EP2076914B1 - Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension - Google Patents

Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension Download PDF

Info

Publication number
EP2076914B1
EP2076914B1 EP07820999A EP07820999A EP2076914B1 EP 2076914 B1 EP2076914 B1 EP 2076914B1 EP 07820999 A EP07820999 A EP 07820999A EP 07820999 A EP07820999 A EP 07820999A EP 2076914 B1 EP2076914 B1 EP 2076914B1
Authority
EP
European Patent Office
Prior art keywords
contact
tube
interrupting chamber
contacts
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07820999A
Other languages
German (de)
English (en)
Other versions
EP2076914A1 (fr
Inventor
Joël Ozil
Christophe Creusot
Jean-Luc Bourgeois
Yannick Kieffel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Grid SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37814510&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2076914(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Grid SAS filed Critical Alstom Grid SAS
Publication of EP2076914A1 publication Critical patent/EP2076914A1/fr
Application granted granted Critical
Publication of EP2076914B1 publication Critical patent/EP2076914B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7069Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by special dielectric or insulating properties or by special electric or magnetic field control properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H2033/028Details the cooperating contacts being both actuated simultaneously in opposite directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
    • H01H33/245Means for preventing discharge to non-current-carrying parts, e.g. using corona ring using movable field electrodes

Definitions

  • the invention relates to high or medium voltage circuit breakers, the opening distance between the contacts is reduced and the cut improved.
  • the invention relates to the presence of an insulating tube for distributing the electric field more regularly during the cut and to reduce the gradients exerted on the arcing contacts.
  • the cylinder can also be used for actuation by transmitting forces in the opposite direction of the contacts in order to reduce the operating energy and / or for a separate displacement between the arcing contact and the main contact of the same block of contact. contact.
  • the medium and high voltage switchgear apparatus comprises a pair of movable contacts relative to each other between a closed position in which the electric current can flow and an open position in which the electric current is interrupted.
  • a “main contact” is an electrical contact (with its corona shield) through which the nominal current flows; it is associated with an “arc contact” which ensures the cutoff function itself.
  • the “contact” is the main contact and arc contact directly connected to the actuator.
  • the speed of separation between the contacts is one of the main parameters to guarantee the dielectric strength of the circuit breaker when it is opened.
  • the document EP 0 822 565 discloses a circuit breaker for high and medium voltage in which a lever with two arms, one being connected to a nozzle secured to a first contact and the other to a second contact, allows the movement of the first contact simultaneously causes the second contact in the opposite direction.
  • the return system can be made by a belt, or chain, closed around two gears: see document FR 2,774,503 .
  • the opening distance between the contacts remains however important because of the electric field present between the contacts during the cut, as well as because of the high voltages at keep in the open position (eg during shocks).
  • the document DE 199 02 835 proposes only a partial solution for modifying the field lines at the end of the opening stroke and only at the level of the arc contact rod.
  • the invention proposes, among other advantages, to overcome the disadvantages described above, and to better distribute the electric field at the contacts.
  • This effect is obtained by the introduction of an insulating tube, which, by its dielectric properties optimizes the equipotential lines during the opening of the contacts and, in addition, can make possible a system of double movement of the contacts and effectively protect the main contacts from the hot gases generated by the cut.
  • the invention relates to a breaking chamber according to claim 1 for a circuit breaker high or medium voltage comprising two contacts each comprising in particular a so-called main contact and an arcing contact.
  • the contacts are relatively movable relative to each other, between an open position of the interrupting chamber and a closed position, actuating means for moving a movable contact.
  • the other contact may be fixed, or the two contacts may be movable in translation in a direction opposite to each other, in which case they are preferably moved by the same actuating means; it can furthermore be a slip between the main contact and the arcing contact of the second opposite moving contact.
  • the breaking chamber according to the invention is further provided with an insulating tube located between the main contacts and the fixed contacts, whether their position is open or closed.
  • the first contact is associated with a blowing nozzle, also located in the insulating tube, and the breaking chamber is filled with dielectric gas.
  • the insulating tube is fixed to the first movable main contact, and is guided in translation in the second main contact (fixed or mobile opposite), for example by a ring; the guiding system can be sealed, which then makes it possible to avoid reflux of hot gases from the nozzle outlet to the main contacts.
  • the insulating tube makes it possible to move the equipotential lines, to reduce the electric field applied to the contacts during the cut. It may be of different materials, including fiber arrangements, for example windings, in a resin; the material of the tube can also be loaded, on the surface or in the mass. To modulate the distribution of the field, the insulating tube may be provided with protuberances and / or thickenings, particularly at its ends, in particular at the rod-shaped arc contact. It is also possible to associate a metal field electrode to further decrease the gradient.
  • the two contacts are movable and actuated via the insulating tube.
  • the tube is then connected to a contact and the actuating means so that the tripping of the circuit breaker and the subsequent displacement of the contact drive the actuating means.
  • the actuating means are also connected by connection means to the second contact, so that the displacement in one direction of the tube causes the displacement in the opposite direction of the second contact.
  • the actuating means are in the form of a lever pivoting about an axis.
  • the connection means may be rigid rods or rods connected to the lever arms, and the dimensioning of the lever arms may be adjusted to optimize the speed ratio between the first and the second contact, or even between the main contact and the contact arc of the same moving contact.
  • the invention relates to a high or medium voltage circuit breaker provided with a breaking chamber according to claim 1 having an insulating field distributor tube, which can further participate in the actuation of the contacts.
  • a high or medium voltage circuit breaker shown in the upper part of the figure 1 , comprises a breaking chamber 10 which can be filled with an SF 6 type dielectric gas.
  • the breaking chamber 10 comprises a first movable contact 12, composed of an arc contact 12a, for example in the form of a tulip, and a main contact 12b, and a second contact 14, fixed in this embodiment, composed of a contact arc 14a, here in the form of rod, and a main contact 14b.
  • These two elements collaborate between an open position in which the two contacts 12, 14 are separated from one another and a closed position (not shown) in which they allow the passage of electric current between them.
  • the main contacts 12b, 14b separate, then the arcing contacts 12a, 14a separate, after a possible latency period created by the length of the racking, forming an electric arc which extinguished by the subsequent spacing of the contact 12.
  • the first contact 12 is usually secured to a nozzle 16 of insulating material, which itself extends a gas compression volume.
  • This dielectric nozzle 16 serves as a nozzle for blowing the gas from the compression volume in the direction of the electric arc.
  • an insulating cylinder 18 is positioned at the contacts 12a, 14a, in order to distribute differently the equipotential lines V, as illustrated on the part lower of the figure 1 .
  • the cylinder 18 is positioned between the main contacts 12b, 14b and the arcing contacts 12a, 14a, regardless of the open or closed position of the contacts 12, 14.
  • the presence of a tube 18 in a material of high relative permittivity acts on the field lines E, which are offset with respect to their conventional position.
  • the field E on the arc rod 14b is then reduced.
  • the insulating tube 18, 118 is an inner hollow right cylinder ( figure 1 , Figures 2A and 2B ) which does not constitute a nozzle or insulating nozzle otherwise known in the usual breaking chambers.
  • the insulating nozzle 16, 116 performs a partial function of distribution of the electric field as usually performed in the usual breaking chambers, while the insulating tube 18 according to the invention provides a further modification of the equipotential electric field lines.
  • the insulating tube 18, 118 has dielectric properties which optimize the equipotential lines during the opening of the contacts 12a, 12b, 14a, 14b and the arrangement of which provides this effect at all said contacts.
  • the shape and the local thickness of the tube 18 so as to modulate its influence.
  • the thickness of the tube 18 increases at the level of the arc contact rod 14a, for example by the presence of an excess thickness 20 at one end of the tube 18, the effect of modifying the field lines E is increased, and the field E 14 on said rod 14a is further decreased.
  • Relative permittivity of the tube 18 acts directly on the distribution of the equipotential lines V.
  • the tube 18 may be a hollow cylinder made of thermoplastic or thermosetting polymer.
  • thermoplastic polymers there may be mentioned in particular the families of unsaturated polyesters, or phenoplasts, or epoxy resins in reaction with anhydride hardeners of acids, or polybismaleides, or vinylester resins; among the thermoplastic polymers, there may be mentioned in particular families of thermoplastic polyesters, or polyamides, or polycarbonates, or polyphenylene oxides, or polysulfones, or polyphenylenesulfides, or polyetherketones, or liquid crystal polymers, or polyimides, or fluorinated polymers of PTFE type (polytetrafluoroethylene). An alloy of these materials can also be used.
  • the tube 18 may also consist of a fiber arrangement, in particular mineral fibers such as glass fibers or polyester fibers or Kevlar TM type aramid fibers, each of which may be in the form of continuous yarns, long fibers (> 3 mm), short fibers ( ⁇ 3 mm), poles, or fabrics. It may alternatively or additionally contain, locally or in total, particulate reinforcements (alumina, alumina trihydrate, calcium oxide, magnesium oxide MgO, silica, wollastonite, calcium carbonate, titanium oxide, silicate-based compounds such as montmorillonites, vermiculites and kaolin), organic or inorganic.
  • mineral fibers such as glass fibers or polyester fibers or Kevlar TM type aramid fibers, each of which may be in the form of continuous yarns, long fibers (> 3 mm), short fibers ( ⁇ 3 mm), poles, or fabrics. It may alternatively or additionally contain, locally or in total, particulate reinforcements (alumina, alumina trihydrate, calcium oxide,
  • the hollow cylinder 18 is made of filament windings, the angle given to the winding can be 0 ° to 90 ° evenly over the entire cylinder 18 or variable (this second case allows modify the mechanical properties of the cylinder locally).
  • the assembly is then, or previously, impregnated with resin (vacuum-produced or not), for example an epoxy resin of bisphenol A, bisphenol F, or cycloaliphatic type.
  • resin for example an epoxy resin of bisphenol A, bisphenol F, or cycloaliphatic type.
  • Various reinforcing materials can be added, such as mineral fibers such as glass fibers or polyester fibers or Kevlar TM type aramid fibers, each of which can be in the form of continuous yarns, long fibers (> 3 mm), fibers short ( ⁇ 3 mm), masts, or tissues.
  • a varnish or a protective film for example a polyester film, may be deposited on the internal and / or external wall of the tube 18, for example on a approximately 30 ⁇ m layer, such as an aliphatic polyurethane.
  • the material of the insulating tube 18 comprises, in a more or less localized manner, at the surface or in the mass, charge injections, which also make it possible to optimize the field distribution function.
  • the cylinder 18 and its protuberances 20 may comprise epoxy resins bisphenol A, bisphenol F or cycloaliphatic with localized injection of charge, for example of the type zinc oxide or titanium oxide, optimizing its distribution function of the electric field.
  • another material 22 may be overmolded on the inside and / or outside diameter of this cylinder 18, or deposited in a thin layer on its inside and / or outside diameter.
  • the layer may be made of a polymer mixture (thermoplastic or thermosetting) with charge incorporation (material which can have a high relative permittivity) of ZnO, TiO 2 or carbon black type, the mass charge ratio being between 0, 1% and 300%, over a thickness of between 10 ⁇ m and 5 mm.
  • the insulating tube 18 may be of variable geometry, in cylindrical form, preferably of revolution about the axis AA of the cutting chamber 10, or conical, or even polygonal; as specified above, local extra thicknesses 20 make it possible to modulate the distribution of the equipotential lines V according to predetermined criteria, for example by calculation and / or modeling.
  • this electrode makes it possible to further reduce the gradients and the field E 14 on the rod 14a and to improve the cutoff.
  • the location of this field electrode is not limited to the end of the tube 18.
  • the insulating tube 18 may be coupled to the first contact 12, preferably to its main contact 12b, possibly fixedly, by its end 24.
  • a guide element 26 is located between the outer wall of the insulating tube 18 and the inner wall of the second main contact 14b.
  • the tube 18 being coupled to the movable contact 12, the contact 12 and the nozzle 16 are guided along the axis AA during their movement.
  • the guide system 26 may be the surface geometry, but preferably comprises a solid or split ring, of small thickness, of insulating material having a low coefficient of friction (for example a PTFE loaded or not).
  • the solution according to the invention can also be applied for a double-action breaking chamber 110.
  • the general geometry of the chamber 110 may be similar to that previously described: two contacts 112, 114 and the nozzle 116 move along the main axis AA of the breaking chamber 110, the two contacts 112, 114 each comprising an arc contact 112a, 114a, and a permanent contact 112b, 114b between which is an insulating tube 118; each element 110, 112, 114, 116, 118 is symmetrical around the axis AA.
  • each of the contacts 112, 114 is actuated in spacing or approximation by means of a single actuating system 130; in fact, the displacement of the movable contact 112 during the tripping of the circuit breaker drives the actuating system 130 which displaces the opposite movable contact 114.
  • the drive of the opposite moving contact 114 is done via the tube 118: this option allows a greater latitude of the actuating means 130 in view of the particularly complex geometry of the contact members 112, 114 of FIG. a breaking chamber 110 at high and medium voltage; the insulating tube 118, by its diameter, allows to transmit a displacement in a wide range of maneuvering forces.
  • the tube 118 can remain of reduced thickness: indeed, since it is a solid cylindrical tube, the load is uniformly distributed, and the movement of the first movable contact 112 and the drive of the second opposite movable contact 114 do not require thick walls to be sufficiently strong; for example, the tube 118 may have walls of a few millimeters only to a few tens of millimeters.
  • the insulating tube 118 is fixed by one end 124 to the first main contact 112, for example by a connecting pin, and preferably the actuating device 130 is located at its other end, on the opposite moving contact 114.
  • the actuating means 130 may take various forms known to those skilled in the art.
  • the actuating means 130 comprise a lever with two arms 132, 134 pivoting about an axis 136.
  • the first arm 132 is connected to the insulating tube 118 (and thus indirectly to the first contact 112), for example at the level of an end protrusion 120. It therefore moves in the opposite direction of the second arm 134 connected to the second contact 114, and preferably to its main contact 114b.
  • connection between the tube 118 and the first arm 132 is preferably carried out by a rotary attachment, for example an axis, 138 between the end of a first rigid rod 142 connected by a pivot at an end portion of the arm 132.
  • a rod, or second rigid rod, 144 pivotally connects an end portion of the second arm 134 and the main contact 114b.
  • connection at the opposite contact 114 may be at greater or lesser distance from the axis AA of displacement.
  • the length of the arms 132, 134 of the lever may be the same or different. According to one embodiment, the length of the two arms 132, 134 is maximum, that is to say of the order of the diameter of the insulating tube 118, in order to optimize the forces.
  • connection rods 142, 144 connecting, particularly at the lever 130, if a latency is recommended between the setting in motion of the two contacts 112, 114: for example, the second rod connection 144 of the opposite contact 114 may move a certain distance by sliding in a lumen (not shown) of the second arm 134 before initiating its translational movement along the axis AA.
  • the arcing contact 114a and the main contact 114b of the opposite movable contact 114 are slippery with respect to each other, and thus have strokes and speeds different.
  • the arcing contact 114a and the main contact 114b are then connected to the actuating system 130 by a different link and lever (not shown).
  • the axis 136 of the lever 130 is orthogonal to the axis AA of displacement, so that the end of the arms 132, 134 and thus the connecting rods 142, 144 move in a plane movement allowing a less solicitation of their anchoring points.
  • the axis 136 of the lever intersects the axis AA of displacement of the contacts 112, 114.
  • the actuating means 130 comprise two levers, preferably axisymmetric, whose pivot axes are coincident; each arm of each lever is connected by a rod to the tube 118 or second contact 114, preferably at two diametrically opposite points.
  • actuating or guiding means are conceivable.
  • the design options of the actuation are open and easier to achieve.
  • the radial size and the general mass to be actuated remain in the same proportions as in state of the art, while increasing the protection of contacts during major power cuts.

Landscapes

  • Circuit Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

    DOMAINE TECHNIQUE
  • L'invention concerne les disjoncteurs à haute ou moyenne tension, dont la distance d'ouverture entre les contacts est réduite et la coupure améliorée.
  • Plus particulièrement, l'invention se rapporte à la présence d'un tube isolant permettant de répartir plus régulièrement le champ électrique lors de la coupure et de diminuer les gradients exercés sur les contacts d'arc.
  • Le cylindre peut en outre être utilisé pour l'actionnement par transmission d'efforts en sens opposé des contacts afin de réduire l'énergie de manoeuvre et/ou pour un déplacement séparé entre contact d'arc et contact principal d'un même bloc de contact.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • Les appareillages de coupure pour moyenne et haute tension comprennent une paire de contacts mobiles l'un par rapport à l'autre entre une position fermée dans laquelle le courant électrique peut circuler et une position ouverte dans laquelle le courant électrique est interrompu.
  • Par convention, on appelle « contact principal » un contact électrique (avec son capot pare-effluve) par lequel transite le courant nominal ; il est associé à un « contact d'arc » qui assure la fonction de coupure proprement dite. On appelle « contact mobile » l'ensemble contact principal et contact d'arc directement connecté à l'organe de manoeuvre.
  • La vitesse de séparation entre les contacts est un des paramètres principaux pour garantir la tenue diélectrique du disjoncteur lors de son ouverture. Pour réduire l'énergie de manoeuvre tout en augmentant la vitesse de séparation des contacts lors notamment d'une coupure d'un disjoncteur, il a été conçu deux contacts mobiles l'un et l'autre, actionnés par l'intermédiaire d'un seul organe de manoeuvre. Le « contact mobile opposé », composé lui aussi d'un contact principal et d'un contact d'arc, est alors déplacé via une cinématique, qui est elle-même connectée au « contact mobile ».
  • En particulier, le document EP 0 822 565 décrit un disjoncteur pour haute et moyenne tension dans lequel un levier à deux bras, l'un étant connecté à une buse solidaire d'un premier contact et l'autre à un deuxième contact, permet que le mouvement du premier contact entraîne simultanément le deuxième contact en sens inverse. A la place d'un système de levier à deux bras, le système de renvoi peut être réalisé par une courroie, ou chaîne, refermée autour de deux pignons : voir document FR 2 774 503 .
  • La distance d'ouverture entre les contacts reste cependant importante en raison du champ électrique présent entre les contacts lors de la coupure, ainsi qu'en raison des tensions élevées à tenir en position ouverte (par exemple lors de chocs de manoeuvre).
  • Afin de réduire le champ électrique sur les contacts d'arc, il a été proposé, dans le cas d'un disjoncteur à double mouvement, de positionner une électrode de champ métallique mobile, avec une course réduite et mise en mouvement par un système de levier à deux bras : voir document EP 0 809 269 . Cependant, cette solution ne modifie les lignes de champ que du côté du contact d'arc mobile opposé et en fin de course d'ouverture de la chambre, et n'est pas adaptée pour toutes les configurations de disjoncteurs.
  • Le document DE 199 02 835 ne propose qu'une solution partielle de modification de lignes de champ en fin de course d'ouverture et uniquement au niveau de la tige de contact d'arc.
  • EXPOSÉ DE L'INVENTION
  • L'invention se propose, parmi d'autres avantages, de pallier des inconvénients décrits ci-dessus, et de mieux répartir le champ électrique au niveau des contacts. Cet effet est obtenu par la mise en place d'un tube isolant, qui, par ses propriétés diélectriques optimise les lignes équipotentielles pendant toute l'ouverture des contacts et, en outre, peut permettre de réaliser un système de double mouvement des contacts et de protéger efficacement les contacts principaux des gaz chauds générés par la coupure.
  • Sous un de ses aspects, l'invention concerne une chambre de coupure selon la revendication 1 pour un disjoncteur haute ou moyenne tension comprenant deux contacts composés chacun notamment d'un contact dit principal et d'un contact d'arc. Les contacts sont mobiles relativement l'un par rapport à l'autre, entre une position ouverte de la chambre de coupure et une position fermée, des moyens d'actionnement permettant le déplacement d'un contact mobile. L'autre contact peut être fixe, ou les deux contacts peuvent être mobiles en translation dans un sens opposé l'un par rapport à l'autre, auquel cas ils sont de préférence déplacés par les mêmes moyens d'actionnement ; il peut en outre y avoir un glissement entre le contact principal et le contact d'arc du deuxième contact mobile opposé.
  • La chambre de coupure selon l'invention est en outre munie d'un tube isolant localisé entre les contacts principaux et les contacts fixes, que leur position soit ouverte ou fermée. Selon l'invention, le premier contact est associé à une buse de soufflage, localisée elle aussi dans le tube isolant, et la chambre de coupure est remplie de gaz diélectrique.
  • De préférence, le tube isolant est fixé au premier contact principal mobile, et il est guidé en translation dans le deuxième contact principal (fixe ou mobile opposé), par exemple par un anneau ; le système de guidage peut être étanche, ce qui permet alors d'éviter un reflux des gaz chauds de la sortie de buse vers les contacts principaux.
  • Le tube isolant permet de déplacer les lignes équipotentielles, pour diminuer le champ électrique appliqué sur les contacts lors de la coupure. Il peut être en différents matériaux, et notamment comprendre des arrangements de fibres, par exemple des enroulements, dans une résine ; le matériau du tube peut également être chargé, en surface ou dans la masse. Pour moduler la répartition du champ, le tube isolant peut être doté de protubérances et/ou surépaisseurs, notamment au niveau de ses extrémités, en particulier au niveau du contact d'arc en forme de tige. Il est possible également d'y associer une électrode de champ métallique pour diminuer encore le gradient.
  • Selon un mode de réalisation préféré, les deux contacts sont mobiles et actionnés par l'intermédiaire du tube isolant. Le tube est alors relié à un contact et aux moyens d'actionnement de sorte que le déclenchement du disjoncteur et le déplacement subséquent du contact entraînent les moyens d'actionnement. Les moyens d'actionnement sont par ailleurs reliés par des moyens de connexion au deuxième contact, de sorte que le déplacement dans une direction du tube entraîne le déplacement en direction opposée du deuxième contact.
  • De préférence, les moyens d'actionnement sont sous la forme d'un levier pivotant autour d'un axe. Les moyens de connexion peuvent être des tiges ou biellettes rigides reliées aux bras de levier, et le dimensionnement des bras de levier peut être ajusté pour optimiser le rapport de vitesses entre le premier et le deuxième contact, voire entre le contact principal et le contact d'arc d'un même contact mobile.
  • Sous un autre aspect, l'invention concerne un disjoncteur haute ou moyenne tension muni d'une chambre de coupure selon la revendication 1 présentant un tube isolant répartiteur de champ, qui peut en outre participer à l'actionnement des contacts.
  • BRÈVE DESCRIPTION DES DESSINS
  • Les caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en référence aux dessins annexés, donnés à titre illustratif et nullement limitatifs.
    • La figure 1 représente, en vue de coupe longitudinale, schématiquement une chambre de coupure, selon l'art antérieur pour une moitié supérieure, et munie d'un tube isolant selon un mode de réalisation de l'invention pour une moitié inférieure.
    • Les figures 2A et 2B montrent, également en vue de coupe longitudinale, dans deux orientations autour de son axe, une chambre de coupure selon un mode de réalisation préféré de l'invention.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Un disjoncteur à haute ou moyenne tension, illustré en partie supérieure de la figure 1, comprend une chambre de coupure 10 qui peut être remplie d'un gaz diélectrique de type SF6. La chambre de coupure 10 comprend un premier contact mobile 12, composé d'un contact d'arc 12a, par exemple sous forme de tulipe, et d'un contact principal 12b, et un deuxième contact 14, fixe dans ce mode de réalisation, composé d'un contact d'arc 14a, ici sous forme de tige, et d'un contact principal 14b. Ces deux éléments collaborent entre une position ouverte dans laquelle les deux contacts 12, 14 sont séparés l'un de l'autre et une position fermée (non illustrée) dans laquelle ils permettent le passage du courant électrique entre eux.
  • Lors de la procédure de coupure, les contacts principaux 12b, 14b se séparent, puis les contacts d'arc 12a, 14a se séparent, après une période de latence éventuelle créée par la longueur de l'embrochage, formant un arc électrique qui s'éteint par l'écartement ultérieur du contact 12.
  • Le premier contact 12 est usuellement solidaire d'une buse 16 en matériau isolant, qui elle-même prolonge un volume de compression de gaz. Cette buse diélectrique 16 sert de tuyère de soufflage du gaz issu du volume de compression en direction de l'arc électrique.
  • Tel que schématisé sur la partie supérieure de la figure 1, lors de la séparation des contacts, des lignes V de champ électrique E apparaissent. Ce champ électrique E est très élevé en particulier sur le contact d'arc 14a en raison de sa forme de tige. Ainsi, la distance d'ouverture entre les contacts doit être suffisante pour éviter un réamorçage.
  • Selon l'invention, pour améliorer la coupure, réduire le champ E sur la tige de contact d'arc 14a, et donc réduire la distance d'ouverture, un cylindre isolant 18 est positionné au niveau des contacts 12a, 14a, afin de répartir différemment les lignes équipotentielle V, tel qu'illustré sur la partie inférieure de la figure 1. Le cylindre 18 est positionné entre les contacts principaux 12b, 14b et les contacts d'arc 12a, 14a, ce quelle que soit la position ouverte ou fermée des contacts 12, 14.
  • La présence d'un tube 18 en un matériau de permittivité relative élevée agit sur les lignes de champ E, qui sont décalées par rapport à leur position classique. Le champ E sur la tige d'arc 14b est alors réduit. Le tube isolant 18, 118 est un cylindre droit creux intérieurement (figure 1, figures 2A et 2B) qui ne constitue pas une tuyère ou buse isolante par ailleurs connue dans les chambres de coupure usuelles.
  • La buse isolante 16, 116 réalise une fonction partielle de répartition du champ électrique comme usuellement réalisé dans les chambres de coupure usuelles, tandis que le tube isolant 18 selon l'invention apporte une modification supplémentaire des lignes équipotentielles de champ électrique.
  • Ainsi, le tube isolant 18, 118 présente des propriétés diélectriques qui optimisent les lignes équipotentielles pendant toute l'ouverture des contacts 12a, 12b, 14a, 14b et dont l'agencement permet d'obtenir cet effet au niveau de tous lesdits contacts.
  • Il est possible de choisir la forme et l'épaisseur locale du tube 18 de façon à moduler son influence. En particulier, si l'épaisseur du tube 18 augmente au niveau de la tige de contact d'arc 14a, par exemple par la présence d'une surépaisseur 20 à une extrémité du tube 18, l'effet de modification des lignes de champ E est augmenté, et le champ E14 sur ladite tige 14a est d'autant plus diminué. De même, la permittivité relative du tube 18 agit directement sur la répartition des lignes équipotentielles V.
  • En particulier, le tube 18 peut être un cylindre creux constitué en polymère thermoplastique ou thermodurcissable. Parmi les polymères thermoplastiques, on peut citer notamment les familles des polyesters insaturés, ou des phénoplastes, ou des résines époxydes en réaction avec les durcisseurs anhydrides d'acides, ou des polybismaléides, ou des résines vinylesters ; parmi les polymères thermoplastiques, on peut citer notamment les familles des polyesters thermoplastiques, ou des polyamides, ou des polycarbonates, ou des polyoxydes de phénylène, ou des polysulfones, ou les polyphénylènes sulfures, ou les polyéthercétones, ou les polymères à cristaux liquides, ou les polyimides, ou les polymères fluorés de type PTFE (polytétrafluoroéthylène). On peut également utiliser un alliage de ces matériaux.
  • Le tube 18 peut également être constitué d'un arrangement de fibres, notamment des fibres minérales comme les fibres de verre ou les fibres polyester ou les fibres aramides de type Kevlar™, chacune pouvant être sous la forme de fils continus, fibres longues (> 3 mm), fibres courtes (< 3 mm), mâts, ou tissus. Il peut alternativement ou en outre contenir, localement ou en totalité, des renforts particulaires (alumine, alumine trihydrate, oxyde de calcium, oxyde de magnésium MgO, silice, wollastonite, carbonate de calcium, oxyde de titane, composés à base de silicate tels que les montmorillonites, vermiculites et kaolin), organiques ou inorganiques.
  • Selon un autre mode de réalisation, le cylindre creux 18 est réalisé en enroulements filamentaires, dont l'angle donné à l'enroulement peut être de 0° à 90° de façon régulière sur tout le cylindre 18 ou variable (ce deuxième cas permet de modifier les propriétés mécaniques du cylindre localement). L'ensemble est alors, ou préalablement, imprégné par de la résine (réalisation sous vide ou non), par exemple une résine époxyde de type bisphénol A, bisphénol F, ou cycloaliphatique. Différents matériaux de renforts peuvent y être ajoutés, comme des fibres minérales comme les fibres de verre ou les fibres polyester ou les fibres aramides de type Kevlar™, chacune pouvant être sous la forme de fils continus, fibres longues (> 3 mm), fibres courtes (< 3 mm), mâts, ou tissus.
  • Pour protéger les fibres du SF6 pollué et des produits de décomposition du SF6, un vernis ou un film de protection, par exemple un film polyester, peut être déposé sur la paroi interne et/ou externe du tube 18, par exemple sur une couche d'environ 30 µm, comme un polyuréthane aliphatique.
  • De préférence, le matériau du tube isolant 18 comprend, de façon plus ou moins localisée, en surface ou dans la masse, des injections de charges, qui permettent également d'optimiser la fonction de répartition de champ. Ainsi, le cylindre 18 et ses protubérances 20 peut comporter des résines époxydes bisphénol A, bisphénol F ou cycloaliphatique avec injection localisée de charge, par exemple de type oxyde de zinc ou oxyde de titane, optimisant sa fonction de répartition du champ électrique.
  • De plus, un autre matériau 22 peut être surmoulé sur le diamètre intérieur et/ou extérieur de ce cylindre 18, ou déposé en couche mince sur son diamètre intérieur et/ou extérieur. La couche peut être réalisée dans un mélange polymère (thermoplastique ou thermodurcissable) avec incorporation de charge (matériau qui peut avoir une permittivité relative élevée) de type ZnO, TiO2 ou noir de carbone, le taux de charge en masse étant compris entre 0,1 % et 300 %, sur une épaisseur comprise entre 10 µm et 5 mm.
  • Dans chaque cas (cylindre polymérique ou arrangement de fibres), le tube 18 isolant peut être de géométrie variable, sous forme cylindrique, de préférence de révolution autour de l'axe AA de la chambre de coupure 10, ou conique, ou même polygonale ; tel que précisé plus haut, des surépaisseurs locales 20 permettent de moduler la répartition des lignes équipotentielles V selon des critères prédéterminés, par exemple par calcul et/ou modélisation.
  • Il est possible, à la place de la surépaisseur 20 localisée au niveau de la tige de contact d'arc 14a ou en sus d'elle, de positionner une électrode métallique autour, ou dans, voire à l'intérieur de la paroi du tube isolant 18 : cette électrode permet de réduire encore les gradients et le champ E14 sur la tige 14a et d'améliorer la coupure. Bien entendu, la localisation de cette électrode de champ ne se limite pas à l'extrémité du tube 18.
  • Le tube isolant 18 peut être couplé au premier contact 12, de préférence à son contact principal 12b, éventuellement de façon fixe, par son extrémité 24.
  • La présence du tube isolant 18, outre son avantage quant à une répartition régulière des lignes équipotentielles V, permet en outre un centrage du contact mobile 12b lorsqu'il fait sa course par rapport au deuxième contact 14 : de préférence, un élément de guidage 26 est localisé entre la paroi externe du tube isolant 18 et la paroi interne du deuxième contact principal 14b. Le tube 18 étant couplé au contact mobile 12, le contact 12 et la buse 16 sont guidés le long de l'axe AA lors de leur mouvement. Le système de guidage 26 peut être la géométrie de surface, mais comprend de préférence un anneau plein ou fendu, de faible épaisseur, en matériau isolant ayant un faible coefficient de frottement (par exemple un PTFE chargé ou non).
  • Il est à noter en outre que cette même extrémité permet de bloquer le retour des gaz chauds 28 qui sortent de la buse 16 : tel qu'on le voit sur la partie supérieure de la figure 1, lors de la coupure de courants importants, des gaz chauds 28 peuvent être projetés jusque dans le voisinage des contacts principaux 12b, 14b. La présence de ces gaz chauds 28 peut entraîner des amorçages diélectriques, potentiellement destructeurs pour le disjoncteur : la gestion usuelle de ces gaz chauds 28 entraîne des surdimensionnements du disjoncteur. Grâce à l'invention, et notamment dans le cas où un système de guidage 26, qui peut alors être étanche, est prévu, les gaz chauds sont confinés dans le tube 18, et les réamorçages diélectriques entre les contacts permanents 12b, 14b sont évités, tout en conservant une structure compacte à la chambre de coupure 10.
  • La solution selon l'invention peut également être appliquée pour une chambre de coupure 110 à double mouvement. Tel qu'illustré en figures 2, la géométrie générale de la chambre 110 peut être similaire à celle précédemment décrite : deux contacts 112, 114 et la buse 116 se déplacent le long de l'axe principal AA de la chambre de coupure 110, les deux contacts 112, 114 comprenant chacun un contact d'arc 112a, 114a, et un contact permanent 112b, 114b entre lesquels se trouve un tube isolant 118 ; chaque élément 110, 112, 114, 116, 118 est symétrique autour de l'axe AA.
  • Ici, chacun des contacts 112, 114 est actionné en écartement ou rapprochement par l'intermédiaire d'un unique système d'actionnement 130 ; de fait, le déplacement du contact mobile 112 lors du déclenchement du disjoncteur entraîne le système d'actionnement 130 qui déplace le contact mobile opposé 114.
  • De préférence, l'entraînement du contact mobile opposé 114 se fait par l'intermédiaire du tube 118 : cette option permet une plus grande latitude des moyens d'actionnement 130 au vu de la géométrie particulièrement complexe des organes de contact 112, 114 d'une chambre de coupure 110 à haute et moyenne tension ; le tube isolant 118, de par son diamètre, permet de transmettre un déplacement dans une large gamme d'efforts de manoeuvre.
  • Bien qu'ayant alors une fonction additionnelle de transmission d'efforts, le tube 118 peut rester d'épaisseur réduite : en effet, comme il s'agit d'un tube cylindrique plein, la charge est uniformément répartie, et le mouvement du premier contact mobile 112 et l'entraînement du deuxième contact mobile opposé 114 ne nécessitent pas de parois épaisses pour être suffisamment résistantes ; par exemple le tube 118 peut avoir des parois de quelques millimètres seulement à quelques dizaines de millimètres.
  • Pour la transmission d'efforts, le tube isolant 118 est fixé par une extrémité 124 au premier contact principal 112, par exemple par un axe de liaison, et de préférence le dispositif d'actionnement 130 est localisé à son autre extrémité, du côté du contact mobile opposé 114.
  • Les moyens d'actionnement 130 peuvent prendre différentes formes connues de l'homme du métier. Avantageusement, les moyens d'actionnement 130 comprennent un levier à deux bras 132, 134 pivotant autour d'un axe 136. Le premier bras 132 est connecté au tube isolant 118 (et donc indirectement au premier contact 112), par exemple au niveau d'une protubérance 120 d'extrémité. Il se déplace donc en sens inverse du deuxième bras 134 connecté au deuxième contact 114, et de préférence à son contact principal 114b.
  • La connexion entre le tube 118 et le premier bras 132 est réalisée de préférence par une fixation rotative, par exemple un axe, 138 entre l'extrémité d'une première tige 142 rigide connectée par un pivot au niveau d'une partie d'extrémité du bras 132.
  • De la même façon, une biellette, ou deuxième tige rigide, 144 relie de façon pivotante une partie d'extrémité du deuxième bras 134 et le contact principal 114b.
  • Selon le déplacement souhaité et selon le rapport de vitesse préféré, la connexion au niveau du contact opposé 114 peut se faire à distance plus ou moins grande de l'axe AA de déplacement. De même, la longueur des bras 132, 134 du levier peut être identique ou différente. Selon un mode de réalisation, la longueur des deux bras 132, 134 est maximale, c'est-à-dire de l'ordre du diamètre du tube isolant 118, afin d'optimiser les forces.
  • Il est possible de prévoir des lumières pour la connexion des tiges 142, 144 de connexion, notamment au niveau du levier 130, si un temps de latence est préconisé entre la mise en mouvement des deux contacts 112, 114 : par exemple, la deuxième tige de connexion 144 du contact opposé 114 peut se déplacer sur une certaine distance en coulissant dans une lumière (non illustrée) du deuxième bras 134 avant d'entamer son mouvement de translation le long de l'axe AA.
  • De même, il est possible que le contact d'arc 114a et le contact principal 114b du contact mobile opposé 114 soient glissants l'un par rapport à l'autre, et possèdent ainsi des courses et des vitesses différentes. Le contact d'arc 114a et le contact principal 114b sont alors connectés au système d'actionnement 130 par une biellette et un levier différents (non illustré).
  • Selon un autre mode de réalisation, éventuellement en combinaison des précédents, l'axe 136 du levier 130 est orthogonal à l'axe AA de déplacement, de sorte que l'extrémité des bras 132, 134 et donc les biellettes de connexion 142, 144 se déplacent en un mouvement plan permettant une moindre sollicitation de leurs points d'ancrage. Avantageusement, pour des raisons de symétrie et de facilité de montage, l'axe 136 du levier coupe l'axe AA de déplacement des contacts 112, 114.
  • Pour améliorer le guidage du cylindre mobile 118 et en particulier annuler les efforts radiaux, selon un autre mode de réalisation non illustré, les moyens d'actionnement 130 comprennent deux leviers, de préférence axisymétriques, dont les axes de pivotement sont confondus ; chaque bras de chaque levier est relié par une tige au tube 118 ou au deuxième contact 114, de préférence en deux points diamétralement opposés.
  • D'autres moyens d'actionnement ou de guidage sont envisageables. De fait, selon l'invention, grâce à la présence d'un tube isolant 18, 118 permettant une meilleure répartition des lignes équipotentielles V, les options de conception de l'actionnement sont ouvertes et plus aisées à réaliser. De plus, l'encombrement radial et la masse générale à actionner restent dans les mêmes proportions que dans l'état de la technique, tout en accroissant la protection des contacts lors des coupures de courants importants.

Claims (16)

  1. Chambre de coupure (10, 110) pour un disjoncteur haute ou moyenne tension comprenant au moins :
    - un premier contact (12, 112) comprenant un contact d'arc (12a, 112a) et un contact principal (12b, 112b) mobile le long de l'axe (AA) de la chambre de coupure (10, 110),
    - un deuxième contact (14, 114) comprenant un contact d'arc (14a, 114a) et un contact principal (14b, 114b),
    - des moyens d'actionnement (130) permettant d'actionner le premier contact (12, 112) entre une position fermée dans laquelle les deux contacts (12, 112, 14, 114) sont en contact et une position ouverte dans laquelle ils sont séparés, caractérisé en ce qu'elle comprend
    - un tube (18, 118) en matériau isolant s'étendant longitudinalement le long de l'axe (AA) et positionné pour que, quelle que soit la position relative des contacts (12, 112, 14, 114), les deux contacts d'arc (12a, 112a, 14a, 114a) soient localisés à l'intérieur du tube (18, 118) et les deux contacts principaux (12b, 112b, 14b, 114b) soient localisés à l'extérieur du tube (18, 118),
    - une buse (16, 116) en matériau isolant couplée de façon fixe au premier contact (12, 112) et localisée dans le tube isolant (18, 118), de sorte que le tube (18, 118) modifie les lignes équipotentielles (V) lors de la coupure et en position ouverte et par ses propriétés diélectriques optimise les lignes équipotentielles pendant toute l'ouverture des contacts
  2. Chambre de coupure selon la revendication 1 dans laquelle le matériau isolant du tube (18, 118) comprend un arrangement de fibres, comme un enroulement filamentaire.
  3. Chambre de coupure selon l'une des revendications 1 à 2 dans laquelle le matériau isolant du tube (18, 118) comprend une résine chargée, dans la masse ou en surface.
  4. Chambre de coupure selon l'une des revendications 1 à 3 dans laquelle le matériau isolant du tube (18, 118) est thermoplastique ou thermodurcissable.
  5. Chambre de coupure selon l'une des revendications 1 à 4 dans laquelle le tube isolant (18, 118) comprend une surépaisseur (20, 120) à une extrémité au moins.
  6. Chambre de coupure selon l'une des revendications 1 à 5 comprenant en outre une électrode de champ tubulaire métallique solidarisée à une extrémité du tube isolant (18, 118).
  7. Chambre de coupure selon l'une des revendications 1 à 6 dans laquelle le tube (18, 118) est couplé de manière fixe au premier contact (12, 112) par son extrémité (24, 124).
  8. Chambre de coupure selon la revendication 7 comprenant en outre un système de guidage mécanique (26) en translation du tube isolant (18) le long du contact principal (14b) du deuxième contact (14).
  9. Chambre de coupure selon la revendication 8 dans lequel le système de guidage (26) est étanche.
  10. Chambre de coupure selon l'une des revendications 1 à 9 dans laquelle le deuxième contact (114) est mobile le long de l'axe (AA) et se déplace dans un sens opposé au premier contact (112).
  11. Chambre de coupure selon la revendication 10 dans laquelle les moyens d'actionnement (130) du premier contact (112) permettent l'actionnement du deuxième contact (114).
  12. Chambre de coupure selon la revendication 11 comprenant des premiers moyens de connexion (142) solidarisés au tube (118) et aux moyens d'actionnement (130) et des deuxièmes moyens de connexion (144) solidarisés au deuxième contact (114) et aux moyens d'actionnement (130) de sorte que lors de leur sollicitation, les moyens d'actionnement (130) génèrent une translation en sens inverse du tube (118) et du deuxième contact (114).
  13. Chambre de coupure selon la revendication 12 dans laquelle les moyens de connexion comprennent une tige (142, 144) connectée à une extrémité au tube (118) ou au deuxième contact (114) et à l'autre extrémité aux moyens d'actionnement (130).
  14. Chambre de coupure selon la revendication 12 ou 13 dans laquelle les deuxièmes moyens de connexion (144) comprennent deux tiges solidarisées au contact principal (114b), respectivement au contact d'arc (114a), et aux moyens d'actionnement (130), de sorte que le contact d'arc (114a) et le contact principal (14b) du deuxième contact (114) glissent l'un par rapport à l'autre.
  15. Chambre de coupure selon l'une des revendications 13 à 14 dans laquelle les moyens d'actionnement (130) comprennent un levier à deux bras (132, 134) pivotant autour d'un axe (136), de sorte que lors du pivotement du levier (130) autour de son axe (136), les premier et deuxième contacts (112, 114) se déplacent en translation en sens inverse le long de l'axe (AA) de la chambre (110).
  16. Disjoncteur à haute ou moyenne tension comprenant une chambre de coupure (10, 110) selon l'une des revendications 1 à 15.
EP07820999A 2006-10-09 2007-10-08 Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension Active EP2076914B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654160A FR2906931B1 (fr) 2006-10-09 2006-10-09 Chambre de coupure avec cylindre repartiteur de champ pour disjoncteurs haute ou moyenne tension
PCT/EP2007/060626 WO2008043721A1 (fr) 2006-10-09 2007-10-08 Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension

Publications (2)

Publication Number Publication Date
EP2076914A1 EP2076914A1 (fr) 2009-07-08
EP2076914B1 true EP2076914B1 (fr) 2012-04-04

Family

ID=37814510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820999A Active EP2076914B1 (fr) 2006-10-09 2007-10-08 Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension

Country Status (6)

Country Link
US (1) US8698033B2 (fr)
EP (1) EP2076914B1 (fr)
CN (1) CN101595545B (fr)
AT (1) ATE552603T1 (fr)
FR (1) FR2906931B1 (fr)
WO (1) WO2008043721A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233843B2 (en) 2003-08-08 2007-06-19 Electric Power Group, Llc Real-time performance monitoring and management system
EP2362407B1 (fr) 2010-02-23 2012-10-03 ABB Research Ltd. Düse für einen Leistungsschalter und Leistungsschalter mit einer solchen Düse
FR2982412B1 (fr) * 2011-11-03 2014-12-26 Alstom Technology Ltd Appareillage electrique comportant des moyens pour limiter la formation d'un arc electrique
RU2503078C1 (ru) * 2012-05-25 2013-12-27 Открытое Акционерное Общество Холдинговая Компания "Электрозавод" (Оао "Электрозавод") Элегазовый выключатель
JP6685146B2 (ja) * 2016-02-25 2020-04-22 株式会社日立製作所 ガス遮断器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1022292A (en) * 1961-03-22 1966-03-09 English Electric Co Ltd Improvements in or relating to gas-blast electric circuit-breakers
CH675175A5 (fr) 1987-10-27 1990-08-31 Bbc Brown Boveri & Cie
DE3904147A1 (de) 1989-02-07 1990-08-09 Siemens Ag Metallgekapselter druckgas-leistungsschalter mit zur feldsteuerung dienenden ringen
AU638851B2 (en) * 1990-07-27 1993-07-08 Hitachi Limited Puffer type gas-insulated circuit breaker
DE9106309U1 (de) 1991-05-17 1992-09-17 Siemens AG, 8000 München Schaltkammer für einen metallgekapselten Druckgasschalter
DE69530381T2 (de) * 1994-04-05 2004-02-05 Abb Inc. Beweglicher schirm für schaltstrecke
US5478980A (en) * 1994-04-05 1995-12-26 Abb Power T&D Company, Inc. Compact low force dead tank circuit breaker interrupter
DE4427163A1 (de) * 1994-08-01 1996-02-08 Abb Management Ag Druckgasschalter
TW280920B (fr) * 1995-01-20 1996-07-11 Hitachi Seisakusyo Kk
DE29511842U1 (de) * 1995-07-13 1996-11-07 Siemens AG, 80333 München Hochspannungs-Leistungsschalter mit einem Isolierstoffkörper und einer Feldelektrode
JPH09231885A (ja) 1996-02-22 1997-09-05 Hitachi Ltd ガス遮断器
DE19622460C2 (de) * 1996-05-24 1998-04-02 Siemens Ag Hochspannungs-Leistungsschalter mit zwei antreibbaren Schaltkontaktstücken
FR2751782B1 (fr) * 1996-07-23 1998-08-28 Gec Alsthom T & D Sa Disjoncteur a haute tension a auto-soufflage d'arc
DE19631323C1 (de) * 1996-08-01 1997-10-16 Aeg Energietechnik Gmbh Druckgasschalter
DE19641550A1 (de) 1996-10-09 1998-04-16 Asea Brown Boveri Leistungsschalter
FR2774503B1 (fr) 1998-02-02 2000-04-07 Gec Alsthom T & D Sa Disjoncteur de moyenne ou de haute tension comportant une courroie de transmission refermee autour de deux pignons
DE19902835C2 (de) * 1999-01-20 2001-12-06 Siemens Ag Hochspannungsleistungsschalter mit einer Isolierdüse
US6495785B1 (en) 2000-06-29 2002-12-17 Abb Power T&D Company Inc. Non-glue mounting of non-metallic tubes
DE10345657B4 (de) 2003-09-25 2005-08-18 Siemens Ag Schaltkammer

Also Published As

Publication number Publication date
FR2906931B1 (fr) 2009-07-17
US8698033B2 (en) 2014-04-15
ATE552603T1 (de) 2012-04-15
CN101595545B (zh) 2012-10-10
EP2076914A1 (fr) 2009-07-08
US20100032411A1 (en) 2010-02-11
WO2008043721A1 (fr) 2008-04-17
CN101595545A (zh) 2009-12-02
FR2906931A1 (fr) 2008-04-11

Similar Documents

Publication Publication Date Title
EP1912235B1 (fr) Actionnement par des contacts d&#39;une chambre de coupure a double mouvement par un tube isolant
EP1983538B1 (fr) Disjoncteur avec chambre de coupure à double mouvement et à structure inversée
EP2076914B1 (fr) Chambre de coupure avec cylindre répartiteur de champ pour disjoncteurs haute ou moyenne tension
EP1271590B1 (fr) Dispositif interrupteur pour haute ou moyenne tension à coupure mixte par vide et gaz
EP2402969B1 (fr) Chambre de coupure pour disjoncteur à moyenne ou haute tension à énergie de manoeuvre réduite
EP1906425B1 (fr) Actionnement par came cylindrique des contacts d&#39;une chambre de coupure à double mouvement
WO2000052721A1 (fr) Disjoncteur haute tension a double mouvement
EP2073229A1 (fr) Court-circuiteur pyrotechnique à contacts électrique auto-serrant et ensemble de protection contre les arcs internes comportant un tel court-circuiteur
FR3001081A1 (fr) Sectionneur a contact d&#39;arc rotatif
EP2510530B1 (fr) Disjoncteur a haute tension a ecran amovible pour l&#39;amelioration du gradient de champ
EP1629577B1 (fr) Eclateur, et notamment eclateur a haute tension
EP0807945A1 (fr) Disjoncteur à haute tension avec insertion de résistance à la fermeture
EP2402970B1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manoeuvre et dimensions reduites
EP3151261B1 (fr) Disjoncteur à came pour moyennes et hautes tensions
EP3251140A1 (fr) Disjoncteur equipe d&#39;un capot d&#39;echappement extensible
EP2237301B1 (fr) Chambre de coupure de courant à contact mobile et buse de soufflage mobile manoeuvrés indépendamment, interrupteur by pass HVDC et sous station de conversion HVDC comprenant une telle chambre
EP2201588B1 (fr) Disjoncteur a deux chambres de coupure alignees, a transmission commune et encombrement reduit
EP0936646A1 (fr) Disjoncteur de moyenne ou de haute tension comportant une chambre de coupure à tenue diélectrique ameliorée
WO2011018426A1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manœuvre reduite
EP1406279A1 (fr) Disjoncteur à gaz à arc tournant
CH691014A5 (fr) Disjoncteur à haute tension à double mouvement avec résistance de fermeture.
CH689473A5 (fr) Disjoncteur à grande tension d&#39;arc.
WO2013060820A1 (fr) Chambre de coupure dotée d&#39;un tube limitant l&#39;impact de la génération de particules et appareillage électrique de coupure équipé d&#39;une telle chambre de coupure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007021784

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0033700000

Ipc: H01H0033240000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 33/42 20060101ALI20111103BHEP

Ipc: H01H 33/70 20060101ALI20111103BHEP

Ipc: H01H 33/24 20060101AFI20111103BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM GRID SAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 552603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007021784

Country of ref document: DE

Effective date: 20120531

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 552603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120404

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120705

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20130104

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602007021784

Country of ref document: DE

Effective date: 20130104

BERE Be: lapsed

Owner name: ALSTOM GRID SAS

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007021784

Country of ref document: DE

Representative=s name: ZEITLER VOLPERT KANDLBINDER, DE

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121008

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007021784

Country of ref document: DE

Representative=s name: ZEITLER VOLPERT KANDLBINDER, DE

Effective date: 20130618

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007021784

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM GRID SAS, PARIS, FR

Effective date: 20130618

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007021784

Country of ref document: DE

Representative=s name: ZEITLER VOLPERT KANDLBINDER PATENT- UND RECHTS, DE

Effective date: 20130618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20130104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20130104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602007021784

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20201118

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007021784

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230922

Year of fee payment: 17

Ref country code: FR

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 17

Ref country code: CH

Payment date: 20231102

Year of fee payment: 17