mode de réalisation identique à celui illustré en figure 1 mais dans lequel l'ensemble du système 1 présente une flottabilité nulle. Le système 1 flotte entre deux eaux. Avantageusement l'ensemble de la nappe 400 est immergé.
Selon une possibilité de ce mode de réalisation, un deuxième moteur 200 entraîne en rotation le deuxième support 300.
La figure 3 représente un mode de réalisation similaire aux deux premiers avec comme différence que le système 1 flottant comprenant quatre supports 300 et aucun flotteur. Les supports 300 intègrent la fonction de flotteur et/ou de ballast. La nappe 400 comprend des portions exposées à l'air libre et des portions immergées. La nappe 400 est distendue entre les deux supports 300 les plus extrêmes. La nappe 400 est lâche entre deux surfaces externes de deux supports 300.
La figure 4 représente une réalisation avec quatre supports 300 positionnés sensiblement verticalement et parallèles entre eux. Les supports 300 comprennent une partie immergée et une partie émergée respectivement selon la flottabilité du support 300. Les supports sont reliés entre eux par le bâti 100. Des dispositifs d'aspersion 500 permettent d'humidifier les parties non immergées des supports 300. Une nappe 400 entoure chaque support 300. Dans ce mode de réalisation, des lests (non représenté sur la figure) peuvent être positionnés sur les parties immergées afin de stabiliser le système 1.
Enfin, la figure 6 montre un mode de réalisation dans lequel le système 1 comprend un seul support 300 positionné sensiblement horizontalement. Le bâti 100 est fixé à une surface solide et le support 300 flotte. Le support 300 est par exemple partiellement immergé (cinq centimètres). Une seule nappe 400 entoure de préférence complètement le support 300. Le moteur 200 permet d'entrainer en rotation le support 300 afin que les portions de la nappe 400 située à l'air libre et dans la zone d'exposition directe 3a de la lumière alternent leurs positions avec les portions de nappe 400 situées dans la partie immergée du support 300 et/ou dans la zone d'exposition indirecte 3b.
L’invention n’est pas limitée aux modes de réalisations précédemment décrits et s’étend à tous les modes de réalisation couverts par les revendications.

Claims

REVENDICATIONS
1. Ensemble pour la production de microalgues sous forme de biofilm comprenant au moins un support (300) et une nappe (400) destinée à recevoir le biofilm et dans lequel
• le au moins un support (300) est configuré pour avoir un mouvement de rotation autour d'un axe de rotation et pour supporter et imprimer le mouvement de rotation sur la nappe
(400) ;
• la nappe (400) est configurée pour entourer au moins partiellement le au moins un support (300), caractérisé en ce que l'ensemble présente une flottabilité non négative dans un liquide (2).
2. Ensemble selon la revendication 1 dans lequel le support (300) et la nappe (400) présentent chacun une flottabilité non négative.
3. Système (1) pour la production de microalgues sous forme de biofilm comprenant un bâti (100), et un ensemble selon l'une quelconque des revendications 1 ou 2 dans lequel le bâti (100) est configuré pour recevoir le au moins un support (300).
4. Système (1) selon la revendication précédente dans lequel au moins l'un parmi le support (300) et le bâti (100) est configuré pour que le système (1) ait une flottabilité non négative dans un liquide (2).
5. Système (1) selon l'une des revendications 3 à 4 dans lequel le au moins un support (300) est cylindrique et est de préférence pris parmi un rouleau ou un boudin.
6. Système (1) selon l’une quelconque des revendications 3 à 5 comprenant un moteur (200) configuré pour imprimer le mouvement de rotation autour d'un axe de rotation du support (300)
7. Système selon l'une quelconque des revendications 3 à 6 dans lequel l'axe de rotation du support (300) est mobile par rapport au bâti (100).
8. Système selon l'une quelconque des revendications 3 à 7 dans lequel l'axe de rotation du support (300) est mobile suivant un mouvement comprenant une composante verticale non nulle par rapport au bâti (100).
9. Système selon l'une quelconque des revendications 3 à 8 comprenant un bras de guidage (210) agencé entre le bâti (100) et le support (300).
10. Système selon la revendication précédente dans lequel le bras de guidage (210) est mobile autour de son point de fixation avec le bâti (100).
11. Système selon la revendication précédente dans lequel le bras de guidage (210) est mobile autour de son point de fixation avec le bâti (100) suivant un mouvement comprenant une composante verticale non nulle par rapport au bâti (100)
12. .Système (1) selon l'une quelconque des revendications 3 à 11 dans lequel le système est configuré pour être au moins partiellement immergé dans le liquide (2).
13. Système (1) selon l'une quelconque des revendications 3 à 11 dans lequel le système est configuré pour être entièrement immergé dans le liquide (2) et avoir une flottabilité nulle.
14. Système (1) selon l'une des revendications 3 à 13 dans lequel le système (1) comprend un module de déplacement configuré pour permettre au système (1) de prendre alternativement une position complètement immergée dans le liquide (2) et une position partiellement immergée.
15. Système (1) selon la revendication précédente dans lequel le module de déplacement comprend au moins un ballast (310) configuré pour faire varier et stabiliser la flottabilité du système (1) dans le liquide (2).
16. Système (1) selon la revendication précédente dans lequel le au moins un ballast (310) est agencé dans le au moins un support (300).
17. Système (1) selon l'une quelconque des revendications 3 à 16 comprenant plusieurs supports (300) configurés pour être entraînés par au moins un moteur (200).
18. Système (1) selon l'une quelconque des revendications 3 à 17 comprenant plusieurs supports (300) configurés pour être entraînés par plusieurs moteurs (200).
19. Système (1) selon l'une quelconque des revendications 3 à 18 comprenant plusieurs supports (300) et au moins une nappe (400) et dans lequel chacun des supports (300) est configuré pour supporter et imprimer son mouvement sur au moins une nappe (400).
20. Système (1) selon l'une quelconque des revendications 3 à 19 comprenant plusieurs supports (300) et un nombre de nappes (400) égal au nombre de support (300) dans lequel chacun des supports (300) est configuré pour supporter et imprimer son mouvement sur une seule nappe (400).
21. Système (1) selon l'une quelconque des revendications 3 à 17 dans lequel le système comprend un seul support (300) et une seule nappe (400).
22. Système (1) selon l'une quelconque des revendications 3 à 21 dans lequel le moteur (200) est un dispositif d'alimentation configuré pour récupérer l'énergie du mouvement des vagues en surface du liquide (2).
23. Système (1) selon l'une des revendications 3 à 22 dans lequel le au moins un support (300) est gonflable.
24. Système (1) selon l'une quelconque des revendications 3 à 23 dans lequel l'axe de rotation du au moins un support (300) est horizontal.
25. Système (1) selon l'une quelconque des revendications 3 à 23 dans lequel l'axe de rotation du au moins un support (300) est vertical.
EP21709444.0A 2020-03-09 2021-03-09 Système flottant de production de microalgues sous forme de biofilm Pending EP4117424A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002312A FR3107900A1 (fr) 2020-03-09 2020-03-09 Système flottant de production de microalgues sous forme de biofilm
PCT/EP2021/055902 WO2021180713A1 (fr) 2020-03-09 2021-03-09 Système flottant de production de microalgues sous forme de biofilm

Publications (1)

Publication Number Publication Date
EP4117424A1 true EP4117424A1 (fr) 2023-01-18

Family

ID=71784154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21709444.0A Pending EP4117424A1 (fr) 2020-03-09 2021-03-09 Système flottant de production de microalgues sous forme de biofilm

Country Status (7)

Country Link
US (1) US20230101427A1 (fr)
EP (1) EP4117424A1 (fr)
CN (1) CN115279176A (fr)
BR (1) BR112022017755A2 (fr)
EC (1) ECSP22070431A (fr)
FR (1) FR3107900A1 (fr)
WO (1) WO2021180713A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907311B3 (fr) * 2006-10-19 2009-01-16 Didier Costes Installation d'aquaculture pour micro-algues
US8809037B2 (en) * 2008-10-24 2014-08-19 Bioprocessh20 Llc Systems, apparatuses and methods for treating wastewater
US20140273171A1 (en) * 2013-03-14 2014-09-18 Martin Anthony Gross Revolving algal biofilm photobioreactor systems and methods
FR3008420B1 (fr) 2013-07-15 2020-01-31 Inria Institut National De Recherche En Informatique Et En Automatique Procede et installation de production de micro-algues
WO2017051334A1 (fr) * 2015-09-22 2017-03-30 Aljadix Ag Appareil et procédé pour la culture de microalgues à la surface de la mer

Also Published As

Publication number Publication date
US20230101427A1 (en) 2023-03-30
WO2021180713A1 (fr) 2021-09-16
ECSP22070431A (es) 2023-01-31
FR3107900A1 (fr) 2021-09-10
CN115279176A (zh) 2022-11-01
BR112022017755A2 (pt) 2022-11-29

Similar Documents

Publication Publication Date Title
EP2499229B1 (fr) Enveloppe de reaction pour un reacteur photosynthetique et reacteur photosynthetique associe
CA1093399A (fr) Enceinte d'elevage d'animaux marins, en particulier de poissons et ferme d'elevage en eau profonde, comportant au moins un telle enceinte
EP2142424B1 (fr) Structure cellulaire composée d'une ou de plusieurs couches de cellules destinées à capter l'énergie
WO2018060197A1 (fr) Dispositif d'exposition a la lumiere d'une solution algale, photobioreacteur et procede de mise en œuvre associes
FR2958382A1 (fr) Plateforme flottante pour panneaux solaires
EP2440648A2 (fr) Photobioreacteur, notamment pour la croissance et le developpement de microorganismes photosynthetiques et heterotrophes
WO2021180713A1 (fr) Système flottant de production de microalgues sous forme de biofilm
WO2008043886A1 (fr) Appareil hydroelectrique pour la production d'energie electrique, notamment a partir de courants de marees
FR2991006A1 (fr) Eolienne flottante a turbines a flux transverse a stabilisation amelioree
EP2087231A1 (fr) Dispositif de recuperation de l'energie de la houle
FR2596613A1 (fr) Ensemble d'elevage d'animaux aquatiques et plus particulierement de poissons
CH700388A2 (fr) Photobioréacteur-digesteur pour la culture de microorganismes photosynthétiques et la production de biogaz.
WO2009087567A2 (fr) Photobioréacteur pour la culture de microorganismes photosynthétiques
CA2667405A1 (fr) Dispositif et procede de production d'electricite
FR2461194A1 (fr) Dispositif pour accumuler un gaz comprime sous l'eau
EP3647406B1 (fr) Dispositif de capture, de transport et de diffusion de lumière pour un photo-bioreacteur
CH699564A2 (fr) Arrangement de modules photovoltaïques sur structure de support.
FR2487918A1 (fr) Machine flottante pour la transformation d'energie hydraulique
WO2020127921A1 (fr) Systeme permettant de cultiver des algues dans un milieu aquatique
FR3133217A1 (fr) Générateur d’Energie issue du Champ de Gravitation
WO2015055962A1 (fr) Centrale hydroélectrique flottante compacte
WO2023280917A1 (fr) Navire et système adaptés à la collecte d'énergie éolienne distante et nomade
FR3087791A1 (fr) Dispositif de capture, de transport et de diffusion de lumiere pour un photo-bioreacteur
FR3093516A1 (fr) Système d’agitation et bassin muni d’un tel système d’agitation
FR3022953A1 (fr) Centrale marine autonome a production continue multi-sources multi-unites et procedes associes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517